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Résumeé

L’¢lectrocardiogramme feetal (fECG) permet de surveiller la santé du feetus. Toutefois, le faible
rapport signal/bruit complique I’extraction du fECG de 1’électrocardiogramme abdominal
(aECG). Ce dernier contient 1’électrocardiogramme de la mére enceinte (mECG), le fECG et
des artefacts de bruit. Dans ce mémoire, nous mettons en ceuvre et comparons les méthodes
d’extraction a une seule dérivation de la décomposition de la valeur singuliére (SVD) et la
méthode FastICA basée sur I’analyse des composants indépendants. En utilisant un aECG réel,
les deux méthodes ont été comparées en termes de précision de détection des pics, de
morphologie du signal et d’efficacité de calcul. Nous avons constaté que la méthode SVD peut

étre plus efficace que la méthode FastICA pour extraire proprement et complétement le fECG.

Mots clés : Séparation Aveugle de Sources (SAS); Signal Electrocardiogramme (ECG);
Electrocardiogramme Feetal (fECG); Electrocardiogramme Maternel (mMECG); Méthode SVD,
Methode FastICA.




Abstract

The fetal electrocardiogram (fECG) is used to monitor the health of the fetus. However, the
low signal-to-noise ratio complicates the extraction of the fECG from the abdominal
electrocardiogram (aECG). The aECG contains the electrocardiogram of the pregnant mother
(mECG), the fECG, and noise artifacts. In this paper, we implement and compare single-lead
extraction methods based on Singular Value Decomposition (SVD) and the FastiICA method
based on Independent Component Analysis. Using real aECG data, the two methods were
compared in terms of peak detection accuracy, signal morphology, and computational
efficiency. We found that the SVD method may be more effective than the FastiICA method in
cleanly and completely extracting the fECG.

Keywords: Blind Source Separation (BSS); Electrocardiogram Signal (ECG); Fetal
Electrocardiogram (fECG); Maternal Electrocardiogram (mECG); SVD Method, FastICA
Method.
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Introduction générale

A. Préambule :

Le cceur est 1’un des organes essentiels du corps humain, car il favorise la circulation du sang
dans tout le corps. Sans ces battements, I’individu est considéré comme décédé. En raison des
avanceées technologiques, I’électrocardiogramme (ECG) a vu le jour, qui représente I’activité

¢lectrique du cceur.

L électrocardiogramme joue un r6le crucial, que ce soit dans la surveillance médicale ou dans
le diagnostic de maladies. L’évaluation continue d’un feetus est essentielle pour assurer une
surveillance efficace et est généralement effectuée a I’aide de la technologie électronique.
Cependant, le nombre de bébés nés avec des malformations cardiaques congénitales a remis en

cause la validité des techniques de surveillance utilisées dans I’identification des feetus a risque.

La réduction du nombre de bébés nés avec une maladie est I’une des principales aspirations des
soins de santé, et la technologie peut apporter le meilleur a cet égard en développant des outils
de surveillance feetale pendant la grossesse, ce qui est crucial pour soutenir la prise de décision
médicale. Dans cette situation, I’objectif principal de cette étude est d’analyser les éventuels
usages de la séparation de sources pour extraire I’'ECG du feetus (FECG) a partir de mesures
non invasives de I’ECG de la mere. En ce moment, il est possible de déterminer le rythme
cardiaque du feetus en utilisant des méthodes traditionnelles, mais une description plus précise
du fECG permettrait aux médecins de détecter avec précision d’éventuelles malformations

cardiaques prénatales.

Un grand nombre de recherches ont déja traité le traitement de I’lECG non-invasif, enregistré a
partir de la surface de I’abdomen de la maman. Le principal souci réside dans le fait que le
signal électrique, obtenu a I’aide des électrodes de surface abdominale, ne comprend pas

seulement les signaux fECG.

En général, ’ECG abdominal du nourrisson est tres faible pour diverses raisons
I’enregistrement de I’ECG maternel a I’aide d’une électrode de surface abdominale présente

une amplitude bien supérieure a celle du fECG.

B. Etat de I’art
L’¢lectrocardiogramme feetal (ECGF) fournit des informations importantes sur la santé
cardiovasculaire du feetus. La surveillance a long terme de I’'fECG permet une identification

précoce des problémes cardiaques tels que 1’asphyxie feetale et peut réduire la mortalité et la
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morbidité infantiles. Le faible rapport signal/bruit (SNR) de ’ECG fcetal par rapport a ’ECG
maternel (mECG) et le bruit compliquent ’extraction de I’ECG feetal a partir de 'ECG
abdominal (aeCG).

Plusieurs approches d’extraction du fECG basées sur des techniques de separation des
sources aveugle (Blind Source Separation, BSS) ou en semi-aveugle (SBSS) ont été proposées
dans la littérature. On peut citer a titre d’exemple 1’analyse en composantes indépendantes
(Independent Component Analysis, ICA) [1, 2], I’analyse en composantes principales
(Principale Component Analysis, PCA) ou la décomposition en valeurs singuliéres (Singular
Values Decomposition, SVD) [3, 4, 5] ; la soustraction moyenne du mECG [6, 7] ; les
différentes variantes de filtres adaptatifs [8, 9], et la decomposition en ondelettes [10]. La BSS
est la technique la plus utilisée pour extraire le fECG, car il a été démontré que les méthodes
BSS sont meilleures que les filtres adaptatifs [11], et les transformations non linéaires ont une
charge de calcul plus importante et nécessitent que certains parametres soient réglés de maniére
empirique. Dans ce travail, nous mettons en ceuvre et comparons deux méthodes, a savoir la

méthode FastICA et I’approche basée sur la SVD.

C. Organisation du manuscrit :

Notre mémoire est structurée de la maniére suivante : Le premier chapitre présente les
diverses définitions de I’électrocardiogramme (ECG) et les notions reliées. Dans le deuxiéme
chapitre, nous présenterons trois techniques de séparations des signaux fECG, a savoir :
méthode de décomposition en valeurs singuliéres (Singular Value Decomposition, SVD),
méthode d’analyse en composantes indépendantes (Independent Component Analysis, ICA),
méthode JADE et méthode FastICA. Le dernier chapitre est consacré completement a la
présentation des résultats de simulation. Enfin, notre mémoire se termine par une conclusion
générale qui résume les résultats obtenus et les perspectives d’amélioration pour la méthode

appliquée.
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1.1 Introduction

Un électrocardiogramme (ECG) est une méthode graphique utilisée pour enregistrer avec
précision I’activité électrique du cceur. 1l fournit des informations exactes sur la santé cardiaque
du cceur de I’étre humain, notamment : la fréquence cardiaque, le rythme cardiaque, la

morphologie des ondes ECQG, ...etc.

En fait, le cceur génére un champ électrique a chaque battement. Un ECG utilise des
électrodes placées sur la peau de la poitrine, des bras et des jambes pour capter ce champ
électrique. Les électrodes transmettent les signaux a un appareil appelé électrocardiographe,
qui enregistre les signaux et les imprime sur un trace papier, appelé tracé ECG. Ce tracé est
composé d’une série d’ondes, chacune représentant une partie spécifique du cycle cardiaque.

Les principales ondes sont les suivantes : I’onde P, complexe QRS et I’onde T.

Les malformations cardiaques sont I’'une des malformations congénitales les plus
courantes et la principale cause de déces liés a des malformations congénitales. Ces
malformations se développent lorsque le cceur se forme au début de la grossesse et peuvent

affecter différentes parties du cceur ou sa fonction globale.

Le processus d’enregistrement d’un électrocardiogramme foetal de 1’abdomen de la
femme enceinte sans aucun contact direct avec le feetus est appelé méthode non invasive. Cette
méthode utilise des techniques de séparation des sources (ECG maternel, ECG fcetal et bruit)
pour extraire de maniére non invasive le rythme cardiaque feetal du signal ECG enregistré a

I’aide d’électrodes placées sur I’abdomen de la mere (voir Figure 1).
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On mesure : M

! différents mélanges de signaux composés de :
=I"ECG de la mére

=I'"ECG du foetus

=bruits (respiration, activité musculaire,...)

& 4

=\

INDEPENDANCE STATISTIQUE
des deux ECG.

i
L Hypothése :

g

:
i

On sépare :

ey

I'ECG du foetus I'ECG de la mére Bruits

Figure 1.1 Extraction non invasive de ’ECG d’un fétus

1.2 Signal Electrocardiogramme ECG

L’échocardiographie est la représentation graphique des forces électromotrices produites
par les évenements électriques de stimulation du cceur. C’est I’examen médical le plus courant,
car il est non invasif, sans risque, peu codteux et assez rapide. On a besoin de 10 minutes pour
obtenir ce signal et le diagnostic du médecin, et il fournit de nombreuses informations sur I’état
physiologique normal et pathologique du cceur [11.43]. Le signal électrocardiogramme a une
bande dynamique de 1 a 10 mV et une plage de fréquences de 0,05 a 100 Hz. Il est considéré
comme un signal non stationnaire avec une amplitude faible, allant généralement de 10 uV a 5
mV. La fréquence d’échantillonnage varie de 250 a 500 Hz. Le signal ECG est composé d’une
succession d’ondes (ondes P, Q, R, S et T), et il existe un certain nombre d’intervalles et de
segments qui fournissent des informations trés utiles sur la vitesse de conduction de I’impulsion
¢lectrique dans les différentes parties du cceur. Toute modification morphologique ou

temporelle dans ces paramétres indique des anomalies cardiaques [11.45].
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1.2.1 Principe de base de I’ECG

L’ECG (électrocardiogramme) est un outil utilisé pour évaluer I’activité électrique du
ceeur. Il est basé sur la mesure des courants électriques générés par les muscles cardiaques
lorsqu’ils se contractent. L’ECG est composé de 12 dérivations standard, chacune fournissant
des informations sur une partie spécifique du cceur. Les principes de base de ’ECG incluent la
mesure de la fréquence cardiaque, I’analyse de I’onde P, I’intervalle PR, le complexe QRS,
L’onde T, I’intervalle QT et le segment ST. Ces éléments sont utilisés pour détecter des
anomalies dans le rythme cardiaque, la conduction, la position du cceur et les problemes de

circulation dans les arteres coronaires [1.2] [1.3].

oreillette droite
neeud sinusal = y ?
[
v |
: gauche :
tronc du P [ T
faisceau de Hys | |
1]
branche du ventricule 6 ';
faisceau de Hys i Vi gauche s
ventricule droit e 5 _
réseau de purkinje

1 contraction des oreillettes
2 contraction des ventricules
3 repolarisation des ventricules

Figure 1-1.2 Représentation graphique de I’activité électrique du ceeur

1.2.2 Systéme cardiovasculaire

La fonction du systeme cardiovasculaire est de faciliter la circulation du sang dans tout le
corps, fournissant ainsi de I’oxygene et des nutriments. Ce systéme est constitué du ceeur, qui
agit comme une double pompe, favorisant la circulation dans deux réseaux interconnectés : les

arteres et les veines. Le systeme artériel est chargé de transporter le sang oxygéné vers les
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organes, tandis que le systéme veineux facilite le retour du sang désoxygéné vers le coeur. Par
la suite, les artéres pulmonaires transportent le sang vers les poumons ou il subit une
oxygeénation dans la petite circulation. Le réseau veineux constitue le principal réservoir

sanguin, contenant environ 70 % du volume total, soit 5 a 6 litres chez I’adulte.

Figure 1.3 Systéeme cardiovasculaire

1.2.2.1 Anatomie du cceur

Le cceur se compose de [1.1] cotés droit et gauche et de quatre valvules qui forcent le sang
acirculer dans la bonne direction. Il y a des oreillettes (chambres supérieures) et des ventricules
(chambres de pompage principales) sur les cotés gauches et droit. L oreillette droite regoit le
sang pauvre en oxygeéne des organes vers le cceur par les veines. Il dirige le sang veineux vers
le ventricule droit. Le ventricule droit transporte le sang dans les poumons, ou il est oxygéné
avant de passer par I’oreillette gauche jusqu’au ventricule gauche. Cette derniere est la plus
épaisse et projette le sang dans les artéres, ou il se propage dans tout le corps. Nous pouvons

également ressentir I’impulsion qui en résulte sur nos poignets.
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=« ® Sang charge en oxygene

= Sang pauvrs en oxygene

Veine cave supérieures Aorte ascendante

~
y
: : V J Artére puimonaire gauche
Artere pulmonaire droite
\\ ‘
f 7/ Veines pulmonaires

Creillette gauche

Oreiletie droite
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1.2.2.2 Fonctionnement électrique du coeur

Pour que le coeur puisse pomper le sang efficacement, des milliers de cellules situées dans
les oreillettes et Les ventricules (myocytes) doivent se contracter simultanément [1.1]. Ceci est
incroyable.

La coordination est déclenchée par des impulsions €lectriques. Le conducteur est le nceud
sino-auriculaire, Situé dans I’oreillette droite. De la, le courant électrique passe de cellule en
cellule. 1 est arrivé Le nceud auriculo-ventriculaire est le seul point de passage possible du
courant entre les nceuds auriculo-ventriculaires. Oreillettes et ventricules. La, I’impulsion
électrique subit une bréve pause, provoquant le sang Entrez dans les ventricules. Puis elle lui a
emprunté son paquet, composé de deux Les branches principales pénétrent chacune dans le
ventricule. Les fibres qui composent le faisceau, Complété par des fibres Purkinje, qui
propagent les impulsions en raison de leur conduction rapide 1l y a de I’électricité en plusieurs
points du ventricule, elle peut donc presque se dépolariser. Une couverture instantanée de
I’ensemble du muscle ventriculaire malgré sa grande taille assure Efficacité optimale de la

propulsion sanguine. Cette contraction constitue la systole ventriculaire, suivie de la diastole
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ventriculaire. (Relachement musculaire) ; les fibres musculaires se repolarisent, revenant ainsi
a leur état d’origine Etat initial. Le cycle cardiaque est alors terminé et le coeur est prét pour un

nouveau battement cardiaque Battre.

1.2.3 Ondes de ’ECG

Comme mentionné précédemment, il y a des cellules spécialisées appelées cellules
régulatrices du rythme cardiaque dans le ceeur. Elles produisent de 1’électricité en transformant
rapidement une charge positive en une charge négative ou inversement. Une onde initiale
suffisante pour déclencher une réaction en chaine d’ondes arrive a la surface du corps. Il est
possible d’enregistrer les potentiels électriques générés par ces ondes si des électrodes ECG
sont placées sur la peau. La ligne horizontale isoélectrique, également appelée ligne de base,
reflete I’absence d’activité électrique dans tout le graphe de I’ECG. Elle est considérée comme
une référence. Toute courbe qui se trouve en haut de cette ligne est une courbe positive, tandis
que toute courbe qui se trouve sous cette ligne est une courbe négative. L’information
enregistrée sur I’électrocardiogramme est présentée sous forme d’ondes et d’intervalles avec
des durées et des amplitudes spécifiques qui se répétent de méme ordre dans chaque battement

cardiaque.

Les principales mesures de I’électrocardiogramme sont généralement indiquées par les

lettres P, Q, R, S et enfin :

= Onde P : Elle représente le courant électrique qui se produit lorsque les oreillettes se
contractent. Elle est frequemment précédée des complexes ventriculaires (QRS). C’est
une onde positive, arrondie et petite car les muscles oreillettes sont trés petits par
rapport aux muscles ventriculaires. Son temps est d’environ 120 ms et son amplitude

est inférieure ou égale a 0.2 mV.

10
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Onde Q : Il indique une polarisation sur le site du réseau de His. La premiere déviation
négative dans le complexe QRS est une onde négative sous la ligne isoélectrique. Cette
onde a une faible amplitude et peut durer jusqu’a 0,2 secondes.

Onde R : représente la dépolarisation qui est déplacée de I’intérieur des ventricules
vers I’extérieur. C’est une onde positive avec une amplitude importante qui suit
directement I’onde Q.

Onde S : Elle représente I’onde de polarisation des ventricules restants. C’est une
déflexion située au-dessous de la ligne de base de faible amplitude et est la deuxiéme
composante négative du complexe QRS.

Onde T : Elle marque le moment ou la contraction ventriculaire et la dépolarisation du
muscle cardiaque sont terminées. En raison de sa fin progressive, cette onde positive
n’a pas de durée précise. Son amplitude est inférieure a 2 mV que celle du complexe

QRS.

Noeud sinusal Noeud septal Passage influx nerveux

début de dépolarisation

Fibres réseau Apex du coeur
de Purkinje

(a) influx généré dans le noeud (b) influx au noeud auriculo- (c) passage de l'influx dans (d) dépolarisation compléte des
sinusal et début de la ventriculaire I'apex du coeur et début ventricules
depolarisation auriculaire depolarisation ventriculaire

Figure 1.5 Onde électriques d’un battement cardiaque
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1.2.4 Intervalles temporels de PECG

Les différentes ondes (P, Q, R, S et T) représentent les paramétres de base d’un signal
électrocardiographique. De plus, ces ondes sont liées a plusieurs intervalles et segments
isoélectriques. lls contiennent des informations tres utiles qui permettent de surveiller la vitesse
de propagation des accidents électriques dans le myocarde et I’état normal ou anormal. Par
conséquent, les cing intervalles de temps : PR, QRS, QT, ST et RR sont définis comme suit
(Figure 1.5) [1.47] :
= Intervalle PR : Il s’agit d’un segment isoélectrique court qui est mesuré entre le début
de I’onde P et le début du complexe QRS. Il montre le temps nécessaire pour que
I’influx se propage par les oreillettes, le noeud auriculo-ventriculaire, le faisceau de
His, ses branches et le réseau de Purkinje jusqu’au début de I’activation ventriculaire.
En fonction du rythme cardiaque, sa durée varie entre 0,012 et 0,021 secondes chez
I’adulte d’age moyen.

= Complexe QRS : Il est un symbole de la dépolarisation des ventricules. 1l est composé
de déflexions positives et négatives correspondant aux ondes Q, R et S. 1l est crucial
dans toute approche de diagnostic. Parce que le complexe QRS a I’ampleur la plus
élevée dans I’ECG, son amplitude varie entre 5 et 20 mV. La dérivation permet de le
reconnaitre. Le complexe QRS dure généralement entre 0,06 et 0.10 secondes dans un
cas sain. La rapidité de la dépolarisation ventriculaire est indiquée par cette courte
durée.

= |Intervalle QT : Il est I’écart entre le point de départ du complexe et la fin de I’onde T.

Il représente la période de stimulation jusqu’a I’arrét des contractions ventriculaires.
Cette période se distingue par une durée variant de 0,3 a 0.44 secondes.
= Segment ST : La distance entre la fin du complexe QRS et le début de I’onde T est

représentée par ce nombre. Il s’agit de la période pendant laquelle les cellules

12
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ventriculaires sont completement excitées. D’ordinaire, le segment ST est
habituellement isoélectrique.
Intervalle RR : 1l correspond au temps écoulé entre I’onde R du premier battement et
I’onde R du battement suivant, c’est-a-dire entre deux ondes R successives. On utilise

cet intervalle afin de déterminer la fréquence des battements cardiaques.

[ T T T 1
I« Intervalle RR |
R R
J
|
|
I L
Y Segment Segment
= PR ST T P
P
- P 1/ U P . W
1 ' g
\'J [ v
H—Intervalle Q Q
PR
S Intervalle ST S
Intervalle l
| Intervalle QT
N I I I

mm/mV 1 carré = 0,04 sec/0,1T mV

Figure I-1.6 Différents intervalles dans ’ECG

I.4 Rythme cardiaque normal

La fréquence cardiaque est un concept qualitatif qui indique la maniere dont se produit la
contraction ventriculaire. Elle évolue sous I’influence de la peur, de la colére, de I’effort
physique du corps ou de I’esprit et de I’état physiologique de I’organisme.

Un rythme normalement tracé est sinusal, toutes les ondes P sont identiques, tous les QRS
sont identiques et chaque onde P est suivie d’un QRS. La fréquence cardiaque et la respiration
sont parfaitement synchronisées pour une circulation sanguine et une répartition optimale de
I’oxygene dans le corps. Cela réduit la perte d’énergie lors de la réalisation d’activités physiques

ou intellectuelles. [1.4] :

13
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= Rythme cardiaque régulier : En I’absence de toute anomalie, si I’intervalle R-R est
quasiment constant tout au long de I’enregistrement ECG et que des complexes QRS
similaires sont présents, le rythme cardiaque est régulier.

» Rythme cardiaque sinusal : Le rythme est dit de sinusal parce que la genése de
I’activité électrique du cceur est le nceud sinusal. 11 se caractérise par une onde P avant

chaque complexe QRS.

1.5 ECG maternel

L’ECG abdominale (aECG) enregistrement est une méthode alternative trés prometteuse
pourrait étre utilisée pour la surveillance du feetus pendant la grossesse ou durant la période
prénatale avec plusieurs avantages importants. La technique est totalement non-invasive
utilisant seulement des électrodes sur I’abdomen de la mere, les enregistrements sont de longue
durée [1.5] ; simple a utiliser, cependant, aECG est en composite de signaux contenant a la fois
I’ECG maternelle (mMECG) et I’ECG feetal (fECG) ainsi que des interférences, deux grandes
approches existent actuellement dans I’analyse des signaux fECG enregistres a partir de la
femme enceinte :

a) Ordonner extraction de FHR de I’aECG,

b) Extraction du fECG de I’aECG L’extraction de FHR et fECG a partir d’enregistrement

abdominaux reste encore une tache tres complexe.

14
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LI L

Maternal ECG

Fctal ECG

Figure 1-1.7 Illustration des enregistrement ECG feetal abdominaux. A droite, les électrodes
sont positionnées sur I’abdomen de la mére. A gauche, deux exemples de signaux enregistrés

sont représentés par des fleches indiquant I’ECG maternel et feetal.

1.6 ECG feetal fECG)

1.6.1 Définition du fECG

L’ECG feetal (Electrocardiogramme foetal) est un outil utilisé pour évaluer la santé du
feetus en mesurant les signaux électriques produits par son cceur. Il est souvent utilisé en
conjonction avec le CTG (Cardiotocographie) pour surveiller le bien-étre du feetus pendant la
grossesse et I’accouchement. Les résultats de recherche montrent que I’ECG feetal peut étre
utile pour détecter des anomalies cardiaques feetales et pour fournir des traitements appropriés
[I.7]. Cependant, il n’y a pas de preuve forte que I’analyse de ’ECG feetal améliore

significativement les résultats des autres méthodes de surveillance foetale [1.6].
1.6.2 Anatomie et physiologies du cceur feetal

La circulation cardiovasculaire feetale differe significativement de celle observée apres

la naissance. Voici quelques aspects clés concernant I’anatomie et la physiologie du ceeur feetal :

15
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= Circulation placentaire : Les poumons du feetus ne participent pas a 1’oxygenation du
sang ; celui-ci est réaliseé par le placenta. L’hémoglobine feetal désoxygénée se lie a
I’oxygene disponible dans le sang maternel dans les villosités choriales [1.8].

» Structures spécifiques a la circulation feetale : La circulation fcetale inclut quatre
structures qui ne sont pas présentes dans la circulation postnatale : Vaisseaux
ombilicaux liés au placenta, Ductus Venouse, Foramen ovale et Canal artériel [1.8]
[1.9].

» Dominance cardiaque droite : Le cceur droit fournit la majeure partie de la perfusion
systémique, alors que le cceur gauche irrigue principalement les membres supérieurs
et la téte. Ce schéma est inverse de celui observe apres la naissance. [1.8].

= Transition vers la circulation postnatale : Apres la naissance, plusieurs modifications
ont lieu pour adapte la circulation feetale a la circulation pulmonaire : Passage de la
circulation placentaire a la circulation pulmonaire, Passage de la dominance
ventriculaire droite a la dominance ventriculaire gauche, et Oblitération des structures

propres au feetus [1.8].

= Crosse de I'aorte
Veine cave

supeérieure

Tronc pulmonaire

Oreilletie
droite

Oreillette
gauche

Ventricule
droit

Veine cave
inférieure

Figure 1-1.8 Anatomie du cceur feetal
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1.7 Pourquoi on fait le fECG ?

L’ECG fcetal, ou €lectrocardiogramme foetal, est réalisé pour évaluer la santé cardiaque
du feetus en mesurant les signaux ¢€lectriques €émis par son cceur. Cet examen est crucial pour
surveiller le bien-étre du feetus, détecter précocement d’éventuelles anomalies cardiaques et
permettre la mise en place des traitements appropriés [1.12]. Les avancées technologiques
récentes visent a rendre la mesure de I’ECG feetal plus accessible en utilisant des méthodes non
invasives. Cependant, cette mesure reste un défi en raison du faible rapport signal sur bruit des
signaux captés sur I’abdomen maternel [1.11].

Pour extraire le signal ECG feetal a partir de I’ECG maternel, des approches innovantes
sont développées, telles que I’utilisation de la modélisation des processus Gaussiens combinée
avec le signal Phono cardiogramme (PCG) pour améliorer I’extraction des signaux dans une
base multimodale [1.10]. Cette méthode permet non seulement de détecter les battements
cardiaques foetaux de maniere efficace mais aussi de fournir des informations sur la

morphologie de I’ECG feetal [L.11].

1.8 Extraction du signal fECG

L’ECG feetal est extrait du canal ECG abdominal maternel. Cette méthode est utilisée
pour modéliser les signaux d’électrocardiogramme maternel et feetal. On suppose que le canal
d’électrocardiogramme abdominal brute x(t) est un mélange d’ECG maternel s,,(t), I’ECG
feetal s¢(t) et d’autres bruits (tels que ’EMG maternel et/ou le bruit feetal de I’environnement)

n(t). Dans ce cas, le signal brut est donné donc par:

X(t) = sp(t) + s¢(t) + n(t) (1.1)
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Figure I-1.9 Extraction du signal fECG

La puissance de bruit n(t) est considérée comme suffisamment élevée pour masquer

visuellement les pics R de I’électrocardiogramme fcetal.

La figure 1.10 représente un électrocardiogramme normal avec chaque P, Q, R, S et

T a fait signe. L’onde P marque la dépolarisation. Le complexe QRS marque la dépolarisation

et la contraction ventriculaire. L’onde T indique la fin de la repolarisation ventriculaire.
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Figure 1.10 Représentation d’un ECG normal
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1.9 Forme particuliére du fECG et la difficulté de son extraction

1.9.1 Forme particuliére du fECG

Les mesures du fECG sont obtenues a partir d’électrodes de scalp a une période de 36 a

42 semaines [1.107].

Tableau 1.1 Mesures du fECG

Ondes Longueur Segment Longueur
P 6.5us P-R 10.4ps
QRS 6.6s S-T 5.7us
T 13.5us P-T 36.5us

La fréquence cardiaque normale d’un foetus a terme se situe entre 110 et 150 battements

par minute.

1.9.2. Difficulté d’extraction du fECG

S’il est plus facile d’enregistrer un électrocardiogramme sur un adulte, relever celui d’un
foetus reste beaucoup plus difficile. Effectivement, le rythme cardiaque du feetus ne permet pas
de détecter d’éventuelles affections [I.75] : la structure de I’onde le cceur renferme

d’importantes données.

Ces signaux peuvent servir en gynécologie obstétrique a identifier la présence de jumeaux
ou a surveiller Pactivité du cceur du feetus, notamment lors de 1’accouchement.
On utilise principalement deux méthodes [1.75]. La premiére, trés efficace, est la mesure directe
de PECG du feetus par électrode placée sur son crane, méthode qui ne peut donc étre utilisée
que pendant I’accouchement. 2. Les médecins espérent un diagnostic plus précoce pendant la

grossesse, en utilisant ainsi des méthodes non invasives.

La deuxiéme approche consiste a extraire I’ECG du feetus sur des signaux enregistrés a

partir de plusieurs électrodes positionnées dans différents endroits du thorax et de I’abdomen
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de lamere. Les données obtenues sont des combinaisons de I’ECG du feetus (FECG) et de celui
de la mére (ECGM). En outre, il est important de prendre en compte d’autres sources en raison
de la faible intensité des signaux FECG : parmi les perturbations principales, on peut citer les
électromyogrammes (notés EMG) de la mere, le bruit thermique des électrodes et d’autres

équipements électroniques, et ainsi de suite.

l. 10 Conclusion

Dans ce premier chapitre, nous avons présenté tout d’abord les fondements théoriques
des signaux électrocardiogrammes (ECG) d’une maniere générale. Par la suite, les différents
types de signaux ECG ont été également discuté. Nous avons ensuite mis I’accent sur I’étude
théorique de I’électrocardiogramme feetal (fECG), a cause de son importance dans le suivi de
I’état de santé de fétus durant la phase de grossesse. A la fin de ce chapitre, nous avons discuté

la difficulté de I’extraction du fECG dans les scenarios pratiques.
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Chapitre 11 : Méthodes de Séparation Aveugle de Sources

1.1 Introduction

La séparation de sources est un domaine du traitement du signal visant a extraire des
signaux sources individuels a partir de mélanges complexes de signaux enregistres par plusieurs
capteurs. Cela inclut le défi de déméler les signaux sources méme lorsque la maniere dont ils
sont mélangeés est inconnue. Les méthodes exploitant des statistiques d’ordre deux, telles que
I’ACI, FastICA et JADE, sont largement utilisées pour résoudre ce probleme en estimant la
matrice de mélange inverse ou une approximation de celle-ci. Ces méthodes sont cruciales dans
de nombreux domaines, de la reconnaissance audio a la vision par ordinateur, offrant des outils
puissants pour analyser et comprendre des données complexes.

D’autres méthodes telles que les méthodes JADE (Joint Approximate Diagonalization of
Eigen-matrices) [11.2] et FastICA [11.3] (Fast Independent Component Analysis) exploitenta la
fois les statistiques du second ordre et les statistiques d’ordre quatre. Tres récemment, de
nouvelles méthodes SAS exploitant les statistiques d’ordre quatre uniquement, telles que la
méthode ICA [11.4] ont été exploitées. Dans ce qui suit nous présentons deux méthodes SAS
que nous utilisons pour la séparation de signaux audio, les méthodes Infomax et Robust ICA

que nous décrirons en détails dans ce qui suit.
11.2 Historique de la Séparation Aveugle de Sources

Alors que la technologie de traitement des signaux numériques se développe rapidement,
de nombreux algorithmes SAS efficaces sont constamment proposés. Aujourd’hui, le probléeme
de la SAS est devenu le theme le plus populaire dans le domaine du traitement des données. Le
nombre de communications consacrées a la SAS a augmenté depuis le milieu des années 1990.

En janvier 1999, a eu lieu a Aussois, en France, la premiére conférence internationale sur
I’ACI (Analyse en Composantes Indépendantes, en anglais ICA pour Independent Component

Analysis), une méthode d’analyse des données provenant des statistiques, des réseaux de
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neurones et du traitement du signal. En juin 2000, un deuxieme atelier a eu lieu a Helsinki, en
Finlande, avec plus de 100 chercheurs travaillant sur I’ACI et la SAS. Les différentes
conférences ont tous joue un role dans la conversion de la SAS en un domaine de recherche
développé.

Le modéle de réseau neuronal de rétroaction proposé par Herault et Jutten dans [I11.1]
permet de séparer deux signaux provenant de sources indépendantes melangées. En réalité, il
est extrémement complexe de résoudre les problémes de la SAS car nous ne disposons pas
d’informations sur les signaux sources. Les deux hypotheses formulées dans I’algorithme
proposé dans [I.1] sont les suivantes : les signaux sources sont considérés comme
statistiquement indépendants et la distribution statistique du signal source est connue. Si la
distribution des signaux source est gaussienne, il est évident qu’il n’existe pas de solution
universelle au probleme de la SAS, car toute distribution est différente.

La gaussienne avec un mélange linéaire reste gaussienne. Selon le modéle de réseau
Herault et Jutten [11.2], les signaux source sont des signaux sous-gaussiens, ce qui implique que
le kurtosis de chaque signal doit étre inférieur a zéro (le kurtosis d’un signal gaussien est nul).
Etant donné que I’algorithme proposé par Herault et Jutten n’a pas résolu les conditions de
solvabilité du probléeme de la SAS, Linsker [I.3] a suggéré le critere du maximum
d’information mutuelle qui est le plus adapté a la création d’un modele auto-organisateur.

Dans le paragraphe [11.4], Giannakis et Swami présentent le concept de cumulant d’ordre
trois qui repose sur une étude approfondie afin de résoudre le probléme d’identification de la
SAS. En 1989, I’analyse spectrale d’ordre supérieur a été la premiere conférence internationale.
Dans [11.5], Cardoso et Comon ont exposé lors de cette conférence sur I’ACI. Généralement,

Ces travaux ont établi un cadre clair pour I’ACI. En cas d’indépendance statistique des
signaux originaux, il est possible d’obtenir des signaux sources qui sont mutuellement

indépendants. Depuis lors, la théorie de I’ACI a connu une évolution progressive.
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Lors de leur article [11.6], Herault et Jutten ont abordé le probleme de la SAS dans le
traitement du signal en proposant un algorithme de réseau de neurones artificiel pour la SAS.
Cette recherche a ouvert la voie a un nouveau champ de recherche. La méthode d’apprentissage
gu’ils utilisaient était heuristique (approximative mais rapide) et ne soulignait pas clairement
I’importance d’utiliser les statistiques d’ordre supérieur des signaux examines. Depuis ces
études préliminaires, le probleme de la SAS est devenu un enjeu majeur dans le domaine du
traitement du signal au cours des vingt derniéres années. Des études plus poussées ont permis
d’améliorer a la fois la théorie et son application concrete.

Dans [II.7], Comon a suggéré une approche populaire de I’ACI qui repose sur une
information minimale entre les parties. L’approche par entropie maximale a été suggérée par
Bell et Lejcowski [11.8], qui repose sur le principe Infomax. Les Amari et al. [I1.9] ont créé
I’algorithme Infomax en utilisant le gradient nature et ses liens fondamentaux, avec une
estimation de vraisemblance maximale [11.10]. Les chercheurs Hyvarinen et Oja ont introduit
I’algorithme FastICA quelques années plus tard [I1.11], [11.12], [I1.13], ce qui a permis
d’appliquer I’ACI aux problemes a grande échelle en raison de son efficacité computationnelle.
Les méthodes ACI classiques, telles que I’algorithme rapide FastICA, I’algorithme Infomax et
I’algorithme d’extension maximisation de I’information [11.14], ont été plus exhaustives jusqu’a
présent.

Il est non linéaire [11.18] [11.19]. On peut classer les algorithmes SAS en deux catégories
. les algorithmes adaptatifs et ceux bases sur des clusters ou des lots. Par ailleurs, en ce qui
concerne les hypotheses, on peut classer les algorithmes SAS en trois catégories : ceux qui
reposent sur I’indépendance statistique, ceux qui reposent sur les caractéristiques de parcimonie
et ceux qui reposent sur les contraintes non négatives du signal source.

En ce qui concerne la fonction de codt, les algorithmes SAS peuvent étre classés en

méthodes autonomes basées sur des statistiques de deuxiéme ordre, en méthodes basées sur des
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statistiques d’ordre supérieur, en méthodes basées sur des réseaux neuronaux et en méthodes
basées sur des fonctions non linéaires. Les algorithmes SAS actuels sont principalement
employes pour résoudre des problémes de meélange instantané linéaire et ont demontré des
performances satisfaisantes.

A titre d’exemple, on a utilisé I’algorithme ACI dans le domaine du traitement de signal,
tels que le traitement des signaux biomeédicaux (comme les signaux de
I’électroencéphalographie (EEG) et les signaux de la magnétoencéphalographie (MEQG)) et les
systémes de reconnaissance vocale. De plus, au cours des dernieres années, on a développé des
méthodes non linéaires afin de résoudre le probléme de la SAS [11.20]. Plusieurs algorithmes
ont été suggerés par Jutten et Babaie-Zadeh afin de résoudre le probléeme de la SAS, y compris
le modeéle post-non linéaire (PNL) [11.21]. Dans le domaine du traitement des signaux de réseau
de capteurs, des communications micro-ondes, des communications par satellite et de
nombreux systemes biologiques, ces algorithmes ont acquis une importance fonctionnelle
[11.22].

L’intégration de I’apprentissage de réseau bayésien dans la SAS non linéaire a permis
d’obtenir des résultats améliorés. Ces derniéres années, la méthode bayésienne non linéaire de
séparation aveugle est devenue un sujet de recherche majeur. La méthode SAS localement
linéaire et I’algorithme SAS non linéaire dans le domaine nucléaire développés par Taleb,

Jutten et Olympieff [11.23] ont également suscite une grande attention.

Toutefois, en raison de la complexité intrinseque des problémes non linéaires, il n’existe
pas d’algorithme bien connu qui puisse étre adapte a toutes sortes de problemes pratiques. Ainsi,
différents modeles ont éte utilisés pour proposer une série de methodes de la SAS non linéaires
[11.24], [11.25]. En raison de leur flexibilité non linéaire, la SAS a été trés intéressée par les

réseaux neuronaux tels que les réseaux a fonction radiale de base (RBF), les réseaux de
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perceptrons multicouches (MLP : Multi Layer Perceptron) [11.26], les réseaux neuronaux
polynomiaux (PNN) et les algorithmes genétiques (GA) [I1.27].

Ainsi, il est possible d’utiliser les réseaux neuronaux pour résoudre des problemes non
linaires. La méthode de décomposition par réseau RBF présente la vitesse de convergence la
plus rapide dans des conditions non linéaires, mais elle présente une faible précision lors de la

récupération du signal.

11.3 Principe général de la séparation de sources

La séparation de sources consiste & extraire des signaux individuels a partir de signaux
mélangés, en supposant généralement que ces sources sont statistiquement indépendantes.
L analyse en composantes indépendantes (ICA) est une méthode qui permet de déméler les
signaux en utilisant leur indépendance statistique plutdt que leur corrélation. Dans la réalité, la
séparation des sources nécessite freqguemment des mélanges linéaires ou non linéaires, et la clé
réside dans la capacité a retrouver les signaux originaux des sources malgré le mélange. Les
techniques de séparation de sources reposent sur des hypothéses comme I’indépendance des
sources, la parcimonie des signaux ou d’autres criteres spécifiques afin de décomposer les

signaux mélangés en leurs composantes d’origine.

11.4 Domaine d’application de la séparation de sources

La recherche sur la séparation des sources est tres active en raison de son intérét théorique
et de ses multiples applications concrétes. Au quotidien, il existe de nombreuses applications
de séparation de sources qui correspondent a divers types de sighaux.

On lutilise dans le domaine médical pour extraire I’Electromyogramme (EMG),
I’Electroencéphalogramme (EEG) ou I’Electrocardiogramme (ECG) [11.30]. A titre d’exemple,
il est possible d’extraire de maniére non invasive les battements cardiaques du nourrisson a
partir de signaux ECG enregistrés a I’aide d’électrodes placées sur le ventre de la mére en

séparant les sources. Actuellement, les recherches visent a obtenir la forme compléte de I’ECG
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du feetus (le complexe PQRST) plutét que simplement les pics R comme c’est le cas
actuellement [11.32] .

Il existe également des applications en téléphonie mobile [11.34] qui permettent a notre
interlocuteur de s’exprimer dans un environnement bruyant (musique, voitures qui circulent
dans la rue, etc.). Parfois, le signal enregistré est grandement "détérioré".

Il est donc nécessaire de distinguer la source utile (parole) de la source perturbante (bruit
de fond) afin de pouvoir ensuite réduire ces bruits de fond.

Le probleme de séparation des sources est également présent dans le domaine de la
sismologie [78], car le signal émis par une vibration ou une explosion est inconnu et observé a
travers un mélange reflétant différentes sources. La division de Les sources doit offrir aux
sismologues la possibilité d’obtenir des informations sur la source et de la modéliser en utilisant
des enregistrements et des informations sur la fonction de transfert du sous-sol.

La liste des applications n’est pas compléte. Il existe de nombreux autres domaines, tels

que I’astrophysique, pour superviser le trafic aérien [11.33].

2
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Figure 11.1 Méthodes avancées de séparation de sources applicable aux mélanges
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11.5 Probleme de la séparation de sources
La difficulté de la SAS varie en fonction des caractéristiques des sources et, surtout, du
mélange. Trois criteres doivent étre pris en compte [11.31] :
= Rapport entre le nombre d’observations M et le nombre de sources N : de maniere
intuitive, il est facile de comprendre que le cas surdéterminé (avec plus d’observations
que de sources (M = N) est plus facile & comprendre et donc a résoudre que le cas
sous-déterminé (M < N). Il est impossible de résoudre ce dernier cas sans une
information préalable importante sur les sources.
= Nature de mélanges : le mélange le plus facile est le mélange instantané linéaire : a
chaque instant, les observations sont des combinaisons linéaires des sources
respectives. Dans les scénarios réalistes, les mélanges sont fréquemment convolutifs
(non linéaires), c.-a-d., a chaque instant, les observations sont également influencées
par des sources précédemment présentes.
= Nature de sources : la majorité des techniques de la SAS sont basées sur I’idée que
les sources sont mutuellement indépendantes, au moins a I’ordre de deux. Un autre
aspect de la nature des sources est leur caractére stationnaire. La résolution des sources

stationnaires est plus facile que celle des sources non stationnaires.

11.6 Types de mélanges
11.6.1 Mélanges linéaires
11.6.1.1 Mélange instantané

Il s’agit d’un mélange instantané, sans mémoire [12]. La propagation du signal dans un
canal de fonction de transfert constante A sur sa bande passante est définie par ce type de
mélange, et la fonction de transfert est indéterminée de cette bande. Dans ce cas, le mélange est

donné par
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N (11.1)
X(©) = AS(®) +b(®) = ) & 5(0) + b(®)
=1

ou A est la matrice de mélange, S;(t) sont les sources inconnus statistiquement

indépendant et b est le bruit aditif.

11.6.1.2 Mélange convolutif
Lorsque la transmission dans le canal implique des phénomeénes de propagation, qui

peuvent étre représentés par des filtres linéaires, les mélanges sont écrits comme suit :

v 1.2
X® = A®+SO = Y ay® 50, i=1.,M et j=1..,N

j=1
ou a;;(t) est la réponse impulsionnelle de la j¥™e source et le i*™ capteur, et * symbolise le

produit de convolution.

11.6.2 Mélanges non linéaires
Ce genre de mélange est extrémement répandu, ce qui entraine une relation de mélange

de la forme suivante :

X;(t) = Z a;;S;(t) 1.3
=1
e;(0) = fi(x(1)) 1.3

ou f; est la fonction non linéaire inversibles inconnues, a;; sont les coefficients réels d’une

matrice de mélange instantané A et e;(t) est le mélange post non linéaire.

11.6.2.1 Mélange sous déterminer
Le nombre de mélanges est inférieur a celui des sources, ce qui signifie qu’il n’y a pas de

séparation prealable supplémentaire.
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11.6.2.2 Mélange sur déterminer
Le nombre de mélanges est supérieur a celui des sources, il est possible de procéder a un
prétraitement par PCA avant de projeter dans I’espace du signal avant de procéder a la

séparation.

11.7 Formulation mathématique du probleme
La recherche des sources estimées est le défi de la séparation des sources [11.36].
Y(t) = [y (®), ., yn (O] 1.4
ou Y (t) est un vecteur colonne de dimension N x 1 qui regroupe les signaux sources estimeées.
Dans le cas ou nous avons au moins autant de capteurs que de sources (M > N) et que
nous sommes au courant de la structure du mélange, le probléme est similaire a I’identification
de la matrice de séparation B. Nous ne disposons que de I’indépendance statistique des sources
S@) = [51(0), .., sy (]
En conséquence, on va estimer la matrice séparante B de maniere a rendre les
composantes du vecteur Y (t) indépendantes, comme suit :
B = PDA" 1.5
ou P est une matrice de permutation, et D est une matrice diagonale inversible.
Notre estimation des sources est donnée alors par :
Y = BX 1.6
Y = PDS|Bb 1.7
avec B(t) est un bruit additif.
La structure de la matrice B varie en fonction du type de modeéle [11.36] : pour un mélange
linéaire instantané, elle est une matrice avec des coefficients réels, tandis que pour un mélange
linéaire convolutif, les coefficients sont des filtres. La séparation des mélanges non linéaires se

fait en deux parties :
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Une premiere séparation inverse la non-linéarité, tandis que la seconde séparation se

ramene au cas linéaire.

b(t)

X(t)
A A\ B > Y (t)

5
BN

Y

S(t)

Figure 11.2 Principe de la séparation de sources
11.8 Sources
Une source (ou un signal source) désigne les signaux individuels distincts qui se

combinent pour former un mélange observé lors de la transmission ou de la mesure
d’informations. Ces sources conservent leurs caractéristiques intrinseques, telles que la nature
du signal, les propriétés temporelles et spectrales, méme apres leur combinaison. Il existe de
nombreux types de sources telles que :

= Sources stationnaires blanches ;

= Sources stationnaires colorées ;

= Sources non stationnaires colorées ;

= Sources indépendantes et identiqguement distribuées (11D).

11.8.1 Sources stationnaires

Une source S(t) est dit stationnaire si ses propriétés statistiques ne changent pas au cours
du temps. Cela signifie que sa moyenne, sa variance et sa fonction d’autocorrélation restent
constantes quel que soit le moment temporel auquel on les observe. On peut distinguer deux

types de sources stationnaires : sources stationnaires blanches et sources stationnaires colorees.
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11.8.2 Source non stationnaire
Si les parameétres statistiques d’un signal S(t) sont influencés par I’origine de la mesure
et la durée dans laquelle elle est effectuée (durée limitée ou transitoire), il est considéré comme

non stationnaire [11.38].

11.8.3. Source parcimonieuse
On qualifie un signal S(k) k = 1, ..., k, de parcimonieux [11.40], si pour la plupart des
valeurs de k, nous avons :
S(k) = 0 (nulle). 1.7
Dans la réalité, il n’est pas indispensable d’étre aussi restreint : nous considérons comme
parcimonieux un signal dont la plupart des points ne peuvent pas étre distingués du bruit additif

ou dont I’ampleur est tres faible.

11.8.4 Sources indépendantes et identiquement distribuées
Dans ce cas, les sources sont des séquences qui sont distribuées de maniére identique et

indépendamment [11.41] :

p(sj) = np(sj(t)), Vj€E|[1l,n] 1.7
t=0
et

p (sj(t)) =p (sj (t’)), v(t,t) 1.8

11.9 Différentes techniques de separation des sources
Dans ce paragraphe, on va présenter les différentes méthodes souvent utilisees dans la
séparation de sources aveugle, a savoir : Joint Approximate Diagonalization of Eigenmatrices

(JADE), Independent Component Analysis (ICA) et FastiCA. Dans ce mémoire, on va utiliser
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une methode de séparation de source basée sur la décomposition en valeurs singuliéres

(Singular Value Decomposition, SVD).

11.9.1 Joint Approximate Diagonalization of Eigenmatrices

L algorithme JADE est un algorithme d’analyse en composantes indépendantes (ICA)
créé par Jean-Francois Cardoso. Il est appelé Joint Approximante Diagonalisation of Eigen
matrices. On I’emploie pour supprimer de maniére aveugle des sources, afin d’obtenir des
sources indépendantes non gaussiennes a partir de mélanges de signaux avec du bruit gaussien
[11.42]. JADE détermine la rotation de P w, assurant ainsi I’indépendance de ses vecteurs
colonnes.

La séparation des sources est réalisée en utilisant I’algorithme qui consiste a diagonaliser
conjointement les matrices propres et a effectuer différentes étapes telles que le blanchiment,
les calculs de cumulant et la décomposition des cumulant [11.43].

JADE a été mis en place dans divers langages de programmation tels que Python et R,
offrant aux utilisateurs des outils permettant de réaliser une séparation aveugle des sources de
manicre efficace. Par exemple, la mise en ceuvre Python de JADE, appelée jade, permet de
séparer de maniére aveugle les sources de signaux réels en utilisant Jumpy [11.44]. De la méme
maniére, la version R de JADE offre des fonctions comme JADE(X) pour extraire des
composants d’une matrice de données numériques ou d’une trame de données, avec des options
pour définir le nombre de composants a extraire et la tolérance de convergence [11.45].

Globalement, I’algorithme JADE représente un outil de traitement du signal puissant qui
permet de separer les signaux mixeés en leurs sources distinctes, ce qui en fait une technique
valorisée dans différents domaines tels que le traitement d’images, le traitement du signal audio,

etc.

11.9.2 Analyse en composantes indépendantes

Définition 1 :
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La technique mathématique de I’analyse en composantes indépendantes (ICA) permet de
repérer des signaux dissimulés dans le mélange de signaux observés. Elle est principalement
employée pour séparer les signaux melangés dans les applications multi-capteurs/sources
[11.47]. L’ICA est aussi une méthode trés répandue pour distinguer le signal fECG de I’aECG.
Elle utilise I’indépendance statistique des composantes prédites et cherche a trouver des
composants indépendants en maximisant cette indépendance. On peut définir I’indépendance
pour I’ICA de deux facons : en réduisant I’information mutuelle et en maximisant la non-
gaussianité [11.47].

Dans I’équation 1, le modéle mathématique de I’ICA est représenté par x, un mélange linéaire
de deux ou plus signaux de source indépendants, s représentant les composantes indépendantes,
et A représentant le mélange matrice.

x = A.s 1.9

Le but du modele est de trouver A et s en utilisant x. La matrice A est calculée comme
une matrice carrée et les composantes indépendantes peuvent étre trouvées en calculant
I’inverse de cette matrice [11.47]. Lorsque nous multiplions les deux co6tés de I’égalité dans
I’équation. 1 par I’inverse de la matrice de mélange, on obtient I’Eq. 2, ou W, est I’inverse de

la matrice de mélange.

Définition 2 :
L’analyse en composantes indépendantes d’un vecteur aléatoire X de taille p et de la
matrice de covariance V, = E{XXT ] finie est un couple de matrices {4,D} tel que :
e La matrice de variance / covariance se factorise sous la forme

Vx = A.D? . AT 11.10
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Dans ce cas, D est une matrice réelle positive diagonale et A est une matrice de rang n et
de taille p*n.

e Les observations peuvent étre exprimées de la maniere suivante :

X=A.S 11.11

Ou S est un vecteur aléatoire de taille n dont D? est la matrice de covariance et dont les
composantes  (S;,S5, .. ... ST sont les plus Indépendantes. Une mesure d’indépendance
apparait immédiate, Nous pouvons en effet remarque qu’un vecteur aléatoire réel
S =1(51,5 e .n S,)T dont la densité de probabilité es notée

fi(uw) = [fs1(uy), (uy), o ... , (u)] 11.10
a par définitions composantes indépendantes si et seulement si :
fs@) =1II{ = 1fa(w) 1.9

Cette méthode de blanchiment vise a isoler les éléments en utilisant des statistiques de
second d’ordre, tandis que I’ICA utilise des statistiques d’ordre supérieur pour séparer les
signaux (Sources) de maniére aveugle, ce qui ne garantit pas I’indépendance totale des signaux,
mais c’est une étape essentielle pour traiter les données de maniére plus approfondie pour

I’ICA. [11.46]

11.9.3 Méthode FastICA

L’ algorithme FASTICA est un outil de maximisation extrémement efficace pour les
sources non-gaussiennes. [11.49]. Il est base sur le principe de I’algorithme d’apprentissage
itératif de type point fixe (fixed point algorithme). Nous constatons que la méthode de
FASTICA est plus rapide par rapport a la méthode de I’ICA. On peut réécrire la version

simplifiée de I’algorithme pour estimer une composante indépendante de la facon suivante :
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Alorithme FastICA pour estimer une seule composante indépendante :

. Initialiser le vecteur W (valeurs aléatoire) ;
. Mettre WT =E (x.gw".x)) —E (g W' .x))w ;
WT
. Mettre W=—-;
[wT]?
. Si 1la convergence n’est pas encore atteinte, refaire les étapes 2, et 3.

A W N PR

La convergence signifie que les valeurs de W (anciennes et nouvelles) vont dans la méme
direction. C’est a dire leurs produits est presque égale a 1.

Algorithme FastICA pour estimer plusieurs composantes indépendantes:

Afin d’évaluer plusieurs composantes, il est nécessaire d’utiliser I’algorithme mentionné
précédemment, c’est-a-dire I’algorithme du point fixe pour estimer le vecteur W, et apres
chaque itération, on soustrait du vecteur Wy, les projections (Wp.1)" W,W;(j = 1,...,p),

e Puis on normalise de nouveau le vecteur Wp,, :

14 .
o Mettre Wpiq1 = Wpyq — Zi=1 Wpi1 W)W,

o Mettre ——2241

VWpy1Wpyp) '

. Initialiser le vecteur W (valeurs aléatoire) ;
. Mettre WT =E (x.gw".x)) —E (g W' .x))w ;
WT
[
. Puis on normalise de nouveau le vecteur Wp,,
P .
. Mettre Wpyy = Wpyy— X Wpy W)W,

. Mettre —optt

JWpiaWpyi1) ’

. Si la convergence n’est pas encore atteinte, refaire les étapes 2, et 6.

. Mettre W=

N 0 1A W N PR

L’efficacité de I’algorithme FastICA repose sur la sélection de la fonction g. Il est

possible d’extraire individuellement les composantes indépendantes.

11.9.4 Singular Value Decomposition
Dans ce travail, on va appliquer une approche basée sur la décomposition en valeurs

singulieres (Singular Values Decomposition, SVD). En fait, la décomposition en valeurs
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singulieéres (SVD) est une technique d’algébre linéaire qui factorise une matrice rectangulaire
A en trois matrices et peut étre représentée comme suit :
A=UzVT

ou U est une matrice m x m orthogonale dont les colonnes sont les vecteurs singuliers
gauches de la matrice d’origine, £ est une matrice m X n diagonale dont les éléments
diagonaux sont les valeurs singulieres de la matrice d’origine, classées par ordre décroissant et
7 est une matrice n X n orthogonale dont les colonnes sont les vecteurs singuliers droits de la
matrice d’origine. VT désigne la transposée de V.

Il est important d’insister sur le fait que la décomposition en valeurs singuliéres ne
suppose rien sur A; elle est toujours possible. En particulier, elle s’applique a des matrices qui
ne sont pas forcément carrées.

Les valeurs uniques de A, également connues sous le nom de g; = 0, =---= oy,

représentent une décomposition tres pratique qui fournit de nombreuses informations sur A.

Nommons maintenant les colonnes de V, X et Ucomme suit :

V=[u..u,], ueR™
X=[0,..0,], ©,eR™
V=1[vi..v,], VjeR"

La matrice Z represente une application R™ — R™ dont la simplicite rappelle celle des
matrices diagonales carrées. On note o; les éléments diagonaux de Z. Il est a noter également
que, sim > n (resp. m < n), alors certaines lignes (resp. colonnes) de X sont nulles.

Comme les valeurs singuliéres sont rangées dans un ordre d’importance descendante, la
majorité des informations signalétiques importantes se trouvent dans le premier sommets (dyad)
u,oyv! lorsque o? /o2 > 1. Les conséquences de cette propriété sont particuliérement
significatives pour les signaux périodiques. Les signaux périodiques peuvent étre utilisés pour

créer une matrice en définissant les rangées de la matrice a I’instar d’un ECG. Dans le cas d’un
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signal purement périodique, toutes les valeurs singuliéres a I’exception de a; seront nulles.
Comme la fréquence du signal diminue, alors I’importance de o; et la valeur de o? /o7
diminuent aussi.

Les signaux ECG présentent une structure périodique, comme une séquence d’ondes
PQRST, ce qui fait de la SVD une méthode d’extraction optimale des signaux ECG. Dans notre
travail, la méthode appliquée utilise la technique SVD pour extraire le fECG, comme illustré

sur la Figure I1.3 et indiqué en détail dans 1’algorithme ci-dessous.

aECG

L Extracted Extracted
ECG ), mECG TUNETE
o SRR SVD | | | Subtract fECG bl qyp fECG N
fECG M | e | L L . — N
Noise - Noise

Figure 11.3 Méthode SVD appliquée pour I’exraction du fECG

v’ Algorithme d’extraction I’ECG feetal en utilisant la SVD :

(

1. Prétraiter le signal abdominal ECG (aECG) pour éliminer les interférences de basse
fréquence,

2. Filtrer le signal aECG prétraité et 1’organiser dans une matrice A (m x n),

3. Effectuer la SVD sur la matrice A pour obtenir sa décomposition en valeurs singulieres,
ce qui donne les matrices : U, S et V', ou (A=USVT),

4. Extraire le composant mECG (ECG maternal) dominant en sélectionnant les premiers k
vecteurs singuliers de U, ou k est déterminé en fonction de la signification des valeurs
singulieéres.

5. Soustraire le composant mECG extrait du signal aECG filtré pour obtenir le signal
résiduel.

6. Répéter les étapes 2-5 sur le signal résiduel pour extraire le composant fECG dominant.

7. Sortir le composant fECG extrait (Sortie : Composant fECG dominant),

8. Fin de 1°’Algorithme.
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11.10 Critéres de performances de la séparation de source

La qualité d’un algorithme d’extraction de fECG est définie par sa capacité a reproduire
le fECG original ainsi que par le temps nécessaire a I’exécution de 1’algorithme (ce dernier
critére n’est pas pris en considération dans ce mémoire). La qualité de 1’extraction et I’efficacité
des calculs sont toutes deux criteres importants.

Pour évaluer la qualité d’extraction de la SVD et la FastICA, les fECG de sortie et
d’entrée ont été comparés en termes de précision de détection des crétes et de morphologie du

signal. En détails, ces critéres de qualité d’extraction sont résumés dans le suivant :

11.10.1 Précision de la détection des pics R

La plupart des systémes de surveillance par fECG s’appuient sur la fréquence cardiaque
feetale (fetal heart rate, fHR) pour évaluer la santé du feetus. Cependant, le fECG contient
également des informations cliniques importantes dans la morphologie de son signal. La
précision de la détection des pics R est liée au fHR dans la mesure ou les positions des pics R
déterminent le fHR. Si tous les pics R de ’ECG extrait sont correctement préservés et identifiés,
le fHR extrait devrait correspondre exactement au fHR original. Les variations du fHR peuvent
résulter d’une mal extraction (ou une extraction incorrecte) du fECG ou d’une mauvaise
identification des pics R. Les parametres utilisés pour évaluer la précision de la détection des
pics R comprennent I’erreur de la fréquence cardiaque (Heart Rate Error, HRE) en %, la
sensibilité/précision (Sensitivity/Precision Error, SE), la valeur prédictive positive/rappel

(positive predictive value/recall, PPV) et le score F1 (F1), qui sont définis comme suit :

|HR0riginale - HRExtraite |

HREy, = 100 x

R original
Ey, = 100 X ————
SEw = 100> 7N
PPVy, =100 X —————
% TP + FP
TP 2 x PPV x SE

F1=2

X =
2 XTP+FP+FN 100 x (PPV + SE)
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oU HRoriginaie cOrrespond a la fréquence cardiaque originale, HRgyrqice €St la fréquence
cardiaque extraite, TP correspond a un vrai positif (True Positif), FN & un faux négatif (False
Negative) et FP & un faux positif (False Positif). Les emplacements des pics R originaux ont été
fournis lors de la génération du signal synthétique, tandis que les pics R extraits ont éte
identifiés a 1’aide de I’algorithme décrit dans la section relative a la mise en ceuvre de la SVD.
Pour identifier les pics R comme TP, FP ou FN, les emplacements des pics R extraits et
originaux ont été comparés. Si le pic R extrait se situait dans une durée QRS feetale normale de
40 millisecondes, le pic est considéré comme TP (See [16]). Dans le cas contraire,
I’emplacement du pic R est marqué comme étant un FP. Aprés 1’analyse compléte des
emplacements des pics R extraits, les pics R originaux non comparés restants ont été marqués
comme FN. SE décrit le pourcentage de pics corrects parmi tous les pics R originaux, et PPV
décrit le pourcentage de pics corrects parmi tous les pics identifiés. Les algorithmes dont la
précision de détection des pics R est élevée doivent présenter a la fois une SE et une PPV
élevées. F1 est une mesure qui permet d’évaluer facilement la SE et la PPV. F1 est compris
entre 0 et 1, ou O représente des scores de SE et de PPV de 0 % et 1 représente des scores de

SE et de PPV de 100 %.

11.10.2 Morphologie du signal

11.10.2.1 Erreur quadratique moyenne (EQM)
L’erreur quadratique moyenne (EQM) entre le signal source S; et le signal observé

(estimé) Y; peut étre calculée comme suit :
N
EQM; = E[(S: = ¥)?] 2 = ) (S:(m) - 1)
n=1

ou E est I’espérance mathématique qui fait référence a la moyenne et N correspond au nombre

2|

d’échantillons employés. L’EQM moyenne sur toutes les sorties est de
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EQMrota = %i EQM; = N_lpi i(si(n) - Y)?
i=1 '

=1 n=1

La qualité de séparation est évaluée de maniere naturelle avec une EQM la plus faible.

11.10.2.2 Rapport signal sur résidus (SNR)

La mesure de performance la plus couramment utilisée dans la séparation de sources est
le rapport signal sur bruit (Signal to Noise Ratio, SNR). Le SNR, donnée en décibel (dB), est
calculé par le rapport de la puissance de la source et le bruit qu’il accompagne. Dans notre cas,

il est écrit comme suit :

SNR; =101 —A(SiZ) =101 —A(SiZ) 1 =1,..,P
P= (0] = = (0] = ) t=1..,
' 810 E(B?) 810 E(Y? —S?)

Le critere de performance pour les mélanges convolutifs, a savoir I’estimation par Y;, est

défini de la maniére suivante :

=1,..,P

E(S?
SNR; = 1010g10< S0 )

E(Y?|S;=0)
La sortie Y;|S; = 0 est obtenue lorsque la source (S;) est nulle (en supposant qu’il n’y a
pas de permutation). La qualité de séparation est évaluée en utilisant une valeur du SNR

maximale. Cela indique que d’autres sources (S;,j = 1,..., P, et j # i) ne contribuent pas de

maniere significative a cette sortie Y;.

11.11 Conclusion

Dans ce chapitre, le principe de la séparation des sources aveugles avec les divers types
de mélanges a été exposé. Nous avons par la suite présenté les différentes méthodes utilisées
dans la séparation de sources aveugle. Pour notre application, nous avons choisi la méthode

SVD, qu’on va comparer avec 1’algorithme FastICA lors du chapitre suivant.
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I11.1 Introduction

Ce dernier chapitre présente les tests effectués et les résultats de simulation obtenus pour
évaluer les performances de la méthode proposeée pour I’extraction d’électrocardiogramme
feetal (fECG) a partir d’électrocardiogramme maternel (mECG). La méthode proposee, basée
sur la décomposition en valeurs singuliéres (SVD), est comparée a la méthode FastICA, une
autre technique de séparation de sources aveugles (SSA) largement utilisée dans la littérature.

Nous commengons par une breve description des donnees utilisées et des métriques
employées pour évaluer les performances des méthodes. Ensuite, les résultats obtenus par les
deux méthodes sont présentés et discutés en détail. Une analyse comparative des performances
des deux méthodes est également effectuée, en mettant en évidence les avantages et les limites

de chacune d’entre elles.

111.2 Base de donnees utilisée

La base de données Non-Invasive Fetal ECG Arrhythmia Database (NIFEA DB) est un
ensemble de données public dédié a I’analyse et a la détection d’arythmies cardiaques feetales
a I’aide d’électrocardiogrammes feetaux non invasifs (NI-fECG). Elle constitue une ressource
précieuse pour les chercheurs et les développeurs d’algorithmes dans le domaine de la

cardiologie foetale.

111.2.1 Description de la base de données NIFEA DB
= Nombre d’enregistrements: La base de donnees contient 26 enregistrements NI-fECG,
dont 12 cas d’arythmies feetales et 14 cas de rythme normal.
» Canaux d’enregistrement: Chaque enregistrement comprend plusieurs canaux
d’enregistrement:
» 425 canaux abdominaux capturant les signaux feetaux ;

» 1 canal thoracique capturant le signal ECG maternel.
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= Fréquence d’chantillonnage: La fréquence d’échantillonnage est de 500 Hz ou 1khz
(indiquée dans I’en-téte de chaque fichier), permettant une capture précise des signaux
ECG.
» Formats de fichiers: Les enregistrements sont disponibles aux formats “.mat” et
“.wfdb”.
Pour des informations détaillées sur le diagnostic ainsi que I’age gestationnel de chaque feetus
dans cette base de données, le lecteur est invité a se référer a I’article original [See original

publication in PhysioNet website].

111.2.2 Acces a la base de données NIFEA DB
La base de données NIFEA DB est accessible gratuitement via le site web de PhysioNet:

https://physionet.org/content/nifeadb/

111.2.3 Applications de la base de données NIFEA DB
La base de données NIFEA DB est utilisée dans divers domaines de la recherche
cardiologique feetale, notamment:
= Développement d’algorithmes de détection d’arythmies feetales: Cette base de données
fournit des données réalistes pour tester et valider de nouvelles méthodes de détection
d’arythmies.
= FEtude des caractéristiques des arythmies feetales: Les enregistrements de cette base de
données permettent d’analyser les différents types d’arythmies et leurs caractéristiques
électrocardiographiques.
= Evaluation des performances des méthodes de séparation de sources aveugles (SSA):
La base de données NIFEA DB peut étre utilisée pour comparer et évaluer les
performances de différentes techniques SSA appliquées a I’extraction du fECG a partir

du mECG.
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111.3 Prétraitement des donnees brutes

Les données brutes réelles des signaux ECG abdominaux sont prétraitées par Matlab pour
éliminer les interférences perturbatrices puissantes et pour corriger le décalage de la ligne de
base (Baseline wander). Le filtre Notch & réponse impulsionnelle infinie (Infinite Impulse
Response, IR Filter) de MATLAB (implémenté sous nom iirnotch) est un filtre numérique
coupe-bande qui qui atténue une bande étroite de fréquences. Ce filtre est idéal pour éliminer
les interférences de ligne électrique en raison de sa caractéristique qui ne touche pas les
composants du signal avec des fréquences en dehors de la bande passante prévue. Un filtre
Notch avec une bande passante de 5 Hz a été utilisé pour ’aECG afin de supprimer les
interférences de ligne puissantes de 50 Hz (comme observé dans les signaux réels de ’aECG
provenant de la base de données non invasive de I’ECG féminin PhysioNet [11]).

En plus de ¢a, on a également éliminé le décalage de la ligne de base en utilisant le filtre
pass-haut bidirectionnel de Butterworth avec un autre filtre coupe-bande de 0.1-10 Hertz.
L’aspect bidirectionnel du filtre de Butterworth empéche le changement de phase de I’aECG
[12]. On a ensuite sous-échantillonné le aECG filtré par un facteur de huit afin de réduire le
nombre d’échantillons contenus entre deux pics R (RR période) et voila pour gérer facilement

la taille de la matrice d’entrée SVD.

111.4 Analyse et discussion de résultats

Pour évaluer la qualité d’extraction, la technique d’extraction basée sur la SVD et la
méthode FastICA ont été appliquées sur des signaux ECG abdominal réel (aeCG réel). Plus
précisément, 1’aECG réel est le canal 3 des deux enregistrements a24 et a25 de la base de
données 2013 PhysioNet Computing in Cardiology Noninvasive Fetal ECG Database [11]. Les
deux enregistrements sont montrés respectivement dans les deux Figures I11.1 et I11.4. Les deux
sous-sections suivantes présentent les résultats d’une analyse qualitative et quantitative des

signaux extraits par les deux méthodes SVD et FastICA.
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I11.4.1 Cas de I’enregistrement a24

Dans cette sous-section, nous étudions et analysons les résultats d’extraction des deux
méthodes SVD et FastICA sur le signal ECG abdominal original de I’enregistrement a24 de la
base de données PhysioNet (voir Figure I11.1). Les résultats de séparation (ou d’extraction) sont
présentés qualitativement sur les Figures 111.2 (a), 111.2 (b), HL.3 (a) et I11.3 (b) ; et
quantitativement sur le Tableau I11.1. Ces figures représentent soit les signaux ECG maternels
ou les signaux ECG de fétus extraient par la méthode SVD ou par la méthode FastICA.

D’aprés ces figures, on peut constater que la qualité d’extraction de la méthode SVD est
supérieure comparé aux résultats de 1’approche FastICA. On remarque aussi la bonne
récupération des composantes mECG et fECG avec une localisation précise des pics. En
revanche, notre mise en ceuvre de la méthode FastICA n’a pas démontré sa capacité a extraire
le signal feetal (FECG) lorsqu’elle a été appliquée au signal réel de I’enregistrement a24. Ceci
est approuveé par les résultats présentés dans le Tableau I11.1, ou les valeurs du score F1, de la
VPP et de la SE montrent que la méthode SVD a la capacité d’étre systématiquement plus

performante que la technique FastICA.

ECG Abdominal (Original)
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Figure 111.1 ECG abdominal original de I’enregistrement a24
Cercle : fQRS localise, Etoile : mQRS localisé
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mECG Extrait par SVD
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Figure 111.2 ECG maternel de I’enregistrement a24 extrait par : (a) Méthode SVD (b)

Méthode FastICA
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Figure 111.3 ECG de fétus de I’enregistrement a24 extrait par : (a) Méthode SVD (b)

Méthode FastICA
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Tableau I11.1 Criteres de perfromance pour le cas de I’enrigistrement a24

Criteres SVD FastICA
SE 83.73 6.50
PPV 95.37 16.67
F1 0.89 0.09

I11.4.2 Cas de I’enregistrement a25

Maintenant, on va analyser les performances des méthodes SVD et FastiICA pour
I’extraction des signaux feetaux (fECG) a partir d’un ECG abdominal réel provenant de
I’enregistrement a25 de la base de données PhysioNet (Figure I11.4). Les résultats d’extraction
sont présentés visuellement dans les Figures 1115 (a), I11.5 (b), 1.6 (a) et 1.6 (b) et
quantitativement dans le Tableau I11.2. Ces figures illustrent les signaux ECG maternels et
feetaux extraits par les deux méthodes.

De maniére analogue aux résultats obtenus dans la sous-section précédente, 1’analyse
effectuée ici révele aussi que la méthode SVD surpasse la FastICA en termes de qualité
d’extraction. Les composantes des signaux mECG et fECG sont récupérées avec précision par
la technique SVD, y compris la localisation des pics. En revanche, I’approche FastICA n’a pas
réussi a extraire efficacement le signal feetal dans le cas de 1’enregistrement a25. Ceci est
confirmé par les valeurs du score F1, de la VPP et de la SE présentés dans le Tableau I11.2, qui

démontrent, encore fois, la supériorité de la méthode SVD.

% ECG Abdominal (Original)
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Figure 111.4 ECG abdominal original de I’enregistrement a25
Cercle : fQRS localisé, Etoile : mQRS localisé
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mECG Extrait avec SVD
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Figure 111.5 ECG maternel de I’enregistrement a25 extrait par : (a) Méthode SVD (b)

Méthode FastICA
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Figure 111.6 ECG de fétus de I’enregistrement a25 extrait par : (a) Méthode SVD (b)
Méthode FastICA
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Tableau I11.2 Criteres de perfromance pour le cas de I’enrigistrement a25

Critéres SVD FastICA
SE 83.20 10.57
PPV 90.43 14.61
F1 0.86 0.12
111.5 Conclusion

Dans ce dernier chapitre, nous avons implémenté et comparé deux méthodes d’extraction
des signaux fECG et mECG, en utilisant des enregistrements réels, a savoir la méthode SVD et
la technique FastICA. En analysant tous les résultats de I’application, il est possible de conclure
que la méthode SVD présente une meilleure qualité de séparation des signaux fECG, et montre

une grande supériorité devant la technique FasylCA.
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Conclusion générale

Perspectives

La poursuite de ces travaux en vue daméliorer chague méthode d ’extraction et d 'inclure un
plus grand nombre de signaux aECG réels pourrait valider le potentiel de | 'extraction de

fECG a canal unique pour les futurs dispositifs médicaux.
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