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NOTATIONS

N :Set of positive integer numbers.

R : Set of real numbers .

¢°(a;b) = €(a,b): Space of continuous functions on the interval.

LP(a;b) : Space of power functions p € [1, +o0[ integrable on (a; b).

L>(a;b) : Space of functions essentially bounded on (a;b).

¢"(a;b) : Space of functions n times differentiable with continuity on (a;b).
%> (a;b): Space of infinitely continously differentiable function on (a;b).
supp f: Support of f.

¢.°: Space of infinitely differentiable functions with compact support .

p': conjugate of holder of p (p' = I%).

AC™(a,b): Space of n absolute continuous function of order n on (a, b).

WP (a,b): The usual Sobolev space on (a, b).

|.||er: Norm in L?.

||.||zee: Norm in L*°.

|- |lwrr: Norm in w'?.

I'(.): Gamma function.

B(.,.) : Beta function .

I%,: The fractional integral on the left of order « in the sense of Riemann -Liouville.

I : The fractional integral on the right of order « in the sense of Riemann -Liouville.

d .

it The usual derivative .
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e D% : The fractional derivative on the left of order a in the sense of Riemann -
Liouville.

e Dy The fractional derivative on the right of order « in the sense of Riemann -
Liouville.



INTRODUCTION

@?}etween 1832 and 1837, Liouville published a series of articles on fractional-order inte-
gral and differential equations. In one of his articles, he defined the integral of a complex
number o, with a positive real part:

I f(x) = D~ f(x) = ﬁ /O T H@4 et s e R

(I'() is the Euler gamma function).

This result is significant. In 1847, Riemann studied it, and his research, published
in 1876, provided the current definition of fractional integration known as the Riemann-
Liouville integral:

I f(z) = ﬁ /wa(t)(a: _ 0l 0.

This was a precursor to fractional-order differentiation of the Riemann-Liouville type.

Research in this field has proliferated, making it difficult for researchers to keep up
with the latest studies. Many differential and partial differential equations have been
modified to fractional-order type, leading to numerous applications based on these mod-
ified models.

Some researchers may not favor this work, as it involves hypothetical equations that
may not apply to physical, biological, and other sciences. However, these studies are
original, with correct results based on previous research. This is the essence of research in
pure and applied mathematics.

Nevertheless, fractional-order differential equations have practical applications in var-
ious fields, including electronics, hydrodynamics, fluid mechanics, dynamic systems, geo-
physics, soil science, biochemistry, economics, and finance.

In 1935, Sobolev introduced a theory for the general solutions of the wave equation,
defining them as limits in the L' space of ¢ solutions. He introduced the concept of

4
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continuous functionals on the set of continuously differentiable functions up to a certain
order (later known as “distributions of bounded order”). This led to his theory on the
existence of solutions for a wide range of hyperbolic equations.

In 1938, Sobolev defined weak derivatives and Sobolev spaces, denoted by L;, which
later evolved into W) and eventually to the current notation W™P. Research in these
spaces developed rapidly from the 1950s onward.

One of the most famous books in this field is R. A. Adams’ “Sobolev Spaces,” [1] which
provided definitions and properties of these spaces. Another well-known book for spe-
cialists in functional analysis is H. Brezis” ” Analyse Fonctionnelle,” [4] which includes an
overview of Sobolev spaces and some related boundary value problems.

Among the key concepts associated with Sobolev spaces is embedding into broader
spaces, particularly Lebesgue spaces, which has significant implications for boundary
problems in differential and partial differential equations. This research highlights key
embeddings in fractional-order Sobolev spaces related to Riemann-Liouville calculus.

This involves introducing fractional-order Sobolev spaces of the Riemann-Liouville
type, which have been actively studied for about ten years. We will discuss their algebraic
and topological structure, followed by the embedding of these spaces into broader spaces,
especially Lebesgue spaces and spaces of continuous functions. This extends classical con-
cepts to fractional-order calculus, emphasizing their importance and wide applications.

This work is divided into four chapters:

Chapter One: Fundamental concepts related to basic functional spaces and the Riemann-
Liouville fractional calculus.

Chapter Two: Spaces of absolutely continuous functions of fractional order, Sobolev
spaces, their relationship, and topological properties.

Chapter Three: Various embeddings of Sobolev spaces into broader spaces and the
relationship between fractional-order and first-order Sobolev spaces.

Chapter Four: Application of the previous concepts to a nonlinear boundary problem
using the Faedo-Galerkin method and the fixed-point theorem, both involving fractional-
order Sobolev spaces.

University of M’sila Some Sobolev embeddings of fractional type
Benlatrache Kenza Master PDE and applications



CHAPTER 1
PRELIMENARIES

U n this chapter, we will review fundamental concepts related to Lebesgue spaces and
spaces of smooth functions. Additionally, we will provide brief definitions and properties
of Riemann-Liouville fractional calculus.

In all of the chapter, (a,b) design a bounded interval of R,1 < p < co. and a be a real
number such that 0 < a < 1.

1.1 Functional Spaces
L? spaces
Definition 1.1 [[1] 4]
1. The Lebesgue space L*(a,b) with 1 < p < oo is defined by:

b
LP(a,b) = {f :(a,b) > R fis measumbleand/ |f(2)]P dx < oo},

equipped with the norm

; :
1l = ( / !f(x)\pdx> 1.

2. The Lebesgue space L™ (a, b) is defined by:

o B _ f is measurable, there exists a constant C'
L7(a,b) = {f (@b =R such that |f(z)| < Ca.eon (a,b)

6



1.1. FUNCTIONAL SPACES 7

equipped with the norm
[/l = inf {C, [ f(z)] < C'a.con (a,b)}

Theorem 1.1 [} 4] The space (LP(a,b), ||.||») is
* a Banach space for 1 < p < oo,
* a Separable space for 1 < p < oo,
* a reflexive space for 1 < p < oc.

Proposition 1.1 (Holder inequality) [14] Let f € L”(a,b) and g € L%(a,b) such that -+ . =
1. Then, f,g € L'(a,b) and we have

1f-gll < [ fllzellgllze
Theorem 1.2 (Lebesgue) [4] Let ( f,)nen be a sequence of functions in L?(a,b). Assume that
1. fu(x) = f(x)a.eon (a,b)

2. There exists a function g € LP(a,b) such that for each n € N we have |f,(z)| < g(z) a.e on
(a,).
Then, f € LP(a,b) and lim || f, — fllor =0
n—oo

Space of regular functions on (a, b)

Let f : (a,b) — R be a function and n € N.

Definition 1.2 [10] We call supp f the support of f, defined by:
supp f = {z € (a,) : f(z) # 0},

that is to say the smallest closed subset outside of which f is identically zero.

Definition 1.3 We say that
1. f € %(a,b)if fis continuous on (a,b).
2. fe€(a,b)if fisn time continuous and differentiable on (a, b).
3. f €€ (a,b)if fis infinitely differentiable on (a,b).
Definition 1.4 We say that
1. f € €([a,b)]) if f is continuous functions on [a, b].
2. f €€ ([a,b])if fisarestriction of a function that belongs to the space €™ (R).
3. f e €™(a,b)) if f is a restriction of a function that belongs to the space € (R).

Definition 1.5 [10] We say that f € C>(a,b) if f is indefinitely differentiable, with compact
support in (a,b). In other words,

C*(a,b) ={f:(a,b) — R, f € C=(a,b) : suppp C (a,b)}.

University of M’sila Some Sobolev embeddings of fractional type
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1.1. FUNCTIONAL SPACES 8

Space of absolutly continuous functions
Definition 1.6 [8] A function f : [a,b] — R is called absolutely continuous on [a,b], if for all

e > 0, there exists § > 0 such that for all {z;,y;}?_, C |a,b] satisfying Z |z; — y;| < & we have

=1
Zlf yi) — f(z:)] < e.

We denote by AC(a, b) the space of absolutely continuous on |a, b|.

Theorem 1.3 [8] f is absolutely continuous on [a,b] if and only if there exists ¢ € L*(a,b) such
that

fla)=c+ [ el
Definition 1.7 [[7, 11 Let n € N, AC™(a, b) is the space of (n — 1) times continuously differen-
tiable, such that f™~Y € AC(a,b), i.e.
AC™(a,b) = {f :[a,b] = R, "V € AC(a,b)}.
Remark 1.1 On the same method, we introduce the notions AC?(a,b), AC™P(a,b) by replacing
L'(a,b) by L*(a,b).

Sobolev Spaces
Definition 1.8 [1| /4] The space W' (a, b) is the space given by :

Whe(a,b) = {u € LP3ge LP Vp e CX(a,b) /b u(t)' (t)dt = — /bg(t)gp(t)dt} ,
equipped with the norm
[ullwrr = llullee + o] o
Theorem 1.4 [, 4] The space (W' (a,b), ||.|lws) is
* a Banach space for 1 < p < oo,
* a Separable space for 1 < p < oo,

* a reflexive space for 1 < p < oc.

Theorem 1.5 [4] We have the following embeddings
e WhP(a,b) — L>®(a,b), forall 1 < p < oo.
e WhP(a,b) — €([a,b]) with compactness.
 The embeddings W' (a,b) — € ([a, b)) is continuous but not pas compact.

* The embedding W' (a,b) — L%(a,b) is compact for any for all 1 < p < oc.

University of M’sila Some Sobolev embeddings of fractional type
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1.2. SPECIAL FUNCTIONS 9

1.2 Special Functions

Gamma Function

Definition 1.9 [11] The Gamma function (I") is defined for a complex number z with Re(z) > 0,
as follows:

F(z):/ e Tx* Ldu.
0

Proposition 1.2 [11]] We have the following properties:
1. I'(1) = 1.
2. I(z+4+1) = zI'(2).

3. If n is a non-negative integer then, I'(n + 1) = nl.

Beta Function

Definition 1.10 [11] The function (3 is defined for a couple of complex numbers (z,t) with Re(z) >
0, Re(t) > 0 to R and given by :

B(z,t) = /01 N1 —2)" .

Proposition 1.3 [11]] We have the following properties:
1. Symmetry of Beta function ; i.e 5(z,t) = B(t, 2).
2. B(2,8) = B+ 1,6) + Bzt + 1),

3. If n, m are two non-negative integers then, 5(n, m) = %

L(2)I'(#)

4. In general: 5(z,t) = TCro)

1.3 Riemann -Liouville Fractional integral

Leta,be R,a>0and 1 < p < +oc.

Definition 1.11 [[/,11] The Riemann -Liouville Fractional integral I, f and I;* f of order o and
a function f € LP(a,b) are defined by:

1

(12 0)@) = oy [ o= 070t (0 <o <)

(12 f)() = ﬁ / (x— )" f(8)dt (a <z <D).

University of M’sila Some Sobolev embeddings of fractional type
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1.3. RIEMANN -LIOUVILLE FRACTIONAL INTEGRAL
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Theorem 1.6 The Riemann-Liouville integral 13, f and Iy* f are well defined for all f € LP(a,b).

Moreover, we have:

(b—a)* 11
R LI (1)
b—
155l < =2 (12)
Demonstration. Let f € LP(a,b). We discus the following cases
e casel: p=+c0
1 x
IS < e [ @0l
< ), oo
[l oo (2 = @)
€ T o =%
(b—a)
< mﬂfﬂm.
Hence, 12, f € L*=(a,b) and we have [[12, f|| I(“( ))HfHLoo
e case2: p=1
b b 1 x
[z < [ [@-otwa| .
1 "
< F(a/\f |dt/ v — 1),
(b—a)*
< S / F(0))dt < oo,
 (b—a)®
= m”f”u-
® case 3: 1 < p <400
1 T
A0l < o [ =l
_ 1 ‘ _ p\(e—1) a—1)p
- w1 [ =0T =0
L ’ _ p\a—1 5 ’ a—1
<t ([e=o) " ([e-owor)
a(p=1)
= (b_a’) i < * _ \a—1 )
e ([ o
University of M’sila Some Sobolev embeddings of fractional type
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1.3. RIEMANN -LIOUVILLE FRACTIONAL INTEGRAL 11

So,

b — a)-1)
[z < (p(l))p(ba@)_l) C= 1,

_ (b )
(b—a)”
T Tla+1)

Ii* f is given by the same proof . m

£l ze-

Hence, || I% fl|r <

Proposition 1.4 Let o >0,y > 0and f € L”(a,b). Then,

I8 o =120

18T pla) = Pi / - g (ﬁ / - S)“@O(S)dS) n

Proof.

Setting the variable change u = ==

r—s’

SO

I I+‘:0() = m/ @(S)(t—s)a+'y—l/ (1_u)a—lu»y_lduds7
_; ¢ )t — )T 1B(q wds N :M
N r<a>rw>/a P(s)(t =)™ Blay y)duds | Blay7) = 3075
= 1 I'(a)T(y) ! aty—1
~ T()I(7) T(a+7) / p(s)(t — )" ds,
) F(@1+fy> / (t = )" (s)ds,
= I%7(t)

Definition 1.12 [7,[11] Let o > 0,1 < p < oo. The spaces of functions 12, (L) and I (LP) are

introduced by:
L (L) =Af : f = L3vp, @ € LP(a,b)},
L) ={f: f =126, ¢ € LP(a,b)}.
University of M’sila Some Sobolev embeddings of fractional type
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1.4. RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 12

1.4 Riemann-Liouville Fractional derivative
Leta,be R,a>0and 1 < p < 4o00. Setn = [a] + 1.

Definition 1.13 [[/, [11] The Riemann -Liouville Fractional derivatives Dj, f and Dy f of order
« are defined by:

Oz = () ENE) (€A@Y > ),

- o (1) [@-oioa (1.9
D5 D) = (1) D) (€ A wb.o <),

- ﬁ(—%) / oyt (1.4)

Remark 1.2 For a = n € Nwe have D", = (-2)" and D} = (—-4)",

iy dx
Proposition 1.5 [7,[11]] Let o« > v > 0. Set m = [y] + 1.
1. Forall f € L?(a,b) we have

S (L) f(x) = I8 f(2), x € [a,b], (1.5)
(L f@) =L f(1t), x € [a,b). (1.6)

2. Forall f € LP(a,b) we have

Danr (I§+f($)) = f(x)a S [a? b]? (1.7)
DE (I (1) = £(2), o € [a,b]. (18)

3. Forall f € L?(a,b) we have

(Dyi L5 ) f2) = I f(2), (1.9)
(D 12)f(2) = 127 f(2). (1.10)
4. If D2 f, D" f, Dy f and D]V f exist then,
wr (Dgy f(x)) = D f(a), (1.11)
D (Dg- f(x)) = DI f(z). (112)

5. If f € AC™(a,b) then,

(L= f)(a)

o) (x —a)* . (1.13)

ar D+ f(x) = f(x) —

University of M’sila Some Sobolev embeddings of fractional type
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1.5. INTEGRATION BY PARTS 13

1.5 Integration by parts
Theorem 1.7 Let f € LP(a,b) and g € L9(a,b) such that % + é < 1+ . Then, we have :
b b
[ #@)tg g@ide = [ g1z (e (1.14)
Demonstration. We have

b b b
/a F(@) I g(a)de = % [ 1w / (t - ) g (t)dtde,
b

a) a
I ot
Ta)/a /x (t —x) " f(z)g(t)dtdz.

Using the Fubinis’ theorem we obtain

b o = L [ — ) f(x T
[ t@nzgotr = s [ [a-a g,
b

= i [ o0 [0 ot

_ /abg(t) <ﬁ /at(t—x)o‘_lf(x)dx) dt,

= [ sz s

Hence,/ f(m)]f‘_g(x)dx:/ g(x) I f(x)dz. m

Theorem 1.8 Let f € 1% (LF), g € I% (LP) such that % + % <1+ a. Then,

b b
[ #@10g g(wyds = [ gDz (o) (1.15)

Demonstration. Since f € I8, (L), g € I (LP), there exist ¢ € LP(a,b),v € L%(a,b) such
that: f(z) = I% ¢ and g(x) = I} 9.
Taking into consideration that ¢ = D%, f and ¢ = D;' g, we obtain

| H@Dpg@is = [ 12el@).D gl

b

- [ @i
b
~ [ @i,
b
~ [ ot@).D5 1)
n
University of M’sila Some Sobolev embeddings of fractional type

Benlatrache Kenza Master PDE and applications



CHAPTER 2

FRACTIONAL SOBELEV SPACES

U n this chapter, we introduce the concepts of fractional absolutely continuous functions
and fractional Sobolev spaces, along with the relationship between them. We will establish

some topological and metric properties of fractional Sobolev spaces.
Let0<a<l,1<p<oocanda,b e R.

2.1 Spaces AC'"(a,b) and AC;""(a,b)
Definition 2.1 [6]] We introduce the following spaces

i) ACS(a,b), the set of all functions f : [a,b] — R such that :

(z—a)* " + Ivp(z), x € [ab],

where ¢ € Rand ¢ € L*(a,b).

ii) AC;“"(a,b) the set of all functions g : [a,b] — R such that:
g(x) = ——(b—2)* '+ I ¢(x), tE[a,b],

where, d € Rand ¢ € L*(a,b).

Theorem 2.1 [3] Let 0 < o,y < 1.Then,
ACH (a,b) € ACTE(a,b) ifonly if v < «.

14
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2.2. INTEGRATION BY PARTS 15

Theorem 2.2 Let 0 < o < 1,0 <y < awand f € AC(a,b) written in the form 2.1). Then, we
can be written

flw) =1}, 4(x),  where(t) = (= a)* P + 12 p(x).

INCEN)
Demonstration. We have
f@) = Fle— @t + ),
_ Ffa) (x —a)* '+ I I ().

Taking into account that

Ly (%(-ﬁ - @)a_v) = (z—a)* !,

we obtain
f0) = 1 (g le - 0 1)),
flz) = L),
where c
Vlt) = prp gy~ )"+ ).
[

Remark 2.1 From the above definition, we have the following properties

o . If f € ACP(a,b), writing written in the form 2.1)) then, ¢ = I'7*u(a) and ¢ = D, f.

Therefore,
o) = oD gyt e D), w e o 23)
x—r(a)xa & DY f(x), x € la,b], :
e ii): If g € AC,""(a,b), writing written in the form then, d = 1)~ u(b) and ¢ = Dy g.
Therefore,
_ [I:L—iau(b) a—1 «@ e
g(x) = W(b_ )"+ LDy g(x), t€[a,b], (2.4)

2.2 Integration by Parts

Theorem 2.3 Let f € ACY(a,b) and g € €' ([a, b)) such that g(a) = g(b) = 0. Then,

/ F(2)(Dg-g) (x)de = / o) (D2, f) (). 2.5)

University of M’sila Some Sobolev embeddings of fractional type
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2.2. INTEGRATION BY PARTS 16

Demonstration. We have

F@0g @ = [ )LD} g)()de,
/ [

= / (F(a>(x— a)*t 4 1% ()) I,=%(Dy-g)(z)dz,

- / (o)~ O " (Dp-g) () + / Igp(@) 1,=(Dy-g) (w)da,

c b B B b B
- i [ @ Dl @ + [ Iete) 0D gle)de

b
= c[lf‘lbl_“D;g(a)+/ ISy o(x) 1, g(x)dx,

= LD g + [ gL I pla)de,

Theorem 2.4 Letp > + and ¢ > L. Then, for all f € ACS"(a,b) and g € AC,""(a, b) we have

b b
/f(x)(D?—g)(ﬂf)dxz(Ialiaf)(a)g(a)—f(b)(fbl_“g)(b)+/ (Dg+ f)(x)-g(x)dx  (2.6)

Demonstration. From (2.1)), there exist ¢ € L?(a,b) and ¢ € L%(a,b) such that
I+ f(a)

r) = L ),
@) = B0 g

On one hand

b b
/ F@)(Dyg)(@)de = / F()(a)dz

- / (%(— 0" + I8 ol >) b(a)de,

L, f(a)

b b
- Lt / (2 — @)1 (x)da + / 1%, o (a)(x)dz,

b
= 1) (IR ) (a) + / 1% p(x)(z)dz,

b
= I7°f(a).g(a) + / 12 p(a)p()da.

University of M’sila Some Sobolev embeddings of fractional type
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2.3. FRACTIONAL SOBOLEV SPACES 17

On the other hand
b b
/ (D2, ) (@)g(a)dz = / o(@)g(x)ds,

-/ () (Ig‘ag(b) (0= 0r 4 I ue) ) do,

[(a)
[1;ag(b) b o1 b N
= ”FT/& o(x)(b— ) da:—i—/a o(x) [ (x)de,

= GBI ) (b) + / 1% o) (x)dz,

b
= L9010+ [ I pleiad.

Consequently:
b b
/ ((@)(D5-g)(x) — (D% ) (@)g(e))de = 17 (a).g(a) + / %, (@) ()da

b
—F(B). 112 g(b) / %, () (x)dz,
= (1) a)gla) — (I="g) ()£ (D).

Thus, we get the result. m

2.3 Fractional Sobolev Spaces

Definition 2.2 [6] The space W 3" (a, b) is the space given by :

b b
WeP(a,b) = {u € LP(a,b)/ 3g € LP(a,b),Yp € C(a,b) : / uw(z) Dy p(x)de = / g(m)ga(x)dx} .

A function g given above will be called the weak left fractional derivative of order o of u, let us
denote it by D%, u.
We denote by H, the space W,

Remark 2.2 If o« = 1 we have D} = —D'¢ = —¢'. The weak left fractional derivative D}, u
of u coincides with the classical weak derivative u'.
Consequently: Wif =Whr = AC? = AOif .

Theorem 2.5 For 1 < p < oo we have :
Wor = ACTP N LP

Demonstration. If u € AC” N L? then, from (2.1) it follows that u has the derivative
D% u € LP. So, the theorem [2.3|implies that

b b
/u(t)Dg“_go(x)da::/ Deu(x)p(z)dr, Yo € CX(a,b).

University of M’sila Some Sobolev embeddings of fractional type
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2.3. FRACTIONAL SOBOLEV SPACES 18

So,u € W(a,b) and ul, = g = D% u € LP(a,b).
Now, let us assume that u € W :"(a,b). Then, u € LP(a,b) and there exists g € L”(a,b)
such that:

/ w(t) D2 o (t)dt — / g(Be(t)dt Yo € C(a,b).

To show that u € AC?” N L? it is sufficient to check that u possesses DY u € L?, we prove
that I}, *u is absolutely continuous on [a, b] and its classical derivative of the first order
belongs to L?(a,b). We have

/abu(g;)(Dg‘go)(I)dx — /abu(x)ll}_“(Déw)(x)dx,
-/  w(@) - (~ DY) (),
= [t
- - (1) (1) (DY) (x)dr

Consequently,

/ w(t)(DY-p)(B)dt = / g(e(t)dt, Vo € C2(a,b).

So, I; > e ij ,Consequently, Iij “u is absolutely continuous and its classical derivative
of the first order belongs to L?(a,b). m

Theorem 2.6 If u € W :"(a,b) then,

I'"u(a)

(o) (x —a)* + I Du(z). (2.7)

u(z) =

d
Demonstration. Note that for z € (a, b) we can write u(x) = d_[‘?Jr I u(x).
T

d

Putting v = I'7“u, then v’ = D% u € LP(a,b) and we have u(z) = d—];ﬂv(x).
x

We have

I&o(z) = o) /am(x —t)%v(t)dt,

 (z—a)!
(o 1)F(a)v(a) (o + 1 / ).

Using the following formula

b(z) o
/ $lo = V) 0) o @)t + [ S
University of M’sila Some Sobolev embeddings of fractional type
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2.3. FRACTIONAL SOBOLEV SPACES 19

we obtain
%fggv - ("“"an‘;)av(a) (a+11)r(a)% /j(x £)o+ e/ (¢)dt,
_ ]%g‘of?( )7 12, D% u(z).
.

Remark 2.3 It follows from the preceding theorem that

1. Ifp < X then, ACSS" C LP.
SO,Wa;p(a, b) = ACS(a,b).

2. If p > 1= then, W"(a,b) is the set of all functions belonging to AC:"(a,b), satisfy the
condztzon ](; “u(a) =

0.
Indeed, if u € AC"”(a,b) then, D% u € L”(a,b) and we have

I'"%u(a)

F(O./) (.17— a)a_ + Da+u< )

u(z) =

Then,

1. If p < 1= then, (z — a)*~! € LP(a,b), and since D% u € LP(a, b) we obtain [% D% u €
LP(a, b). So, u € LP(a,b).

2. If p > 7= then, (x — a)*"' ¢ L”(a,b). However I®, D% u € L”(a,b). So, u € L?(a, b) if
and only if (1% u)(a) = 0.

Theorem 2.7 (Poincaré inequality) Let u € D;”(a,b). Then,

L, u(a) | (b—a)®
— (= a)" | < =—=||Dasu| e 2.8
||u F(Oé) (LE CL) ||L = F(Oz i 1) || a+u||L ( )
In particular, If I'7*u(a) = 0 we get
(b—a)®
ul|r < —||D Ll e (2.9)
lulls < Fr s
Demonstration. From (2.7), we have
r—a)* % u(a
u(:c) - ( )F(Oé)(ﬁ ( ) = 3+Dg+u
So, from we obtain
I'"u(a
R T 12
(b— )
~— —||D% |
n
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2.4 Normsin W (a,b)

Definition 2.3 [6] We consider in the space W ;" two norms * -l and 2] [ given by:

1
Hullwer = (lullZs + 11Dgullf) > (2.10)
1
“lullyre = (o *u(@)” + [ DgsullZs)? (2.11)
Theorem 2.8 The norm '|. HW:f is equivalent to the norm 2”“”ij'
Demonstration. We discus two cases:
Casel: p < "o
For u € W?, using (2.7) we can write
' u(a
u(x) = }(a§ )(.’]f )a ! + Ia+Da+'U/( )
Then, we have
b [1—au a p
ol = [ e = o+ Dt
Using the following lemma
Lemma 2.1 Forall z,y > 0 and p > 1 we have :
(z +y)P <2071 (P +9P), (2.12)
we obtain
]1—Ocu a)l? b b
ulf?, < 2°1 (%/a (z — a) @ Vrdy +/a |I;“+D3+u(:z:)|pdx) ,
o (M tu(@) o o« e
= 9P 1 (}Z’T/a (t - CL)( 1)pdt+ HIaJrDa+uH1[)/P s
b - a)(a_l)p+1
— 2p—1 ( ] ]l—a P a Do pp .
([(Ol _ 1)p+ 1]Fp(01) | at U(CL)| + || at a+u||L
According to (2.12), we get
b— )@~ brtl (b —a)?
pp < 2p—1 ( ) Il—a P Y D
ol < 27 (S @ + Il
< My (|17 u(@)]” + [ Dgvullf,)
consequently:
el = llullzs + I DEullzy < Mo
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Reciprocally: the mean value theorem implies the existence of x, € (a, b) such that

1 b
(1) w0) = = [ (T 0@
From the absolute continuity of (1}7“u), we have
(1) () = (I %) (zo) +/ DYI' ) (t)dt ,Vx € (a,b).

Consequently

ol < g [ [ pzae

< b—a/a (I ]da:—i—/ | Do u(x)|de.

According to Holder inequality, we obtain

1
(Lu(z)] < (b —a)' P o + (b — @) 7 || DEu| s,
b—a

= (b—a) Pl + (b= a) ¥ || Dl .

Using (1.1), we obtain 1
Izl < ol
Hence,
(b—a) >

(I u(@)] < T2 —a) lullis + (b= @)~ | D&l s,

My (|lullzr + | Dgsul|Le) -

IN

In particular
(L= w)(@)] < My([lull e + | Dgrullo)-

So,

(L= “w)(@) P + | DG 7,
My([lulle + 1DGs ull o) + || Dgsull Lo,
277 My (|lullZe + I1Dgvulls) + DG ulls,
My([[ullzs + 1 DG ullzs),

M21||u||wsjrp.

e
a

IA NN

Thus, the equivalent of the norms *{|ul|y«» and *[|ul|y-».
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2.4. NORMS IN W$;” (A, B) 22

1
Case2: p> ——
11—«

In this case we have I';“u(a) = 0, then

lullze = MG Dgrullzs,
(b—a)*
———— | D% |},
> Fp(Oé+1)|| a*uHLP
So,
Hullier = lullfs + 1D5 ull,,
(b—a)™
< |14 —— | ||IDSulf
> ( +Fp(a—i—1) || a+u||LP7
(b—a)*\,
= 1 pap-
( Ty
Reciprocally:
alfyor = IDElE,
< lullee + 1Dgrull e,

o
a

Thus, the equivalent of the norms *{|ul|y«» and *[|ul|yr.
a a

Theorem 2.9 The space W::"(a,b) equipped with the norm 1||.||Wa+,p or 2”‘“""“4” is a Banach
space, reflexive for 1 < p < oo and separable for 1 < p < oo.

Demonstration. We equipped the product space £ = LP(a,b) x LP(a,b) by the norm
(w1, u2) ||l = |luallze + [|(u2||zr, and considering the space W' \"(a,b) equipped with the
norm !||. [[we.r. We introduce the following operator:

TWY o E
u — (u, DYu).

=

We have ||T(u)||z = (|[ullz, + | Dgsullzy)
Then, 7" is an isometry.

which deduce that T'(1W:}") is a closed subspace in E'.

Since £ is reflexive for 1 < p < oo and separable for 1 < p < oo, we get the result. m

= Hu||W:f-

Remark 2.4 The space HZ, (a, b) is a reflexive and separable Hilbert space, with the inner product

b b
(u,v) —/ u(x)v(a:)dx—i—/ D¢ Pu(x).DPv(x)de w,v € Hyy (a,b).
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CHAPTER 3
EMBEDDINGS

Z:] n this chapter, we present results on embeddings in fractional Sobolev spaces. First,
we introduce some auxiliary results. Next, we discuss the relationship between fractional
and integer Sobolev spaces. Finally, we present continuous and compact embeddings.

3.1 Some auxiliary results
Lemma 3.1 Let x,y be two positive real numbers such that y < x. Then, for all ¢ > 1 we have
(z —y)? < a? =y
Proof. Let / : [0, 1] — R defined by:
h(s)=(1—s9)"4s?—1.

We have: h'(s) = —q[(1 — s)77! — s771]. So,

h'(s) <0if s < f'(s) >0if s >

DN | —

Since f(0) = f(1) = 0, we deduce that f < 0.
Putting s = £ we get (1 — £) 4+ s — 1 < 0.
So, (x —y)!+y?— 29 <0. Hence, (x —y)! < 27— 3% m

Lemma 3.2 Let z,y be two positive real numbers such that y < x. Then, forall 0 < ¢ < 1 we
have

y'—at < (z—y)”.

23
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Proof. Let / : [0, 1] — R defined by:
h(s)=(1—s)?—s?+1.
We have: W'(s) = —q[(1 — s)97' + s971] < 0. So, f(s) > f(1) =0 > 0.
Putting s = £ we get (1 — £)9 — sz +1 < 0.
So, (x —y)?—y?+ 27> 0. Hence, y? — 29 < (z —y)?. =

Theorem 3.1 Assume that p > é, then for all uw € LP(a,b) the function 1% u is continuous on
(a,b] and the function I w is continuous on |a,b).

Demonstration. Let u € LP(a,b),with p > tand a < y < z < b. Putting,

«@ «@ _ 1 * a—1 Y a—1
Gl = 12u(e) = I2ulw)| = s | [ e =0 uwi = [ =1) u(t)dt'.
So,
Gl < el [ a0 = = ul dtr+—|/ ()|
e ([e-om- <y—t>a-1|p’ﬂdt) i Ll (/ o) f”dt)”
Using Lemma 3.1, we get

p—1

(a—1) P
— 1) p1p|dt> ,

Gl < Ll (/| s <x—t>”?f|dt)p;1+"§('5p (/:Kw

HUHLP 1 p < ap—1 ap—1 apfl)
< — p—1 — p—1 — — p—1
S T \ap1) - +l—ar —(e—am ),
||U||Lp
+ o) —3 ’
_ Hu || Lp p p_711 Dtp_*ll %)
Using Lemma we get
3HUHLP p - 1 pTTl ap—1
G < —_ p71 .

Hence, lim,,_,, [I% u(z) — I% u(y)| = 0 Therefore I®,u € €((a,b)]).
Using the same reasoning, we can demonstrate that I;* u € €([a,b)). =
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3.2. A RELATIONSHIP BETWEEN W%;” (A, B) AND WP (A, B) 25

3.2 A relationship between W"”(a,b) and W'?(a, b)

We introduce the following operator

T:WiP(a,b) —
u — v ="T(u) = I'[%u,

where W' (a, b) is the usual Sobolev space on (a, b).
We have the following propositions

Proposition 3.1 The operator T is well defined and injective.
Proof. Let u € WP (a,b), set v(z) = I *u(z). Then,
lWllzoapy + 10 lr@y = IHgx " ulle + 1 D55 ull o,
b—a -«
2y lelan + 102l

CH lullyep < oo.

IN

So, v € WhP(a,b).
Moreover, u € KerT if and only if I'-%u = 0,i.e. [ u =120 = 0, which leads to u = 0.
Then, I}7“ injective. m

Proposition 3.2 The operator T is surjective:
i) from WP (a,b) to W'P(a,b) if p < 1,
ii) from W (a,b) to {v € W'P(a,b) : v(a) =0} if p > .

Proof. Let u € W :"(a,b). Then, v = I);*vif and only if u = L1 v = D!7%.
Note that

I%e = F—/ (x —t)* Lo(t)dt,

I AN L Lt
- i (|7 ]+ [ o)
= (x_a)ava L w:p— )
 al(a) (a) + aF(a)/a (& = 1) (t)dt.
So,
u(z) = di;]g;v,
B a>a_lv a ! x—1)* L [e r—1)%
- ERE )+ g e = 0 Oy + s [ el =0 (0]
I ) i a)ailv a L[ x—t)*
- L+ F((%)/a (x — )1/ (1),
= (m_a)a_lva Y (x
F(Cl/) ( )+ Ia+ ( )
We debusses two cases
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3.2. A RELATIONSHIP BETWEEN W%;” (A, B) AND WP (A, B) 26

(x —a)>!

I'(a)

1. if p < L= then,

v(a) € LP and I¢.v'" € LP(a,b).

So, u € W?"(a,b). Therefore, T' : W\¥(a,b) — W;f (a,b) is surjective.

2. if p > L then, v(a) = [)7%u(a) = 0,u = [% ' € LP(a,b) and I u = v' € L(a,b).
So, T: W — {v € W, (a,b) : v(a) = 0} is surjective.

Proposition 3.3 The operator T is an isomorphism.

Proof. Let u € W;:"(a,b). From Proposition 3.1 we have

I Tullwey < CHullyer.

Then, T is continuous.
Now, let v € W'P(a,b).

1. if p < L then,

||T_1U||W:_"_P = ||T_1U||LP+||D3+T_1U||L17
(x —a)*? , -~
= | M@+ D% DY 1,
‘ o) v(a) + Igvv'(x) LP+H o D,
1
< fay @M = a7+ I @)l + 105D,
(z —a)@ Vs

(@ —1)p+1]T(a)

o(a)| + 15+ v" (@) |o + [[0"]| o

From the Sobolev embedding in W'?(a, b) we have:

(z —a)® V%5

(= )p+1]5T(a)

|v(a

So,

1T ol <

<

)| <

Clu’l)le,p +

(l’ . (1) (a—l)—i—%

1 0]l e < crl|v|lwre.
[(a = 1)p+1]>T(«)

b—a)”
I'l+«)

V[l + (||| e,

Cllvllwe.

2. If p > = we have v(a) = 0. Then,

17 vl

Therefore, T~ ! is an isomorphism. m

IA

115V | e + [ Dgs 150" 1o
15V | + [0 e

(b—a)*
[(1+a)
Mllvfwre.

[V |ze + [[0"]| o
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3.3 Continuous embeddings

Theorem 3.2 Let 0 < § < 1.

1.

2.

If B < o then,

AC:ip - ]f+(Lq) CA(]ff,foralll <p<ocand <qg< 1-—atd 0t p

which deduce that WP C W4

if « = [ then,
AC™P C ACP forall 1 < q < p < o0,

which deduce that W " (a,b) C W:%(a,b)

Demonstration.

1.

Letus p € [1,4+00[. Theorem 2.T/imply that

ACP ¢ ACY! c 17, (LY).

On the other hand, from Theorem, if f € AC" then, f =1 éﬂ(p with p € L9,

Hence, f € ACf;p with ¢ = 0. Consequently,
ACoP C 17 (L9 C ACPF
Now, we have
WP (a,b) = AC%P(a,b) N LP(a,b) C L%(a,b) N ACY(a,b) = W5 (a,b).

Then, WP (a,b) € W' (a,b).

2. By using same method.

Theorem 3.3 Assume that oo < 5. Then, we have the following embeddings

1.

2.

If1<p< = < Xthen, WiP(a,b) — L(a,b) forall g € [1, ).

If & < p < Lthen, WP (a,b) < La,b) forall q € [1, 2]

P 1—ap

. Ifp =L then, W2 (a,b) — L%a,b) for all q € [1,400).
(

Ifp > L then, WP (a,b) — L9(a,b) forall g € [1,+oc].
In particular, W::*(a,b) — € ([a, b]).
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3.3. CONTINUOUS EMBEDDINGS 28

Demonstration. Let u € W 2" (a,b). We know according to (2.7) that

];;au(a) a—1
u(z) = W@ —a)* + 1 Dgvu(x).
Ilfa
Note that “Tzégcw(x —a)*~' € LP(a,b) if only if p < 1= or I'T%u(a) = 0.

So, for ¢ > 1 we have

I'“*u(a)
(Oé)
|[1 u(a)l I

lullze = (z—a)* " + I Dgvu

La

a_lHLq + ||]3+Dg+u||Lq

L. If1 <p< = < 2, since D%u € LP(a,b), from [9, Theorem 0.2] there exists ¢ > 0
such that HI;&D“ <ec. HD3+UHLP' forallq € [1, 1%})].
On the other hand, (z — a)*~! € L%(a, b) if only if ¢ < L. In this case we get

|11, u(a)

1—a+1
’ H(l,_a)a—lHLq < (b_a) ?

['(a) T T(a)[(1 - a)g+1]s il ula)]

Hence, for g € [1, ) N[l [1, -) there exists M > 0 such that

’ 11— ap]

3=

lullee < M (|2 u(@)” + DG ullz,]” = M [[ufloyes -
So, WP — Li(a,b) forall ¢ € [1, ).

2. If 71~ < p < L then, I};*u(a) = 0. Therefore, from [9, Theorem 0.2] there exists ¢ > 0
such that for all ¢ € [1, 5 f’ap] we have

[ulle = (g Dgrull Lo
< cl|Dgvull

= ¢ HUHW;;”’ :

Then , W2 — L9(a,b) forall g € [1

? 11— ap]

3. Ifp=
allg €

then, Iij “u(a) = 0. So, from [9, Theorem 0.3] there exists ¢ > 0 such that for
1,00) we have

—R =

lulle = 13+ Dgsull 14
< CHDS'*‘UHLP

= cllullyss

So, WP — Li(a,b) forall ¢ € [1, 00).
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4. Ifp > é then, [i; “u(a) = 0. So, from [9, Theorem 0.4] there exists ¢ > 0 such that for
all ¢ € [p, oc] we have

lullpe < ¢ ||u||Wa+A,p .
a

So, WP — Li(a,b) forallq € [p, o0].
In part1c:u1ar since p > 1, using same arguments as in Theorem (3.1 . we deduce that
u € €([a,b]). So,

[wllaen = llullze < cllullyer
a

Hence, W7 — € ([a, b]).

]
In the same context, we ca, prove the following theorems

Theorem 3.4 Assume that oo > 5. Then, we have the following embeddings
1. If1 < p < L then, W2¥(a,b) — L(a,b) forall g € [1, ).
2. If L < p < L then, WiP(a,b) — L%(a,b) forall g € [1, ).

3. If p > = then, W?\¥ (a,b) — L(a,b) for all q € [p, +o0].

at,0

In partzcular Wff’o(a b) — € ([a,b]).

Theorem 3.5 Assume that o = 3. Then, we have the following embeddings
1. If 1 < p < 2 then, W2"(a,b) — L(a,b) for all q € [1,2).
2. If p =2 then, Ha%(a, b) — Li(a,b) forall q € [1,400).

3. If p> 2 then, W27 (a,b) — L4(a,b) for all q € [p, o).
In particular, Wffo(a, b) = €([a,b]).

3.4 Compact embedding

Theorem 3.6 If the embedding W " (a,b) — L%(a,b) (¢ < +00) is satisfied, then it is compact.

Demonstration. Let (u,) ba a bounded sequence in W?"(a,b). Then, (v,) = (Tu,)
bounded in W'?(a,b). So, we can extract a subsequence (v,,) weakly convergence to
v="Tuin W?(a,b).

From usually Sobolev embeddings, we can extract a subsequence (v,,;) convergence to 7T'u
in L(a,b),i.e, ||vax — v|[za — 0.

Now, we have

e = wllze = T (0 = 0)| 2,
— (.T _ a)a_l « / /
= o) (vnk(a) = v(a)) + L5 (vny — V') .
Unp, a— a [ /
e (O PR TR
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From (1.1, we obtain

« (b_a>a
1155 (Ve — V) lLe < m|\U;k—U’HL%

< M|l — V'||Le — 0.
o If I;; “u(a) = 0, then we obtain directly the convergence of (u,) to v in Li(a, b).
o If I;;O‘u(a) # 0and ¢ < ;= then, we have

Chllonk = vllzoe + Col 15 (g, — V)| o,
C (lvnk = vllwrr + 1155 (Vng — v)l2a) = 0.

(|t — u| La

So, the convergence of (u,;) to v in L%(a,b).

Thus, the compactness of the embedding. m

Theorem 3.7 If max{X, -} < p < oo then, the embedding W " (a,b) — € ([a,b]) is compact.

’la

Demonstration. Since W'”(a,b) is reflexive, we we only have to prove that for all se-
quence (u,) C W:’(a,b), weakly converges to u in W?"(a,b), we obtain that (u,) is
strongly converge to u in €([a, b]), i.e ||u, — ul/ ;. — O.

Let (u,) C W:\"(a,b), be a sequence weakly converge to v in W 2" (a, b). Since W:."(a, b) —
€ ([a,b]), (u,) weakly converges to u in € ([a, b]). Moreover, (u,) is bounded in W':"(a, b).
Hence, there exists a constant C' > 0 such that || D%, u,||z» < C.
Since p > —, we obtain ] 1+ “u(a) = 0. So, u = I, D% u. Hence, from Theoremwe get
forall z,y e [a b) :

lu(z) —u(y)| = [I3Davulz) — I Dasu(y)],
p*l

3 D U p p — 1 P ap—

< I |z o — |
F(a) ap—1

3C [ p—1\"7
< = (2 @

[(a) \ap—1

ap— 1

= Mlz —y|»-

Hence, u is uniformly Lipschitz on [a, b]. From Ascoli’s theorem, (u,,) is relatively compact
in €([a, b]). Consequently, there exists a subsequence (u,,) of (u,) converging strongly in
% ([a,b]) to u by uniqueness of the weak limit. m

3.5 Embedding of the subspace W\ (a,b)

Definition 3.1 The subspace W, (a, b) is the set defined by
WP (a,0) = {u € Wi (a,b) : I'"*u(a) = u(b) = 0}.

Setting: HY, (a,b) = Wfﬁo(a, b).
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Remark 3.1 According to Poincaré-inequality . the quantity || D%, ul| L7(ah) defines a norm on

Wi (a, b), equivalent to norms *||.||ywer(ap) and ?||. ([ we.r(a,p)- This norm is denoted by ||. ||Wa+p0.

Theorem 3.8 We have the following embeddings
1. If1 < p < Lthen, WP (a,b) < L%a,b) forall q € [1

at,0 ’ 1— ap]

2. Ifp = < then, W (a,b) — L%(a,

at,0

forall q € [1,4+00).

b)
3. If1 <p> = then, W;ero(a b) — Li(a,b) forall g € [1, +o0].
In particular Wb (a, b) — % ([a,b]).

Demonstration. Let u € W;2"(a,b). According to (2.7) and the definition 3.1 we have
u(z) = Ig Dgvu(x).

So, for ¢ > 1 we have
[ullze = 1155 Dgvull 1 -

1. If1<p< i, from [, Theorem 0.2] there exists ¢ > 0 such that for all ¢ € [1, ﬁ} we
have

lulles = (1 Davullpa < e | Dgsullrr = | Dgrullwes .

So, Wity < L%(a,b) forall g € [1

’ 11— ap]
2. Ifp = E then, from [, Theorem 0.3] there exists ¢ > 0 such that for all ¢ € [1,00) we
have
lullee = [[15+ Dgrullpq,
S c ||‘Dg+u”LP )

= CHun;gO-

So, WP < Li(a,b) forall ¢ € [1,0).

at,0

3. If p > % then, from [, Theorem 0.4] there exists ¢ > 0 such that for all ¢ € [p, co] we
have

Julzr < elulyns
a

So, W_¥y < L4(a,b) for all ¢ € [p, o0].
In particular, since p > <, using same arguments as in Theorem 3.1} we deduce that
u € €([a,b]). So,

[ullaen = llulle < cllullyer-
a

Hence, W — € ([a,b]).

at,0
m
Arguing as the previous section, we can prove the following compact embeddings

Theorem 3.9 If the embedding W (a,b) — L%(a,b) (¢ < +00) is satisfied, then it is compact.

at,0

Theorem 3.10 If p > max{%, -1} then, the embedding WiF(a,b) = €([a,b]) is compact.
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CHAPTER 4
APPLICATIONS

Z] n this chapter, we will study a non-linear (semi-linear) problem, using faedo-Galerkin
method and Schauder fixed point method.
Assume that 0 < o < 1 and let f : (a,b) x R — R be a Carathéodory function, i.e

x +— f(x,u) is measurable on (a,b), for all u € R,
u+— f(x,u) is continuous on R, a.e z € (a,b).

Consider the following problem
{ Dg D2 u(x) = flz,u) ¢ in (a,b),

I'"*u(a) = u(b) = 0.

(4.1)

Before studying the problem, it is necessary to introduce these two theorems

Theorem 4.1 [5] Let (E, (.,.)) a be finite-dimensional Hilbert space and p : E — E be a contin-
uous mapping such that there exists r > 0 for which very point x on the sphere of radius r satisfies
(p(x),x) > 0. Then, there exists a point xo with ||zo|| < r such that p(xy) = 0

Theorem 4.2 (Schauder) [5] Let E be a Banach space, K a closed convex subset of E, and T a
continuous mapping from K into K such that T'(K) is relatively compact. Then, T has a fixed
point.

Theorem 4.3 (Carathéodory) [5] Let 2 a bounded open set of R and let f be a continuous
function from ) x R to R satisfying

|f(z,w)| < p(x) + M2)|u|, aexcQ, pecL*Q),\cL>). 4.2)
Then, the operator f(.,u) from L*(Q2) into L*(2) is continuous.
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4.1. STATEMENT OF THE PROBLEM 33

4.1 Statement of the problem

Taking into consideration that each weak solution of (4.1) belongs to H, (a,b).
To find the variational formulation it is necessary to follow the following steps :

¢ We multiply the first equation of by a test function v smooth enough, we get
Dy Dgru(z)v(z) = f(z, u)v(z).
e We apply the integration by parts (2.6), we obtain

/ D () D2y o()de + I'%v(a). D% ula) — v(B) [T D% u(b) = / Fou)o(z)da

e Assume that v € H?,  (a,b) we obtain the variational formulation of

/ D% u(z) D% v(x)de = / ’ F(a, w)vda. (4.3)

We need to make sure that the above formulation (4.3)) is well defined.
First, for u,v € Hg‘to(a, b) we have

uDvdr| < ||Dicul| 2| Dol 2 < oo.

Then, the right side of is well defined.
To prove that the left side of be well defined, we introduce the following theorems.

Theorem 4.4 Assume that f is a Carathéodory function, satisfying the condition (4.2)). Then, the
problem (4.3)) is well defined.

Demonstration. Let u, v € ijo(a, b).Then, we have

/fycu x)dx
[

The following theorem ensure the existence of a solution for the problem (4.1)

< [lpellz2llollze + [IAN 2ol 22 [[]] 22 < o0

Theorem 4.5 Assume that f is a Carathéodory function, satisfying the condition @.2). If
I?(a+1) — ||A|| (b — a)** > 0.
Then, the problem (4.3) admits at least one solution.

We prove this theorem using the following two methods:
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4.2. COMPACTNESS METHOD 34

4.2 Compactness method

In this section, we use the Faedo - Galerkin’s method to prove the Theorem
We will demonstrate this through the following steps

* Approximation of the space H.  (a,b):
Since H¢, ,(a,b) is a separable Hilbert space, there exists a countable basis {V,.},_,
such that V,, = Vect {v;}7_ .
Using the dot product

b
(vi,v) = / vv;dr v, v; € Vi, C Vg,
a

oo
Note that :Hgio(a,b) = U Vin
m=1

* Approximate problem: For u,, € V,, we consider the following approximate prob-
lem

b b
/ Diuy Dyv = / flz,um)v Yo eV, (4.4)
Let P,,(u,) be the function from V,, to V,,, given by
b b
(Pr(tm),v) = / DSy Do — / f(z,um)v Yv eV,

So, if u,, is a solution of (4.4) then, P,,(u,,) = 0.
From previous, P is continuous and we have

b b
(Pt ) = / D%t — / F (@ )t

b
= || D% |72 —/ f@, ) tm,
a
> || D% uml|72 — el 2l tim 22 = [[A] 2o f|tml |72

Using the Poincaré inequality (2.9), we obtain

o [l 2 (b —a)™, [Allzoe (D —a)** |
(Po(tm), ttm) > || Dt ||72 — W” o+ Ul L2 — (0 +1) 1 D2t || 72,
= M| Dgsuml 2 (| Dgvtimllrz — 1),
where
M- I(a+1) = (b—a)*||\] = . Do+ 1)(b—a)*|ull 2
[Z(a+1) 7 IMa+1) = (b—a)*|[A]|z="

So, for u belongs to the sphere of radius r, we get (P, (), tn) > 0.
From Theorem 4.1} there exists u € W7, ; such that [Ju, || g, , < rand P,(uy) =0,

i.e u,, is a solution of the problem (4.2).
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¢ Prior estimate We have

ltlln, = DGt

b
= / |D3+um|2a
a

= [ s,

< lellzellwnllze + M 2o w22,
(b—a)[pllr> (b — a)**[|All=
< —————|D% uy, D% || 2.
= P(Oé—i—l) H ot U ||L2+ F2(0é+1) H atW ||L2
(b—a)[ullr>
So, M||um\|?{:+’o < Tla+D) [l e, -

Hence, Hum”Hg+ JST
Therefore, (u.,) is bounded in H, (a,b)

¢ Passage to limit
Since (u,,) is bounded in H,  (a,b), there exists a subsequence (u,,) such that

U — win HS (a,b), and D%ty — D% uin L*(a, b).
Therefore, for m > j we obtain
b b
Vu; - / Dyt Doy v; — / Dy uDg v;
Using the fact that W\”(a,b) < L?(a,b) with compactness, we get
Uy — U in L*(a,b).
Hence, from Theorem 4.3, we have

fz,ump) — f(z,u) in L*(a,b).

So,
flz ume) = fz,u) in L*(a,b),
which lead to , ,
/a f(wmp)v; —>/a [z, u)v;.
Hence,

b b
/D2‘+uDg+vj:/ flx,u)v;, Yo,

Setting W = U vj, then each w € W can be written w = Z a;v;.

m=1 m=1
Therefore,
b b %
/ DS uDYw = / flz,uw)w, Ywe U or
a a m=1
University of M’sila Some Sobolev embeddings of fractional type
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+o0o
Taking into account that U Vin = Hgy o(a,b) we obtain

b
/Dg‘ a+v—/fxuv Vv € H (a,b).

4.3 Fixed point method

In this section, we use the Schauder’s fixed point method to prove Theorem [4.5|
We will demonstrate this through the following steps

¢ Linearization of the problem:
Letw € Hy, ((a,b). Consider the following linear problem

b b
/ DSiuDS vdx :/ flz,w)vdr Vv € H (a,b).
Putting:
b b
A(u,v):/ D¢ uDy vdx, ﬁ(v):/ f(z,w)vdz.

- Ais continuous : Let u,v € H?, O(a, b). Then,

|A(U7U>| = a+u a*v( )dl‘

)

< / D] D%,
a

b 3/ b 2
< ([oma) ([ pser)

= Mullae, lvllae,

So, A is continuous.

- Ais coercive: Letu € HY, . Then,

A(u,u) = /|Da+u )dz,
= |u||H°‘

So, A coercive.
— (is continuous: Letv € Hf. ;(a,b). Then, from (4.3) we get

/ab flx,w)v(x)dz

M|plizollvllzz + Al e [wll 2 l[v] e,
(b—a)”
Fa+1)

()] =

IN

IN

(Mllpellgo + 1M o= lwll2) [0l e,

(4.5)
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So, ¢ is continuous.
Consequently, from lax-Milgram theorem the linear problem admits a unique
solution in H2, ,

¢ Let T operator, given as

T:L*a,b) — o o(a,b),
w > U,

where u is a unique solution of linear problem (4.5).
Let K = B(0, R) be a ball from H; ((a,b). For w € K we have

1T, , = ID5T(w)]52,
= |1Dgullzz,
b
= /f(x,T(w))ud:c.
Using the inequalities (1.1) and (4.3), we obtain
1T (), < MlpllollT(@)lz2 + [Nz 1T ()2,

Mipllzo(b— a)® [All o (b — a)*
= T(a+1) 1T ()l + I2(a+ 1)

ITC0) s,

M|z (b —a)* 2 M||p|lzz(b — a)®
1 - T (e
( F2<a+ 1) || (w)||Ha+,O — F(O{“I— 1)
which can be written

(T + 1) = M= (b = @)*) 1T () [o, | < Mllpall22 (b = ). Tla + DT ()| e,

I7(w) e,

Thus, we obtain

M[pl[r2(b — a)®
T o :
1T () e, | < Tlat1) - [Nos(b— )=
M|pllz2(b — a)®

we can write

So, for R = )
la+1) = [[Alz (b — a)*

T:B(0,R) — B(0, R),
where B(0, R) = {w € H\ o [ullue, | < R}.

- K is convex (Ball).
- K is closed in L*(a,b):

Let (w,) C K converge to w in L*(a,b), we will prove that v € K.

Since (w,,) is a bounded sequence then, from the compactness embedding of
Hg, y(a,b)into L?(a, b), we can extract a subsequence (w, k) weakly convergence
to v. Hence,

ol oo < Hminf oy, , < 2

Hence, v € K.
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e T'is continuous:
Consider the sequence (w,) C K, converge to w in L*(a,b). We denote u,, = T'(w,).
So,

||un|| = ||T(wn)||H;’+’0(a,b) < R.

Therefore, (u,) is bounded in H, ,(a,b), which is reflexive space. Then, we can
extract a subsequence u,;, — u. From the compactness embedding of H, ((a,b) into
L*(a,b), we have u,; — uin L*(a,b).
Hence, forallv € HY, ,(a,b) we have

b b
/ D% () DS v(x)de = / f(z,w,)v(x)dx,
weakly convergence Lebesgue theorem,

\ \
b b
/ D& uDYv(z)de = / f(z,w)v(z)d.
Then, u = T'(w), which deduce that T'(K) is relative compact.

From the all above, 7" admits a fixed point, a solution of the problem (4.2).

4.4 Uniqueness of solution

The following theorem give the condition which the problem (PV') has a unique solution.

Theorem 4.6 In addition to the conditions of Theorem we assume that f is decreasing. Then,
the weak solution to problem (P) is unique.

Demonstration. Let u; and us be two solutions of (PV), then for v € Hg, ((a,b) we have

| (Do) = Dua(a)) - Dysvla)ds = [ ()~ o, wa)lo(a)do.

Setting v = u; — ug, we get

/ (D2ur(x) — DSus(x))” (x)da = / [f (2, u1) = f(2,u2)| (w1 — ug)(z)dz,
So,

b
(D% us () — D2 us())” (2)dx,

b

= [f(z,u1) — f,u2)](ur — ug)(w)dz,

a

luy — U2||?{§+70

I
T

<

e

Hence, ||u; — uz||§{a+ . < 0, which deduce that u; = u,. =
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Résumé

En utilisant les dérivées de Riemann-Liouville comme fondement, nous introduisons
de maniere approfondie des espaces de Sobolev fractionnaires, caractérisant leur nature
distinctive. Nous définissons également des dérivées fractionnaires faibles et démontrons
leur concordance avec les dérivées de Riemann-Liouville. Par la suite, nous établissions
I’équivalence entre certaines normes au sein de ces espaces, déduisant ainsi leur exhausti-
vité, réflexivité, et séparabilité. De maniére non conventionnelle, nous mettons en lumiere
certaines injections de Sobolev qui ne sont pas généralement classiques, enrichissant ainsi
notre compréhension de ces espaces. Finalement, on applique ces notions sur un probleme
aux limites précisé.

Mots Clés : espaces de Sobolev d’ordre fractionnaire, Riemann-Liouville, injections
de Sobolev.

Abstract

Using the Riemann-Liouville derivatives as a basis, we let us introduce in depth frac-
tional Sobolev spaces, characterizing their distinctive nature. We also define derivatives
weak fractional values and demonstrate their agreement with the derivatives of Riemann-
Liouville. Subsequently, we established the equivalence between certain norms within
these spaces, thus deducing their exhaustiveness, reflexivity, and separability. In an un-
conventional way, we highlight certain Sobolev embeddings which are not generally clas-
sical, thus enriching our understanding of these spaces. Finally, we apply these notions
to a specified boundary problem.

Keywords: Sobolev spaces of fractional order, Riemann-Liouville, Sobolev injections.
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