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Résumé 

L’électrocardiogramme fœtal (fECG) permet de surveiller la santé du fœtus. Toutefois, le faible 

rapport signal/bruit complique l’extraction du fECG de l’électrocardiogramme abdominal 

(aECG). Ce dernier contient l’électrocardiogramme de la mère enceinte (mECG), le fECG et 

des artefacts de bruit. Dans ce mémoire, nous mettons en œuvre et comparons les méthodes 

d’extraction à une seule dérivation de la décomposition de la valeur singulière (SVD) et la 

méthode FastICA basée sur l’analyse des composants indépendants. En utilisant un aECG réel, 

les deux méthodes ont été comparées en termes de précision de détection des pics, de 

morphologie du signal et d’efficacité de calcul. Nous avons constaté que la méthode SVD peut 

être plus efficace que la méthode FastICA pour extraire proprement et complètement le fECG.  

Mots clés : Séparation Aveugle de Sources (SAS); Signal Electrocardiogramme (ECG); 

Electrocardiogramme Fœtal (fECG); Electrocardiogramme Maternel (mECG); Méthode SVD, 

Methode FastICA. 
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Abstract 

The fetal electrocardiogram (fECG) is used to monitor the health of the fetus. However, the 

low signal-to-noise ratio complicates the extraction of the fECG from the abdominal 

electrocardiogram (aECG). The aECG contains the electrocardiogram of the pregnant mother 

(mECG), the fECG, and noise artifacts. In this paper, we implement and compare single-lead 

extraction methods based on Singular Value Decomposition (SVD) and the FastICA method 

based on Independent Component Analysis. Using real aECG data, the two methods were 

compared in terms of peak detection accuracy, signal morphology, and computational 

efficiency. We found that the SVD method may be more effective than the FastICA method in 

cleanly and completely extracting the fECG. 

Keywords: Blind Source Separation (BSS); Electrocardiogram Signal (ECG); Fetal 

Electrocardiogram (fECG); Maternal Electrocardiogram (mECG); SVD Method, FastICA 

Method. 
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 ملخص

 

نسبة الإشارة إلى  ( على مراقبة صحة الجنين. ومع ذلك، فإن انخفاضfECGيساعد مخطط كهربية القلب للجنين )

الأخير على مخطط كهربية  (. يحتويaECGمن مخطط كهربية القلب في البطن ) fECGالضوضاء يعقد استخراج 

البحث، قمنا بتنفيذ ومقارنة  ( والضوضاء. في هذاfeECG(، وتخطيط كهربية القلب )mECGالقلب للأم الحامل )

على تحليل المكونات  القائمة FastICA( وطريقة SVD) طرق استخراج المشتق المفرد لتحليل القيمة المفردة

المستقلة. وباستخدام مخطط كهربية القلب الحقيقي، تمت مقارنة الطريقتين من حيث دقة اكتشاف الارتفاع 

من طريقة  يمكن أن تكون أكثر فعالية SVDوتشكل الإشارة والكفاءة الحسابية. لقد وجدنا أن طريقة 

FastICA  في استخراجfECG .بشكل نظيف وكامل  

 مخطط كهربية القلب؛ (ECG(؛ إشارة مخطط كهربية القلب )SASصل المصدر الأعمى )الكلمات المفتاحية: ف

 A  FastICطريقة، SVD(؛ طريقة mECG(؛ مخطط كهربية القلب للأمهات )fECGللجنين )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

Table des Matières 

 

Table des Figures ..................................................................................................................... ix 

Liste des Tableaux .................................................................................................................... x 

Liste des Acronymes et Abréviations .................................................................................... xi 

Introduction générale ............................................................................................................... 1 

A. Préambule : ........................................................................................................................ 2 

B. Etat de l’art ........................................................................................................................ 2 

C. Organisation du manuscrit : ............................................................................................... 3 

Chapitre I: Fondements Théoriques sur le Signal ECG ....................................................... 4 

I.1 Introduction ....................................................................................................................... 5 

I.2 Signal Electrocardiogramme ECG .................................................................................... 6 

I.2.1 Principe de base de l’ECG ........................................................................................ 7 

I.2.3 Ondes de l’ECG ...................................................................................................... 10 

I.2.4 Intervalles temporels de l’ECG .............................................................................. 12 

I.4 Rythme cardiaque normal ............................................................................................... 13 

I.5 ECG maternel .................................................................................................................. 14 

I.6 ECG fœtal (fECG) .......................................................................................................... 15 

1.6.1 Définition du fECG ................................................................................................ 15 

1.6.2 Anatomie et physiologies du cœur fœtal ............................................................... 15 

I.7 Pourquoi on fait le fECG ? .............................................................................................. 17 

1.8 Extraction du signal fECG ............................................................................................. 17 

I.9 Forme particulière du fECG et la difficulté de son extraction ........................................ 19 

I.9.1 Forme particulière du fECG ................................................................................... 19 

I.9.2. Difficulté d’extraction du fECG ............................................................................ 19 

I. 10 Conclusion ................................................................................................................... 20 

Chapitre II: Méthodes de Séparation Aveugle de Sources ................................................. 21 

II.1 Introduction ................................................................................................................... 22 

II.2 Historique de la Séparation Aveugle de Sources ........................................................... 22 

II.3 Principe général de la séparation de sources ................................................................. 26 

II.4 Domaine d’application de la séparation de sources ....................................................... 26 

II.5 Problème de la séparation de sources ............................................................................ 28 

II.6 Types de mélanges ......................................................................................................... 28 

II.6.1 Mélanges linéaires ................................................................................................. 28 

II.7 Formulation mathématique du problème ....................................................................... 30 

II.8 Sources ........................................................................................................................... 31 



viii 

II.8.1 Sources stationnaires ............................................................................................. 31 

II.8.2 Source non stationnaire ......................................................................................... 32 

II.8.3. Source parcimonieuse .......................................................................................... 32 

II.8.4 Sources indépendantes et identiquement distribuées ............................................ 32 

II.9 Différentes techniques de séparation des sources .......................................................... 32 

II.9.1 Joint Approximate Diagonalization of Eigenmatrices .......................................... 33 

II.9.2 Analyse en composantes indépendantes ............................................................... 33 

II.9.3 Méthode FastICA .................................................................................................. 35 

II.9.4 Singular Value Decomposition ............................................................................. 36 

II.10 Critères de performances de la séparation de source ................................................... 39 

II.10.1 Précision de la détection des pics R .................................................................... 39 

II.10.2 Morphologie du signal ........................................................................................ 40 

II.11 Conclusion ................................................................................................................... 41 

Chapitre III: Résultats et Discussions .................................................................................. 42 

III.1 Introduction .................................................................................................................. 43 

III.2 Base de données utilisée ............................................................................................... 43 

III.2.1 Description de la base de données NIFEA DB .................................................... 43 

III.2.2 Accès à la base de données NIFEA DB ............................................................... 44 

III.2.3 Applications de la base de données NIFEA DB .................................................. 44 

III.3 Prétraitement des données brutes ................................................................................. 45 

III.4 Analyse et discussion de résultats ................................................................................ 45 

III.4.1 Cas de l’enregistrement a24 ................................................................................. 46 

III.4.2 Cas de l’enregistrement a25 ................................................................................. 48 

III.5 Conclusion .................................................................................................................... 50 

Conclusion générale et perspectives ..................................................................................... 51 

 

 

 

 

 

 

 

 



 

ix 

 

Table des Figures 

Figure I.1 Extraction non invasive de l’ECG d’un fétus ............................................................ 6 

Figure I-I.2 Représentation graphique de l’activité électrique du cœur ..................................... 7 

Figure I.3 Système cardiovasculaire .......................................................................................... 8 

Figure I.4 Anatomie du cœur ..................................................................................................... 9 

Figure I.5 Onde électriques d’un battement cardiaque ............................................................ 11 

Figure I-I.6 Différents intervalles dans l’ECG ......................................................................... 13 

Figure I-I.7 Illustration des enregistrement ECG fœtal abdominaux. À droite, les électrodes sont 

positionnées sur l’abdomen de la mère. À gauche, deux exemples de signaux enregistrés sont 

représentés par des flèches indiquant l’ECG maternel et fœtal. .............................................. 15 

Figure I-I.8 Anatomie du cœur fœtal ....................................................................................... 16 

Figure I-I.9 Extraction du signal fECG .................................................................................... 18 

Figure I.10 Représentation d’un ECG normal ......................................................................... 18 

Figure II.1 Méthodes avancées de séparation de sources applicable aux mélanges ................ 27 

Figure II.2 Principe de la séparation de sources ....................................................................... 31 

Figure II.3 Méthode SVD appliquée pour l’exraction du fECG .............................................. 38 

Figure III.1 ECG abdominal original de l’enregistrement a24 ................................................ 46 

Figure III.2 ECG maternel de l’enregistrement a24 extrait par : (a) Méthode SVD (b) Méthode 

FastICA .................................................................................................................................... 47 

Figure III.3 ECG de fétus de l’enregistrement a24 extrait par : (a) Méthode SVD (b) Méthode 

FastICA .................................................................................................................................... 47 

Figure III.4 ECG abdominal original de l’enregistrement a25 ................................................ 48 

Figure III.5 ECG maternel de l’enregistrement a25 extrait par : (a) Méthode SVD (b) Méthode 

FastICA .................................................................................................................................... 49 

Figure III.6 ECG de fétus de l’enregistrement a25 extrait par : (a) Méthode SVD (b) Méthode 

FastICA .................................................................................................................................... 49 

 

 

 

 

 

 

 

 

 



x 

Liste des Tableaux 

Tableau I.1 Mesures du fECG .................................................................................................. 19 

Tableau III.1 Critères de perfromance pour le cas de l’enrigistrement a24 ............................. 48 

Tableau III.2 Critères de perfromance pour le cas de l’enrigistrement a25 ............................. 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

Liste des Acronymes et Abréviations 

ECG  Electrocardiogramme 

FECG  ECG Fœtal  

ECGm ECG maternel 

EQM  Erreur Quadratique Moyenne 

ICA  Analyse en Composantes Indépendantes (Independent Component Analysis) 

JADE  Joint Approximate Diagonalization of Eigenmatrices  

RCF  Rythme Cardiaques Fœtal 

SAS  Séparation Aveugle de Sources  

SNR  Rapport Signal sur Bruit (Signal to Noise Ratio)  

SVD  Singular Value Decomposition 





 

 

 

 

 

 

 

 

 

 

 

 

Introduction générale 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction générale 

2 

A. Préambule : 

Le cœur est l’un des organes essentiels du corps humain, car il favorise la circulation du sang 

dans tout le corps. Sans ces battements, l’individu est considéré comme décédé. En raison des 

avancées technologiques, l’électrocardiogramme (ECG) a vu le jour, qui représente l’activité 

électrique du cœur. 

L’électrocardiogramme joue un rôle crucial, que ce soit dans la surveillance médicale ou dans 

le diagnostic de maladies. L’évaluation continue d’un fœtus est essentielle pour assurer une 

surveillance efficace et est généralement effectuée à l’aide de la technologie électronique. 

Cependant, le nombre de bébés nés avec des malformations cardiaques congénitales a remis en 

cause la validité des techniques de surveillance utilisées dans l’identification des fœtus à risque. 

La réduction du nombre de bébés nés avec une maladie est l’une des principales aspirations des 

soins de santé, et la technologie peut apporter le meilleur à cet égard en développant des outils 

de surveillance fœtale pendant la grossesse, ce qui est crucial pour soutenir la prise de décision 

médicale. Dans cette situation, l’objectif principal de cette étude est d’analyser les éventuels 

usages de la séparation de sources pour extraire l’ECG du fœtus (fECG) à partir de mesures 

non invasives de l’ECG de la mère. En ce moment, il est possible de déterminer le rythme 

cardiaque du fœtus en utilisant des méthodes traditionnelles, mais une description plus précise 

du fECG permettrait aux médecins de détecter avec précision d’éventuelles malformations 

cardiaques prénatales.  

Un grand nombre de recherches ont déjà traité le traitement de l’ECG non-invasif, enregistré à 

partir de la surface de l’abdomen de la maman. Le principal souci réside dans le fait que le 

signal électrique, obtenu à l’aide des électrodes de surface abdominale, ne comprend pas 

seulement les signaux fECG. 

En général, l’ECG abdominal du nourrisson est très faible pour diverses raisons : 

l’enregistrement de l’ECG maternel à l’aide d’une électrode de surface abdominale présente 

une amplitude bien supérieure à celle du fECG. 

B. Etat de l’art 

L’électrocardiogramme fœtal (ECGF) fournit des informations importantes sur la santé 

cardiovasculaire du fœtus. La surveillance à long terme de l’fECG permet une identification 

précoce des problèmes cardiaques tels que l’asphyxie fœtale et peut réduire la mortalité et la 



Introduction générale 

3 

morbidité infantiles. Le faible rapport signal/bruit (SNR) de l’ECG fœtal par rapport à l’ECG 

maternel (mECG) et le bruit compliquent l’extraction de l’ECG fœtal à partir de l’ECG 

abdominal (aECG). 

Plusieurs approches d’extraction du fECG basées sur des techniques de séparation des 

sources aveugle (Blind Source Separation, BSS) ou en semi-aveugle (SBSS) ont été proposées 

dans la littérature. On peut citer à titre d’exemple l’analyse en composantes indépendantes 

(Independent Component Analysis, ICA) [1, 2], l’analyse en composantes principales 

(Principale Component Analysis, PCA) ou la décomposition en valeurs singulières (Singular 

Values Decomposition, SVD) [3, 4, 5] ; la soustraction moyenne du mECG [6, 7] ; les 

différentes variantes de filtres adaptatifs [8, 9], et la décomposition en ondelettes [10]. La BSS 

est la technique la plus utilisée pour extraire le fECG, car il a été démontré que les méthodes 

BSS sont meilleures que les filtres adaptatifs [11], et les transformations non linéaires ont une 

charge de calcul plus importante et nécessitent que certains paramètres soient réglés de manière 

empirique. Dans ce travail, nous mettons en œuvre et comparons deux méthodes, à savoir la 

méthode FastICA et l’approche basée sur la SVD. 

C. Organisation du manuscrit : 

Notre mémoire est structurée de la manière suivante : Le premier chapitre présente les 

diverses définitions de l’électrocardiogramme (ECG) et les notions reliées. Dans le deuxième 

chapitre, nous présenterons trois techniques de séparations des signaux fECG, à savoir : 

méthode de décomposition en valeurs singulières (Singular Value Decomposition, SVD), 

méthode d’analyse en composantes indépendantes (Independent Component Analysis, ICA), 

méthode JADE et méthode FastICA. Le dernier chapitre est consacré complètement à la 

présentation des résultats de simulation.   Enfin, notre mémoire se termine par une conclusion 

générale qui résume les résultats obtenus et les perspectives d’amélioration pour la méthode 

appliquée.
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I.1 Introduction   

Un électrocardiogramme (ECG) est une méthode graphique utilisée pour enregistrer avec 

précision l’activité électrique du cœur. Il fournit des informations exactes sur la santé cardiaque 

du cœur de l’être humain, notamment : la fréquence cardiaque, le rythme cardiaque, la 

morphologie des ondes ECG, …etc. 

En fait, le cœur génère un champ électrique à chaque battement. Un ECG utilise des 

électrodes placées sur la peau de la poitrine, des bras et des jambes pour capter ce champ 

électrique. Les électrodes transmettent les signaux à un appareil appelé électrocardiographe, 

qui enregistre les signaux et les imprime sur un tracé papier, appelé tracé ECG. Ce tracé est 

composé d’une série d’ondes, chacune représentant une partie spécifique du cycle cardiaque. 

Les principales ondes sont les suivantes : l’onde P, complexe QRS et l’onde T. 

Les malformations cardiaques sont l’une des malformations congénitales les plus 

courantes et la principale cause de décès liés à des malformations congénitales. Ces 

malformations se développent lorsque le cœur se forme au début de la grossesse et peuvent 

affecter différentes parties du cœur ou sa fonction globale. 

Le processus d’enregistrement d’un électrocardiogramme fœtal de l’abdomen de la 

femme enceinte sans aucun contact direct avec le fœtus est appelé méthode non invasive. Cette 

méthode utilise des techniques de séparation des sources (ECG maternel, ECG fœtal et bruit) 

pour extraire de manière non invasive le rythme cardiaque fœtal du signal ECG enregistré à 

l’aide d’électrodes placées sur l’abdomen de la mère (voir Figure 1). 
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Figure I.1 Extraction non invasive de l’ECG d’un fétus 

I.2 Signal Electrocardiogramme ECG 

L’échocardiographie est la représentation graphique des forces électromotrices produites 

par les évènements électriques de stimulation du cœur. C’est l’examen médical le plus courant, 

car il est non invasif, sans risque, peu coûteux et assez rapide. On a besoin de 10 minutes pour 

obtenir ce signal et le diagnostic du médecin, et il fournit de nombreuses informations sur l’état 

physiologique normal et pathologique du cœur [II.43]. Le signal électrocardiogramme a une 

bande dynamique de 1 à 10 mV et une plage de fréquences de 0,05 à 100 Hz. Il est considéré 

comme un signal non stationnaire avec une amplitude faible, allant généralement de 10 μV à 5 

mV. La fréquence d’échantillonnage varie de 250 à 500 Hz. Le signal ECG est composé d’une 

succession d’ondes (ondes P, Q, R, S et T), et il existe un certain nombre d’intervalles et de 

segments qui fournissent des informations très utiles sur la vitesse de conduction de l’impulsion 

électrique dans les différentes parties du cœur. Toute modification morphologique ou 

temporelle dans ces paramètres indique des anomalies cardiaques [II.45]. 
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I.2.1 Principe de base de l’ECG 

L’ECG (électrocardiogramme) est un outil utilisé pour évaluer l’activité électrique du 

cœur. Il est basé sur la mesure des courants électriques générés par les muscles cardiaques 

lorsqu’ils se contractent. L’ECG est composé de 12 dérivations standard, chacune fournissant 

des informations sur une partie spécifique du cœur. Les principes de base de l’ECG incluent la 

mesure de la fréquence cardiaque, l’analyse de l’onde P, l’intervalle PR, le complexe QRS, 

L’onde T, l’intervalle QT et le segment ST. Ces éléments sont utilisés pour détecter des 

anomalies dans le rythme cardiaque, la conduction, la position du cœur et les problèmes de 

circulation dans les artères coronaires [I.2] [I.3]. 

 

Figure I-I.2 Représentation graphique de l’activité électrique du cœur 

 

I.2.2 Système cardiovasculaire  

La fonction du système cardiovasculaire est de faciliter la circulation du sang dans tout le 

corps, fournissant ainsi de l’oxygène et des nutriments. Ce système est constitué du cœur, qui 

agit comme une double pompe, favorisant la circulation dans deux réseaux interconnectés : les 

artères et les veines. Le système artériel est chargé de transporter le sang oxygéné vers les 
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organes, tandis que le système veineux facilite le retour du sang désoxygéné vers le cœur. Par 

la suite, les artères pulmonaires transportent le sang vers les poumons où il subit une 

oxygénation dans la petite circulation. Le réseau veineux constitue le principal réservoir 

sanguin, contenant environ 70 % du volume total, soit 5 à 6 litres chez l’adulte. 

 

 

Figure I.3 Système cardiovasculaire 

 

I.2.2.1 Anatomie du cœur 

Le cœur se compose de [I.1] côtés droit et gauche et de quatre valvules qui forcent le sang 

à circuler dans la bonne direction. Il y a des oreillettes (chambres supérieures) et des ventricules 

(chambres de pompage principales) sur les côtés gauches et droit. L’oreillette droite reçoit le 

sang pauvre en oxygène des organes vers le cœur par les veines. Il dirige le sang veineux vers 

le ventricule droit. Le ventricule droit transporte le sang dans les poumons, où il est oxygéné 

avant de passer par l’oreillette gauche jusqu’au ventricule gauche. Cette dernière est la plus 

épaisse et projette le sang dans les artères, où il se propage dans tout le corps. Nous pouvons 

également ressentir l’impulsion qui en résulte sur nos poignets. 
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Figure I.4 Anatomie du cœur 

I.2.2.2 Fonctionnement électrique du cœur 

Pour que le cœur puisse pomper le sang efficacement, des milliers de cellules situées dans 

les oreillettes et Les ventricules (myocytes) doivent se contracter simultanément [I.1]. Ceci est 

incroyable. 

La coordination est déclenchée par des impulsions électriques. Le conducteur est le nœud 

sino-auriculaire, Situé dans l’oreillette droite. De là, le courant électrique passe de cellule en 

cellule. Il est arrivé Le nœud auriculo-ventriculaire est le seul point de passage possible du 

courant entre les nœuds auriculo-ventriculaires. Oreillettes et ventricules. Là, l’impulsion 

électrique subit une brève pause, provoquant le sang Entrez dans les ventricules. Puis elle lui a 

emprunté son paquet, composé de deux Les branches principales pénètrent chacune dans le 

ventricule. Les fibres qui composent le faisceau, Complété par des fibres Purkinje, qui 

propagent les impulsions en raison de leur conduction rapide Il y a de l’électricité en plusieurs 

points du ventricule, elle peut donc presque se dépolariser. Une couverture instantanée de 

l’ensemble du muscle ventriculaire malgré sa grande taille assure Efficacité optimale de la 

propulsion sanguine. Cette contraction constitue la systole ventriculaire, suivie de la diastole 
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ventriculaire. (Relâchement musculaire) ; les fibres musculaires se repolarisent, revenant ainsi 

à leur état d’origine Etat initial. Le cycle cardiaque est alors terminé et le cœur est prêt pour un 

nouveau battement cardiaque Battre. 

I.2.3 Ondes de l’ECG  

Comme mentionné précédemment, il y a des cellules spécialisées appelées cellules 

régulatrices du rythme cardiaque dans le cœur. Elles produisent de l’électricité en transformant 

rapidement une charge positive en une charge négative ou inversement. Une onde initiale 

suffisante pour déclencher une réaction en chaîne d’ondes arrive à la surface du corps. Il est 

possible d’enregistrer les potentiels électriques générés par ces ondes si des électrodes ECG 

sont placées sur la peau. La ligne horizontale isoélectrique, également appelée ligne de base, 

reflète l’absence d’activité électrique dans tout le graphe de l’ECG. Elle est considérée comme 

une référence. Toute courbe qui se trouve en haut de cette ligne est une courbe positive, tandis 

que toute courbe qui se trouve sous cette ligne est une courbe négative. L’information 

enregistrée sur l’électrocardiogramme est présentée sous forme d’ondes et d’intervalles avec 

des durées et des amplitudes spécifiques qui se répètent de même ordre dans chaque battement 

cardiaque. 

Les principales mesures de l’électrocardiogramme sont généralement indiquées par les 

lettres P, Q, R, S et enfin : 

 Onde P : Elle représente le courant électrique qui se produit lorsque les oreillettes se 

contractent. Elle est fréquemment précédée des complexes ventriculaires (QRS). C’est 

une onde positive, arrondie et petite car les muscles oreillettes sont très petits par 

rapport aux muscles ventriculaires. Son temps est d’environ 120 ms et son amplitude 

est inférieure ou égale à 0.2 mV. 
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 Onde Q : Il indique une polarisation sur le site du réseau de His. La première déviation 

négative dans le complexe QRS est une onde négative sous la ligne isoélectrique. Cette 

onde a une faible amplitude et peut durer jusqu’à 0,2 secondes. 

 Onde R : représente la dépolarisation qui est déplacée de l’intérieur des ventricules 

vers l’extérieur. C’est une onde positive avec une amplitude importante qui suit 

directement l’onde Q. 

 Onde S : Elle représente l’onde de polarisation des ventricules restants. C’est une 

déflexion située au-dessous de la ligne de base de faible amplitude et est la deuxième 

composante négative du complexe QRS. 

 Onde T : Elle marque le moment où la contraction ventriculaire et la dépolarisation du 

muscle cardiaque sont terminées. En raison de sa fin progressive, cette onde positive 

n’a pas de durée précise. Son amplitude est inférieure à 2 mV que celle du complexe 

QRS. 

 

Figure I.5 Onde électriques d’un battement cardiaque 
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I.2.4 Intervalles temporels de l’ECG 

Les différentes ondes (P, Q, R, S et T) représentent les paramètres de base d’un signal 

électrocardiographique. De plus, ces ondes sont liées à plusieurs intervalles et segments 

isoélectriques. Ils contiennent des informations très utiles qui permettent de surveiller la vitesse 

de propagation des accidents électriques dans le myocarde et l’état normal ou anormal. Par 

conséquent, les cinq intervalles de temps : PR, QRS, QT, ST et RR sont définis comme suit 

(Figure I.5) [I.47] : 

 Intervalle PR : Il s’agit d’un segment isoélectrique court qui est mesuré entre le début 

de l’onde P et le début du complexe QRS. Il montre le temps nécessaire pour que 

l’influx se propage par les oreillettes, le noeud auriculo-ventriculaire, le faisceau de 

His, ses branches et le réseau de Purkinje jusqu’au début de l’activation ventriculaire. 

En fonction du rythme cardiaque, sa durée varie entre 0,012 et 0,021 secondes chez 

l’adulte d’âge moyen. 

 Complexe QRS : Il est un symbole de la dépolarisation des ventricules. Il est composé 

de déflexions positives et négatives correspondant aux ondes Q, R et S. Il est crucial 

dans toute approche de diagnostic. Parce que le complexe QRS a l’ampleur la plus 

élevée dans l’ECG, son amplitude varie entre 5 et 20 mV. La dérivation permet de le 

reconnaître. Le complexe QRS dure généralement entre 0,06 et 0.10 secondes dans un 

cas sain. La rapidité de la dépolarisation ventriculaire est indiquée par cette courte 

durée. 

 Intervalle QT : Il est l’écart entre le point de départ du complexe et la fin de l’onde T. 

Il représente la période de stimulation jusqu’à l’arrêt des contractions ventriculaires. 

Cette période se distingue par une durée variant de 0,3 à 0.44 secondes.  

 Segment ST : La distance entre la fin du complexe QRS et le début de l’onde T est 

représentée par ce nombre. Il s’agit de la période pendant laquelle les cellules 
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ventriculaires sont complètement excitées. D’ordinaire, le segment ST est 

habituellement isoélectrique. 

Intervalle RR : Il correspond au temps écoulé entre l’onde R du premier battement et 

l’onde R du battement suivant, c’est-à-dire entre deux ondes R successives. On utilise 

cet intervalle afin de déterminer la fréquence des battements cardiaques.  

 

Figure I-I.6 Différents intervalles dans l’ECG 

I.4 Rythme cardiaque normal 

La fréquence cardiaque est un concept qualitatif qui indique la manière dont se produit la 

contraction ventriculaire. Elle évolue sous l’influence de la peur, de la colère, de l’effort 

physique du corps ou de l’esprit et de l’état physiologique de l’organisme. 

Un rythme normalement tracé est sinusal, toutes les ondes P sont identiques, tous les QRS 

sont identiques et chaque onde P est suivie d’un QRS. La fréquence cardiaque et la respiration 

sont parfaitement synchronisées pour une circulation sanguine et une répartition optimale de 

l’oxygène dans le corps. Cela réduit la perte d’énergie lors de la réalisation d’activités physiques 

ou intellectuelles. [I.4] : 
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 Rythme cardiaque régulier : En l’absence de toute anomalie, si l’intervalle R-R est 

quasiment constant tout au long de l’enregistrement ECG et que des complexes QRS 

similaires sont présents, le rythme cardiaque est régulier. 

 Rythme cardiaque sinusal : Le rythme est dit de sinusal parce que la genèse de 

l’activité électrique du cœur est le nœud sinusal. Il se caractérise par une onde P avant 

chaque complexe QRS. 

I.5 ECG maternel 

L’ECG abdominale (aECG) enregistrement est une méthode alternative très prometteuse 

pourrait être utilisée pour la surveillance du fœtus pendant la grossesse ou durant la période 

prénatale avec plusieurs avantages importants. La technique est totalement non-invasive 

utilisant seulement des électrodes sur l’abdomen de la mère, les enregistrements sont de longue 

durée [I.5] ; simple à utiliser, cependant, aECG est en composite de signaux contenant à la fois 

l’ECG maternelle (mECG) et l’ECG fœtal (fECG) ainsi que des interférences, deux grandes 

approches existent actuellement dans l’analyse des signaux fECG enregistres à partir de la 

femme enceinte : 

a) Ordonner extraction de FHR de l’aECG, 

b) Extraction du fECG de l’aECG L’extraction de FHR et fECG à partir d’enregistrement 

abdominaux reste encore une tache très complexe. 
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Figure I-I.7 Illustration des enregistrement ECG fœtal abdominaux. À droite, les électrodes 

sont positionnées sur l’abdomen de la mère. À gauche, deux exemples de signaux enregistrés 

sont représentés par des flèches indiquant l’ECG maternel et fœtal.  

I.6 ECG fœtal (fECG) 

1.6.1 Définition du fECG 

L’ECG fœtal (Electrocardiogramme fœtal) est un outil utilisé pour évaluer la santé du 

fœtus en mesurant les signaux électriques produits par son cœur. Il est souvent utilisé en 

conjonction avec le CTG (Cardiotocographie) pour surveiller le bien-être du fœtus pendant la 

grossesse et l’accouchement. Les résultats de recherche montrent que l’ECG fœtal peut être 

utile pour détecter des anomalies cardiaques fœtales et pour fournir des traitements appropriés 

[I.7]. Cependant, il n’y a pas de preuve forte que l’analyse de l’ECG fœtal améliore 

significativement les résultats des autres méthodes de surveillance fœtale [I.6]. 

1.6.2 Anatomie et physiologies du cœur fœtal 

La circulation cardiovasculaire fœtale diffère significativement de celle observée après 

la naissance. Voici quelques aspects clés concernant l’anatomie et la physiologie du cœur fœtal : 
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 Circulation placentaire : Les poumons du fœtus ne participent pas à l’oxygenation du 

sang ; celui-ci est réalisé par le placenta. L’hémoglobine fœtal désoxygénée se lie à 

l’oxygène disponible dans le sang maternel dans les villosités choriales [I.8]. 

 Structures spécifiques à la circulation fœtale : La circulation fœtale inclut quatre 

structures qui ne sont pas présentes dans la circulation postnatale : Vaisseaux 

ombilicaux liés au placenta, Ductus Venouse, Foramen ovale et Canal artériel [I.8] 

[I.9]. 

 Dominance cardiaque droite : Le cœur droit fournit la majeure partie de la perfusion 

systémique, alors que le cœur gauche irrigue principalement les membres supérieurs 

et la tête. Ce schéma est inverse de celui observé après la naissance. [I.8]. 

 Transition vers la circulation postnatale : Après la naissance, plusieurs modifications 

ont lieu pour adapte la circulation fœtale à la circulation pulmonaire : Passage de la 

circulation placentaire à la circulation pulmonaire, Passage de la dominance 

ventriculaire droite à la dominance ventriculaire gauche, et Oblitération des structures 

propres au fœtus [I.8]. 

 

Figure I-I.8 Anatomie du cœur fœtal 
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I.7 Pourquoi on fait le fECG ? 

L’ECG fœtal, ou électrocardiogramme fœtal, est réalisé pour évaluer la santé cardiaque 

du fœtus en mesurant les signaux électriques émis par son cœur. Cet examen est crucial pour 

surveiller le bien-être du fœtus, détecter précocement d’éventuelles anomalies cardiaques et 

permettre la mise en place des traitements appropriés [I.12]. Les avancées technologiques 

récentes visent à rendre la mesure de l’ECG fœtal plus accessible en utilisant des méthodes non 

invasives. Cependant, cette mesure reste un défi en raison du faible rapport signal sur bruit des 

signaux captés sur l’abdomen maternel [I.11]. 

Pour extraire le signal ECG fœtal à partir de l’ECG maternel, des approches innovantes 

sont développées, telles que l’utilisation de la modélisation des processus Gaussiens combinée 

avec le signal Phono cardiogramme (PCG) pour améliorer l’extraction des signaux dans une 

base multimodale [I.10]. Cette méthode permet non seulement de détecter les battements 

cardiaques fœtaux de manière efficace mais aussi de fournir des informations sur la 

morphologie de l’ECG fœtal [I.11]. 

1.8 Extraction du signal fECG  

L’ECG fœtal est extrait du canal ECG abdominal maternel. Cette méthode est utilisée 

pour modéliser les signaux d’électrocardiogramme maternel et fœtal. On suppose que le canal 

d’électrocardiogramme abdominal brute 𝑥(𝑡) est un mélange d’ECG maternel 𝑠𝑚(𝑡), d’ECG 

fœtal 𝑠𝑓(𝑡) et d’autres bruits (tels que l’EMG maternel et/ou le bruit fœtal de l’environnement) 

𝑛(𝑡). Dans ce cas, le signal brut est donné donc par: 

𝑋(𝑡) = 𝑠𝑚(𝑡) + 𝑠𝑓(𝑡) + 𝑛(𝑡) (I.1) 
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Figure I-I.9 Extraction du signal fECG 

La puissance de bruit 𝑛(𝑡) est considérée comme suffisamment élevée pour masquer 

visuellement les pics R de l’électrocardiogramme fœtal.  

La figure I.10 représente un électrocardiogramme normal avec chaque P, Q, R, S et 

T a fait signe. L’onde P marque la dépolarisation. Le complexe QRS marque la dépolarisation 

et la contraction ventriculaire. L’onde T indique la fin de la repolarisation ventriculaire. 

 

Figure I.10 Représentation d’un ECG normal 
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I.9 Forme particulière du fECG et la difficulté de son extraction  

I.9.1 Forme particulière du fECG 

Les mesures du fECG sont obtenues à partir d’électrodes de scalp à une période de 36 à 

42 semaines [I.107].  

Tableau I.1 Mesures du fECG 

Ondes Longueur Segment Longueur 

P 

QRS 

T 

6.5µs 

6.6µs 

13.5µs 

P-R 

S-T 

P-T 

10.4µs 

5.7µs 

36.5µs 

 

La fréquence cardiaque normale d’un foetus à terme se situe entre 110 et 150 battements 

par minute.  

I.9.2. Difficulté d’extraction du fECG 

S’il est plus facile d’enregistrer un électrocardiogramme sur un adulte, relever celui d’un 

foetus reste beaucoup plus difficile. Effectivement, le rythme cardiaque du fœtus ne permet pas 

de détecter d’éventuelles affections [I.75] : la structure de l’onde le cœur renferme 

d’importantes données.  

Ces signaux peuvent servir en gynécologie obstétrique à identifier la présence de jumeaux 

ou à surveiller l’activité du cœur du fœtus, notamment lors de l’accouchement.  

On utilise principalement deux méthodes [I.75]. La première, très efficace, est la mesure directe 

de l’ECG du fœtus par électrode placée sur son crâne, méthode qui ne peut donc être utilisée 

que pendant l’accouchement. 2. Les médecins espèrent un diagnostic plus précoce pendant la 

grossesse, en utilisant ainsi des méthodes non invasives.  

La deuxième approche consiste à extraire l’ECG du fœtus sur des signaux enregistrés à 

partir de plusieurs électrodes positionnées dans différents endroits du thorax et de l’abdomen 
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de la mère. Les données obtenues sont des combinaisons de l’ECG du fœtus (FECG) et de celui 

de la mère (ECGM). En outre, il est important de prendre en compte d’autres sources en raison 

de la faible intensité des signaux FECG : parmi les perturbations principales, on peut citer les 

électromyogrammes (notés EMG) de la mère, le bruit thermique des électrodes et d’autres 

équipements électroniques, et ainsi de suite.  

I. 10 Conclusion 

Dans ce premier chapitre, nous avons présenté tout d’abord les fondements théoriques 

des signaux électrocardiogrammes (ECG) d’une manière générale. Par la suite, les différents 

types de signaux ECG ont été également discuté. Nous avons ensuite mis l’accent sur l’étude 

théorique de l’électrocardiogramme fœtal (fECG), à cause de son importance dans le suivi de 

l’état de santé de fétus durant la phase de grossesse. A la fin de ce chapitre, nous avons discuté 

la difficulté de l’extraction du fECG dans les scenarios pratiques.  
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II.1 Introduction 

La séparation de sources est un domaine du traitement du signal visant à extraire des 

signaux sources individuels à partir de mélanges complexes de signaux enregistrés par plusieurs 

capteurs. Cela inclut le défi de démêler les signaux sources même lorsque la manière dont ils 

sont mélangés est inconnue. Les méthodes exploitant des statistiques d’ordre deux, telles que 

l’ACI, FastICA et JADE, sont largement utilisées pour résoudre ce problème en estimant la 

matrice de mélange inverse ou une approximation de celle-ci. Ces méthodes sont cruciales dans 

de nombreux domaines, de la reconnaissance audio à la vision par ordinateur, offrant des outils 

puissants pour analyser et comprendre des données complexes.  

D’autres méthodes telles que les méthodes JADE (Joint Approximate Diagonalization of 

Eigen-matrices) [II.2] et FastICA [II.3] (Fast Independent Component Analysis) exploitentà la 

fois les statistiques du second ordre et les statistiques d’ordre quatre. Très récemment, de 

nouvelles méthodes SAS exploitant les statistiques d’ordre quatre uniquement, telles que la 

méthode ICA [II.4] ont été exploitées. Dans ce qui suit nous présentons deux méthodes SAS 

que nous utilisons pour la séparation de signaux audio, les méthodes Infomax et Robust ICA 

que nous décrirons en détails dans ce qui suit. 

II.2 Historique de la Séparation Aveugle de Sources  

Alors que la technologie de traitement des signaux numériques se développe rapidement, 

de nombreux algorithmes SAS efficaces sont constamment proposés. Aujourd’hui, le problème 

de la SAS est devenu le thème le plus populaire dans le domaine du traitement des données. Le 

nombre de communications consacrées à la SAS a augmenté depuis le milieu des années 1990. 

En janvier 1999, a eu lieu à Aussois, en France, la première conférence internationale sur 

l’ACI (Analyse en Composantes Indépendantes, en anglais ICA pour Independent Component 

Analysis), une méthode d’analyse des données provenant des statistiques, des réseaux de 
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neurones et du traitement du signal. En juin 2000, un deuxième atelier a eu lieu à Helsinki, en 

Finlande, avec plus de 100 chercheurs travaillant sur l’ACI et la SAS. Les différentes 

conférences ont tous joué un rôle dans la conversion de la SAS en un domaine de recherche 

développé. 

Le modèle de réseau neuronal de rétroaction proposé par Herault et Jutten dans [II.1] 

permet de séparer deux signaux provenant de sources indépendantes mélangées. En réalité, il 

est extrêmement complexe de résoudre les problèmes de la SAS car nous ne disposons pas 

d’informations sur les signaux sources. Les deux hypothèses formulées dans l’algorithme 

proposé dans [II.1] sont les suivantes : les signaux sources sont considérés comme 

statistiquement indépendants et la distribution statistique du signal source est connue. Si la 

distribution des signaux source est gaussienne, il est évident qu’il n’existe pas de solution 

universelle au problème de la SAS, car toute distribution est différente. 

La gaussienne avec un mélange linéaire reste gaussienne. Selon le modèle de réseau 

Herault et Jutten [II.2], les signaux source sont des signaux sous-gaussiens, ce qui implique que 

le kurtosis de chaque signal doit être inférieur à zéro (le kurtosis d’un signal gaussien est nul). 

Étant donné que l’algorithme proposé par Herault et Jutten n’a pas résolu les conditions de 

solvabilité du problème de la SAS, Linsker [II.3] a suggéré le critère du maximum 

d’information mutuelle qui est le plus adapté à la création d’un modèle auto-organisateur. 

Dans le paragraphe [II.4], Giannakis et Swami présentent le concept de cumulant d’ordre 

trois qui repose sur une étude approfondie afin de résoudre le problème d’identification de la 

SAS. En 1989, l’analyse spectrale d’ordre supérieur a été la première conférence internationale. 

Dans [II.5], Cardoso et Comon ont exposé lors de cette conférence sur l’ACI. Généralement,  

Ces travaux ont établi un cadre clair pour l’ACI. En cas d’indépendance statistique des 

signaux originaux, il est possible d’obtenir des signaux sources qui sont mutuellement 

indépendants. Depuis lors, la théorie de l’ACI a connu une évolution progressive.  
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Lors de leur article [II.6], Herault et Jutten ont abordé le problème de la SAS dans le 

traitement du signal en proposant un algorithme de réseau de neurones artificiel pour la SAS. 

Cette recherche a ouvert la voie à un nouveau champ de recherche. La méthode d’apprentissage 

qu’ils utilisaient était heuristique (approximative mais rapide) et ne soulignait pas clairement 

l’importance d’utiliser les statistiques d’ordre supérieur des signaux examinés. Depuis ces 

études préliminaires, le problème de la SAS est devenu un enjeu majeur dans le domaine du 

traitement du signal au cours des vingt dernières années. Des études plus poussées ont permis 

d’améliorer à la fois la théorie et son application concrète.  

Dans [II.7], Comon a suggéré une approche populaire de l’ACI qui repose sur une 

information minimale entre les parties. L’approche par entropie maximale a été suggérée par 

Bell et Lejcowski [II.8], qui repose sur le principe Infomax. Les Amari et al. [II.9] ont créé 

l’algorithme Infomax en utilisant le gradient nature et ses liens fondamentaux, avec une 

estimation de vraisemblance maximale [II.10]. Les chercheurs Hyvärinen et Oja ont introduit 

l’algorithme FastICA quelques années plus tard [II.11], [II.12], [II.13], ce qui a permis 

d’appliquer l’ACI aux problèmes à grande échelle en raison de son efficacité computationnelle. 

Les méthodes ACI classiques, telles que l’algorithme rapide FastICA, l’algorithme Infomax et 

l’algorithme d’extension maximisation de l’information [II.14], ont été plus exhaustives jusqu’à 

présent.  

Il est non linéaire [II.18] [II.19]. On peut classer les algorithmes SAS en deux catégories 

: les algorithmes adaptatifs et ceux basés sur des clusters ou des lots. Par ailleurs, en ce qui 

concerne les hypothèses, on peut classer les algorithmes SAS en trois catégories : ceux qui 

reposent sur l’indépendance statistique, ceux qui reposent sur les caractéristiques de parcimonie 

et ceux qui reposent sur les contraintes non négatives du signal source.  

En ce qui concerne la fonction de coût, les algorithmes SAS peuvent être classés en 

méthodes autonomes basées sur des statistiques de deuxième ordre, en méthodes basées sur des 
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statistiques d’ordre supérieur, en méthodes basées sur des réseaux neuronaux et en méthodes 

basées sur des fonctions non linéaires. Les algorithmes SAS actuels sont principalement 

employés pour résoudre des problèmes de mélange instantané linéaire et ont démontré des 

performances satisfaisantes.  

À titre d’exemple, on a utilisé l’algorithme ACI dans le domaine du traitement de signal, 

tels que le traitement des signaux biomédicaux (comme les signaux de 

l’électroencéphalographie (EEG) et les signaux de la magnétoencéphalographie (MEG)) et les 

systèmes de reconnaissance vocale. De plus, au cours des dernières années, on a développé des 

méthodes non linéaires afin de résoudre le problème de la SAS [II.20]. Plusieurs algorithmes 

ont été suggérés par Jutten et Babaie-Zadeh afin de résoudre le problème de la SAS, y compris 

le modèle post-non linéaire (PNL) [II.21]. Dans le domaine du traitement des signaux de réseau 

de capteurs, des communications micro-ondes, des communications par satellite et de 

nombreux systèmes biologiques, ces algorithmes ont acquis une importance fonctionnelle 

[II.22]. 

L’intégration de l’apprentissage de réseau bayésien dans la SAS non linéaire a permis 

d’obtenir des résultats améliorés. Ces dernières années, la méthode bayésienne non linéaire de 

séparation aveugle est devenue un sujet de recherche majeur. La méthode SAS localement 

linéaire et l’algorithme SAS non linéaire dans le domaine nucléaire développés par Taleb,  

Jutten et Olympieff [II.23] ont également suscité une grande attention. 

Toutefois, en raison de la complexité intrinsèque des problèmes non linéaires, il n’existe 

pas d’algorithme bien connu qui puisse être adapté à toutes sortes de problèmes pratiques. Ainsi, 

différents modèles ont été utilisés pour proposer une série de méthodes de la SAS non linéaires 

[II.24], [II.25]. En raison de leur flexibilité non linéaire, la SAS a été très intéressée par les 

réseaux neuronaux tels que les réseaux à fonction radiale de base (RBF), les réseaux de 
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perceptrons multicouches (MLP : Multi Layer Perceptron) [II.26], les réseaux neuronaux 

polynomiaux (PNN) et les algorithmes génétiques (GA) [II.27].  

Ainsi, il est possible d’utiliser les réseaux neuronaux pour résoudre des problèmes non 

linéaires. La méthode de décomposition par réseau RBF présente la vitesse de convergence la 

plus rapide dans des conditions non linéaires, mais elle présente une faible précision lors de la 

récupération du signal. 

II.3 Principe général de la séparation de sources 

La séparation de sources consiste à extraire des signaux individuels à partir de signaux 

mélangés, en supposant généralement que ces sources sont statistiquement indépendantes. 

L’analyse en composantes indépendantes (ICA) est une méthode qui permet de démêler les 

signaux en utilisant leur indépendance statistique plutôt que leur corrélation. Dans la réalité, la 

séparation des sources nécessite fréquemment des mélanges linéaires ou non linéaires, et la clé 

réside dans la capacité à retrouver les signaux originaux des sources malgré le mélange. Les 

techniques de séparation de sources reposent sur des hypothèses comme l’indépendance des 

sources, la parcimonie des signaux ou d’autres critères spécifiques afin de décomposer les 

signaux mélangés en leurs composantes d’origine. 

II.4 Domaine d’application de la séparation de sources 

La recherche sur la séparation des sources est très active en raison de son intérêt théorique 

et de ses multiples applications concrètes. Au quotidien, il existe de nombreuses applications 

de séparation de sources qui correspondent à divers types de signaux.  

On l’utilise dans le domaine médical pour extraire l’Electromyogramme (EMG), 

l’Electroencéphalogramme (EEG) ou l’Electrocardiogramme (ECG) [II.30]. À titre d’exemple, 

il est possible d’extraire de manière non invasive les battements cardiaques du nourrisson à 

partir de signaux ECG enregistrés à l’aide d’électrodes placées sur le ventre de la mère en 

séparant les sources. Actuellement, les recherches visent à obtenir la forme complète de l’ECG 
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du fœtus (le complexe PQRST) plutôt que simplement les pics R comme c’est le cas 

actuellement [II.32] . 

Il existe également des applications en téléphonie mobile [II.34] qui permettent à notre 

interlocuteur de s’exprimer dans un environnement bruyant (musique, voitures qui circulent 

dans la rue, etc.). Parfois, le signal enregistré est grandement "détérioré".  

Il est donc nécessaire de distinguer la source utile (parole) de la source perturbante (bruit 

de fond) afin de pouvoir ensuite réduire ces bruits de fond. 

Le problème de séparation des sources est également présent dans le domaine de la 

sismologie [78], car le signal émis par une vibration ou une explosion est inconnu et observé à 

travers un mélange reflétant différentes sources. La division de Les sources doit offrir aux 

sismologues la possibilité d’obtenir des informations sur la source et de la modéliser en utilisant 

des enregistrements et des informations sur la fonction de transfert du sous-sol. 

La liste des applications n’est pas complète. Il existe de nombreux autres domaines, tels 

que l’astrophysique, pour superviser le trafic aérien [II.33].  

  

Figure II.1 Méthodes avancées de séparation de sources applicable aux mélanges 
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II.5 Problème de la séparation de sources 

La difficulté de la SAS varie en fonction des caractéristiques des sources et, surtout, du 

mélange. Trois critères doivent être pris en compte [II.31] :  

 Rapport entre le nombre d’observations 𝑴 et le nombre de sources 𝑵 : de manière 

intuitive, il est facile de comprendre que le cas surdéterminé (avec plus d’observations 

que de sources (𝑀 ≥ 𝑁) est plus facile à comprendre et donc à résoudre que le cas 

sous-déterminé (𝑀 < 𝑁). Il est impossible de résoudre ce dernier cas sans une 

information préalable importante sur les sources.  

 Nature de mélanges : le mélange le plus facile est le mélange instantané linéaire : à 

chaque instant, les observations sont des combinaisons linéaires des sources 

respectives. Dans les scénarios réalistes, les mélanges sont fréquemment convolutifs 

(non linéaires), c.-à-d., à chaque instant, les observations sont également influencées 

par des sources précédemment présentes.  

 Nature de sources : la majorité des techniques de la SAS sont basées sur l’idée que 

les sources sont mutuellement indépendantes, au moins à l’ordre de deux. Un autre 

aspect de la nature des sources est leur caractère stationnaire. La résolution des sources 

stationnaires est plus facile que celle des sources non stationnaires. 

II.6 Types de mélanges 

II.6.1 Mélanges linéaires 

II.6.1.1 Mélange instantané 

Il s’agit d’un mélange instantané, sans mémoire [12]. La propagation du signal dans un 

canal de fonction de transfert constante 𝑨 sur sa bande passante est définie par ce type de 

mélange, et la fonction de transfert est indéterminée de cette bande. Dans ce cas, le mélange est 

donné par 
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𝑋(𝑡) = 𝑨𝑆(𝑡) + 𝑏(𝑡) = ∑𝑎𝑗  𝑆𝑗(𝑡)

𝑁

𝑗=1

+ 𝑏(𝑡) 
(II.1) 

où 𝑨 est la matrice de mélange, 𝑆𝑗(𝑡) sont les sources inconnus statistiquement 

indépendant et 𝑏 est le bruit aditif. 

 

II.6.1.2 Mélange convolutif 

Lorsque la transmission dans le canal implique des phénomènes de propagation, qui 

peuvent être représentés par des filtres linéaires, les mélanges sont écrits comme suit : 

𝑋(𝑡) = 𝑨(𝑡) ∗ 𝑆(𝑡) = ∑𝑎𝑖𝑗(𝑡) ∗ 𝑠𝑗(𝑡)

𝑁

𝑗=1

,      𝑖 = 1,… ,𝑀      et       𝑗 = 1,… ,𝑁 

II.2 

où 𝑎𝑖𝑗(𝑡) est la réponse impulsionnelle de la jème source et le ième  capteur, et * symbolise le 

produit de convolution. 

II.6.2 Mélanges non linéaires 

Ce genre de mélange est extrêmement répandu, ce qui entraîne une relation de mélange 

de la forme suivante : 

𝑋𝑖(𝑡) = ∑𝑎𝑖𝑗𝑆𝑗(𝑡)

𝑁

𝑗=1

 II .3 

𝑒𝑖(𝑡) = 𝑓𝑖(𝑥(𝑡)) II .3 

où 𝑓𝑖 est la fonction non linéaire inversibles inconnues, 𝑎𝑖𝑗 sont les coefficients réels d’une 

matrice de mélange instantané 𝑨 et 𝑒𝑖(𝑡) est le mélange post non linéaire. 

II.6.2.1 Mélange sous déterminer 

Le nombre de mélanges est inférieur à celui des sources, ce qui signifie qu’il n’y a pas de 

séparation préalable supplémentaire. 
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II.6.2.2 Mélange sur déterminer 

Le nombre de mélanges est supérieur à celui des sources, il est possible de procéder à un 

prétraitement par PCA avant de projeter dans l’espace du signal avant de procéder à la 

séparation. 

II.7 Formulation mathématique du problème 

La recherche des sources estimées est le défi de la séparation des sources [II.36]. 

𝑌(𝑡) = [𝑦1(𝑡), … , 𝑦𝑁(𝑡)]
𝑇 II.4 

où 𝑌(𝑡) est un vecteur colonne de dimension 𝑁 × 1 qui regroupe les signaux sources estimées. 

Dans le cas où nous avons au moins autant de capteurs que de sources (𝑀 ≥ 𝑁) et que 

nous sommes au courant de la structure du mélange, le problème est similaire à l’identification 

de la matrice de séparation 𝑩. Nous ne disposons que de l’indépendance statistique des sources 

𝑆(𝑡) = [𝑠1(𝑡), … , 𝑠𝑁(𝑡)]
𝑇.  

En conséquence, on va estimer la matrice séparante 𝑩 de manière à rendre les 

composantes du vecteur 𝑌(𝑡) indépendantes, comme suit :  

𝑩 = 𝑷𝑫𝑨𝑇 II.5 

où 𝑷 est une matrice de permutation, et 𝑫 est une matrice diagonale inversible. 

 Notre estimation des sources est donnée alors par : 

𝑌 = 𝑩𝑋 II.6 

𝑌 = 𝑃𝐷𝑆|𝑩𝑏 II.7 

avec 𝑩(𝑡) est un bruit additif. 

La structure de la matrice 𝑩 varie en fonction du type de modèle [II.36] : pour un mélange 

linéaire instantané, elle est une matrice avec des coefficients réels, tandis que pour un mélange 

linéaire convolutif, les coefficients sont des filtres. La séparation des mélanges non linéaires se 

fait en deux parties : 
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Une première séparation inverse la non-linéarité, tandis que la seconde séparation se 

ramène au cas linéaire.  

 

Figure II.2 Principe de la séparation de sources 

II.8 Sources 

Une source (ou un signal source) désigne les signaux individuels distincts qui se 

combinent pour former un mélange observé lors de la transmission ou de la mesure 

d’informations. Ces sources conservent leurs caractéristiques intrinsèques, telles que la nature 

du signal, les propriétés temporelles et spectrales, même après leur combinaison. Il existe de 

nombreux types de sources telles que : 

 Sources stationnaires blanches ; 

 Sources stationnaires colorées ; 

 Sources non stationnaires colorées ; 

 Sources indépendantes et identiquement distribuées (IID). 

II.8.1 Sources stationnaires 

 Une source 𝑆(𝑡) est dit stationnaire si ses propriétés statistiques ne changent pas au cours 

du temps. Cela signifie que sa moyenne, sa variance et sa fonction d’autocorrélation restent 

constantes quel que soit le moment temporel auquel on les observe. On peut distinguer deux 

types de sources stationnaires : sources stationnaires blanches et sources stationnaires colorées. 

A 𝑩 𝑆(𝑡) 

𝑏(𝑡) 

𝑋(𝑡) 
𝑌(𝑡) 
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II.8.2 Source non stationnaire 

Si les paramètres statistiques d’un signal 𝑆(𝑡) sont influencés par l’origine de la mesure 

et la durée dans laquelle elle est effectuée (durée limitée ou transitoire), il est considéré comme 

non stationnaire [II.38]. 

II.8.3. Source parcimonieuse 

On qualifie un signal 𝑆(𝑘) 𝑘 =  1, … , 𝑘, de parcimonieux [II.4O], si pour la plupart des 

valeurs de 𝑘, nous avons :  

𝑆(𝑘)  = 0 (nulle). II.7 

Dans la réalité, il n’est pas indispensable d’être aussi restreint : nous considérons comme 

parcimonieux un signal dont la plupart des points ne peuvent pas être distingués du bruit additif 

ou dont l’ampleur est très faible.  

II.8.4 Sources indépendantes et identiquement distribuées 

Dans ce cas, les sources sont des séquences qui sont distribuées de manière identique et 

indépendamment [II.41] : 

𝑝(𝑠𝑗) = ∏𝑝(𝑠𝑗(𝑡))

𝜏−1

𝑡=0

,        ∀ 𝑗 ∈ [1, 𝑛] II.7 

et 

𝑝 (𝑆𝑗(𝑡)) = 𝑝 (𝑆𝑗(𝑡
′)),          ∀(𝑡, 𝑡′) II.8 

 

II.9 Différentes techniques de séparation des sources  

Dans ce paragraphe, on va présenter les différentes méthodes souvent utilisées dans la 

séparation de sources aveugle, à savoir : Joint Approximate Diagonalization of Eigenmatrices 

(JADE), Independent Component Analysis (ICA) et FastICA. Dans ce mémoire, on va utiliser 
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une méthode de séparation de source basée sur la décomposition en valeurs singulières 

(Singular Value Decomposition, SVD). 

II.9.1 Joint Approximate Diagonalization of Eigenmatrices 

L’algorithme JADE est un algorithme d’analyse en composantes indépendantes (ICA) 

créé par Jean-François Cardoso. Il est appelé Joint Approximante Diagonalisation of Eigen 

matrices. On l’emploie pour supprimer de manière aveugle des sources, afin d’obtenir des 

sources indépendantes non gaussiennes à partir de mélanges de signaux avec du bruit gaussien 

[II.42]. JADE détermine la rotation de P w, assurant ainsi l’indépendance de ses vecteurs 

colonnes. 

La séparation des sources est réalisée en utilisant l’algorithme qui consiste à diagonaliser 

conjointement les matrices propres et à effectuer différentes étapes telles que le blanchiment, 

les calculs de cumulant et la décomposition des cumulant [II.43]. 

JADE a été mis en place dans divers langages de programmation tels que Python et R, 

offrant aux utilisateurs des outils permettant de réaliser une séparation aveugle des sources de 

manière efficace. Par exemple, la mise en œuvre Python de JADE, appelée jade, permet de 

séparer de manière aveugle les sources de signaux réels en utilisant Jumpy [II.44]. De la même 

manière, la version R de JADE offre des fonctions comme JADE(X) pour extraire des 

composants d’une matrice de données numériques ou d’une trame de données, avec des options 

pour définir le nombre de composants à extraire et la tolérance de convergence [II.45].  

Globalement, l’algorithme JADE représente un outil de traitement du signal puissant qui 

permet de séparer les signaux mixés en leurs sources distinctes, ce qui en fait une technique 

valorisée dans différents domaines tels que le traitement d’images, le traitement du signal audio, 

etc. 

II.9.2 Analyse en composantes indépendantes 

Définition 1 :  
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La technique mathématique de l’analyse en composantes indépendantes (ICA) permet de 

repérer des signaux dissimulés dans le mélange de signaux observés. Elle est principalement 

employée pour séparer les signaux mélangés dans les applications multi-capteurs/sources 

[II.47]. L’ICA est aussi une méthode très répandue pour distinguer le signal fECG de l’aECG. 

Elle utilise l’indépendance statistique des composantes prédites et cherche à trouver des 

composants indépendants en maximisant cette indépendance. On peut définir l’indépendance  

pour l’ICA de deux façons : en réduisant l’information mutuelle et en maximisant la non-

gaussianité [II.47]. 

Dans l’équation 1, le modèle mathématique de l’ICA est représenté par x, un mélange linéaire 

de deux ou plus signaux de source indépendants, s représentant les composantes indépendantes, 

et A représentant le mélange matrice. 

𝑥 =  𝐴. 𝑠 II.9 

Le but du modèle est de trouver 𝐴 et 𝑠 en utilisant 𝑥. La matrice 𝐴 est calculée comme 

une matrice carrée et les composantes indépendantes peuvent être trouvées en calculant 

l’inverse de cette matrice [II.47]. Lorsque nous multiplions les deux côtés de l’égalité dans 

l’équation. 1 par l’inverse de la matrice de mélange, on obtient l’Eq. 2, où 𝑊, est l’inverse de 

la matrice de mélange. 

𝑠 =  𝑊. 𝑥 II. 9 

 

Définition 2 :  

L’analyse en composantes indépendantes d’un vecteur aléatoire 𝑋 de taille 𝑝 et de la 

matrice de covariance 𝑉𝑥 = 𝐸{𝑋𝑋𝑇  ] finie est un couple de matrices {𝐴,𝐷} tel que : 

 La matrice de variance / covariance se factorise sous la forme  

                                                   𝑉𝑥 = 𝐴. 𝐷2 . 𝐴𝑇                                                          II.10                                        
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Dans ce cas, D est une matrice réelle positive diagonale et A est une matrice de rang n et 

de taille 𝑝*𝑛.   

 Les observations peuvent être exprimées de la manière suivante :  

 

𝑋 = 𝐴. 𝑆 II.11 

 

Ou S est un vecteur aléatoire de taille n dont D2 est la matrice de covariance et dont les 

composantes  (𝑆1 , 𝑆2, ……𝑆𝑛)
𝑇 sont les plus Indépendantes. Une mesure d’indépendance 

apparait immédiate, Nous pouvons en effet remarque qu’un vecteur aléatoire réel 

 𝑆 = (𝑆1 , 𝑆2, ……𝑆𝑛)
𝑇   dont la densité de probabilité es notée  

𝑓𝑠(𝑢) = [𝑓𝑠1(𝑢1), (𝑢2),…… , (𝑢𝑖)]                                                 II.10 

a par définitions composantes indépendantes si et seulement si :  

                                               𝑓𝑠(𝑢) = ∏ = 1𝑓𝑠1(𝑢𝑖)
𝑛
𝑖                                                             II.9 

Cette méthode de blanchiment vise à isoler les éléments en utilisant des statistiques de 

second d’ordre, tandis que l’ICA utilise des statistiques d’ordre supérieur pour séparer les 

signaux (Sources) de manière aveugle, ce qui ne garantit pas l’indépendance totale des signaux, 

mais c’est une étape essentielle pour traiter les données de manière plus approfondie pour 

l’ICA. [II.46] 

II.9.3 Méthode FastICA  

L’algorithme FASTICA est un outil de maximisation extrêmement efficace pour les 

sources non-gaussiennes. [II.49]. Il est base sur le principe de l’algorithme d’apprentissage 

itératif de type point fixe (fixed point algorithme). Nous constatons que la méthode de 

FASTICA est plus rapide par rapport à la méthode de l’ICA. On peut réécrire la version 

simplifiée de l’algorithme pour estimer une composante indépendante de la façon suivante : 
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Alorithme FastICA pour estimer une seule composante indépendante : 

 

La convergence signifie que les valeurs de 𝑊 (anciennes et nouvelles) vont dans la même 

direction. C’est à dire leurs produits est presque égale à 1. 

Algorithme FastICA pour estimer plusieurs composantes indépendantes: 

Afin d’évaluer plusieurs composantes, il est nécessaire d’utiliser l’algorithme mentionné 

précédemment, c’est-à-dire l’algorithme du point fixe pour estimer le vecteur 𝑊𝑝+1 et après 

chaque itération, on soustrait du vecteur 𝑊𝑃+1 les projections (𝑊𝑃+1)
𝑇 𝑊𝐽𝑊𝑗(𝑗 = 1,… , 𝑝), 

 Puis on normalise de nouveau le vecteur  𝑊𝑃+1 : 

 Mettre 𝑊𝑃+1 =  𝑊𝑃+1 − ∑  𝑊𝑃+1  𝑊𝐽𝑊𝐽
𝑝

𝑖=1
 ; 

 Mettre 
𝑊𝑃+1

√(𝑊𝑃+1𝑊𝑃+1)
 ; 

 

L’efficacité de l’algorithme FastICA repose sur la sélection de la fonction 𝑔. Il est 

possible d’extraire individuellement les composantes indépendantes. 

II.9.4 Singular Value Decomposition 

 Dans ce travail, on va appliquer une approche basée sur la décomposition en valeurs 

singulières (Singular Values Decomposition, SVD). En fait, la décomposition en valeurs 

1. Initialiser le vecteur W (valeurs aléatoire) ; 

2. Mettre 𝑾𝑻 = 𝑬 (𝒙. 𝒈(𝒘𝑻 . 𝒙)) − 𝑬 (𝒈’ (𝒘𝑻 . 𝒙))𝒘 ; 

3. Mettre 𝑾= 
𝑾𝑻

 𝑾𝑻 
; 

4. Si la convergence n’est pas encore atteinte, refaire les étapes 2, et 3.  

1. Initialiser le vecteur W (valeurs aléatoire) ; 

2. Mettre 𝑾𝑻 = 𝑬 (𝒙. 𝒈(𝒘𝑻 . 𝒙)) − 𝑬 (𝒈’ (𝒘𝑻 . 𝒙))𝒘 ; 

3. Mettre 𝑾= 
𝑾𝑻

 𝑾𝑻 
; 

4. Puis on normalise de nouveau le vecteur  𝑾𝑷+𝟏  

5. Mettre 𝑾𝑷+𝟏 = 𝑾𝑷+𝟏 − ∑  𝑾𝑷+𝟏  𝑾𝑱𝑾𝑱
𝒑

𝒊=𝟏
 ; 

6. Mettre 
𝑾𝑷+𝟏

√(𝑾𝑷+𝟏𝑾𝑷+𝟏)
 ; 

7. Si la convergence n’est pas encore atteinte, refaire les étapes 2, et 6.  
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singulières (SVD) est une technique d’algèbre linéaire qui factorise une matrice rectangulaire 

𝐴 en trois matrices et peut être représentée comme suit : 

𝐴 = 𝑈Σ𝑉𝑇 

 où  𝑈 est une matrice 𝑚 ×  𝑚 orthogonale dont les colonnes sont les vecteurs singuliers 

gauches de la matrice d’origine, Σ est une matrice 𝑚 ×  𝑛 diagonale dont les éléments 

diagonaux sont les valeurs singulières de la matrice d’origine, classées par ordre décroissant et   

𝑉 est une matrice 𝑛 ×  𝑛 orthogonale dont les colonnes sont les vecteurs singuliers droits de la 

matrice d’origine. 𝑉𝑇 désigne la transposée de 𝑉. 

Il est important d’insister sur le fait que la décomposition en valeurs singulières ne 

suppose rien sur 𝐴; elle est toujours possible. En particulier, elle s’applique à des matrices qui 

ne sont pas forcément carrées. 

 Les valeurs uniques de 𝐴, également connues sous le nom de 𝜎1  ≥  𝜎2  ≥ · · · ≥  𝜎𝑝, 

représentent une décomposition très pratique qui fournit de nombreuses informations sur 𝐴. 

Nommons maintenant les colonnes de 𝑉, Σ et 𝑈comme suit : 

𝑉 = [𝐮1…𝐮𝑚],        𝐮𝑘ϵℛ
𝑚 

Σ = [𝛔1…𝛔𝑛],        𝛔𝑖ϵℛ
𝑚 

𝑉 = [𝐯1…𝐯𝑛],        𝐯𝑗ϵℛ
𝑛 

La matrice Σ représente une application ℛ𝑛 ⟶ ℛ𝑚 dont la simplicité rappelle celle des 

matrices diagonales carrées. On note 𝛔𝑖 les éléments diagonaux de Σ. Il est à noter également 

que, si 𝑚 > 𝑛 (resp. 𝑚 < 𝑛), alors certaines lignes (resp. colonnes) de  Σ sont nulles. 

Comme les valeurs singulières sont rangées dans un ordre d’importance descendante, la 

majorité des informations signalétiques importantes se trouvent dans le premier sommets (dyad) 

𝑢1𝜎1𝑣1
𝑇 lorsque 𝜎1

2 /𝜎2
2 ≫ 1. Les conséquences de cette propriété sont particulièrement 

significatives pour les signaux périodiques. Les signaux périodiques peuvent être utilisés pour 

créer une matrice en définissant les rangées de la matrice à l’instar d’un ECG. Dans le cas d’un 
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signal purement périodique, toutes les valeurs singulières à l’exception de 𝜎1 seront nulles. 

Comme la fréquence du signal diminue, alors l’importance de 𝜎1 et la valeur de 𝜎1
2 /𝜎2

2 

diminuent aussi.  

Les signaux ECG présentent une structure périodique, comme une séquence d’ondes 

PQRST, ce qui fait de la SVD une méthode d’extraction optimale des signaux ECG. Dans notre 

travail, la méthode appliquée utilise la technique SVD pour extraire le fECG, comme illustré 

sur la Figure II.3 et indiqué en détail dans l’algorithme ci-dessous. 

 

Figure II.3 Méthode SVD appliquée pour l’exraction du fECG 

 

 Algorithme d’extraction l’ECG fœtal en utilisant la SVD : 

 

1. Prétraiter le signal abdominal ECG (aECG) pour éliminer les interférences de basse 

fréquence, 

2. Filtrer le signal aECG prétraité et l’organiser dans une matrice A (m x n), 

3. Effectuer la SVD sur la matrice A pour obtenir sa décomposition en valeurs singulières, 

ce qui donne les matrices : U, S et VT, où (A=USVT), 

4. Extraire le composant mECG (ECG maternal) dominant en sélectionnant les premiers k 

vecteurs singuliers de U, où k est déterminé en fonction de la signification des valeurs 

singulières. 

5. Soustraire le composant mECG extrait du signal aECG filtré pour obtenir le signal 

résiduel. 

6. Répéter les étapes 2-5 sur le signal résiduel pour extraire le composant fECG dominant. 

7. Sortir le composant fECG extrait (Sortie : Composant fECG dominant), 

8. Fin de l’Algorithme. 
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II.10 Critères de performances de la séparation de source 

La qualité d’un algorithme d’extraction de fECG est définie par sa capacité à reproduire 

le fECG original ainsi que par le temps nécessaire à l’exécution de l’algorithme (ce dernier 

critère n’est pas pris en considération dans ce mémoire). La qualité de l’extraction et l’efficacité 

des calculs sont toutes deux critères importants.  

Pour évaluer la qualité d’extraction de la SVD et la FastICA, les fECG de sortie et 

d’entrée ont été comparés en termes de précision de détection des crêtes et de morphologie du 

signal. En détails, ces critères de qualité d’extraction sont résumés dans le suivant : 

II.10.1 Précision de la détection des pics R 

La plupart des systèmes de surveillance par fECG s’appuient sur la fréquence cardiaque 

fœtale (fetal heart rate, fHR) pour évaluer la santé du fœtus. Cependant, le fECG contient 

également des informations cliniques importantes dans la morphologie de son signal. La 

précision de la détection des pics R est liée au fHR dans la mesure où les positions des pics R 

déterminent le fHR. Si tous les pics R de l’ECG extrait sont correctement préservés et identifiés, 

le fHR extrait devrait correspondre exactement au fHR original. Les variations du fHR peuvent 

résulter d’une mal extraction (ou une extraction incorrecte) du fECG ou d’une mauvaise 

identification des pics R. Les paramètres utilisés pour évaluer la précision de la détection des 

pics R comprennent l’erreur de la fréquence cardiaque (Heart Rate Error, HRE) en %, la 

sensibilité/précision (Sensitivity/Precision Error, SE), la valeur prédictive positive/rappel 

(positive predictive value/recall, PPV) et le score F1 (F1), qui sont définis comme suit : 

 𝐻𝑅𝐸% = 100 ×
|𝐻𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑒 − 𝐻𝑅𝐸𝑥𝑡𝑟𝑎𝑖𝑡𝑒 |

𝑅 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 

𝑆𝐸% = 100 ×
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑃𝑉%  = 100 ×
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 = 2 ×
𝑇𝑃

2 ×  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 𝑃𝑃𝑉 ×  𝑆𝐸

100 × (𝑃𝑃𝑉 + 𝑆𝐸)
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où 𝐻𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑒 correspond à la fréquence cardiaque originale, 𝐻𝑅𝐸𝑥𝑡𝑟𝑎𝑖𝑡𝑒 est la fréquence 

cardiaque extraite, 𝑇𝑃 correspond à un vrai positif (True Positif), FN à un faux négatif (False 

Negative) et FP à un faux positif (False Positif). Les emplacements des pics R originaux ont été 

fournis lors de la génération du signal synthétique, tandis que les pics R extraits ont été 

identifiés à l’aide de l’algorithme décrit dans la section relative à la mise en œuvre de la SVD. 

Pour identifier les pics R comme 𝑇𝑃, 𝐹𝑃 ou 𝐹𝑁, les emplacements des pics R extraits et 

originaux ont été comparés. Si le pic R extrait se situait dans une durée QRS fœtale normale de 

40 millisecondes, le pic est considéré comme 𝑇𝑃 (See [16]). Dans le cas contraire, 

l’emplacement du pic R est marqué comme étant un 𝐹𝑃. Après l’analyse complète des 

emplacements des pics 𝑅 extraits, les pics 𝑅 originaux non comparés restants ont été marqués 

comme 𝐹𝑁. 𝑆𝐸 décrit le pourcentage de pics corrects parmi tous les pics R originaux, et 𝑃𝑃𝑉 

décrit le pourcentage de pics corrects parmi tous les pics identifiés. Les algorithmes dont la 

précision de détection des pics R est élevée doivent présenter à la fois une 𝑆𝐸 et une 𝑃𝑃𝑉 

élevées. 𝐹1 est une mesure qui permet d’évaluer facilement la 𝑆𝐸 et la 𝑃𝑃𝑉. 𝐹1 est compris 

entre 0 et 1, où 0 représente des scores de 𝑆𝐸 et de 𝑃𝑃𝑉 de 0 % et 1 représente des scores de 

𝑆𝐸 et de 𝑃𝑃𝑉 de 100 %. 

II.10.2 Morphologie du signal 

II.10.2.1 Erreur quadratique moyenne (EQM) 

L’erreur quadratique moyenne (EQM) entre le signal source 𝑆𝑖 et le signal observé 

(estimé) 𝑌𝑖 peut être calculée comme suit : 

𝐸𝑄𝑀𝑖 = 𝐸[(𝑆𝑖 − 𝑌𝑖)
2] ≜

1

𝑁
∑(𝑆𝑖(𝑛) − 𝑌𝑖)

2

𝑁

𝑛=1

 

où 𝐸 est l’espérance mathématique qui fait référence à la moyenne et 𝑁 correspond au nombre 

d’échantillons employés. L’EQM moyenne sur toutes les sorties est de  
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𝐸𝑄𝑀𝑇𝑜𝑡𝑎𝑙 =
1

𝑃
∑𝐸𝑄𝑀𝑖

𝑃

𝑖=1

 =
1

𝑁𝑃
∑∑(𝑆𝑖(𝑛) − 𝑌𝑖)

2

𝑁

𝑛=1

𝑃

𝑖=1

 

La qualité de séparation est évaluée de manière naturelle avec une EQM la plus faible. 

II.10.2.2 Rapport signal sur résidus (SNR) 

La mesure de performance la plus couramment utilisée dans la séparation de sources est 

le rapport signal sur bruit (Signal to Noise Ratio, SNR). Le SNR, donnée en décibel (dB), est 

calculé par le rapport de la puissance de la source et le bruit qu’il accompagne. Dans notre cas, 

il est écrit comme suit : 

𝑆𝑁𝑅𝑖 = 10 log10 (
𝐸̂(𝑆𝑖

2)

𝐸̂(𝐵𝑖
2)
) = 10 log10 (

𝐸̂(𝑆𝑖
2)

𝐸̂(𝑌𝑖
2 − 𝑆𝑖

2)
) ,       𝑖 = 1,… , 𝑃 

Le critère de performance pour les mélanges convolutifs, à savoir l’estimation par 𝑌𝑖, est 

défini de la manière suivante : 

𝑆𝑁𝑅𝑖 = 10 log10 (
𝐸̂(𝑆𝑖

2)

𝐸̂(𝑌𝑖
2|𝑆𝑖 = 0)

) ,       𝑖 = 1, … , 𝑃 

La sortie 𝑌𝑖
2|𝑆𝑖 = 0 est obtenue lorsque la source (𝑆𝑖) est nulle (en supposant qu’il n’y a 

pas de permutation). La qualité de séparation est évaluée en utilisant une valeur du SNR 

maximale. Cela indique que d’autres sources (𝑆𝑗 , 𝑗 = 1,… , 𝑃, et 𝑗 ≠ 𝑖) ne contribuent pas de 

manière significative à cette sortie 𝑌𝑖.  

II.11 Conclusion 

Dans ce chapitre, le principe de la séparation des sources aveugles avec les divers types 

de mélanges a été exposé. Nous avons par la suite présenté les différentes méthodes utilisées 

dans la séparation de sources aveugle. Pour notre application, nous avons choisi la méthode 

SVD, qu’on va comparer avec l’algorithme FastICA lors du chapitre suivant. 
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III.1 Introduction 

Ce dernier chapitre présente les tests effectués et les résultats de simulation obtenus pour 

évaluer les performances de la méthode proposée pour l’extraction d’électrocardiogramme 

fœtal (fECG) à partir d’électrocardiogramme maternel (mECG). La méthode proposée, basée 

sur la décomposition en valeurs singulières (SVD), est comparée à la méthode FastICA, une 

autre technique de séparation de sources aveugles (SSA) largement utilisée dans la littérature. 

Nous commençons par une brève description des données utilisées et des métriques 

employées pour évaluer les performances des méthodes. Ensuite, les résultats obtenus par les 

deux méthodes sont présentés et discutés en détail. Une analyse comparative des performances 

des deux méthodes est également effectuée, en mettant en évidence les avantages et les limites 

de chacune d’entre elles. 

III.2 Base de données utilisée 

La base de données Non-Invasive Fetal ECG Arrhythmia Database (NIFEA DB) est un 

ensemble de données public dédié à l’analyse et à la détection d’arythmies cardiaques fœtales 

à l’aide d’électrocardiogrammes fœtaux non invasifs (NI-fECG). Elle constitue une ressource 

précieuse pour les chercheurs et les développeurs d’algorithmes dans le domaine de la 

cardiologie fœtale. 

III.2.1 Description de la base de données NIFEA DB 

 Nombre d’enregistrements: La base de données contient 26 enregistrements NI-fECG, 

dont 12 cas d’arythmies fœtales et 14 cas de rythme normal. 

 Canaux d’enregistrement: Chaque enregistrement comprend plusieurs canaux 

d’enregistrement: 

 4 à 5 canaux abdominaux capturant les signaux fœtaux ; 

 1 canal thoracique capturant le signal ECG maternel. 
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     Fréquence d’échantillonnage: La fréquence d’échantillonnage est de 500 Hz ou 1khz 

(indiquée dans l’en-tête de chaque fichier), permettant une capture précise des signaux 

ECG. 

     Formats de fichiers: Les enregistrements sont disponibles aux formats “.mat” et 

“.wfdb”. 

Pour des informations détaillées sur le diagnostic ainsi que l’âge gestationnel de chaque fœtus 

dans cette base de données, le lecteur est invité à se référer à l’article original [See original 

publication in PhysioNet website].  

III.2.2 Accès à la base de données NIFEA DB 

La base de données NIFEA DB est accessible gratuitement via le site web de PhysioNet: 

https://physionet.org/content/nifeadb/ 

III.2.3 Applications de la base de données NIFEA DB 

La base de données NIFEA DB est utilisée dans divers domaines de la recherche 

cardiologique fœtale, notamment: 

 Développement d’algorithmes de détection d’arythmies fœtales: Cette base de données 

fournit des données réalistes pour tester et valider de nouvelles méthodes de détection 

d’arythmies. 

 Étude des caractéristiques des arythmies fœtales: Les enregistrements de cette base de 

données permettent d’analyser les différents types d’arythmies et leurs caractéristiques 

électrocardiographiques. 

 Évaluation des performances des méthodes de séparation de sources aveugles (SSA): 

La base de données NIFEA DB peut être utilisée pour comparer et évaluer les 

performances de différentes techniques SSA appliquées à l’extraction du fECG à partir 

du mECG. 

 

https://physionet.org/content/nifeadb/
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III.3 Prétraitement des données brutes 

Les données brutes réelles des signaux ECG abdominaux sont prétraitées par Matlab pour 

éliminer les interférences perturbatrices puissantes et pour corriger le décalage de la ligne de 

base (Baseline wander). Le filtre Notch à réponse impulsionnelle infinie (Infinite Impulse 

Response, IIR Filter) de MATLAB (implémenté sous nom iirnotch) est un filtre numérique 

coupe-bande qui qui atténue une bande étroite de fréquences. Ce filtre est idéal pour éliminer 

les interférences de ligne électrique en raison de sa caractéristique qui ne touche pas les 

composants du signal avec des fréquences en dehors de la bande passante prévue. Un filtre 

Notch avec une bande passante de 5 Hz a été utilisé pour l’aECG afin de supprimer les 

interférences de ligne puissantes de 50 Hz (comme observé dans les signaux réels de l’aECG 

provenant de la base de données non invasive de l’ECG féminin PhysioNet [11]).  

En plus de ça, on a également éliminé le décalage de la ligne de base en utilisant le filtre 

pass-haut bidirectionnel de Butterworth avec un autre filtre coupe-bande de 0.1-10 Hertz. 

L’aspect bidirectionnel du filtre de Butterworth empêche le changement de phase de l’aECG 

[12]. On a ensuite sous-échantillonné le aECG filtré par un facteur de huit afin de réduire le 

nombre d’échantillons contenus entre deux pics R (RR période) et voilà pour gérer facilement 

la taille de la matrice d’entrée SVD.  

III.4 Analyse et discussion de résultats 

Pour évaluer la qualité d’extraction, la technique d’extraction basée sur la SVD et la 

méthode FastICA ont été appliquées sur des signaux ECG abdominal réel (aECG réel). Plus 

précisément, l’aECG réel est le canal 3 des deux enregistrements a24 et a25 de la base de 

données 2013 PhysioNet Computing in Cardiology Noninvasive Fetal ECG Database [11]. Les 

deux enregistrements sont montrés respectivement dans les deux Figures III.1 et III.4. Les deux 

sous-sections suivantes présentent les résultats d’une analyse qualitative et quantitative des 

signaux extraits par les deux méthodes SVD et FastICA.  
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III.4.1 Cas de l’enregistrement a24 

Dans cette sous-section, nous étudions et analysons les résultats d’extraction des deux 

méthodes SVD et FastICA sur le signal ECG abdominal original de l’enregistrement a24 de la 

base de données PhysioNet (voir Figure III.1). Les résultats de séparation (ou d’extraction) sont 

présentés qualitativement sur les Figures III.2 (a), III.2 (b), III.3 (a) et III.3 (b) ; et 

quantitativement sur le Tableau III.1. Ces figures représentent soit les signaux ECG maternels 

ou les signaux ECG de fétus extraient par la méthode SVD ou par la méthode FastICA.  

D’après ces figures, on peut constater que la qualité d’extraction de la méthode SVD est 

supérieure comparé aux résultats de l’approche FastICA. On remarque aussi la bonne 

récupération des composantes mECG et fECG avec une localisation précise des pics. En 

revanche, notre mise en œuvre de la méthode FastICA n’a pas démontré sa capacité à extraire 

le signal fœtal (fECG) lorsqu’elle a été appliquée au signal réel de l’enregistrement a24. Ceci 

est approuvé par les résultats présentés dans le Tableau III.1, où les valeurs du score F1, de la 

VPP et de la SE montrent que la méthode SVD a la capacité d’être systématiquement plus 

performante que la technique FastICA. 

 

Figure III.1 ECG abdominal original de l’enregistrement a24 

Cercle : fQRS localisé, Etoile : mQRS localisé 
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(a) 

 
(b) 

Figure III.2 ECG maternel de l’enregistrement a24 extrait par : (a) Méthode SVD (b) 

Méthode FastICA  

 
(a) 

 
(b) 

Figure III.3 ECG de fétus de l’enregistrement a24 extrait par : (a) Méthode SVD (b) 

Méthode FastICA 
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Tableau III.1 Critères de perfromance pour le cas de l’enrigistrement a24 

Critères SVD  FastICA 

SE 83.73 6.50 

PPV 95.37 16.67 

F1 0.89 0.09 

 

III.4.2 Cas de l’enregistrement a25 

Maintenant, on va analyser les performances des méthodes SVD et FastICA pour 

l’extraction des signaux fœtaux (fECG) à partir d’un ECG abdominal réel provenant de 

l’enregistrement a25 de la base de données PhysioNet (Figure III.4). Les résultats d’extraction 

sont présentés visuellement dans les Figures III.5 (a), III.5 (b), III.6 (a) et III.6 (b) et 

quantitativement dans le Tableau III.2. Ces figures illustrent les signaux ECG maternels et 

fœtaux extraits par les deux méthodes. 

De manière analogue aux résultats obtenus dans la sous-section précédente, l’analyse 

effectuée ici révèle aussi que la méthode SVD surpasse la FastICA en termes de qualité 

d’extraction. Les composantes des signaux mECG et fECG sont récupérées avec précision par 

la technique SVD, y compris la localisation des pics. En revanche, l’approche FastICA n’a pas 

réussi à extraire efficacement le signal fœtal dans le cas de l’enregistrement a25. Ceci est 

confirmé par les valeurs du score F1, de la VPP et de la SE présentés dans le Tableau III.2, qui 

démontrent, encore fois, la supériorité de la méthode SVD. 

 

Figure III.4 ECG abdominal original de l’enregistrement a25 

Cercle : fQRS localisé, Etoile : mQRS localisé 
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(a) 

 
(b) 

Figure III.5 ECG maternel de l’enregistrement a25 extrait par : (a) Méthode SVD (b) 

Méthode FastICA  

 
(a) 

 
(b) 

Figure III.6 ECG de fétus de l’enregistrement a25 extrait par : (a) Méthode SVD (b) 

Méthode FastICA  
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Tableau III.2 Critères de perfromance pour le cas de l’enrigistrement a25 

Critères SVD  FastICA 

SE 83.20 10.57 

PPV 90.43 14.61 

F1 0.86 0.12 

III.5 Conclusion 

Dans ce dernier chapitre, nous avons implémenté et comparé deux méthodes d’extraction 

des signaux fECG et mECG, en utilisant des enregistrements réels, à savoir la méthode SVD et 

la technique FastICA. En analysant tous les résultats de l’application, il est possible de conclure 

que la méthode SVD présente une meilleure qualité de séparation des signaux fECG, et montre 

une grande supériorité devant la technique FasyICA.  

 



 

 

 

 

 

 

 

 

 

 

 

Conclusion générale et perspectives 
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Conclusion générale 

Perspectives  

La poursuite de ces travaux en vue d’améliorer chaque méthode d’extraction et d’inclure un 

plus grand nombre de signaux aECG réels pourrait valider le potentiel de l’extraction de 

fECG à canal unique pour les futurs dispositifs médicaux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


