

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Enhancing the thermoelectric performance of BiGa₂X₄ (X=S, Se) P-type semiconductors by optimizing charge carrier concentration or chemical potentials

Ahmad Telfah ^{a,b,c,*}, T. Ghellab ^{d,e}, Z. Charifi ^{d,e}, H. Baaziz ^{d,e}, A.M. Alsaad ^f, Sahar Abdalla ^{g,h}, Wai-Ning Mei^c, R.F. Sabirianov^c

- ^a Fachhochschule Dortmund University of Applied Sciences and Arts, Sonnenstrasse 96-100, 44139, Dortmund, Germany
- b Department of Physics, Yarmouk University (YU), Irbid, Jordan
- ^c Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- ^d Department of Physics, Faculty of Science, University of M'sila, 28000, M'sila, Algeria
- ^c Laboratory of Physics and Chemistry of Materials, University of M'sila, M'sila, Algeria
- ^f Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan ^g Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, Sudar

ARTICLEINFO

Keywords: $BiGa_2X_4$ (X=S Se) semiconductors Anisotropy Electronic and optical properties Thermoelectric Enhancing ZT

ABSTRACT

We present an extensive analysis of the structural, electronic, optical, elastic, and thermoelectric properties of BiGa₂X₄ compounds, where X represents either sulfur (S) or selenium (Se). Our approach employed the allelectron full potential linearized augmented plane wave (FP-LAPW) technique, offering a comprehensive understanding of these materials' characteristics. The calculated lattice constants (a), the unit cell height (c), and the c/a ratio closely match experimental data, affirming the accuracy of our calculations. A pivotal focus of our study was on the electronic properties, including the indirect bandgaps $(A \to M - \Gamma)$ and $(M \to A)$. We found that $BiGa_2S_4$ exhibited an indirect bandgap (E_g) of 2.504 eV, while $BiGa_2Se_4$ possessed a slightly lower value of 1.878 eV. This variation was primarily attributed to the intricate interactions among bismuth, sulfur, and selenium atoms, particularly involving p-p orbital interactions. Additionally, we explored the optical characteristics of these compounds, determining their maximum absorption wavelengths. $BiGa_2S_4$ exhibited an absorption peak at 4.476 eV, whereas BiGa₂Se₄ displayed a slightly lower maximum absorption at 3.741 eV. Moreover, BiGa₂Se₄ showcases a higher dielectric constant, which augments its potential for optoelectronic applications. A critical aspect of our research is the assessment of the elastic properties, elucidating that both compounds exhibited fragility and anisotropy. We observed that at 300 K, the lattice thermal conductivity (k_L) for $BiGa_2S_4$ and $BiGa_2Se_4$ was measured at 1.57 W/mK and 1.14 W/mK, respectively, indicating low thermal conductivity. At 1000 K, both $BiGa_2S_4$, and $BiGa_2Se_4$ exhibit significant ZT values of 0.8389 and 0.8722, respectively. The ZT values of the p-type semiconductors are notably higher than those of the n-type. At T = 900 K, the optimized ZT values for BiGa₂S₄, and BiGa₂Se₄ are found to be 0.82909 and 0.90548, respectively. Achieving these values requires either increasing the concentration of charge carriers to $n = 0.11715 \text{ x } 10^{22} \text{ cm}^{-3}$ for $BiGa_2S_4$ and $n = 0.11715 \text{ x } 10^{22} \text{ cm}^{-3}$ $0.0812 \times 10^{22} \text{ cm}^{-3}$ for $BiGa_2Se_4$, or reducing the chemical potentials by 0.40151 Ryd and 0.38001 Ryd, respectively.

1. Introduction

Perovskites and inorganic quantum dot solar cells are currently among the most popular and efficient photovoltaic (PV) technologies

[1]. These technologies have garnered significant attention due to their potential for cost-effectiveness, compact size, and higher efficiency across a wider spectrum of light intensities compared to existing or emerging technologies. As a result, they are considered as promising

https://doi.org/10.1016/j.jpcs.2024.112248

Received 4 June 2024; Received in revised form 21 July 2024; Accepted 2 August 2024

Available online 3 August 2024

0022-3697/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author. Fachhochschule Dortmund University of Applied Sciences and Arts, Sonnenstrasse 96-100, 44139, Dortmund, Germany. E-mail address: ahmad.telfah@fh-dortmund.de (A. Telfah).