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Introduction Générale 

       Les systèmes dynamiques linéaires jouent un rôle fondamental dans de nombreux domaines 

d'ingénierie et de sciences appliquées. Traditionnellement, la modélisation et le contrôle de ces 

systèmes reposent sur des techniques basées sur des équations différentielles ordinaires d'ordre 

entier. Cependant, il existe des situations où ces approches traditionnelles montrent leurs limites, 

notamment lorsque les systèmes présentent des phénomènes de retard, de diffusion ou de mémoire 

à long terme. C'est là qu'interviennent les systèmes d'ordre fractionnaire. 

      Les systèmes d'ordre fractionnaire, caractérisés par des opérateurs différentiels ou intégraux 

d'ordre non entier, offrent une représentation plus précise de nombreux phénomènes physiques et 

dynamiques [1-5]. Leur utilisation s'est répandue dans divers domaines, tels que la physique, la 

biologie, l'économie et l'ingénierie. Cependant, le contrôle de ces systèmes présente des défis 

uniques en raison de leur complexité et de leurs propriétés dynamiques particulières. 

       La commande robuste émerge comme une approche prometteuse pour traiter ces défis. 

Contrairement aux méthodes de contrôle classiques, la commande robuste vise à concevoir des 

systèmes de contrôle capables de maintenir des performances acceptables malgré les incertitudes 

et les perturbations [6-8. Dans le contexte des systèmes d'ordre fractionnaire, la commande robuste 

revêt une importance particulière en raison de la sensibilité accrue de ces systèmes aux variations 

paramétriques et aux non-linéarités [8-10]. 

        Ce mémoire se concentre sur l'étude de la commande robuste des systèmes linéaires d'ordre 

fractionnaire. Notre objectif est de développer des méthodes et des outils permettant de concevoir 

des régulateurs robustes capables de garantir la stabilité et les performances des systèmes 

fractionnaires face à diverses sources d'incertitudes. Pour ce faire, nous commencerons par une 

revue approfondie des fondements théoriques des systèmes d'ordre fractionnaire, ainsi que des 

techniques de modélisation et d'analyse associées. Nous explorerons ensuite l'état de l'art en matière 

de commande robuste et présenterons des approches modernes adaptées aux systèmes 

fractionnaires. 

         Enfin, nous illustrerons l'efficacité de nos méthodes à travers des études de cas et des 

simulations numériques. Ce travail contribuera à améliorer notre compréhension de la commande 

des systèmes d'ordre fractionnaire et ouvrira la voie à de nouvelles applications dans divers 

domaines technologiques et scientifiques. 
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CHAPITRE I    

Systèmes d’ordre Fractionnaire 

I.1 Introduction  

             L'intérêt pour les systèmes d'ordre fractionnaire s'est manifesté dans de nombreux 

domaines des sciences appliquées et de l'aménagement. En général, on décrit ces systèmes à l'aide 

d'équations différentielles d'ordre fractionnaire. Les fonctions de transfert irrationnelles sont 

représentées dans le domaine fréquentiel. En raison de leur caractère irrationnel, les systèmes 

d'ordre fractionnaire ont été étudiés de manière marginale. Puisque les solutions analytiques 

précises ne sont pas disponibles, les méthodes numériques et d'approximation sont couramment 

employées pour leur résolution, leur analyse et leur mise en œuvre. 

               Le calcul fractionnaire a un domaine d’applications très vaste [1], par exemples :  

mécanique, automatique, théorie du contrôle, électricité, viscoélasticité, biologie, équation de 

diffusion, électromagnétique, etc. [2]. 

                Récemment, un intérêt considérable pour l’utilisation du calcul fractionnaire dans les 

différents domaines des systèmes et de la commande a été porté [3]. Dans le domaine de 

commande, des équations différentielles fractionnaire sont régies soit le système à commander soit 

la loi de commande utilisée. La première idée qui basée sur l’utilisation de la régulateur d’ordre 

fractionnaire revient à Oustaloup, qui a proposé le commande Robuste d’Ordre Non Entier 

(CRONE). Notons qu’Oustaloup avait notamment démontré, dans ces travaux, l’avantage du 

régulateur CRONE par rapport au régulateur PID classique. Un régulateur d’ordre fractionnaire 

PIγDμ utilisant des actions dérivées et intégrales d’ordre non entier a été proposé plus tard. Et par 

la suite, beaucoup de régulateur basée sur le calcul fractionnaire ont été développée (pour plus de 

détails voir [4]). 

        Dans ce chapitre, nous allons présenter les concepts fondamentaux des opérateurs et des 

systèmes d'ordre fractionnaire, en expliquant leurs propriétés et les méthodes d'approximation 

utilisées pour leur analyse et leur implémentation. Tout d'abord, nous définirons le calcul 

fractionnaire et les opérateurs d'ordre fractionnaire, en détaillant leurs principales propriétés ainsi 

que la transformée de Laplace des dérivées et intégrales d'ordre fractionnaire. Ensuite, nous 

introduirons les fonctions les plus couramment utilisées dans le calcul fractionnaire et les 

opérateurs non entiers, fournissant des solutions aux problèmes liés à ces opérateurs, et nous 

donnerons les transformées de Laplace correspondantes.  
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I.2 Calcul fractionnaire 

          Le calcul fractionnaire est le champ de l’analyse mathématique et d’application des 

intégrales et des dérivées d’ordre arbitraire. Le calcul fractionnaire peut être considéré comme un 

sujet ancien et encore nouveau. Ces dernières années l’intérêt considérable pour le calcul 

fractionnaire a été stimulé par son application dans les différents domaines de la physique et de 

l’ingénierie. La représentation mathématique des systèmes fractionnaires dans le domaine temporel 

et fréquentiel correspond à des équations différentielles à exploiter. Vu l’absence des méthodes 

mathématiques, les systèmes dynamiques d’ordre fractionnaire étaient jusque-là étudiés de façon 

marginale seulement, que ce soit en théorie ou en application [5], [6]. Pour des raisons d’analyse, 

de synthèse, et de simulation de tels systèmes, l’utilisation des fonctions rationnelles pour 

l’approximation s’avère d’une grande importance. Alors pour analyser et concevoir les systèmes 

de commande d’ordre fractionnaire il faut les approximer par des fonctions rationnelles [7]. 

L'opérateur intégro-différentiel 𝑐𝐷𝑡
𝑚 ou et t sont les limites de l'opération est défini ainsi: 

𝑐𝐷𝑡
𝑚 {

𝑑𝑚

𝑑𝑡𝑚
……………ℜ(𝛼) > 0,

1………………ℜ(𝛼) = 0,

∫ (𝑑𝜏)−𝑚
𝑡

𝑐
……ℜ(𝛼) > 0,

                                                          (I.1) 

où ݉  ݉ est l'ordre de l'opération, généralement 𝛼 ∈ ℜ 

         Les définitions de l'opérateur fractionnaire les plus courantes et les plus utilisées sont celles 

de Riemann-Liouville et de Grünwald-Letnikov.  

         Avant de les présenter, nous commencerons par introduire quelques fonctions fondamentales 

du calcul fractionnaire, qui faciliteront la compréhension de ces définitions. 

I.2.1 Fonctions utilisées dans le calcul fractionnaire 

      Dans cette section, nous présenterons deux fonctions largement utilisées qui fournissent 

généralement des solutions aux problèmes du calcul fractionnaire : la fonction Gamma d'Euler et 

la fonction de Mittag-Leffler. 

a) La function Gamma 

             La fonction Gamma d’Euler est l’une des fonctions de base utilisées dans le calcul 

fractionnaire. La définition intégrale de cette fonction est donnée par [8] : 

Γ (z) = ∫ (𝑒−𝑡𝑡𝑧−1)𝑑𝑡,           𝑧 > 0
+∞

0
                                                      (I.2) 
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L’intégration par partie de l’équation (I.2) permet de donner la relation de récurrence suivante 

Γ (z + 1) = z ∗ Γ (z)                                                                  (I.3) 

Puisque Γ (1) = 1, en utilisant la relation (I.3), nous obtenons pour  (z=1,2,3,...). 

Γ (n + 1) = n ∗ Γ (n) = n ∗ (n − 1) = n!                                          (I.4) 

Notons que l’autre propriété importante de la fonction Gamma est qu’elle possède des 

pôles simples pour (z = 0, -1, -2, . . .). Son expression est : 

Γ (z + 1) = φ(z) +
(−1)0

0!

1

0+𝑧
+

(−1)1

1!

1

1+𝑧
+⋯                                      (I.5) 

Avec : 

Γ (z) = ∫ (𝑒−𝑡𝑡𝑧−1)𝑑𝑡,           𝑧 > 0
+∞

1

 

           À partir de cette dernière équation il est clair que pour des valeurs entières négatives, la 

fonction Gamma tend vers l’infini. 

b) Fonction de Mittag-Leffler 

            L’autre fonction qui est aussi très important dans le calcul fractionnaire est la fonction de 

Mittag-Leffler. La forme standard de cette fonction à un paramètre est donnée comme suit [9] : 

𝐸∝ = ∑ = 1
𝑍𝑘

Γ (αk+1)
,                   (𝛼 > 0)∞

𝐾                                        (I.6) 

Pour 𝛼 = 1 , on trouve la fonction exponentielle usuelle suivante : 

𝐸1 = ∑ = 1
𝑍𝑘

Γ (αk+1)
= ∑ =

𝑍𝑘

n!
                 +∞

𝐾=0
∞
𝐾                                    (I.7) 

I.2.2 Définitions fondamentales 

          Il existe plusieurs définitions mathématiques pour l'intégration et la dérivation d'ordre 

fractionnaire. Parmi les plus notables, on peut mentionner les trois suivantes : 

a) Définition de Grunwald-Letnikov (G-L) 

Cette définition est peut considère comme une généralisation de la dérivée classique d’une 

fonction f(t) d’ordre 𝑛 ∈ ℛ qui prend la forme suivante : 

𝐷𝑛(𝑡) = lim
𝑛→0

ℎ−𝑛 ∑ (−1)𝑘 (𝑛
𝑗
)𝑓(𝑡 − 𝑗ℎ)∞

𝑗=1                                           (I.8) 
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Avec : 

                                 (𝑛
𝑗
) =

𝑛!

𝑗!(𝑛−𝑗)!
                                                                      (I.9)                                                                   

Remplaçant le nombre entier n par 𝛼 ∈ ℛ , on peut réécrire (I.9) comme suit 

                                       (𝛼
𝑗
) =

𝛼!

𝑗!(𝛼−𝑗)!
                                                                    (I.10) 

Maintenant on définit la dérivée d’ordre fractionnaire d’ordre 𝛼 de G-L comme suit [10] : 

𝐷𝑡
𝛼𝑓𝛼

𝐺𝐿 (𝑡) = lim
𝑛→0

ℎ−𝛼 ∑ (−1)𝑗 (𝛼
𝑗
) 𝑓(𝑡 − 𝑗ℎ)

[
𝑡−𝛼

ℎ
]

𝑗=0
                                         (I.11) 

              Où ℎ est le pas d’échantillonnage,[𝑥] représente la partie entière de 𝑥 et (𝛼
𝑗
) appelés 

coefficient binominaux. 

b) Définition de Riemann-Liouville (R-L) 

Définition 1 Soient C et ℛ  les anneaux des nombres complexes et réels respectivement, ℛ (.) 

Symbolise la partie réelle d'un nombre complexe. 

      Soient 𝛼 ∈ 𝐶 avec ℛ (𝛼) > 0, 𝑡0 > 𝑅 et 𝑓une fonction localement intégrable définie sur 

[𝑡0, +∞[. 

                𝐼𝛼𝑓(𝜏) =
1

Γ(α)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

𝑡0
∫𝑓(𝜏)𝑑(𝜏)                                               (I.12)  

 Définition 2 Soient 𝛼 ∈ 𝐶avec ℛ(𝛼) > 0, n un entier positif,𝑡0 ∈ ℛ et 𝑓 une fonction 

localement                intégrable définie sur [𝑡0, + ∞ [. La dérivée d'ordre fractionnaire α de la 

fonction de  𝑓 borne inférieure 𝑡0 est définie par: 

                𝛼𝑅𝐿𝐷𝑡0
𝛼 𝑓(𝑡) =

1

Γ(n−α)

𝑑𝑛

d𝑡𝑛
∫ (𝑡 − 𝜏)𝑛−𝛼−1
𝑡

𝑡0
∫𝑓(𝜏)𝑑(𝜏)                            (I.13)  

Où le nombre entier n est tel que (n −1) < α <n. 

Remarque: pour simplifier l'écriture, on notera dans la suit  𝐼𝛼 pour 𝐼0
𝛼et 𝐷𝛼 pour 𝐷0

𝛼  

c) Définition de Caputo  

      Une autre définition de la dérivée d’ordre fractionnaire est proposée par Caputo comme 

la forme suivante [11] : 

𝐷0
𝑅𝐿

𝑡
𝛼𝑓(𝑡) ≜ 𝐼𝑛−𝛼𝐷𝑛 𝑓(𝑡) =

1

Γ(n−α)
∫

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝑛−𝛼+1
𝑑𝑡

𝑡

𝑡0
                              (I.14) 
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Où 

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁.   

    Pour 𝑡0 , à partir des deux des équations (I.13) et (I.14), on peut trouver les deux relations 

suivantes :   

𝐷𝛼𝑅𝐿 𝑓(𝑡) =𝑐 𝐷𝑛 𝑓(𝑡) + ∑
𝑡(𝑘−𝛼)

Γ(k−α+1)
𝑓(𝑘)(0+)𝑛−1

𝑘=0                               (I.15) 

 

𝐷𝛼𝑅𝐿 (𝑓(𝑡)∑ 𝑓(𝑘)(0+)𝑛−1
𝑘=0

𝑡𝑘

𝑘!
) =𝑐 𝐷𝑛𝑓(𝑡)                                         (I.16) 

I.2.3 Propriétés des opérateurs d'ordre fractionnaire  

       Les principales propriétés des dérivées et intégrales d'ordre fractionnaire sont les suivantes 

[12] : 

 Si 𝑓(𝑧) est une fonction analytique de 𝑧 , alors sa dérivée d'ordre fractionnaire 𝐷𝛼𝑓(𝑧) est 

une  

fonction analytique de 𝑧  et  𝛼 

 Pour 𝛼 = 𝑛, ou nest un entier , l’opération 𝐷𝛼𝑓(𝑧) donne le même résultat que la 

différentiation classique d’ordre entier n. 

 Pour 𝛼 = 0, l’opération 𝐷𝛼𝑓(𝑧) est l’opérateur identité : 𝐷0𝑓(𝑧) = 𝑓(𝑧) 

 La différentiation et l'intégration d'ordre fractionnaire sont des opérations linéaires: 

𝐷𝛼𝑓(𝑎𝑓(𝑧) + 𝑏𝑔(𝑧)) = 𝑎𝐷𝛼𝑓(𝑧) + 𝑏𝐷𝛼𝑔(𝑧) 

 La loi additive (propriété du semi groupe) : 𝐷𝛼𝐷𝛽𝑓(𝑧) = 𝐷𝛽𝐷𝛼𝑓(𝑧) = 𝐷𝛼+𝛽𝑓(𝑧) est 

valable  

sous certaines contraintes sur la fonction 𝑓(𝑧). 

I.2.4 Transformation Laplace des opérateurs d’ordre fractionnaire 

a) Intégration fractionnaire 

            La transformée de Laplace de l’opérateur d’intégration non entier défini par (I.6) 

est donné par : 

𝐿{𝐼𝑡
𝛼𝑓(𝑡)} = 𝑠−𝜆𝐹(𝑠), 𝛼 > 0                                          (I.17) 

Où : (𝑛 − 1) < 𝛼 < 𝑛.  

b) Dérivation fractionnaire   

 Au sens de Riemann-Liouville(R-L) 

𝐿{𝐷𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝑘{ 𝐷𝑡

(𝛼−𝑘−1)
𝑓(𝑡)0

𝑅𝐿 }
𝑡0
                𝑛−1

𝑘=0                  (I.18) 
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    Les conditions initiales apparaissant dans (I.18) sont données en fonction d‟une dérivée 

entière évaluée à l’origine. 

 Au sens de Caputo 

𝐿{𝐿{ 𝐷𝑡
𝛼𝑓(𝑡)𝑡

𝑐 }} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠(𝛼−𝑘−1)𝑓𝑘(0),                 𝛼 > 0𝑛−1
𝑘=0                       (I.19) 

    Les conditions initiales apparaissant dans (I.19) sont données en fonction d‟une dérivée 

entière évaluée à l’origine. 

 Définition Grunwald-Letnikov(G-L) 

𝐿{𝐿{ 𝐷𝑡
𝛼𝑓(𝑡)0

𝐺𝐿 }} = 𝑠𝛼𝐹(𝑠)                                                   (I.20) 

 Remarque 1 : Les transformées de Laplace des dérivées d’ordre non entier de Riemann Liouville 

et de Caputo sont équivalentes si et seulement si le système est au repos pour < 0 .Elles se réduisent 

à 

𝐿{𝐿{ 𝐷𝑡
𝛼𝑓(𝑡)0

𝐺𝐿 }} = 𝐿{𝐿{ 𝐷𝑡
𝛼𝑓(𝑡)𝑡

𝑐 }} = 𝑠𝛼𝐹(𝑠)                                      (I.21) 

Remarque 2 : La transformée de Laplace de la dérivée de Riemann-Liouville est bien connue. 

Mais son applicabilité en pratique est limitée à cause de l‟absence d‟interprétation physique des 

conditions initiales. 

I.3 Modélisation des systèmes d’ordre fractionnaire 

       Comme pour les systèmes d'ordre entier, il existe différents modèles pour représenter les 

systèmes d'ordre fractionnaire. On peut principalement citer : 

I.3.1 Équation différentielle d’ordre fractionnaire 

         Un système linéaire mono-variable d'ordre non entier, invariant dans le temps, ayant pour 

entrer u(t) et pour sortie y(t), est décrit par l'équation suivante : 

𝑎𝑛𝐷
𝑎𝑛𝑦(𝑡) + ⋯+ 𝑎0𝐷

𝑎0𝑦(𝑡) = 𝑏𝑚𝐷
𝑏𝑚𝑢(𝑡) +⋯+ 𝑏0𝐷

𝑏0𝑢(𝑡)                                                  

(I.21) 

             Si tous les ordres de dérivation sont des multiples entiers de l’ordre de base 𝛼, c’est-à dire, 

(𝑎𝑘, 𝑏𝑘) ∈  ℛ
+,le système est dit commensurable et l’équation (I.21) devient :   

∑ 𝑎𝑘𝐷
𝑘𝛼𝑦(𝑡)𝑛

𝑘=0 = ∑ 𝑏𝑘𝐷
𝑘𝛼𝑢(𝑡)𝑚

𝑘=0                                                                                              

(I.22) 

Si dans (I.22) 𝛼 =
1

𝑞
, 𝑞 ∈ 𝑍+ le système sera d’ordre rationnel. 
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             En appliquant la transformée de Laplace à de telles équations, et en supposant des 

conditions initiales nulles, nous obtenons des fonctions de transfert avec des puissances d'ordre non 

entier de la variable complexe de Laplace. 

               Dans le cas continu, la fonction de transfert d'un système d'ordre commensurable est 

donnée par l'équation (I.23) : 

𝐺(𝑠) =
∑ 𝑏𝑘(𝑠

𝛼)𝑘𝑚
𝑘=0

∑ 𝑎𝑘(𝑠
𝛼)𝑘𝑛

𝑘=0

                                                   (I.23) 

I.3.2 Représentation d’état d’ordre fractionnaire 

          La représentation d’état d’ordre fractionnaire est similaire à celle du cas entier, à la différence 

que la dérivée d’ordre 1 est remplacée par la dérivée fractionnaire d’ordre α.  

 Systèmes continus 

Dans le cas linéaire, la représentation d’état est donnée par : 

{
𝐷𝛼(𝑡) = 𝐴𝑥 (𝑡) + 𝐵 𝑢(𝑡)

𝑦(𝑡) = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡)
                                             (I.24) 

𝐷𝛼𝑥(𝑡) = [𝐷𝛼  𝑥1(𝑡) 𝐷
𝛼 𝑥2(𝑡)… 𝐷

𝛼  𝑥𝑛(𝑡)]
𝑇 

Tel que : 

𝑥(𝑡) : vecteur d’état de dimension n 

𝐷𝛼𝑥(𝑡) : vecteur de la dérivée d’ordre 𝛼 (avec 𝛼 ∈  𝑅+). 

Où : 

0 < 𝛼 < 1, 𝑢(𝑡) ∈  𝑅𝑚est le vecteur colonne d’entrée, 𝑥(𝑡) ∈  𝑅𝑛  est le vecteur colonne 

d’état, 𝑦(𝑡) ∈  𝑅𝑝 est le vecteur colonne de sortie,𝐴 ∈  𝑅𝑛×𝑛est la matrice d’état, 𝐵 ∈  𝑅𝑛×𝑚  est la 

matrice d’entrée, 𝐶 ∈  𝑅𝑝×𝑛  est la matrice de sortie, 𝐷 ∈  𝑅𝑝×𝑚 est la matrice de transmission 

directe. 

En appliquant la transformée de Laplace et la définition de la dérivée d’ordre fractionnaire au 

sens de Caputo, l’équation (I.24) devient: 

{
𝑋(𝑠) = (𝑠𝛼𝐼𝑛 − 𝐴)

−1𝐵𝑈(𝑠) + (𝑠𝛼𝐼𝑛 − 𝐴)
−1𝑠𝛼−1𝑥(0)

𝑌(𝑠) = 𝐶𝑋(𝑆) + 𝐷𝑈(𝑠)
                          (I.25) 
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Notons que la définition de Caputo est nécessaire si nous voulons que les conditions initiales soient 

exprimées comme les valeurs des états à l’instant = 0. Dans le cas où les conditions initiales sont 

nulles, l’équation (I.25) devient: 

{
𝑋(𝑠) = (𝑠𝛼𝐼𝑛 − 𝐴)

−1𝐵𝑈(𝑠)

𝑌(𝑠) = 𝐶𝑋(𝑆) + 𝐷𝑈(𝑠)
                                                              (I.26) 

Et la fonction de transfert correspondante à l’équation (I.26) s’écrit : 

𝑋(𝑠) = 𝐺(𝑠)𝑈(𝑠),                    𝐺(𝑠) = 𝐶(𝑠𝛼𝐼𝑛 − 𝐴)
−1𝐵 + 𝐷                     (I.27) 

Où 𝐼𝑛 est la matrice identité de dimension (𝑛 × 𝑛) et 𝐺(𝑠) représente la matrice de transfert de 

dimension 𝑝 linges et 𝑚 colonnes. Son numérateur et son dénominateur sont des polynômes 

exprimés en termes de puissance entières de 𝑠𝛼. 

Dans le cas non linéaire, la représentation d’état est donnée par 

{
𝐷𝛼𝑥(𝑡) =  𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = 𝜓(𝑥(𝑡))
                                                 (I.28) 

𝑓(. ) 𝑒𝑡 𝜓(. ) : étant les fonctions non linéaires. 

𝐷𝛼 : étant l’opérateur de la dérivée d’ordre  𝛼 . 

 Systèmes discrets 

         De même que pour le cas continu, les systèmes discrets sont représentés dans le cas 

linéaire ou non linéaire. 

Le système linéaire d’ordre fractionnaire est représenté par le modèle d’état linéaire 

d’ordre  

Fractionnaire à temps discret comme suit [13] : 

{
∆𝛼𝑥(𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
                                   (I.29) 

∆𝛼𝑥(𝑘 + 1) = [∆𝛼𝑥1(𝑘 + 1)   ∆
𝛼𝑥2(𝑘 + 1)      …      ∆

𝛼𝑥𝑛(𝑘 + 1)]
𝑇     

       ∆𝛼 : étant l’opérateur de la différence d’ordre 𝛼, 𝑥(𝑘) ∈ ℝ𝑛 , 𝑢(𝑘)  ∈ ℝ𝑛 , 𝑦(𝑘) ∈

ℝ𝑛sont respectivement les vecteurs d’état, d’entrée et de sortie et 𝐴,∈ ℝ𝑛×𝑁 , 𝐵 ∈

ℝ𝑛×𝑀 , 𝐷 ∈ ℝ𝑝×𝑚. 

Le système non linéaire d’ordre fractionnaire est représenté par le modèle d’état non 

linéaire d’ordre fractionnaire à temps discret comme suit : 

{
𝐷𝛼𝑥(𝑡) =  𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = 𝜓(𝑥(𝑡))
                                       (I.30) 
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              𝑓(. ) 𝑒𝑡 𝜓(. ) : étant les fonctions non linéaires. 

              𝐷𝛼 : étant l’opérateur de la dérivée d’ordre  𝛼 . 

I.3.3 Stabilité des systèmes fractionnaires 

          Les conditions de stabilité des systèmes fractionnaires linéaires à temps invariant diffèrent 

de celles des systèmes linéaires d'ordre entier. En effet, les systèmes fractionnaires peuvent avoir 

des racines dans le demi-plan droit du plan complexe, alors que les systèmes linéaires d'ordre entier 

sont stables uniquement si toutes leurs racines ont une partie réelle strictement négative. 

           Désignons par 𝜆𝑖 les valeurs propres de la matrice A . Le système (I.24) est dit stable si la 

condition : 

|𝑎𝑟𝑔 − 𝜆𝑖| > 𝛼
𝜋

2
, 1 ≤ 𝑖 ≤ 𝑛                                           (I.31) 

Est satisfaite pour toutes les valeurs propres de [10]. 

Remarque 

 Pour 𝛼 = 1 , on trouve la condition de stabilité des systèmes d’ordre entier. 

 Pour la représentation fonction de transfert (I.25), désignons par 𝑝𝑖 définis comme étant 

solutions de l’équation (𝑠𝛼−1 − 𝐴) = 0 . Ils sont donnés par l’expression (I.30) : 

𝑝𝑖 = 𝜆𝑖

1

𝛼, 1 ≤ 𝑖 ≤ 𝑛                                                 (I.32) 

   Alors, la condition de stabilité dans la sen entrée bornée, sortie bornée est réalisée si la 

condition : 

|arg (𝑝𝑖)| >
𝜋

2
                                                   (I.33) 

 

I.3.4 Domaines d’application 

                L’application de méthodes basées sur les systèmes différentiels fractionnaires et de plus 

en plus fréquents dans les différents domaines scientifiques elles sont utilisées essentiellement 
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comme outils de modélisation en mécanique, automatique, rhéologique. Attitre d’exemple ces 

méthodes sont actuellement utilisées pour modéliser le comportement des matériaux, réaliser des 

composants électriques par des correcteurs fractionnaires et dans le traitement d’image [2],[15]. 

I.3.5 Méthodes d’approximation des opérateurs d’ordre fractionnaire 

Les méthodes d’approximation de l’opérateur d’ordre fractionnaire peuvent être divisées en deux 

catégories (fréquentielles et numériques) [16]: 

I.3.5.1 Méthodes Fréquentielles 

I.3.5.1.1 Approximations utilisant l'expansion des fractions continues et les techniques 

d'interpolation 

L'expansion des fractions continues [7], [17] est une méthode d'évaluation des fonctions qui 

converge souvent beaucoup plus rapidement que le développement en série de puissances, et 

converge dans un domaine plus large du plan complexe. Le résultat de cette approximation pour 

une fonction irrationnelle𝐺(𝑠) peut être exprimé sous la forme :   

𝐺(𝑠) ≅ 𝑎0(𝑆) +
𝑏1(𝑠)

𝑎1(𝑠)+
𝑏2(𝑠)

𝑎2(𝑠)+
𝑏3(𝑠)
𝑎3+⋯

                                              (I.34) 

 

𝐺(𝑠) = 𝑎0(𝑆) +
𝑏1(𝑠) 

𝑎1(𝑠)+

𝑏2(𝑠) 

𝑎2(𝑠)+

𝑏3(𝑠) 

𝑎3(𝑠)+
…                                       (I.34) 

Où 𝑎𝑖(𝑆) et 𝑏𝑖(𝑆) sont des fonctions rationnelles de la variable 𝑆 ou des constantes.                           

L'application de cette méthode résulte en une fonction rationnelle 𝐺 ̂(𝑠), qui est une approximation 

de la fonction irrationnelle 𝐺(𝑆). 

            D'autre part, pour l'interpolation, les fonctions rationnelles sont parfois supérieures aux 

polynômes, car elles permettent de modéliser les fonctions par des pôles. Ces techniques sont 

basées sur l'approximation d'une fonction irrationnelle 𝐺(𝑆)par une fonction rationnelle définie par 

le quotient de deux polynômes de la variable 𝑆 : 

𝐺(𝑠) ≅ 𝑅𝑖(𝑖+1)…(𝑖+𝑚) =
𝑃𝜇(𝑠) 

𝑄𝑣(𝑠)
=

𝑝0+ 𝑝1𝑠+⋯ 𝑃𝜇𝑠
𝜇 

𝑞0+𝑞1𝑠+⋯𝑞𝑣(𝑠)
                                   (I.35) 

qui passe par les points (𝑠𝑖 , 𝐺(𝑠𝑖));… (𝑠𝑖+𝑚 , 𝐺(𝑠𝑖+𝑚)). 

Dans la suite nous présenterons quelques-unes des méthodes les plus connues de ce type. 
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a)  Méthode Générale d'approximation des opérateurs intégro-différentiels d'ordre 

fractionnaire : 

En général, une approximation rationnelle de la fonction 𝐺(𝑠) = 𝑠𝜇  tell que 0< 𝜇 < 1 

(Intégration d'ordre fractionnaire dans le domaine de Laplace) peut être obtenue en utilisant 

l'expansion des fractions continues des fonctions [18]: 

𝐺ℎ =
1

(1+
1

𝑆
)𝜇

                                                  (I.36) 

𝐺ℎ = (1 +
1

𝑆
)𝜇                                              (I.37)  

         Où 𝐺ℎ(𝑠) est l'approximation pour les hautes fréquences (𝜔𝑇 ≫ 1), 𝑒𝑡 𝐺1(𝑠) 

l'approximation pour les basses fréquences (𝜔𝑇 ≪ 1). 

b) Méthode de Carlson 

           La méthode proposée par Carlson tirée du processus régulier de Newton utilisé pour 

l'approximation itérative de la racine d’ordre 𝛼, peut être considérée        comme appartenant 

à ce groupe [7].  Cette méthode se base sur l'hypothèse suivante : 

(𝐻(𝑠))
1

𝜇 − 𝐺(𝑠) = 0                                             (I .38) 

𝐻(𝑠) = (𝐺(𝑠))𝜇                                               (I .39) 

            En définissant = 
1

𝜇
 . = 𝑚 =

𝑞

2
 à chaque itération, partant de la valeur initiale 𝐻0(𝑠) =

1, une fonction rationnelle approximée peut être donnée par : 

 

𝐻𝑖(𝑠) = 𝐻𝑖−1(𝑠)
(𝑞−𝑚)(𝐻𝑖−1(𝑠))

2+(𝑞+𝑚)𝐺(𝑠)

(𝑞−𝑚)(𝐻𝑖−1(𝑠))
2+(𝑞+𝑚)𝐺(𝑠)

                                     (I.40) 

Le modèle d’approximation est obtenu ensuite, en remplaçant chaque opérateur d’ordre 

fractionnaire de la fonction de transfert irrationnelle par son approximation rationnelle. 

c) Méthode de Matsuda 

       La méthode proposée par [19] est basée sur l’approximation de l’opérateur d’ordre 

fractionnaire 𝐺(𝑠) = 𝑠𝛼 par une fonction rationnelle 𝐺̂(𝑠) en identifiant le modèle 

d’approximation à partir de son gain. Le gain est calculé en utilisant M fréquences reparties  

dans une bande de fréquence [𝜔0, 𝜔𝑀] dans laquelle se fait  l’approximation. Pour un 

ensemble  

de points sélectionnés 𝜔𝑖 , 𝑖 = 0,1,2…𝑀, l’approximation prend la forme : 

𝐺̂(𝑠) = 𝑎0 +
𝑠−𝜔0 

𝑎1(𝑠)+

𝑠−𝜔1  

𝑎2(𝑠)+

𝑠−𝜔2   

𝑎3(𝑠)+
… = [𝑎0;

𝑠−𝜔i−1

𝑎i
]𝑖=1
𝑀                                    (I.41) 

Où 

𝑎i = 𝑓(𝜔i), 𝑓0(ω) = G(s), 𝑓i+1(𝑠) =
𝑠−𝜔i

𝑓i(𝑠)−𝑎i
                                     (I.42) 
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               Le modèle d’approximation est obtenu en remplaçant chaque opérateur d’ordre 

fractionnaire de la fonction de transfert irrationnelle explicite par son approximation. 

I.3.5.1.2 Approximations utilisant l'ajustement de courbes ou les techniques d'identification 

           En règle générale, on peut utiliser toutes les techniques d'identification dans le domaine 

fréquentiel pour obtenir une fonction rationnelle dont la réponse fréquentielle est proche de celle 

de la fonction irrationnelle initiale. Par exemple, on peut accomplir cela en réduisant au minimum 

la fonction coût suivante.  

𝐽 = ∫𝑊(𝑠)|𝐺(𝑤)𝐺̂(𝑤)|
2
𝑑𝑤                                                    (I.43) 

Où 𝑊(𝑠) est une fonction de pondération, 𝐺(𝑤) la réponse fréquentielle originale, et 𝐺̂(𝑤) est la 

réponse fréquentielle de la fonction rationnelle approximée.  Les deux approches les plus connues 

sont celles proposées par Oustaloup et Charef. 

a) La méthode d’Oustaloup 

  L’approximation d’Oustaloup d’un dérivateur généralisé, dont l’action différentielle couvre 

tout l’espace des fréquences, repose sur une distribution récursive d’une infinité de zéros et de 

pôles réels négatifs (afin d’assurer un comportement à phase minimale) [19, 20]. Dans le cadre 

d’une synthèse réaliste (pratique) fondée sur un nombre fini de zéros et de pôles, il convient de 

réduire le comportement différentiel généralisé sur un intervalle fréquentiel borné, choisi selon 

les besoins de l’application [21]. 

               Ainsi, l’approximation de l’opérateur 𝑠𝛼, 𝛼 ∈ 𝑅+, dans une bande de fréquence 

[𝜔0, 𝜔𝑀] est donnée par une fonction rationnelle [22] : 

𝐺̂(𝑠) = 𝐶 ∏
1+𝑠/𝑧𝑘

1+𝑠/𝑤𝑘
′

𝑁
𝐾=−𝑁                                                                    (I.44) 

En utilisant l'ensemble des formules de synthèse suivantes :   

𝑤0
′ = 𝛼0,5. 𝑤𝑢;  𝑤0 = 𝛼

0,5𝑤𝑢;
𝑤𝑘+1
′

𝑤𝑘
′ =

𝑤𝑘+1
′

𝑤𝑘
′                                      (I.45) 

 

𝑤𝑘+1
′

𝑤𝑘
′ = 𝜂 > 1 ; 

𝑤𝑘

𝑤𝑘
′ = 𝛼 > 0 ;𝑁 =

log(
𝑤𝑁
𝑤0

)

log(𝛼,𝜂)
;  𝜇 =

log 𝛼

log(𝛼,𝜂)
;                 (I.46) 

          𝑤𝑢 : étant le gain fréquentiel unité et la fréquence centrale d'une bande de fréquences 

distribuées géométriquement autour. Soit, 𝑤𝑢 = √𝑤ℎ . 𝑤𝑏𝑤ℎ et 𝑤𝑏  sont la haute et basse 

fréquence respectivement. 
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b) Méthode de Charef : Fonction de singularité 

           La méthode appelée aussi la "Méthode de la fonction de singularité" développée par 

Charef et al. [12,23], la méthode d'approximation est différente selon que la fonction de 

transfert d'ordre fractionnaire à approximer soit du premier ou du second ordre. 

 Système du premier ordre fractionnaire 

        Pour un système d'ordre fractionnaire du premier ordre : 

                                                   𝐺(𝑠) =
1

(1+
𝑠

𝑃𝑇
)
𝛽                                                            (I.47) 

On peut réécrire la fonction (I.43) comme suit (voir aussi [12]) : 

𝐺(𝑠) =
1

(1+
𝑠

𝑃𝑇
)
𝛽 = lim𝑁→∞  

∏𝑖=0
𝑁−1  (1+

𝑠

𝑧+𝑖
)

∏𝑖=0
𝑁  (1+

𝑠

𝑃𝑖
)

                                          (I.48) 

Où(𝑁 + 1) est le nombre total des singularités qui peut être déterminé par la bande de fréquences 

du système. L'équation (I.46) peut être tronquée à un nombre fini 𝑁 et l'approximation devient : 

𝐺(𝑠) =
1

(1+
𝑠

𝑝𝑇
)
𝛽 ≈

∏𝑖=0
𝑁−1  (1+

𝑠

𝑍𝑖
)

∏𝑖=0
𝑁  (1+

𝑠

𝑝𝑖
)

                                                  (I.49) 

Les pôles et les zéros de la fonction de singularités peuvent être obtenus comme suit : 

𝑝𝑖 = (𝑎𝑏)
𝑖𝑝0i = 1,2,3,… , 𝑁                                                 (I.50) 

𝑝𝑖 = (𝑎𝑏)
𝑖𝑎𝑝0i = 1,2,3,… , 𝑁 − 1                                      (I.51) 

Avec : 

𝑝0 = 𝑃𝑇10
𝜖𝑝

20𝛽, 𝑎 = 10
𝜖𝑝

10(1−𝛽), 𝑏 = 10
𝜖𝑝

10𝛽, 𝛽 =
log (𝑎)

log (𝑎𝑏)
                                    (I.52) 

  𝜖𝑝est l'erreur tolérée en 𝑑𝐵. 

Avec une pente de −20 𝛽 𝑑𝐵 /𝑑𝑒𝑐 et son approximation par des lignes droites en zig-zig avec 

des pentes individuelles de −20 𝑑𝐵 /𝑑𝑒𝑐 et 0 𝑑𝐵 /𝑑𝑒𝑐. 

 Système du second ordre fractionnaire : 

      Pour un système de second ordre décrit par l'équation (I.51) : 
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𝐺(𝑠) =
1

(
𝑠2

𝑤𝑛
2+2𝜉

𝑠

𝑤𝑛
+1)

𝛽                                                    (I.53) 

Avec β un nombre réel positif tel que 0<β<1, on peut distinguer deux cas 

Cas où 0 < β < 0,5 

On peut exprimer la fonction (I.51) comme suit : 

𝐺𝑒(𝑠) =
(
𝑠

𝑤𝑛
+1)(

𝑠

𝑤𝑛+1
)
𝜂

(
𝑠2

𝑤𝑛
2+2𝛼

𝑠

𝑤𝑛
+1)

                                                          (I.54) 

Avec 𝛼 = 𝜉𝛽et= 1 − 2𝛽 , ce qui peut aussi être approximé par la fonction, 

𝐺𝑒(𝑠) ≈
(
𝑠

𝑤𝑛
+1)

(
𝑠2

𝑤𝑛
2+2𝛼

𝑠

𝑤𝑛
+1)

∏ (1+
𝑠

𝑧𝑖
)𝑁−1

𝑖=0

∏ (1+
𝑠

𝑃𝑖
)𝑁

𝑖=0

                                                  (I.54) 

Les singularités (pôles 𝑃𝑖 et zéros 𝑍𝑖) sont données par les formules suivantes : 

𝑝𝑖 = (𝑎𝑏)
𝑖−1𝑧1i = 1,2,3,… , 𝑁                                                    (I.55) 

𝑧𝑖 = (𝑎𝑏)
𝑖−1𝑧1i = 2,3, . . . , 𝑁 − 1                                           (I.56) 

Avec : 

𝑍1 = 𝑤𝑛√𝑏 , 𝑎 = 10
𝑒𝑝

10(1−𝜂) , 𝑏 = 10
𝜖𝑝
10𝜂 ,  𝜂 =

log(𝑎)

log(𝑎𝑏)
 

𝜖𝑝est l’erreur tolérée en 𝑑𝐵 

              L’ordre d’approximation 𝑁 est calculé en fixant la bande de fréquences de travail, spécifiée par 

𝑤𝑚𝑎𝑥 telle que: 𝑃𝑁 − 1 < 𝑤𝑚𝑎𝑥 < 𝑃𝑁 ,ce qui mène à la valeur suivante: 

𝑁 = Partie entière de [
log(

𝑤𝑚𝑎𝑥
𝑝1

)

log(ab)
+ 1] + 1                                  (I.57) 

𝐺𝑒(𝑠) Peut alors être écrite sous la forme d’une fonction paramétrique d’ordre 𝑁 + 2: 

𝐺𝑒(𝑠) =
bm0𝑠

𝑁+bm1𝑠
𝑁−1+⋯+bmN

𝑠𝑁+2+am1𝑠
𝑁+1+⋯+amN

                                                  (I.58) 

Les coefficients ami
 et bmi

 sont calculés à partir des singularités 𝑃𝑖, 𝑍𝑖 ainsi que 𝛼 et 𝑤𝑛 

Pour 0,5 < 𝛽 < 1 
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La fonction d’approximation est donnée comme suit: 

𝐺𝑒(𝑠) =
(
𝑠

𝑤𝑛
+1)

(
𝑠2

𝑤𝑛
2+2𝛼

𝑠

𝑤𝑛
+1)(

𝑠

𝑤𝑛+1
)
                                                (I.59) 

Où 𝛼 = 𝜉𝛽et = 1 − 2𝛽 ,qui développée comme précédemment avec les valeurs singulières 

suivantes : 

𝑃𝑖 = (𝑎𝑏)
𝑖−1𝑝1i = 1,2,3, . . . , 𝑁                                              (I.60) 

𝑍𝑖 = (𝑎𝑏)
𝑖−1𝑎𝑝1i = 2,3,… , 𝑁 − 1                                         (I.61) 

𝐴𝑣𝑒𝑐: 

𝑍1 = 𝑤𝑛√𝑏,  𝑎 = 10
𝜖𝑝

10(1−𝜂), 𝑏 = 10
𝜖𝑝
10𝜂 , 𝜂 =

log(𝑎)

log(𝑎𝑏)
 

𝜖𝑝 est l’erreur tolérée en 𝑑𝐵. 

𝐺𝑒(𝑠)peut alors être écrite sous la forme de la fonction paramétrique (I.58). 

I.3.5.1 Méthodes Numériques 

              Le principe de ces méthodes consiste à approximer le modèle d’ordre fractionnaire par un 

modèle rationnel discret en substituant l’opérateur de Laplace s dans le modèle fractionnaire par 

son équivalent en temps discret. La discrétisation est une étape nécessaire lorsqu’on utilise des 

machines fonctionnant en temps discret pour commander ou simuler des modèles continus. Dans 

le cas des opérateurs d’ordre fractionnaire analogiques, il existe deux méthodes permettant 

d’obtenir L’équivalent discret de ces opérateurs analogiques [24]. 

a) Méthode directe de discrétisation 

           La méthode directe de discrétisation est la première, car elle permet 

d'approximativement l'intégrateur et le dérivateur d'ordre fractionnaire dans le domaine discret. 

Parmi les techniques de discretisation existantes on peut citer les plus utilisées, la technique de 

l’expansion en série entière et la technique de l’expansion en fraction continue [25] 

 

 Discrétisation utilisant la technique de l’expansion de série entière 

         La combinaison de la fonction génératrice d’Euler donnée par la règle de discrétisation 

de l’opérateur dérivateur 𝑠 =
1−𝑧−1

𝑇
 et la technique de l’expansion de série entière (PSE) pour 
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l’opérateur dérivateur d’ordre fractionnaire 𝑠𝑚 = (
1−𝑧−1

𝑇
)
𝑚

, mène à l’expression suivante 

[26] 

𝑠𝑚 ≅ 𝑇−𝑚 ∑ (−1)𝑘∞
𝑘=0 (𝑚

𝑘
)𝑧−𝑘                                                 (I.61) 

              Cette équation est l’expression du dérivateur d’ordre fractionnaire de GrundwaldLeitnikov 

d’ordre m[27]. Alors, la drivée d’ordre fractionnaire m d’une fonction causale f(t) est obtenue à 

partir de l’expression (III.14) comme suit: 

𝑑𝑚𝑓(𝑡=𝑛𝑇)

𝑑𝑡
= 𝑇−𝑚 ∑ (−1)𝑘∞

𝑘=0 (𝑚
𝑘
)𝑓((𝑛 − 𝑘)𝑇)                                             (I.62) 

Où 𝑇 est la période d’échantillonnage. 

L’exécution de la PSE pour l’opérateur intégrateur d’ordre fractionnaire 𝑠−𝑚 = (
1−𝑧−1

T
)
−𝑚

 mène aussi à 

la formule donnée par Lubich [28] comme suit: 

𝑠−𝑚 ≅ 𝑇𝑚 ∑ (−1)𝑘∞
𝑘=0 (−𝑚

𝑘
)𝑧−𝑘                                                    (I.63) 

Donc, l’intégration d’ordre fractionnaire 𝑚 d’une fonction causale 𝑓(𝑡) est obtenue aussi à partir 

de l’expression (I.62) par: 

𝐼𝑚𝑓(𝑡 = 𝑛𝑇) = 𝑇𝑚 ∑ (−1)𝑘∞
𝑘=0 (−𝑚

𝑘
)𝑓((𝑛 − 𝑘)𝑇)                                             (I.64) 

Où 𝐼𝑚 dénote l’opération d’intégration d’ordre fractionnaire m. 

Une autre possibilité pour la discrétisation des opérateurs d’ordre fractionnaire analogiques avec 

la technique de l’expansion de série entière (PSE) est l’utilisation de la règle de Tustin (bilinéaire) 

 𝑠 =
2

𝑇

1−𝑧−1

1+𝑧−1
 comme une fonction génératrice 

  Approximation discrète en utilisant l’intégration numérique et l’expansion de fraction 

continue 

          La technique de l’expansion en fraction continue (CFE) qui approxime une fonction 

irrationnelle par une fonction rationnelle a été aussi utilisée pour la discrétisation des 

opérateurs d’ordre fractionnaire. Dans la référence [29], cette technique d’approximation a été 

appliqué pour le dérivateur et l’intégrateur d’ordre fractionnaire 𝑠𝑚et 𝑠−𝑚 respectivement, lorsque la 

fonction génératrice de Tustin donnée par la règle de discrétisation de l’opérateur dérivateur 𝑠 =

2

𝑇

1−𝑧−1

1+𝑧−1
 est utilisé. Alors, l’expression suivante a été obtenue: 

𝑠±𝑚 = (
2

𝑇

1−𝑍−1

1+𝑍−1
)
±𝑚

≅ 𝑇∓𝑚  𝐶𝐹𝐸 [(2
1−𝑍−1

1+𝑍−1
)
±𝑚

] = 𝑇∓𝑚  
𝑃𝑝(𝑍

−1)

𝑄𝑞(𝑍
−1)

                                    (I.65) 
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   Où 𝑇 est la période d’échantillonnage, petq sont les ordres de l’approximation des polynômes 𝑃 

𝑒𝑡 𝑄. 

I.4 Conclusion 

          Ce chapitre constitue une introduction aux éléments de base du calcul fractionnaire. Nous 

y avons présenté quelques définitions mathématiques des opérateurs fractionnaires, ainsi que leurs 

propriétés et leurs transformées de Laplace. Nous avons également introduit deux classes de 

méthodes d'approximation pour la dérivée et l'intégrale d'ordre fractionnaire : les méthodes 

fréquentielles et les méthodes numériques.
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CHAPITRE II    

Commande PID et PID fractionnaire 

II.1 Introduction  

           La commande PID (Proportionnelle-Intégrale-Dérivée) est une technique de régulation 

largement utilisée dans les systèmes de contrôle industriels en raison de sa simplicité de mise en 

œuvre et de son efficacité pour une large gamme d'applications. Le régulateur PID classique ajuste 

la sortie d'un système en fonction de l'erreur entre la valeur mesurée et la valeur de consigne, en 

utilisant une combinaison d'actions proportionnelle, intégrale et dérivée. Malgré sa popularité et sa 

robustesse, le PID classique présente certaines limitations, notamment en termes de performance 

face aux systèmes présentant des dynamiques complexes et des comportements non linéaires. 

           Pour surmonter ces limitations, la commande PID fractionnaire a été introduite. Cette 

méthode étend le concept de régulation PID en incorporant des dérivées et intégrales d'ordre 

fractionnaire, offrant ainsi une flexibilité accrue et une capacité améliorée à gérer les systèmes avec 

des dynamiques complexes et des effets de mémoire. Le contrôleur PID fractionnaire (FOPID) 

permet d'améliorer les performances du système en termes de rapidité, précision et stabilité, tout 

en conservant les avantages de la commande PID classique. 

             Dans ce chapitre, nous explorerons les principes fondamentaux de la régulation, les 

performances des systèmes réglés, et les concepts clés de la commande PID classique et 

fractionnaire. Nous commencerons par une revue des principes généraux de la régulation, en 

soulignant l'importance des performances des systèmes réglés en termes de rapidité, précision et 

stabilité. En outre, nous aborderons la méthode d'optimisation par essaims particulaires (PSO), une 

technique moderne utilisée pour ajuster les paramètres des régulateurs PID et FOPID afin 

d'optimiser leurs performances  

II.2 Principe général de la régulation 

           Il est nécessaire de maintenir certaines dimensions physiques à des valeurs spécifiques dans 

la plupart des machines industrielles et domestiques, même si des variations externes ou internes 

peuvent les altérer. Prenons l'exemple du niveau d'eau d'un réservoir, de la température d'une étuve, 

de la vitesse et de la position des moteurs, qui sont intrinsèquement variables et qui nécessitent 

donc des mesures appropriées pour réguler ce processus. 

          Si les perturbations influençant la grandeur à contrôler sont lentes ou négligeables, un simple 

réglage en boucle ouverte permet d'obtenir et de maintenir la valeur souhaitée (par exemple, l'action 
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sur un robinet d'eau). Cependant, dans la plupart des cas, ce type de réglage n'est pas suffisant car 

il ne fournit pas d'information sur la sortie. Il est alors nécessaire de comparer en permanence la 

valeur mesurée de la grandeur réglée à celle désirée, et d'agir en conséquence sur la grandeur 

d'action, dite grandeur réglant. Cela constitue une boucle de régulation et, plus généralement, une 

boucle d'asservissement. Cette boucle nécessite la mise en œuvre d’un ensemble de moyens de 

mesure, de traitement de signal ou de calcul, d’amplification et de commande d’actionneur, 

constituant une chaine de régulation ou d’asservissement. La consigne est maintenue constante et 

il se produit sur le procédé une modification d’une des entrées perturbatrices. L’aspect régulation 

est considéré comme le plus important dans le milieu industriel, car les valeurs des consignes sont 

souvent fixes, néanmoins, pour tester les performances et la qualité d’une boucle de régulation, on 

s’intéresse à l’aspect asservissement [8, 9]. 

II.2.1 Performances des systèmes réglés [10] 

        Les performances des systèmes réglés définies dans un cahier des charges, sont illustrées par 

la figure (II.1). 

 

 

 

 

Figure II.1: Performances d’un système de commande 

II.2.1.1 Rapidité 

         La rapidité quantifie le temps de réponse du système. Elle correspond au temps de réaction 

de la sortie par rapport à la consigne. Le temps mis par la réponse pour ne plus dépasser 5% de la 

valeur finale. Ce temps est retenu comme critère de rapidité 5%. 

II.2.1.2 Précision 

         La précision quantifié l'erreur lorsque l'équilibre est atteint, Avec l’entrée sortie et la de même 

nature. Autrement, un système est précis si la sortie suit la consigne en toutes circonstances avec 

un écart inférieur à la valeur définie dans un cahier des charges. 
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II.2.1.3 Stabilité 

 On dit qu'un système est stable lorsque celui-ci tend à revenir à son état d'équilibre pour une 

consigne constante, la sortie doit être constante. 

 

Figure II.2: Stabilité du système 

II.3 Le correcteur 

       Le correcteur constitue la partie « intelligente » de l’asservissement et sa détermination 

judicieuse confère à l’asservissement ses qualités. Aisé à modifier, le correcteur peut être muni 

d’une variation automatique de ses paramètres suivant la plage de fonctionnement du procédé, dans 

le cas où celle-ci évolue lentement [1]. 

II.4 But de la correction 

       Le but de la correction est de doter l’asservissement des qualités attendues, par le calcul et 

l’implantation du correcteur nécessaire. Les opérateurs essentiels du correcteur sont réalisables à 

partir d’amplificateurs à courant continu et d’éléments résistances/capacités. La réalisation 

numérique peut se transposer aisément à partir d’un schéma analogique, en conservant la même 

organisation fonctionnelle et en associant un intégrateur numérique à chaque intégrateur 

électronique [11, 9]. 

II.5 La commande PID classique   

           Aujourd’hui, le correcteur PID est la structure de commande la plus utilisée dans les boucles 

de rétroaction. Plus de 90% des boucles d'asservissement sont des correcteurs PID. Généralement, 

le correcteur PID classique est implémenté dans des systèmes de commande à retour unitaire 

classique donné par la figure (II.3). 

 

Figure II.3: Système de commande à retour unitaire classique 
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𝑂ù: 

𝑢( 𝑡):Le signal de commande 

𝑒(𝑡):L’ é cart ré sultant de la diffé rence entre la consigne 𝑟(𝑡) et le signal de retour 𝑥(𝑡) 

 𝑦(𝑡):La grandeur à commander 

𝐶(𝑠):La fonction de transfert du correcteur 

𝐺(𝑠):La fonction de transfert de système. 

           Le comportement du correcteur proportionnel intégral dérivé (PID) classique est décrit par 

la loi de commande suivante : 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒
𝑡

0
(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
                                                 (II.1) 

          En appliquant la transformée de Laplace à l’équation (II.1) avec les conditions initiales 

nulles, on trouve : 

𝑈(𝑠) = 𝐾𝑃𝐸(𝑠) +
𝐾𝑖
𝑠
𝐸(𝑠) + 𝐾𝑑𝑠𝐸(𝑠) 

= 𝐾𝑃 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑. 𝑠) 𝐸(𝑠)                                                    (II.2) 

Avec:  𝑇𝑖 =
𝐾𝑝

𝐾𝑖
 & 𝑇𝑑 =

𝐾𝑑

𝐾𝑝
  

La fonction de transfert de correcteur PID peut être exprimé par : 

𝐶(𝑠) = 𝐾𝑃 (1 +
1

𝑇𝑖𝑠
+𝑇𝑑. 𝑠)                                               (II.3) 

Où : 𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
 

          Les paramètres du correcteur associés à ces différents termes sont le gain proportionnel 𝐾𝑃 , 

la constante d’intégration 𝑇𝑖 et la constante de dérivation 𝑇𝑑.Les trois termes proportionnel, intégral 

et dérivé possèdent des caractéristiques différentes et agissent de manière complémentaire [3]. 

II.5.1 Paramètres d’un régulateur PID 

             L’idée de base de ce régulateur est de générer une commande 𝑢( 𝑡) donnée par le 

régulateur PID [4], dans sa forme classique est décrite par l’équation (II.1) 

Elle est composée de la somme de trois termes : 

 Le terme proportionnel≪ 𝑃 ≫ (proportionnel à l’erreur) :   

𝑃 = 𝐾𝑝𝑒(𝑡)                                                           (II.3) 
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 Le terme intégral (proportionnel à l’intégrale de l’erreur) : 

𝐼 = 𝐾𝑖 ∫  
𝑡

0
𝑒(𝑡)𝑑𝑡                                           (II.4) 

 Le terme dérivatif ≪ 𝑃 ≫ (proportionnel à la dérive de l’erreur) 

𝐷 = 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
                                                         (II.4) 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑: est le gain proportionnel, intégral et dérivé respectivement. 

II.5.2 Aspects fonctionnels du régulateur PID 

La réalisation de la boucle d’asservissement par un PID comporte deux aspects essentiels : 

 Le réglage du régulateur PID, pour lequel la connaissance d’un modèle dynamique du 

procédé d’une part et les performances désirées d’autre part déterminent le choix de la 

méthode de synthèse.   

 L’implantation du régulateur dans une version analogique ou numérique et dans une 

configuration série, parallèle ou mixte [1]. 

II.5.2.1 Action Proportionnelle Intégrale Dérivée (PID) 

             Les régulateurs rencontrés sur les installations industrielles combinent les effets 

proportionnel, intégral et dérivée. La fonction de transfert d’un régulateur PID standard, avec 

filtrage de la dérivée est comme suit [1] 

𝐶(𝑠) = 𝐾𝑃 (1 +
1

𝑇𝑖𝑆
+

𝑇𝑑𝑆

1+
𝑇𝑑
𝑁
𝑆
)                                               (II.5) 

   𝐾𝑝, 𝐾𝑖, 𝐾𝑑 Sont en fonction des valeurs des résistances et des capacités du montage montré par la 

figure (II.4) 

 

Figure II.4: Schéma électronique du correcteur Proportionnel Intégral Dérivé 
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II.5.3 Algorithmes d’ajustement des paramètres de Contrôleur PID 

          Le réglage d'un régulateur PID implique d'influencer les trois paramètres des différentes 

actions (gain du proportionnel, gain de l'intégral, gain de la dérivée) afin d'obtenir la réponse 

appropriée en termes de précision, de rapidité, de stabilité et de robustesse à la sortie du procédé. 

Pour cela, il existe plusieurs méthodes de réglage [8] [16]. 

          Il existe plusieurs méthodes de calcul des paramètres du régulateur PID. Elles sont basées 

sur les spécifications temporelles comme  

 Méthode Ziegler–Nichols (ZN) 

 L'algorithme de Wang–Juang–Chan 

II.6 Contrôleur 𝑷𝑰𝝀𝑫𝝁 d’ordre fractionnaire 

            Le contrôleur PID est largement employé dans le domaine industriel en raison de sa 

simplicité. Cependant, ses performances peuvent être insuffisantes en raison de retards importants 

dans le modèle du procédé ou de variations des paramètres du procédé. D'autres algorithmes de 

réglage sont utilisés dans cette situation, tels que le réglage par retour d'état, le réglage par modèle 

interne, le réglage par régime glissant, et ainsi de suite. 

            Mais récemment, Podlubny, pour améliorer le comportement du correcteur PID,à proposer 

le contrôleur 𝑃𝐼𝜆𝐷𝜇 fractionnaire, comportant un intégrateur d’ordre λ et un différentiateur d’ordre 

μ, où λ et μ appartiennent à l’ensemble des nombre réels. 

             Le correcteur 𝑃𝐼𝜆𝐷𝜇 d'ordre fractionnaire présente un avantage majeur en ce qu'il peut 

parfaitement contrôler la dynamique des systèmes d'ordre fractionnaire. Les correcteurs 

𝑃𝐼𝜆𝐷𝜇d'ordre fractionnaire présentent un autre avantage important : ils sont moins sensibles aux 

variations des paramètres du système commandé, ce qui améliore leur robustesse. Ceci est parce 

que les correcteurs 𝑃𝐼𝜆𝐷𝜇 d’ordre fractionnaire ayant deux degrés de liberté supplémentaires pour 

mieux ajuster les propriétés dynamiques de systèmes de commande d'ordre fractionnaire. Puisque 

les ordres λ et μ sont des nombres réels arbitraires, le correcteur 𝑃𝐼𝜆𝐷𝜇 d'ordre fractionnaire est 

plus flexible et donne l’avantage de mieux régler les propriétés dynamiques des systèmes [35,36]. 

Des activités de recherche sont dirigées pour définir de nouvelles techniques de réglage des 

correcteurs 𝑃𝐼𝜆𝐷𝜇 d’ordre fractionnaire par l’extension de la théorie de la commande classique. 
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II.6.1 Structure de correcteur PID fractionnaire 

           Le correcteur PID fractionnaire est implémenté dans des systèmes de commande à retour 

unitaire classique donné par la figure Fig.IV.1. Où 𝑢( 𝑡) désigne le signal de commande et 𝑒( 𝑡) 

l’écart résultant de la différence entre la consigne 𝑟( 𝑡) et la grandeur à commander 𝑦( 𝑡), 𝐶( 𝑡) est  

la fonction de transfert du correcteur fractionnaire, 𝐺𝑝( 𝑡)est la fonction de transfert de système, 

dans notre cas c’est le moteur à courant continu. 

 

Figure II.5: Système de commande à retour unitaire classique 

           L’équation de sortie du correcteur 𝑃𝐼𝜆𝐷𝜇 d’ordre fractionnaire dans le domaine de temps 

est donnée sous la forme : 

𝑢(𝑡) = 𝐾𝑝 [𝑒(𝑡) +
1

𝑇𝑖
𝐷−𝜆(𝑒(𝑡)) + 𝑇𝑑𝐷

𝜇(𝑒(𝑡))]                                    (II.6) 

          En appliquant la transformée de Laplace à l’équation (II.6) avec les conditions initiales 

nulles, la fonction de transfère de ce correcteur peut être exprimé par : 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠

𝜇                                                      (II.7) 

          Où les d’intégration 𝐾𝑖 et de dérivation 𝐾𝑑 sont liés aux paramètres de la forme classique par 

les relations suivantes : 

𝐾𝑖 =
𝐾𝑝

𝑇𝑖
                                                                     (II.8) 

𝐾𝑑 = 𝐾𝑝𝐾𝑑                                                                (II.9) 

La fonction de transféré 𝐶(𝑠) d’un correcteur est : 

𝐶(𝑠) = 𝐾𝑝(1 +
1

𝑇𝐼𝑠
𝜆 + 𝑇𝐷𝑠

𝜇)                                               (II.10) 

           En plus de 𝐾𝑝, 𝐾𝑖 et 𝐾𝑑 le correcteur 𝑃𝐼𝜆𝐷𝜇 possédé deux autre paramétré de réglage 𝜆  et 

𝜇 . Ceci le rend plus flexible et donc une opportunité pour mieux ajuster les propriétés dynamiques 

des systèmes de commande d’ordre fractionnaire. S’inspirant de l’idée du correcteur 

𝑃𝐼𝜆𝐷𝜇;plisieurs travaux sur les technique de réglage sont actuellement publiés [33]. 
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II.6.2 Principe de fonctionnement 

           Par comparaison aux correcteurs classiques, les correcteurs d’ordre fractionnaire possèdent 

en plus deux autres paramètres notés 𝜆 et 𝜇 qui présentent l’ordre d’intégration et de dérivation 

respectivement. Suivant la variation de ces deux paramètres, on peut distinguer différentes 

possibilités des correcteurs d’ordre fractionnaire. [30] 

 

 

Figure II.6: 𝑃𝐼𝜆𝐷𝜇  (a) Ordre entier, (b) Ordre fractionnaire 

D’après cette figure, on peut donner les cas suivants : 

 Lorsque 𝜆 = 0 et 𝜇 = 0 ,on a un correcteur 𝑃 classique. 

  Lorsque 𝜆 = 1 et 𝜇 = 0 ,on a un correcteur 𝑃𝐼classique.  

 Lorsque 𝜆 = 0 et 𝜇 = 1 ,on a un correcteur 𝑃𝐷 classique. 

  Lorsque 𝜆 = 1 et 𝜇 = 1 ,on a un correcteur𝑃𝐼𝐷 classique.  

 Lorsque 0 < 𝜆 < 1 et 𝜇 = 1 ,on a un correcteur𝑃𝐼 fractionnaire. 

  Lorsque 𝜆 = 0 et 0 < 𝜇 < 1 ,on a un correcteur 𝑃𝐷 fractionnaire.  

 Lorsque 0 < 𝜆 < 1 et 0 < 𝜇 < 1 ,on a un correcteur 𝑃𝐼𝐷 fractionnaire. 

       D’après ces résultats, on constante que les correcteurs classiques sont des cas particuliers des 

correcteurs d’ordre fractionnaires. 

II.7 La fractionalisation des Correcteurs PI et PID 

 La fractionalisation de PI classique ainsi que PID classique est obtenue en modifiant   le terme 

intégrateur dans les fonctions de transferts des correcteurs précédent. L’intégrateur 1/s est 

fractionalisé comme suit [38, 39] : 
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Figure II.7: Fractionalisation d’un intégrateur 

Tel que :               

1

s
=
1

s𝛼
1

s(1−𝛼)
 

Avec 𝛼  est un nombre réel:  0 < 𝛼 < 1. 

La fonction de transfert d’un correcteur classique PI est : 

𝐶𝑃𝐼(𝑝) = 𝐾𝑝 +
1

𝑇𝑖𝑝
                                                          (II.11)  

La fonction de transfert d’un correcteur PI fractionnalisé est donnée comme suite :   

𝐶𝑃𝐼𝑓 =
1

𝑝𝛼
1

𝑝𝛼−1
(
𝑘𝑝𝜏𝑖𝑝+1

𝜏𝑖
)                                       (II.12) 

Avec 0 < 𝛼 < 1 

Soit la fonction de transfert d’un correcteur classique PID donné par la fonction suivante : 

𝐶(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                                              (II.13) 

Le correcteur PID fractionnalisé est défini par la fonction suivante [26] : 

𝐶(𝑠) =
1

𝑠
(
(𝑘𝑝𝑇𝑑𝑇𝑖𝑠

2 + 𝑘𝑝𝑇𝑖𝑠 + 𝑘𝑝
𝑇𝑖

) 

=
1

𝑠𝛼
1

𝑠(1−𝛼)
(
(𝑘𝑝𝑇𝑑𝑇𝑖𝑠

2+𝑘𝑝𝑇𝑖𝑠+𝑘𝑝

𝑟𝑖
)                                             (II.14) 

Avec 0 < 𝛼 < 1 

II.8 Approximation d’Oustaloup 

Dans ce mémoire de fin d’études, nous avons utilisé la méthode d'Oustaloup pour 

approximer l'ordre intégral ou dérivateur fractionnaire. 
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II.8.1 Paramètres du filtre d'Oustaloup 

Pour comprendre comment les paramètres du filtre, à savoir l'ordre et la bande de fréquence, 

influencent la qualité de l'approximation, considérons l'exemple suivant de la fonction de transfert 

d'ordre fractionnaire :  𝐺(𝑠) =
1

𝑠0.5
. Les différentes approximations d'Oustaloup de cette fonction 

pour différents paramètres sont : 

Pour un ordre de 𝑁 = 5  dans une bande de fréquence de [0.01; 100]rad/s: 

1

𝑠0.5
≈
0.1𝑠5 + 7.497𝑠4 + 76.85𝑠3 + 121.8𝑠2 + 29.85𝑠 + 1

𝑠5 + 29.85𝑠4 + 121.8𝑠3 + 76.85𝑠2 + 7.497𝑠 + 0.1
 

Pour un ordre de 𝑁 = 5  dans une bande de fréquence de [0.001; 1000]rad/s: 

1

𝑠0.5
≈
0.03162𝑠5 + 16.92𝑠4 + 537.1𝑠3 + 1072𝑠2 + 134.4𝑠 + 1

𝑠5 + 134.4𝑠4 + 1072𝑠3 + 537.1𝑠2 + 16.92𝑠 + 0.03162
 

Pour un ordre de 𝑁 = 7  dans une bande de fréquence de [0.01; 100]rad/s: 

1

𝑠0.5
≈
0.1𝑠7 + 9.834𝑠6 + 204.5𝑠5 + 1079𝑠4 + 1499𝑠3 + 548.7𝑠2 + 50.94𝑠 + 1

𝑠7 + 50.94𝑠6 + 548.7𝑠5 + 1499𝑠4 + 1079𝑠3 + 204.5𝑠2 + 9.834𝑠 + 0.1
 

Les diagrammes de Bode de 𝐺(𝑠) et de ses approximations d'Oustaloup sont montrés dans 

la figure II.7 . 

 

  

 

 

 

 

 

 

Figure II.8: Diagrammes de Bode de la fonction 𝐺(𝑠) et de ses approximations d'Oustaloup 
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À partir de la figure ci-dessus, nous pouvons observer les points suivants : 

 En général, le filtre d'Oustaloup donne une approximation précise des fonctions de transfert 

d'ordre fractionnaire dans la bande de fréquence souhaitée. 

 En dehors de la bande de fréquence d'Oustaloup, la fonction de transfert approximée 

présente une amplitude et une phase différentes de celles de la fonction réelle. 

 La phase de la fonction approximée est plus sensible que l'amplitude, où nous observons 

qu'elle ne correspond pas à la phase de la fonction réelle près des fréquences de transition 

𝜔𝑏  et 𝜔ℎ. 

 L'élargissement de la bande de fréquence entraîne des erreurs d'approximation où les 

valeurs de la phase et de l'amplitude de la fonction approximée commencent à osciller 

autour des valeurs de la phase et de l'amplitude de la fonction réelle. 

 L'augmentation de l'ordre du filtre diminue les erreurs d'approximation dans la bande de 

fréquence, mais augmente le temps de calcul. 

II.9 Optimisation par essaim particulaire (PSO) 

II.9.1. Définition 

          L’optimisation par essaim de particules (OEP) ou (particle swarm optimization) (PSO) en 

anglais, est une technique d’optimisation parallèle développée par Kennedy et Eberhart, comme 

une alternative aux algorithmes génétiques standards. Ces algorithmes sont inspirés des essaims 

d’insectes ou des bancs de poissons ou des nuées d’oiseaux Figure (II.8) et de leurs mouvements 

coordonnés. En effet, tout comme ces animaux se déplacent en groupe pour trouver la source de 

nourriture ou éviter les prédateurs, les algorithmes à essaim de particules recherchent des solutions 

pour un problème d’optimisation [28]. 

           Les individus de l’algorithme sont appelés particules et la population est appelée essaim. 

Dans cet algorithme, une particule décide de son prochain mouvement en fonction de sa propre 

expérience, qui est dans ce cas la mémoire de la meilleure position qu’elle a rencontrée, et en 

fonction de son meilleur voisin. Ce voisinage peut être défini spatialement en prenant par exemple 

la distance euclidienne entre les positions de deux particules ou sociométrique ment (position dans 

l’essaim de l’individu) [29]. 
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           Les nouvelles vitesses et directions de la particule seront définies en fonction de trois 

tendances : la propension à suivre son propre chemin, sa tendance à revenir vers sa meilleure 

position atteinte et sa tendance à aller vers son meilleur voisin. 

 

Figure II.9: Groupe de : (a) Oiseaux, (b) Poissons 

II.9.2. Principe de base de l’algorithme (PSO) 

            Dans le PSO, on appelle (particule) chaque individu de la population, tandis que la 

population est appelée (swarm). Il est important de souligner que les mouvements des autres 

particules dans la même population peuvent être utilisés par la particule pour ajuster sa position et 

sa vitesse pendant le processus d'optimisation. Chaque individu se sert des informations locales 

qu'il peut obtenir sur le déplacement de ses voisins les plus proches pour prendre sa décision de 

déplacement. Il suffit de règles très simples telles que « être près des autres », « aller dans la même 

direction », « aller à la même vitesse » pour maintenir la cohésion du groupe dans son ensemble.  

              L’espace de recherche est défini comme « voisinage », différentes topologies sont 

considérées : Topologie en (étoile, rayon, circulaire,.), le plus utilisé est le circulaire tel que 

schématisé sur la figure (III.7) [30] 

 

Figure II.10: Le cercle virtuel pour un warm de sept particules. Le groupe d’information de taille trois de 

la particule 1 est composé des particules 1, 2 et 7 
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II.9.3. Définition de la position et de la vitesse courante associée à une particule 

           Les particules sont caractérisées par deux caractéristiques principales : leur position et leur 

vitesse. La position de chaque particule correspond à un point dans l'espace de recherche, ce qui 

peut être une solution potentielle au problème d'optimisation. La vitesse est utilisée pour définir la 

direction vers une position nouvelle. Les propriétés des particules changent à chaque itération. Elles 

sont mises à jour par les équations (III.9) [31] 

{

𝑣𝑖𝑗
𝑘+1 = 𝜔. 𝑣𝑖𝑗

𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗
𝑘 ) + 𝑐2. 𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗

𝑘 )

𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘 + 𝑣𝑖𝑗
𝑘+1

                       (II.15) 

𝑖 = 1,2…… ,𝑁𝑝𝑗 = 1,2…… ,𝑁𝑑 

𝑘 = 1,2…… , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 : désignelerangdel′itération. 

Où: 

 𝑁𝑝:Nombre de particules de l’essaim. 

  𝑁𝑑:Nombre de variables du problème (c-à-d dimension d’une particule) 

  𝑖𝑡𝑒𝑟𝑚𝑎𝑥:Nombre maximal d’itération. 

  𝑣𝑖𝑗
𝑘 : La vitesse de la 𝑗lème composante de la 𝑖𝑖è me particule de l’essaim, à la 𝑘𝑖è me 

itération. 

  𝑝𝑏𝑒𝑠𝑡 𝑖𝑗: La 𝑗lème  composante de la meilleure position occupée par la 𝑖𝑖𝑒̀𝑚𝑒  particule de 

l’essaim, enregistrée dans les itérations précédentes (particule best). 

  𝑔𝑏𝑒𝑠𝑡𝑗: La 𝑗𝑖è𝑚𝑒 composante de la meilleure position occupée par la meilleure particule 

globale de l’essaim (global best). 

  𝑥𝑖𝑗
𝑘 : La 𝑗𝑖è me coordonnée de la position actuelle de la particule i, à la 𝑘𝑖è𝑚𝑒  itération. 

 ω: est une pondération qui change à chaque itération. Elle est calculée par l’expression : 

𝜔(𝑖𝑡𝑒𝑟) = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

. 𝑖𝑡𝑒𝑟 

𝒊𝒕𝒆𝒓: Le rang de l’itération actuelle. 

𝝎𝒎𝒂𝒙:La valeur initiale de la pondération, on la prend généralement égale à 0.9 

𝝎𝒎𝒊𝒏:Valeur finale de la pondération, elle est comprise entre 0.3 et 0.4. 
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𝑐1 𝑒𝑡 𝑐2  Sont les coefficients d‟accélération elles caractérisent la capacité de la particule à chercher 

dans un autre endroit de l’espace de recherche, ou bien à affiner sa recherche à l’endroit où elle se 

trouve. En général, on choisit 𝑐1 𝑒𝑡 𝑐2  tels que 𝑐1 + 𝑐2 < 4. 

𝒓𝒂𝒏𝒅𝟏 𝒆𝒕 𝒓𝒂𝒏𝒅𝟐  Sont deux nombres aléatoires compris entre 0 et 1 [32]. 

         L’analyse de l’équation (II.15), schématisée par la figure (II.10), montre que l’évolution de 

la vitesse d’une particule est la somme de trois termes et mène aux constatations suivantes: 

 Le premier terme 𝒗𝒊𝒋: c’est la direction précédente, elle signifie que la particule continue 

d’évoluer dans le même sens, sans tenir compte ni de 𝑃𝑏𝑒𝑠𝑡 ni de 𝑔𝑏𝑒𝑠𝑡 (elle avance en 

aveugle).  

 Le deuxième terme (𝑷𝒃𝒆𝒔𝒕 𝒊𝒋 − 𝒙𝒊𝒋
𝒌 ): indique la direction vers la meilleure position déjà 

occupée par la particule 𝑥𝑖𝑗
𝑘  (elle fait confiance à sa propre expérience) . 

 Le troisième terme (𝒈𝒃𝒆𝒔𝒕𝒋 − 𝒙𝒊𝒋
𝒌 ): indique la direction vers la meilleure position déjà 

occupée par l’ensemble de l’essaim (elle fait confiance au groupe). 

Ensuite chacun de ces trois termes est pondéré par un coefficient qui permet de favoriser l’un ou 

l’autre de ces trois termes puisqu’à la fin. On fait leur somme. Voir La figure (II.10)   

 

Figure II.11: Schéma de principe du déplacement d’une particule 

     Pour réaliser son prochain mouvement, chaque particule combine trois tendances : suivre sa 

vitesse propre, revenir vers sa meilleure performance, aller vers la meilleure performance de ses 

informatrices. 

II.9.4. L’organigramme et les étapes de la méthode PSO 

L’algorithme de d’optimisation par Essaim de Particules PSO peut être décrit comme suit: 
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Figure II.12: Organigramme de la méthode PSO 

𝟏𝒆́𝒓𝒆 étape: Initialisation des coefficients 𝑐1 et 𝑐2 ,le coefficient d’inertie (𝑤) 

𝟐é𝐦𝐞étape: La création de la population initiale aléatoirement et le calcul de la fitness de chaque 

particule (𝑃𝑏𝑒𝑠𝑡𝑖): la meilleure position de la particule 𝑖 dans la population actuelle ; (𝑃𝑔𝑏𝑒𝑠𝑡):la 

meilleure position dans toute les populations (la meilleure des meilleures). 

𝟑𝒆́𝒎𝒆étape: Le calcul de la nouvelle vitesse et nouvelle position de chaque particule 

𝟒𝒆́𝒎𝒆étape: Le calcul de la meilleure fitness de la population initiale et comparer pan avec 

précédente pour trouver la meilleure de toute les populations (𝑃𝑔𝑏𝑒𝑠𝑡). 

 𝟓𝒆́𝒎𝒆étape::Incrémentation du nombre d’itération t=t+1. 

𝟔𝒆́𝒎𝒆  Étape: Si un critère d‟arrêt est satisfait alors passer à l‟étape suivante. Autrement, aller à la 

3éme étape. 

𝟕𝒆́𝒎𝒆   étape : La position enregistrée dans (𝑃𝑔𝑏𝑒𝑠𝑡 ) est la solution optimale. 
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II.10. Conclusion 

           Ce chapitre a fourni une compréhension approfondie des principes fondamentaux de la 

régulation, en mettant en lumière les performances des systèmes réglés en termes de rapidité, 

précision et stabilité. Nous avons exploré les concepts clés de la commande PID classique et 

fractionnaire, soulignant les avantages et les limitations de chacune. En particulier, nous avons 

démontré comment la commande PID fractionnaire offre une flexibilité accrue pour les systèmes 

complexes. Enfin, nous avons introduit la méthode d'optimisation par essaims particulaires (PSO) 

comme une technique efficace pour ajuster les paramètres des régulateurs PID et FOPID, 

optimisant ainsi leurs performances pour répondre aux exigences spécifiques des applications 

industrielles. 
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Chapitre III : 

Simulations & Applications 

III.1. Introduction  

Dans ce chapitre nous allons présenter deux exemples de simulation, d’un système 

fractionnaire et d’un système fractionnaire avec retard en utilisant les algorithmes de commande 

𝑃𝐼𝐷 d’ordre entier et d’ordre fractionnaire présenté dans les chapitres I & II .  Nous montrons aussi 

que la supériorité de contrôleur fractionnaire. 

III.2 Approximation sous-optimale des FOTFs 

          Dans cette section, nous considérons les systèmes généralisés linéaires à temps invariant 

(FO-LTI) avec des ordres fractionnaires non commensurables comme suit : 

𝐺(𝑠) =
𝑏𝑚𝑠

𝛾𝑚 + 𝑏𝑚−1𝑠
𝛾𝑚−1 +⋯+ 𝑏1𝑠

𝛾1 + 𝑏0
𝑎𝑛𝑠𝜂𝑛 + 𝑎𝑛−1𝑠𝜂𝑛−1 +⋯+ 𝑎1𝑠𝜂1 + 𝑎0

                                          (III. 1) 

          Utiliser les schémas d'approximation susmentionnés pour un seul 𝑠𝑟 puis pour le système 

général FO-LTI (III.1) pourrait être très fastidieux, conduisant à un modèle de très haut ordre. Dans 

cette section, nous proposons d'utiliser un algorithme numérique pour obtenir une bonne 

approximation de la fonction de transfert globale (III.1) en utilisant une fonction de transfert 

rationnelle d'ordre entier à dimension finie avec un terme de retard possible, et illustrons comment 

utiliser le modèle d'ordre entier approximé pour la conception d'un contrôleur d'ordre entier. 

Notre objectif maintenant est de trouver un modèle d'ordre entier approximatif avec un ordre 

relativement bas, éventuellement avec un retard temporel sous la forme suivante : 

𝐺𝑟 𝑚⁄ ,𝜏(𝑠) =
𝛽1𝑠

𝑟 +⋯+ 𝛽𝑟𝑠 + 𝛽𝑟+1
𝑠𝑚 + 𝛼1𝑠𝑚−1 +⋯+ 𝛼𝑚−1𝑠 + 𝛼𝑚

e−𝜏𝑠                                 (III. 2) 

Une fonction objectif pour minimiser la norme 𝐻2 du signal d'erreur de réduction e(t) peut être 

définie comme suit : 

𝐽 = min
𝜃
 ∥∥𝐺̂(𝑠) − 𝐺𝑟/𝑚,𝜏(𝑠)∥∥2,                                               (III. 3) 

où 𝜃 est l'ensemble des paramètres à optimiser de manière à ce que : 

𝜽 = [𝛽1, … , 𝛽𝑟, 𝛼1, ⋯ , 𝛼𝑚 , 𝜏]                                                           (III. 4) 

 Pour une évaluation aisée du critère 𝐽, le terme retardé dans le modèle d'ordre réduit 𝐺𝑟/𝑚,𝜏(𝑠)peut 

être davantage approximé par une fonction rationnelle 𝐺̂𝑟/𝑚(𝑠) en utilisant la technique 

d'approximation de Padé [47]. Ainsi, le critère révisé peut alors être défini par : 

𝐽 = min
𝜃
 ∥∥𝐺̂(𝑠) − 𝐺̂𝑟/𝑚(𝑠)∥∥2                                                         (III. 5) 
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et le calcul de la norme 𝐻2peut être évalué de manière récursive en utilisant l'algorithme . 

Supposons que pour une fonction de transfert stable du type 𝐸(𝑠) = 𝐺̂(𝑠) − 𝐺̂𝑟/𝑚(𝑠) = 𝐵(𝑠)/𝐴(𝑠), 

les polynômes 𝐴𝑘(𝑠) et 𝐵𝑘(𝑠) peuvent être définis de telle sorte que : 

𝐴𝑘(𝑠) = 𝑎0
𝑘 + 𝑎1

𝑘𝑠 +⋯+ 𝑎𝑘
𝑘𝑠𝑘 , 𝐵𝑘(𝑠) = 𝑏0

𝑘 + 𝑏1
𝑘𝑠 +⋯+ 𝑏𝑘−1

𝑘 𝑠𝑘−1                        (III. 6) 

Les valeurs de 𝑎𝑖
𝑘−1 et 𝑏𝑖

𝑘−1peuvent être évaluées de manière récursive à partir de : 

𝑎𝑖
𝑘−1 = {

𝑎𝑖+1
𝑘 , 𝑖 even 

𝑎𝑖+1
𝑘 − 𝛼𝑘𝑎𝑖+2

𝑘 , 𝑖 odd 
 𝑖 = 0,⋯ , 𝑘 − 1                                      (III. 7) 

Et 

𝑏𝑖
𝑘−1 = {

𝑏𝑖+1
𝑘 , 𝑖 even 

𝑏𝑖+1
𝑘 − 𝛽𝑘𝑎𝑖+2

𝑘 , 𝑖 odd 
 𝑖 = 1,⋯ , 𝑘 − 1,                                  (III. 8) 

Où 𝛼𝑘 = 𝑎0
𝑘/𝑎1

𝑘 et 𝛽𝑘 = 𝑏1
𝑘/𝑎1

𝑘.  

La norme 𝐻2 du signal d'erreur de réduction approximatif 𝑒̂(𝑡) peut être évaluée à partir de : 

𝐽 = ∑  

𝑛

𝑘=1

𝛽𝑘
2

2𝛼𝑘
= ∑  

𝑛

𝑘=1

(𝑏1
𝑘)
2

2𝑎0
𝑘𝑎1

𝑘
.                                                             (III. 9) 

Le modèle d'ordre réduit de norme 𝐻2 sous-optimal pour le modèle original de haut ordre à ordre 

fractionnaire peut être obtenu en utilisant la procédure suivante [47]: 

1. Sélectionnez un modèle réduit initial 𝐺^𝑟/𝑚0(𝑠) 

2. Évaluez une erreur ∥∥𝐺̂(𝑠) − 𝐺̂𝑟/𝑚
0 (𝑠)∥∥

2
 à partir de l'équation (III. 9). 

3. Utilisez un algorithme d'optimisation (par exemple, l'algorithme de Powell [48]) pour 

itérer une étape afin d'obtenir un modèle estimé 𝐺̂𝑟/𝑚
1 (𝑠). plus précis. 

4. Définissez 𝐺̂𝑟/𝑚
0 (𝑠) ← 𝐺̂𝑟/𝑚

1 (𝑠), revenez à l'étape 2 jusqu'à l'obtention d'un modèle réduit 

optimal 𝐺̂𝑟/𝑚
∗ (𝑠). 

5. Extrayez le retard de 𝐺̂𝑟/𝑚
∗ (𝑠), le cas échéant. 

Nous appelons la procédure ci-dessus sous-optimale car la méthode d'Oustaloup est utilisée pour 

chaque terme sγ dans l'équation (III. 1), et l'approximation de Padé est utilisée pour les termes de 

retard pur. 

III.3 Règles d’ajustement des systèmes de premier ordre avec retard 

De nombreux algorithmes classiques de réglage PID sont proposés en partant du principe que le 

processus ou système peut être bien modélisée par un modèle de premier ordre avec temps mort 

(FOPDT). 

Le modèle FOPDT est exprimé par 

𝐺(𝑠) =
𝑘

𝑇𝑠 + 1
e−𝐿𝑠                                                                     (III. 10) 
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       Basé sur un tel modèle typique, de nombreux algorithmes de réglage de contrôleur PID peuvent 

être utilisés pour concevoir des contrôleurs PID d’ordre entier, de bonnes références peuvent être 

trouvées dans [49]. Par exemple, la formule de réglage classique de Ziegler–Nichols et l'algorithme 

de Wang–Juang–Chan [50] peuvent être utilisés pour concevoir des contrôleurs PID optimaux 

selon le critère ITAE. 

{
 
 

 
 𝐾p =

(0.7303 + 0.5307𝑇/𝐿)(𝑇 + 0.5𝐿)

𝐾(𝑇 + 𝐿)
𝑇i = 𝑇 + 0.5𝐿

𝑇d =
0.5𝑇𝐿

𝑇 + 0.5𝐿

                                         (III. 11) 

 

       Par conséquent, les procédures suivantes peuvent être utilisées pour concevoir des contrôleurs 

PID pour une classe de système d’ordre fractionnaire : 

1. Si le système peut être bien approximé par un modèle FOPDT, alors trouvez ses paramètres 

clés T , L et K. 

2. Concevez un contrôleur PID avec, par exemple, l'algorithme de Wang–Juang–Chan. 

3. Observez le comportement en boucle fermée sous ce contrôleur. Si le comportement n'est 

pas satisfaisant, essayez un autre algorithme de réglage. 

III.4 Application 1: Considérons le système FO-LTI non commensurable suivant : 

𝐺(𝑠) =
1

𝑠2.6+2.2𝑠1.5+2.9𝑠1.3+3.32𝑠0.9+1
,                                      (III. 12) 

Un modèle d'ordre extrêmement élevé (HOA : High Order Approximation) peut être obtenu avec 

le filtre d'Oustaloup, de sorte que : 

 

𝐺𝐻𝑂𝐴(𝑠)

=

0.01585 s20 +  39.38 s19 + 3.71e04 s18 + 1.66e07 s17 + 3.596e09 s16 + 3.515e11 s15

+1.72lel3 s14 + 4.398e14 s13 + 5.696e15 s12 + 3.434e16 s11 + 1.049e17 s10 + 1.68e17 s9

+1.366e17 s8 + 5.173el6 s7 +  9.902el5 s6 + 9.895el4 s5 + 4.963el3 s4 + 1.124el2 s3

+1.227el0 s^2 + 6.368𝑒07𝑠 + 1.259𝑒05
𝑠22 +  1989 𝑠21 +  1.394e06 𝑠20  +  4.299e08 𝑠19  +  5.985e10 𝑠18  +  4.079e12 𝑠19  +  1.437e14 𝑠16

+ 2.69815 𝑠15  +  2.772e16 𝑠14 +  1.685e17 𝑠13  +  6.224e17 𝑠12  +  1.378e18 𝑠11  +  1.773e18 𝑠10

+ 1.281e18 𝑠9  +  5.154e17 𝑠8  +  1.192e17 𝑠7  +  1.628e16 𝑠6  +  1.299e15 𝑠5  +  5.683e13 𝑠4  + 1.207el2 s3

 + 1.275el0 s2 + 6.488e07 s +  1.267e05

 

 

 

Et l'ordre de l'approximation rationnelle du modèle d'ordre original est le 22 pour 𝑁 =  5. Pour 

des valeurs plus grandes de 𝑁, l'ordre de l'approximation rationnelle peut être beaucoup plus élevé. 

Par exemple, l'ordre de l'approximation peut atteindre respectivement le 30ème et le 38ème  ordre 

pour les sélections 𝑁 =  7 et 𝑁 =  9, avec des coefficients extrêmement grands. 
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Les résultats de réduction de modèle approximatifs optimaux obtenus sont énumérés comme suit  

(𝑁 = 5;  𝑤1 = 1𝑒 − 3;  𝑤2 = 1𝑒3; ). 

𝐺2(𝑠) =
−0.298 𝑠2 + 0.9992 𝑠 + 0.1929  

𝑠3 +7.597𝑠2+2.146𝑠+0.1942
                                     (III.14) 

Continuous-time transfer function.          

𝐺3(𝑠) =
−0.01905 𝑠3 + 0.3121 𝑠2 + 2.261 𝑠 + 0.3235

𝑠4+10.47𝑠3 +17.16𝑠2+4.183𝑠+ 0.3256
                               (III.15) 

𝐺4(𝑠) =
−0.04183 𝑠4 +0.3479 𝑠3 + 1.544 𝑠2 + 5.474 𝑠 + 0.7693

𝑠5+8.236𝑠4+31.09𝑠3 +42.17𝑠2+10.04𝑠+0.7744
                        (III.16) 

Les réponses indiciaires peuvent être comparées dans la Figure 3.1, et il peut être constaté que 

l'approximation des différents ordres sont satisfaisantes. 

 

Figure III.1 Comparaison des réponses indicielle  

On peut constater qu'avec les modèles d'ordre inférieur obtenus, la réponse du système peut ne pas 

changer beaucoup. L'algorithme d'ajustement sous-optimal présenté peut être utile dans une classe 

d'approximation de systèmes linéaires d'ordre fractionnaire 

III.4.1 Commande PID classique appliquée au système fractionnaire 

Approchons-le d'abord avec la méthode d'Oustaloup, puis ajustons-le avec une structure de modèle 

fixe connue sous le nom de modèle de premier ordre avec retard (FOPDT), où 

𝐺(𝑠) =
𝑘

𝑇𝑠 + 1
e−𝐿𝑠                                                                  (III. 17) 
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Avec:  

𝐾: Le gain statique 

𝐿 : Constante de temps retard 

𝑇 : Constante de temps 

Le modèle FOPDT optimal obtenu est le suivant : 

 

𝐺r(𝑠) = 0.1836
e−0.827𝑠

𝑠+0.1836
.                                    (III.18) 

 

Un contrôleur PID peut être conçu avec l'algorithme de Wang-Juang-Chan dans (III. 19) 

 

𝐾p =
(0.7303 + 0.5307𝑇/𝐿)(𝑇 + 0.5𝐿)

𝐾(𝑇 + 𝐿)
,  𝑇i = 𝑇 + 0.5𝐿,  𝑇d =

0.5𝑇𝐿

𝑇 + 0.5𝐿
.                  (III. 19) 

            La comparaison de la réponse indicielle en boucle ouverte est montrée à la Figure III.2. On 

peut observer que l’approximation est assez efficace 

 

Figure III.2 Comparaison des réponses indicielle du modèle FOLPD optimal et du modèle original 

Considérons maintenant la conception d'un contrôleur PID à ordre entier pour le modèle réduit de 

manière optimale 𝐺𝑟(𝑠) et voyons si le contrôleur conçu fonctionne toujours pour le système 

original. Le contrôleur PID à ordre entier à concevoir est sous la forme suivante : 

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
+ 𝐾𝑑𝑠 
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𝐺𝑐(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

𝑇𝑖 =
𝐾𝑝
𝐾𝑖
, 𝑇𝑑 =

𝐾𝑑
𝐾𝑝

 

Avec 𝑇𝑖 et 𝑇𝑑 sont les constantes d’integration et derivation respectivement. 

Sur la base de cet algorithme de réglage (Eq.III.19), un contrôleur PID peut être conçu pour 

𝐺𝑟(𝑠) comme suit : 

On a :  𝐾 =  0.9934, 𝐿 =  0.8275 et 𝑇 =  5.4094. 

D’après l’algorithme donné en (eq.III.19) nous trouverons les paramètres de correcteur PID 

d’ordre entier : 

𝐾𝑝 =  3.9471, 𝑇𝑖 =  5.8232 et 𝑇𝑑 =  0.3843. 

Le contrôleur PID peut être conçu comme : 

𝐺c(𝑠) = 3.9474(1 +
1

5.8232𝑠
+ 0.3843𝑠). 

Les fonctions de transferts de modèle d'ordre extrêmement élevé obtenu avec le filtre d'Oustaloup 

du système fractionnaire et le correcteur d’ordre entier, ainsi le système fractionnaire avec le 

correcteur d’ordre entier sont données par les équations ci-dessous : 

systéme d′ordre élevé 𝐺𝐻𝑂𝐴+𝑃𝐼𝐷(𝑠)

= 

0.02404 s22 +  59.8 s21 +5.643e04 s20 +2.533e07 s19 + 5.521e09 s18 + 5.475e11 s17

+2.75el3 s16 +  7.354el4 s15 + 1.039el6 s14 +  7.488el6 s13 + 2.985el7 s12 + 6.921el7 s11

+9.415el7 s10 +7.317e17 s9 + 3.118e17 s8 +7.565e16 s7 + 1.069e16 s6 +8.683e14 s5

+3.81el3 s4 +  8.102ell s3 +  8.571e09 s2 +  4.366e07 s +  8.533e04
 𝑠23+ 1989 𝑠22  + 1.394e06 𝑠21 + 4.29e08 𝑠20 + 5.988e10 𝑠19  + 4.084e12 𝑠18 + 1.442e14 𝑠17

  + 2.726𝑒15𝑠16 + 2.845𝑒16𝑠15 + 1.789𝑒17𝑠14  + 6.973𝑒17𝑠13 +1.677e18 𝑠12 
+2.466𝑒18𝑠11 + 2.222𝑒18𝑠10 +1.247𝑒18𝑠9  + 4.311𝑒17𝑠8 +9.193𝑒16𝑠7 + 1.199𝑒16𝑠6

+9.252e14𝑠5 +3.93e13𝑠4 +8.229e11𝑠3  + 8.636e09𝑠2 + 4.379e07 s + 8.533e04

 

 

𝐺𝑠𝑦𝑠𝑓𝑟𝑎𝑐+𝑃𝐼𝐷(𝑠) =  
1.517 𝑠2 + 3.9471 𝑠 + 0.67783

𝑠3.6 + 3.3 𝑠2.5 + 2.9 𝑠2.3 + 1.517 𝑠2 + 3.32 𝑠1.9 + 4.9471𝑠 + 0.67783
 

   Enfin, la réponse en échelon du système FO-LTI original avec le contrôleur PID conçu 

ci-dessus est montrée dans la Figure (III.3).  
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Figure III.3 : Réponses indicielle en boucle fermée sous le contrôleur PID. 

On peut voir que les deux systèmes sont assez proches. Par conséquent, nous croyons que la 

méthode présentée peut être utilisée pour la conception de contrôleurs à ordre entier pour des 

systèmes FO-LTI généraux. 

Les diagrammes de Bode en boucle ouverte peuvent être obtenus comme indiqué à la Figure (III.4).  

 

Figure. III.4 : Comparaisons des diagrammes de Bode. 
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III.4.2 Commande PID Fractionnaire appliquée au système fractionnaire 

         L'approche d'optimisation numérique présentée dans la section 3.3 peut également être 

étendue aux problèmes de conception de contrôleurs PID à ordre fractionnaire pour des modèles 

de système à ordre fractionnaire donnés. Cette idée est d'abord démontrée à travers un simple 

exemple. Ensuite, des procédures de conception universelles sont présentées pour tous les systèmes 

linéaires à ordre fractionnaire. 

         Pour optimiser les paramètres de correcteur fractionnaire (FOPID) tout en veillant à ce qu'ils 

restent dans des bornes spécifiées nous avon utilisé une fonction Matlab `fminsearchbnd` qui 

étend `fminsearch` pour gérer les contraintes de bornes spécifiées. 

La syntaxe est : [x, fval] = fminsearchbnd(fun, x0, lb, ub). 

Description des paramètres 

 fun: La fonction à minimiser. 

 x0: L'estimation initiale des paramètres. 

 lb: Les bornes inférieures des paramètres. 

 ub: Les bornes supérieures des paramètres. 

Valeurs de retour 

 x: Le vecteur de paramètres qui minimise la fonction. 

 fval: La valeur minimale de la fonction. 

      Dans notre cas : Supposons que le temps de simulation est de 8 secondes, et aussi que les 

paramètres du contrôleur PID fractionnaire sont tous inférieurs à 30, et que les ordres fractionnaires 

sont dans l'intervalle (0, 2). Il est recommandé d'utiliser la fonction fminsearchbnd() pour trouver 

le contrôleur PID fractionnaire optimal. 

Le contrôleur PID fractionnaire optimal est : 

𝐺FOPID(𝑠) = 30 + 2.8766𝑠−1.1483 + 13.7401𝑠0.8928  

La fonction de transfert corrigée est : 

𝐺BF(𝑠)= 
13.745 s2.0407+30 s1.148+2.8786

𝑠3.748+3.3 s2.648+2.9 s2.448+3.32 s2.048+13.745 s2.0407+31 s1.148+2.8786
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Les réponses des systèmes sous ce contrôleur et celui obtenu dans l'exemple précédent sont 

présentées comme montré dans la Figure (III.5). On peut voir que le contrôleur PID à ordre 

fractionnaire est meilleur que celui à ordre entier. 

 

Figure III.5. Réponse indicielle sous le contrôleur PID fractionnaire optimal. 

La fonction Matlab `fpidtune` peux également être utilisée pour concevoir le contrôleur 

PID d’ordre entier optimal ou d’ordre fractionnaire optimal. `fpidtune` est une fonction MATLAB 

utilisée pour concevoir et régler des contrôleurs PID à ordre fractionnaire. Elle appartient 

généralement à une boîte à outils spécialisée comme FOMCON (Fractional-Order Modeling and 

Control) ou d'autres boîtes à outils dédiées au contrôle à ordre fractionnaire. 

La syntaxe est [Gc, info] = fpidtune(G, type, crossover_freq, varargin) 

Description des paramètres 

 G: La fonction de transfert de système que vous souhaitez contrôler. 

 type: Le type de contrôleur PID à concevoir. Il peut s'agir de 'P', 'PI', 'PD', 'PID', 'FOPID', 

etc. 

 crossover_freq: La fréquence de croisement désirée en radians par seconde. 

 varargin: Paramètres optionnels supplémentaires pour spécifier des marges de gain et de 

phase, par exemple: 

o 'GainMargin': La marge de gain désirée. 

o 'PhaseMargin': La marge de phase désirée. 
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Valeurs de retour 

 Gc: Le contrôleur PID à ordre fractionnaire conçu. 

 info: Informations sur le réglage, y compris les marges de gain et de phase atteintes, les 

fréquences de croisement, etc 

En appliquant la fonction Matlab ‘’fpidtune’’, nous trouverons les paramètres de correcteur PID 

d’ordre fractionnaire suivants : 

𝐾𝑝 =  28,8474 , 𝐾𝑖 =  3.1758,𝐾𝑑 = 15.0266 , 𝜆 = 1.1041 et 𝜇 = 0.8568. 

Le contrôleur PID fractionnaire optimal est : 

 

𝐺𝐹𝑂𝑃𝐼𝐷(𝑠) = 28,8474 +
 3.1758

𝑠1.1041
+ 15.0266 𝑠0.8568  

 

Le contrôleur PID d’ordre entier optimal est : 

𝐺PID(𝑠) = 30 +
3.9413

𝑠
+ 20.1348𝑠. 

        Les réponses indicielles en boucle fermée sous les deux contrôleurs sont présentées dans la 

Figure (III.6) On peut constater que la réponse en boucle fermée sous le contrôleur PID 

fractionnaire est bien meilleure que celle du contrôleur PID conventionnel pour le modèle de 

système à ordre fractionnaire. 

 

Figure III.6. Comparaison des différents contrôleurs  
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         Les réponses indicielles en boucle fermée pour les trois configurations (modèle 

fractionnaire + correcteur fractionnaire, modèle fractionnaire approximé + correcteur 

fractionnaire approximé et modèle fractionnaire approximé + correcteur d'ordre entier) sont 

présentées dans la Figure (III.7).  

 

Figure III.7. Comparaison des différentes configurations  

On constate que les réponses en boucle fermée pour le contrôleur PID fractionnaire et le PID 

fractionnaire approximé appliqués au système fractionnaire et au système fractionnaire approximé 

sont assez proches et nettement meilleures que les résultats obtenus en appliquant le contrôleur 

d'ordre entier. 

III.5 Application 2 : Système fractionnaire avec retard 

Considérant le système fractionnaire suivant : 

𝐺(𝑠) =
1

0.8𝑠2.2 + 0.5𝑠0.9 + 1
e−𝑠. 

III.5 .1 Commande PID classique appliquée au système fractionnaire avec retard 

FOPID-ITAE 

𝐺𝐹𝑂𝑃𝐼𝐷(𝑠) = 0.45966 +
0.5761

𝑠0.99627
+ 0.49337𝑠1.3792. 

Et 

𝐺𝑃𝐼𝐷(𝑠) = 0.0795+
0.5206

𝑠
+ 0.3587𝑠. 
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Les réponses indicielles en boucle fermée sous les trois contrôleurs sont présentées dans la 

Figure (III.8).  

 

Figure III.8. Réponses indicielles sous les contrôleurs PID fractionnaires optimaux. 

On peut constater que la réponse indicielle sous le contrôleur PID Frac-ITAE est satisfaisante, 

tandis que celle sous le contrôleur PID Frac-ISE est très médiocre, car le signal d'erreur est traité 

de manière égale à tous les instants. Par conséquent, dans la pratique, le critère ITAE est fortement 

recommandé. On observe également que le contrôleur PID à ordre entier optimal ne peut pas 

contrôler la plante de manière satisfaisante. 

III.6 Conclusion 

Le chapitre démontre clairement que les contrôleurs PID d'ordre fractionnaire sont supérieurs aux 

contrôleurs PID d'ordre entier pour les systèmes FO-LTI, y compris ceux avec retard. Les 

techniques d'approximation sous-optimale et les méthodes d'optimisation numérique sont efficaces 

pour concevoir des contrôleurs PID d'ordre fractionnaire qui améliorent les performances des 

systèmes fractionnaires. 
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Conclusion Générale 

 

L'étude présentée dans ce mémoire démontre de manière claire et convaincante la 

supériorité des contrôleurs PID d'ordre fractionnaire par rapport aux contrôleurs PID d'ordre entier 

pour les systèmes linéaires à temps invariant fractionnaires (FO-LTI), y compris ceux présentant 

des délais. Grâce à l'utilisation de techniques d'optimisation numérique et de méthodes 

d'approximation sous-optimale, il a été possible de concevoir des contrôleurs PID d'ordre 

fractionnaire qui améliorent significativement les performances des systèmes en termes de 

précision, de stabilité et de réactivité. 

Les études de cas et les simulations effectuées montrent que les contrôleurs PID 

fractionnaires permettent une meilleure précision, une stabilité accrue et une réactivité optimisée 

dans divers scénarios. Ces résultats soulignent leur pertinence pour des applications industrielles 

et de recherche avancée. La mise en œuvre de ces techniques offre des solutions robustes et 

flexibles face aux défis complexes des systèmes de contrôle modernes. De plus, les techniques 

d'approximation d'Oustaloup se sont révélées efficaces pour la conception de contrôleurs PID 

d'ordre fractionnaire, permettant ainsi des améliorations significatives des performances des 

systèmes FO-LTI et démontrant leur potentiel pour des applications pratiques. 

L'importance de cette recherche réside également dans sa capacité à proposer des approches 

novatrices pour le contrôle des systèmes fractionnaires, ouvrant la voie à de nouvelles possibilités 

dans le domaine de l'ingénierie et des sciences appliquées. Les résultats obtenus peuvent être 

utilisés comme base pour des développements futurs, visant toujours à améliorer les performances 

des systèmes de contrôle dans des environnements de plus en plus complexes et exigeants. 

En conclusion, cette étude met en lumière les avantages des contrôleurs PID d'ordre 

fractionnaire et l'efficacité des techniques d'optimisation numérique et d'approximation sous-

optimale pour améliorer les performances des systèmes FO-LTI. Ces contributions sont essentielles 

pour le développement de solutions de contrôle avancées, adaptées aux besoins des industries 

modernes et des recherches académiques. 
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Résumé : 

Ce mémoire de fin d’études explore les avantages des contrôleurs PID d'ordre fractionnaire pour 

les systèmes linéaires à temps invariant fractionnaires (FO-LTI). Les méthodes d'optimisation 

numérique et d'approximation sous-optimale utilisées démontrent une meilleure précision, stabilité 

et réactivité par rapport aux contrôleurs PID d'ordre entier. Les simulations et études de cas 

confirment leur pertinence pour des applications industrielles et de recherche avancée. Les résultats 

montrent également l'efficacité de l'optimisation par essaims particulaires (PSO) et des techniques 

d'approximation d'Oustaloup, soulignant leur potentiel pour des applications pratiques. 

Mots-clés : Calcul fractionnaire, Systèmes linéaires, Contrôleur PID, Optimisation numérique 

Abstract: 

This thesis explores the advantages of fractional-order PID controllers for fractional linear time-

invariant (FO-LTI) systems. The numerical optimization and suboptimal approximation methods 

used demonstrate better precision, stability, and responsiveness compared to integer-order PID 

controllers. Simulations and case studies confirm their relevance for industrial and advanced 

research applications. The results also show the effectiveness of particle swarm optimization (PSO) 

and Oustaloup approximation techniques, highlighting their potential for practical applications. 

Keywords: Robust control, Fractional-order systems, PID controller, Numerical optimization. 

     : ملخص

ذات الترتيب الكسري للأنظمة الخطية الزمنية الثابتة ذات الترتيب الكسري  PIDتستكشف هذه الأطروحة مزايا وحدات التحكم 

(FO-LTI تظهر طرق التحسين العددي والتقريب شبه الأمثل دقة واستقرارًا واستجابة أفضل مقارنة بوحدات التحكم .)PID 

كاة ودراسات الحالة على أهميتها للتطبيقات الصناعية المتقدمة والبحثية. تبرز النتائج أيضًا ذات الترتيب الصحيح. تؤكد المحا

 ، مما يؤكد على إمكاناتها للتطبيقات العملية.Oustaloup( وتقنيات تقريب PSOفعالية تحسين السرب الجزيئي )

 ، تحسين عدديPID حساب كسري، أنظمة خطية، متحكم :الكلمات الرئيسية
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