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Symboles et abréviations

e Symboles
Symboles Signification
u(t) le signal de commande
r(t) la consigne
x(t) le signal de retour
y(t) la grandeur a commander
C(s) la fonction de transfert du correcteur
G(s) la fonction de transfert de systéme
K, le gain proportionnel
K; le gain intégral
K, le gain dérivé
T; la constante d’intégration
T, la constante de dérivation
T constante de temps
L le retard apparent
r la fonction Gamma
E La fonction de Mittag-Leffler
Df Dérivation non entiere
17 Integration non entiéere
PIADH correcteurs d9ordre fractionnaire
A Ordre d’intégration

Ordre de dérivation
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e abréviations

abréviations Signification
PID Proportionnel Intégral Dérivé
FOPID Fractional Order PID
FOPDT First Order Plus Dead Time
IAE Integral Absolute Error
ITAE Integral Time Absolute Error
FO-LTI First-Order Linear Time-Invariant
FOTFs Fractional Order Transfer Function
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Introduction Générale

Les systémes dynamiques linéaires jouent un réle fondamental dans de nombreux domaines
d'ingénierie et de sciences appliquées. Traditionnellement, la modélisation et le controle de ces
systemes reposent sur des techniques basées sur des équations différentielles ordinaires d'ordre
entier. Cependant, il existe des situations ou ces approches traditionnelles montrent leurs limites,
notamment lorsque les systémes présentent des phénomeénes de retard, de diffusion ou de mémoire

a long terme. C'est la qu'interviennent les systemes d'ordre fractionnaire.

Les systemes d'ordre fractionnaire, caractérisés par des opérateurs différentiels ou intégraux
d'ordre non entier, offrent une représentation plus précise de nombreux phénomeénes physiques et
dynamiques [1-5]. Leur utilisation s'est répandue dans divers domaines, tels que la physique, la
biologie, I'économie et l'ingénierie. Cependant, le contrble de ces systéemes présente des défis

uniques en raison de leur complexité et de leurs propriétés dynamiques particulieres.

La commande robuste émerge comme une approche prometteuse pour traiter ces défis.
Contrairement aux meéthodes de contréle classiques, la commande robuste vise a concevoir des
systémes de contrble capables de maintenir des performances acceptables malgré les incertitudes
et les perturbations [6-8. Dans le contexte des systéemes d'ordre fractionnaire, la commande robuste
revét une importance particuliére en raison de la sensibilité accrue de ces systémes aux variations

parameétriques et aux non-linéarités [8-10].

Ce mémoire se concentre sur I'étude de la commande robuste des systemes linéaires d'ordre
fractionnaire. Notre objectif est de développer des méthodes et des outils permettant de concevoir
des régulateurs robustes capables de garantir la stabilité et les performances des systemes
fractionnaires face a diverses sources d'incertitudes. Pour ce faire, nous commencerons par une
revue approfondie des fondements théoriques des systemes d'ordre fractionnaire, ainsi que des
techniques de modélisation et d'analyse associées. Nous explorerons ensuite I'état de I'art en matiére
de commande robuste et présenterons des approches modernes adaptées aux systemes

fractionnaires.

Enfin, nous illustrerons l'efficacité de nos méthodes a travers des études de cas et des
simulations numériques. Ce travail contribuera a améliorer notre compréhension de la commande
des systemes d'ordre fractionnaire et ouvrira la voie a de nouvelles applications dans divers

domaines technologiques et scientifiques.
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CHAPITRE I

Systemes d’ordre Fractionnaire

1.1 Introduction

L'intérét pour les systemes d'ordre fractionnaire s'est manifesté dans de nombreux
domaines des sciences appliquées et de 'aménagement. En général, on décrit ces systemes a l'aide
d'équations différentielles d'ordre fractionnaire. Les fonctions de transfert irrationnelles sont
représentées dans le domaine fréquentiel. En raison de leur caractére irrationnel, les systemes
d'ordre fractionnaire ont été étudiés de maniere marginale. Puisque les solutions analytiques
précises ne sont pas disponibles, les méthodes numériques et d'approximation sont couramment

employées pour leur résolution, leur analyse et leur mise en ceuvre.

Le calcul fractionnaire a un domaine d’applications tres vaste [1], par exemples :
mécanique, automatique, théorie du controle, électricité, viscoélasticité, biologie, équation de

diffusion, électromagnétique, etc. [2].

Récemment, un intérét considérable pour I’utilisation du calcul fractionnaire dans les
différents domaines des systemes et de la commande a été porté [3]. Dans le domaine de
commande, des équations différentielles fractionnaire sont régies soit le systeme a commander soit
la loi de commande utilisée. La premiére idée qui basée sur 1’utilisation de la régulateur d’ordre
fractionnaire revient a Oustaloup, qui a proposé le commande Robuste d’Ordre Non Entier
(CRONE). Notons qu’Oustaloup avait notamment démontré, dans ces travaux, ’avantage du
régulateur CRONE par rapport au régulateur PID classique. Un régulateur d’ordre fractionnaire
PIYD* utilisant des actions dérivées et intégrales d’ordre non entier a été proposé plus tard. Et par
la suite, beaucoup de régulateur basée sur le calcul fractionnaire ont été déeveloppée (pour plus de
détails voir [4]).

Dans ce chapitre, nous allons présenter les concepts fondamentaux des opérateurs et des
systemes d'ordre fractionnaire, en expliquant leurs propriétés et les méthodes d'approximation
utilisées pour leur analyse et leur implémentation. Tout d'abord, nous définirons le calcul
fractionnaire et les opérateurs d'ordre fractionnaire, en détaillant leurs principales propriétés ainsi
que la transformée de Laplace des deérivées et intégrales d'ordre fractionnaire. Ensuite, nous
introduirons les fonctions les plus couramment utilisees dans le calcul fractionnaire et les
opérateurs non entiers, fournissant des solutions aux problémes liés a ces opérateurs, et nous

donnerons les transformées de Laplace correspondantes.
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1.2 Calcul fractionnaire

Le calcul fractionnaire est le champ de I’analyse mathématique et d’application des
intégrales et des dérivées d’ordre arbitraire. Le calcul fractionnaire peut étre considéré comme un
sujet ancien et encore nouveau. Ces dernicres années l’intérét considérable pour le calcul
fractionnaire a été stimulé par son application dans les différents domaines de la physique et de
I’ingénierie. La représentation mathématique des systémes fractionnaires dans le domaine temporel
et fréquentiel correspond a des équations différentielles a exploiter. Vu ’absence des méthodes
mathématiques, les systémes dynamiques d’ordre fractionnaire étaient jusque-la étudiés de fagon
marginale seulement, que ce soit en théorie ou en application [5], [6]. Pour des raisons d’analyse,
de synthése, et de simulation de tels systémes, I’utilisation des fonctions rationnelles pour
I’approximation s’avere d’une grande importance. Alors pour analyser et concevoir les systémes

de commande d’ordre fractionnaire il faut les approximer par des fonctions rationnelles [7].

L'opérateur intégro-différentiel cD]™ ou et t sont les limites de l'opération est défini ainsi:
A R(@) > 0,

DT R(@) =0, (1.1)
[dD)™ ... ..R(@) >0,

ou. est l'ordre de l'opération, généralement « € R

Les définitions de l'opérateur fractionnaire les plus courantes et les plus utilisées sont celles

de Riemann-Liouville et de Griinwald-Letnikov.

Avant de les présenter, nous commencerons par introduire quelques fonctions fondamentales

du calcul fractionnaire, qui faciliteront la compréhension de ces définitions.
1.2.1 Fonctions utilisées dans le calcul fractionnaire

Dans cette section, nous présenterons deux fonctions largement utilisées qui fournissent
généralement des solutions aux problemes du calcul fractionnaire : la fonction Gamma d'Euler et

la fonction de Mittag-Leffler.
a) La function Gamma

La fonction Gamma d’Euler est ’'une des fonctions de base utilisées dans le calcul

fractionnaire. La définition intégrale de cette fonction est donnée par [8] :

r@=["(*tt*Ndt, z>0 (1.2)
2
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L’intégration par partie de 1’équation (1.2) permet de donner la relation de récurrence suivante
F(z+1)=zxT(2) (1.3)
Puisque I' (1) = 1, en utilisant la relation (1.3), nous obtenons pour (z=1,2,3,...).
[(n+1)=n*I'(n)=n*x(n—1) =n! (1.4)

Notons que I’autre propriété importante de la fonction Gamma est qu’elle posséde des

poles simples pour (z=0, -1, -2, .. .). Son expression est :

BN G S R

Fz+1) =@+
@ 0! 0+z 1! 1+z

(1.5)
Avec :
+00
I'(z) = j (e~tt?1)dt, z>0
1
A partir de cette derniére équation il est clair que pour des valeurs entiéres négatives, la
fonction Gamma tend vers 1’infini.

b) Fonction de Mittag-Leffler

L’autre fonction qui est aussi tres important dans le calcul fractionnaire est la fonction de
Mittag-Leffler. La forme standard de cette fonction a un paramétre est donnée comme suit [9] :

Zk

Eoc = Z;? = 1m, (CK > 0) (|6)

Pour « = 1, on trouve la fonction exponentielle usuelle suivante :

E, =Y°=1 z¥ :2+°°:ﬁ (1.7)
1 k T (ak+1) K=0 " p '

1.2.2 Définitions fondamentales

Il existe plusieurs définitions mathématiques pour l'intégration et la dérivation d'ordre

fractionnaire. Parmi les plus notables, on peut mentionner les trois suivantes :

a) Définition de Grunwald-Letnikov (G-L)
Cette définition est peut considere comme une généralisation de la dérivée classique d’une

fonction f(t) d’ordre n € R qui prend la forme suivante :

D(t) = lim h" 52, (= 1)* (}) £ (¢ = jh) (18)
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Avec :
n _ n!
(j) = Jin—))! (1.9)
Remplacant le nombre entier n par « € R, on peut réécrire (1.9) comme suit
a\ _ al
(J') = Jita-p! (1.10)

Maintenant on définit la dérivée d’ordre fractionnaire d’ordre a de G-L comme suit [10] :
R = : .
LDEF(e) = lim = 3 7 N(=1)/ (%) £ (¢ = jh) (1.12)
Ou h est le pas d’échantillonnage,[x] représente la partie entiére de x et (‘J’) appelés

coefficient binominaux.
b) Définition de Riemann-Liouville (R-L)

Définition 1 Soient C et R les anneaux des nombres complexes et réels respectivement, R (.)

Symbolise la partie réelle d'un nombre complexe.

Soienta € C avec R (a) > 0,t, > R et fune fonction localement intégrable définie sur

[to, +ool.

1°f(2) =t J,. (£ =D [ f(D)d(x) (112)

I'(a)

Définition 2 Soient a € Cavec R(a) > 0, n un entier positif,t, € R et f une fonction
localement intégrable définie sur [t,, + o« [. La dérivée d'ordre fractionnaire o de la

fonction de f borne inférieure t, est définie par:

@ DEF(E) = st [ (= D71 [ f(D)d(7) (1.13)

Ou le nombre entier n est tel que (n —1) < a <n.
Remarque: pour simplifier I'écriture, on notera dans la suit 1% pour [§et D* pour D§

c) Définition de Caputo
Une autre définition de la dérivée d’ordre fractionnaire est proposée par Caputo comme

la forme suivante [11] :

(O
RLDEF(E) 2 mapn f(t) = —— [* L0 gy (1.14)

F(n—-a) “to (t—T)n~**1
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Ou
n—1<a<nneN.

Pour t, , & partir des deux des équations (1.13) et (1.14), on peut trouver les deux relations

suivantes :
RDSF(£) =¢ D™ F(1) + TRzhm f B (07) (1.15)
Ripa (£(6) Thzs FR(0%) £) =€ D (D) (1.16)

1.2.3 Propriétés des opérateurs d'ordre fractionnaire

Les principales propriétés des derivées et intégrales d'ordre fractionnaire sont les suivantes
[12] :

e Si f(2) est une fonction analytique de z , alors sa dérivée d'ordre fractionnaire D%f (z) est
une
fonction analytique de z et «

e Pour @ =mn, ou nest un entier, ’opération D*f(z) donne le méme résultat que la
différentiation classique d’ordre entier n.

e Pour a = 0, ’opération D¥f (z) est I’'opérateur identité : D°f (z) = f(2)

e La différentiation et l'intégration d'ordre fractionnaire sont des opérations linéaires:
D*f(af (2) + bg(2)) = aD*f(2) + bD*g(2)

e La loi additive (propriété du semi groupe) : D*DAf(z) = DPD%f(z) = D**Ff(z) est
valable
sous certaines contraintes sur la fonction f(z).

1.2.4 Transformation Laplace des opérateurs d’ordre fractionnaire

a) Intégration fractionnaire
La transformée de Laplace de I’opérateur d’intégration non entier défini par (1.6)
est donné par :
L{UEf ()} =s*F(s),a >0 (1.17)
Ol:(n—-1<a<n.
b) Dérivation fractionnaire

e Au sens de Riemann-Liouville(R-L)

LIDEF ()} = s%F(s) — Xpcd s*{FD{ ™V £ () (1.18)

to
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Les conditions initiales apparaissant dans (1.18) sont données en fonction d*“une dérivée
entiere évaluée a I’origine.
e Au sens de Caputo
L{L{EDEF (O)}} = s¥F (s) — Xpzg s@ k=D £K(0), a>0 (1.19)
Les conditions initiales apparaissant dans (1.19) sont données en fonction d““une dérivée
entiere évaluée a I’origine.
e Définition Grunwald-Letnikov(G-L)
L{L{DEF (D)) = s7F (s) (1.20)
Remarque 1 : Les transformées de Laplace des dérivées d’ordre non entier de Riemann Liouville
et de Caputo sont équivalentes si et seulement si le systeéme est au repos pour < 0 .Elles se réduisent

a
L{LEEDEF (03} = L{LEEDEF(0)}} = s7F (5) (1.21)

Remarque 2 : La transformée de Laplace de la dérivée de Riemann-Liouville est bien connue.
Mais son applicabilité en pratique est limitée a cause de 1“absence d“interprétation physique des

conditions initiales.
1.3 Modélisation des systemes d’ordre fractionnaire

Comme pour les systemes d'ordre entier, il existe différents modeéles pour représenter les

systémes d'ordre fractionnaire. On peut principalement citer :
1.3.1 Equation différentielle d’ordre fractionnaire

Un systeme linéaire mono-variable d'ordre non entier, invariant dans le temps, ayant pour

entrer u(t) et pour sortie y(t), est décrit par I'équation suivante :

a,D%y(t) + -+ + agD%y(t) = by, DPmu(t) + -+ + byDPou(t)
(1.21)

Sitous les ordres de dérivation sont des multiples entiers de ’ordre de base a, ¢’est-a dire,

(ay, by) € R le systéme est dit commensurable et 1’équation (1.21) devient :

hooaD¥ay(t) = Tt o by D au(t)
(1.22)

Sidans (1.22) a = g, q € Z* le systéme sera d’ordre rationnel.
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En appliquant la transformée de Laplace a de telles équations, et en supposant des
conditions initiales nulles, nous obtenons des fonctions de transfert avec des puissances d'ordre non

entier de la variable complexe de Laplace.
Dans le cas continu, la fonction de transfert d'un systeme d'ordre commensurable est

donnée par I'équation (1.23) :

m ayk
G(s) = Ze=e2K ) (1.23)

Shoo a(sHK
1.3.2 Représentation d’état d’ordre fractionnaire

La représentation d’état d’ordre fractionnaire est similaire a celle du cas entier, a la différence

que la dérivée d’ordre 1 est remplacée par la dérivée fractionnaire d’ordre o.

e Systemes continus
Dans le cas linéaire, la représentation d’état est donnée par :

{D“(t) = Ax (t) + B u(t)
y(t) = C x(t) + D u(t)

(1.24)
D%x(t) = [D¥ x,(t) D% x,(t) ... D% x,,()]”

Tel que :

x(t) : vecteur d’état de dimension n

D%x(t) : vecteur de la dérivée d’ordre a (avec a € R™).

Ou:

0<a<1u(t) € Rmest le vecteur colonne d’entrée, x(t) € R™ est le vecteur colonne

d’état, y(t) € RP est le vecteur colonne de sortie,A € R™ ™est la matrice d’état, B € R™ ™ est la

matrice d’entrée, C € RP*™ est la matrice de sortie, D € RP*™ est la matrice de transmission

directe.

En appliquant la transformée de Laplace et la définition de la dérivée d’ordre fractionnaire au
sens de Caputo, I’équation (1.24) devient:

{X(s) = (s%I, — A)"1BU(s) + (s*I, — A)"1s* 1x(0)

Y(s) = CX(S) + DU(s) (1.25)
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Notons que la définition de Caputo est nécessaire si nous voulons que les conditions initiales soient
exprimées comme les valeurs des états a I’instant = 0. Dans le cas ou les conditions initiales sont

nulles, 1’équation (1.25) devient:

{X(s) = (s%I, — A)"1BU(s) (1.26)
Y(s) = CX(S) + DU(s) '
Et la fonction de transfert correspondante a I’équation (1.26) s’écrit :
X(s) =G(s)U(s), G(s)=C(s%l,—A)B+D (1.27)

Ou I,, est la matrice identité de dimension (n x n) et G(s) représente la matrice de transfert de
dimension p linges et m colonnes. Son numérateur et son dénominateur sont des polyndémes

exprimes en termes de puissance entiéres de s®.

Dans le cas non linéaire, la représentation d’état est donnée par

{D“x(t) = f&x(@®,u(®) (1.28)

y(6) = P(x(6))
f() et () : étant les fonctions non linéaires.

D% : étant ’opérateur de la dérivée d’ordre « .

e Systemes discrets
De méme que pour le cas continu, les systemes discrets sont représentés dans le cas
lineaire ou non linéaire.
Le systeme linéaire d’ordre fractionnaire est représenté par le modéle d’état linéaire
d’ordre
Fractionnaire a temps discret comme suit [13] :

{A“x(k + 1) = Ax (k) + Bu(k)
y(k) = Cx(k) + Du(k)

A%x(k +1) = [A%,(k+1) A%,(k+1) .. A%, (k+ D]
A% : étant Popérateur de la différence d’ordre a,x(k) € R™,u(k) € R",y(k) €

(1.29)

R"sont respectivement les vecteurs d’état, d’entrée et de sortie et A,€ RN, B €
]RnXM D€ ]Rpxm.
Le systéme non lin¢aire d’ordre fractionnaire est représenté par le modéle d’état non

lineaire d’ordre fractionnaire a temps discret comme suit :

{D“x(t) = f(x(t),u(t))

y(©) = YD) (130
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f() et () : étant les fonctions non linéaires.

D : étant I’opérateur de la dérivée d’ordre « .

1.3.3 Stabilité des systemes fractionnaires

Les conditions de stabilité des systemes fractionnaires linéaires a temps invariant different
de celles des systemes linéaires d'ordre entier. En effet, les systemes fractionnaires peuvent avoir
des racines dans le demi-plan droit du plan complexe, alors que les systémes linéaires d'ordre entier

sont stables uniquement si toutes leurs racines ont une partie réelle strictement négative.

Désignons par 4; les valeurs propres de la matrice A . Le systéeme (1.24) est dit stable si la

condition :
larg — A;] >a§,1£i£n (1.31)

Est satisfaite pour toutes les valeurs propres de [10].
Remarque

e Poura =1, ontrouve la condition de stabilité des systéemes d’ordre entier.
e Pour la représentation fonction de transfert (1.25), désignons par p; définis comme étant

solutions de I’équation (s*~* — A) = 0. lls sont donnés par I’expression (1.30) :

1

pi=4,1<i<n (1.32)
Alors, la condition de stabilité dans la sen entrée bornée, sortie bornée est réalisée si la
condition :
T
larg(p)| > 7 (1.33)
“"u Im =
ém \;‘ ~ - vy /7
:mb(;: ‘~,,‘u n/2 (lﬂuou“\., . «n/2
. | stabrle 2 -
e gion Re > =2 . Re
mstable ..,_,_/ :'.:: ‘ll“l .
IS
a)<a<l1 b) I <a<2

1.3.4 Domaines d’application

L’application de méthodes basées sur les systemes différentiels fractionnaires et de plus

en plus fréquents dans les différents domaines scientifiques elles sont utilisées essentiellement

9
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comme outils de modélisation en mécanique, automatique, rhéologique. Attitre d’exemple ces
méthodes sont actuellement utilisées pour modéliser le comportement des matériaux, réaliser des

composants électriques par des correcteurs fractionnaires et dans le traitement d’image [2],[15].
1.3.5 Méthodes d’approximation des opérateurs d’ordre fractionnaire

Les méthodes d’approximation de I’opérateur d’ordre fractionnaire peuvent étre divisées en deux

catégories (fréquentielles et numériques) [16]:
1.3.5.1 Méthodes Fréquentielles

1.3.5.1.1 Approximations utilisant I'expansion des fractions continues et les techniques

d'interpolation

L'expansion des fractions continues [7], [17] est une méthode d'évaluation des fonctions qui
converge souvent beaucoup plus rapidement que le développement en série de puissances, et
converge dans un domaine plus large du plan complexe. Le résultat de cette approximation pour

une fonction irrationnelleG (s) peut étre exprimé sous la forme :

G(s) = ap(S) + —2C& (1.34)
a1(5)+2—b(s)
a2(5)+#

G(s) = ag(S) + 22 L2 b (1.34)

a(s)+ az(s)+az(s)+’

Ou a;(S) et b;(S) sont des fonctions rationnelles de la variable S ou des constantes.
L'application de cette méthode résulte en une fonction rationnelle G (s), qui est une approximation

de la fonction irrationnelle G (S).

D'autre part, pour l'interpolation, les fonctions rationnelles sont parfois supérieures aux
polyndmes, car elles permettent de modéliser les fonctions par des pbéles. Ces techniques sont
basées sur l'approximation d'une fonction irrationnelle G (S)par une fonction rationnelle définie par
le quotient de deux polyndmes de la variable S :

Pyu(s) Do+ D15+ Pyst
= 1.35
Qu(s) qo+q1S+-qu(s) ( )

G(S) = Rigiv1)..i+m) =

qui passe par les points (s;, G(5;)); - (Sixm » G(Sizm))-

Dans la suite nous présenterons quelques-unes des méthodes les plus connues de ce type.

10
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a) Meéthode Générale d'approximation des opérateurs intégro-différentiels d'ordre
fractionnaire :
En général, une approximation rationnelle de la fonction G(s) = s* tell que O< u <1
(Intégration d'ordre fractionnaire dans le domaine de Laplace) peut étre obtenue en utilisant
I'expansion des fractions continues des fonctions [18]:

1
- 1
(1+H

G (1.36)

Gr = (1+)" (1.37)
Ou Gp(s) est l'approximation pour les hautes fréquences (wT > 1),et G,(s)
I'approximation pour les basses fréquences (wT < 1).
b) Méthode de Carlson
La méthode proposée par Carlson tirée du processus régulier de Newton utilisé pour
I'approximation itérative de la racine d’ordre a, peut étre considérée ~ comme appartenant

a ce groupe [7]. Cette méthode se base sur I'hypothése suivante :

(H () — G(s) = 0 (1.39)
H(s) = (G(s)* (1.39)

En définissant = i =m = % a chaque itération, partant de la valeur initiale H,(s) =

1, une fonction rationnelle approximée peut étre donnée par :

. (@=m)(Hi_1 ()24 (g+m)G(s)
Hi(s) = Hi-a(8) (o s o2 (armas) (1.40)

Le modéle d’approximation est obtenu ensuite, en remplagant chaque opérateur d’ordre
fractionnaire de la fonction de transfert irrationnelle par son approximation rationnelle.
c¢) Méthode de Matsuda

La méthode proposée par [19] est basée sur I’approximation de 1’opérateur d’ordre
fractionnaire G(s) = s* par une fonction rationnelle G(s) en identifiant le modele
d’approximation a partir de son gain. Le gain est calculé en utilisant M fréquences reparties
dans une bande de fréquence [w,, wy] dans laquelle se fait 1’approximation. Pour un
ensemble

de points sélectionnés w;, i = 0,1,2 ... M, ’approximation prend la forme :

~ _ S—Wgog S—wWq1 S—wWy _ ,S_wi—l M
G(s) =ay+ O ROrPRe [ao,—ai lizy (1.41)
Ou
@ = (@), fo(w) = Gs), fisa () = -5 (1.42)

11
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Le mod¢le d’approximation est obtenu en remplagant chaque opérateur d’ordre
fractionnaire de la fonction de transfert irrationnelle explicite par son approximation.

1.3.5.1.2 Approximations utilisant I'ajustement de courbes ou les techniques d'identification

En régle générale, on peut utiliser toutes les techniques d'identification dans le domaine
fréquentiel pour obtenir une fonction rationnelle dont la réponse fréquentielle est proche de celle
de la fonction irrationnelle initiale. Par exemple, on peut accomplir cela en réduisant au minimum

la fonction codt suivante.
A 2
J =W (SIGW)Gw)| dw (1.43)

Ou W (s) est une fonction de pondération, G (w) la réponse fréquentielle originale, et G (w) est la
réponse fréquentielle de la fonction rationnelle approximée. Les deux approches les plus connues

sont celles proposées par Oustaloup et Charef.
a) La méthode d’Oustaloup

L’approximation d’Oustaloup d’un dérivateur généralisé, dont I’action différentielle couvre
tout ’espace des fréquences, repose sur une distribution récursive d’une infinité de zéros et de
poles réels négatifs (afin d’assurer un comportement a phase minimale) [19, 20]. Dans le cadre
d’une synthése réaliste (pratique) fondée sur un nombre fini de zéros et de pdles, il convient de
réduire le comportement différentiel généralisé sur un intervalle fréquentiel borné, choisi selon

les besoins de 1’application [21].

Ainsi, ’approximation de I’opérateur s%, « € R™, dans une bande de fréquence

[wq, wy] est donnée par une fonction rationnelle [22] :

G(s) = C [IN__ =tz (1.44)

1+s/wy,

En utilisant I'ensemble des formules de synthése suivantes :

! !
— 0, . — ) Wet1 _ Wk
wo = a®.wy; wy = aOSWu,W—’,’:1 = W—’,: (1.45)
WN
! log(-->)
w w loga
kl_p>1;%=q >0;N=—D20; =82, (1.46)
Wi Wi log(a,n) log(a,n)

w,, . étant le gain fréquentiel unité et la fréquence centrale d'une bande de fréquences
distribuées géométriqguement autour. Soit, w,, = \/w;,.w,w; et w;, sont la haute et basse

fréquence respectivement.

12
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b) Méthode de Charef : Fonction de singularité
La méthode appelée aussi la "Méthode de la fonction de singularité™ développée par
Charef et al. [12,23], la méthode d'approximation est différente selon que la fonction de
transfert d'ordre fractionnaire a approximer soit du premier ou du second ordre.
e Systeme du premier ordre fractionnaire
Pour un systéme d'ordre fractionnaire du premier ordre :

1

G(s)=—3 (1.47)
1+P—T)
On peut réécrire la fonction (1.43) comme suit (voir aussi [12]) :
N1+
G(s) = ;ﬁ = limy_ o M (1.48)
<1+i> H?LO(“F)
PT i

Ou(N + 1) est le nombre total des singularités qui peut étre déterminé par la bande de fréquences

du systeme. L'équation (1.46) peut étre tronquée a un nombre fini N et I'approximation devient :

M (1+7)
G(s) = —— =~ Zi 1.49
(s) (1+%)ﬁ H?’:o(“,,ii) (1.49)

Les poles et les zéros de la fonction de singularités peuvent étre obtenus comme suit :

p; = (ab)'poi = 1,2,3,..,N (1.50)
p; = (ab)'apyi = 1,2,3,...,N — 1 (1.51)
Avec :
P €p P 1
po = P;10298,q = 1070G-8), h = 10108, § = l:gg(—(;;) (1.52)

epest l'erreur tolérée en dB.

Avec une pente de —20 8 dB /dec et son approximation par des lignes droites en zig-zig avec

des pentes individuelles de —20 dB /dec et 0 dB /dec.

e Systeme du second ordre fractionnaire :

Pour un systeme de second ordre décrit par I'équation (1.51) :

13
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1

2
(5—2+2$i+1)
wh Wn

G(s) = B

Avec B un nombre réel positif tel que 0<B<1, on peut distinguer deux cas
Casou0<B<0,5

On peut exprimer la fonction (1.51) comme suit :

Avec a = EPet= 1 — 28, ce qui peut aussi étre approximé par la fonction,

(1) ms(a)

52 s N ( s)
(W—2+20!W—n+1) Hi:O 1+Pi

Les singularités (pbles P; et zéros Z;) sont donnees par les formules suivantes :
p; = (ab)'zi=1,23,..,N
z; = (ab)"'zi=23,...,N—1

Avec :

ep €p log(a)
= = 10(1_77) = 107) =
Z,=wnb, a=10 b = 10107, og(ab)

epest I’erreur tolérée en dB

(1.53)

(1.54)

(1.54)

(1.55)

(1.56)

L’ordre d’approximation N est calculé en fixant la bande de fréquences de travail, spécifiée par

wpax telle que: Py — 1 < wy,q, < Py ,Ce qui méne a la valeur suivante:

log(wzl—lax)

N = Partie entiére de I + 1] +1
log(ab)

G, (s) Peut alors étre écrite sous la forme d’une fonction paramétrique d’ordre N + 2:

bmosV+bm, sV 4 4bmy

Ge(s) =

SN+2+amlsN+1+...+amN
Les coefficients an,,. et by, sont calculés a partir des singularités P;, Z; ainsi que a et w,

Pour05<pf <1
14

(1.57)

(1.58)
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La fonction d’approximation est donnée comme suit:

(1.59)

Ou a = &Pet =1 — 2B ,qui développée comme précédemment avec les valeurs singuliéres

suivantes :
P, = (ab)i"lpyi=123,...,N (1.60)
Z, = (ab)lap,i=2,3,..,N -1 (1.61)
Avec:
ep €p. log(a)
7. = b, a = 101001-n), p = 10107, =

ep est 'erreur tolérée en dB.

Ge(s)peut alors étre écrite sous la forme de la fonction paramétrique (1.58).
1.3.5.1 Méthodes Numeriques

Le principe de ces méthodes consiste a approximer le modele d’ordre fractionnaire par un
modele rationnel discret en substituant I’opérateur de Laplace s dans le modéle fractionnaire par
son équivalent en temps discret. La discrétisation est une étape nécessaire lorsqu’on utilise des
machines fonctionnant en temps discret pour commander ou simuler des modéles continus. Dans
le cas des opérateurs d’ordre fractionnaire analogiques, il existe deux méthodes permettant

d’obtenir L’équivalent discret de ces opeérateurs analogiques [24].

a) Methode directe de discrétisation
La méthode directe de discrétisation est la premiere, car elle permet
d'approximativement l'intégrateur et le dérivateur d'ordre fractionnaire dans le domaine discret.
Parmi les techniques de discretisation existantes on peut citer les plus utilisées, la technique de

I’expansion en série entiére et la technique de 1’expansion en fraction continue [25]

e Discrétisation utilisant la technique de ’expansion de série entiére

La combinaison de la fonction génératrice d’Euler donnée par la régle de discrétisation

1-z71

de I’opérateur dérivateur s = et la technique de I’expansion de série entiere (PSE) pour
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- _1 m \ . .
I’opérateur dérivateur d’ordre fractionnaire s™ = (1 ; ) , Méne a I’expression suivante
[26]
sm T YR (- ()z7F (1.61)

Cette équation est I’expression du dérivateur d’ordre fractionnaire de GrundwaldLeitnikov
d’ordre m[27]. Alors, la drivée d’ordre fractionnaire m d’une fonction causale f(t) est obtenue a

partir de ’expression (II1.14) comme suit:

d™f(t=nT) —T-m Zl?:o(_l)k (lel)f((n — k)T) (|62)

dt

Ou T est la période d’échantillonnage.

1-z71

T

-m
L’exécution de la PSE pour I’opérateur intégrateur d’ordre fractionnaire s™™ = ( ) mene aussi a

la formule donnée par Lubich [28] comme suit:
sTm =Ty (-DF ()27 (1.63)

Donc, I’intégration d’ordre fractionnaire m d’une fonction causale f(t) est obtenue aussi a partir

de I’expression (1.62) par:

™f(t =nT) = T™ 2o~ D* (7)f (0 - OT) (1.64)
Ou I™ dénote ’opération d’intégration d’ordre fractionnaire m.

Une autre possibilité pour la discrétisation des opérateurs d’ordre fractionnaire analogiques avec

la technique de I’expansion de série entiere (PSE) est I'utilisation de la régle de Tustin (bilinéaire)

21-z71
T1+z71

s = comme une fonction génératrice

e Approximation discréte en utilisant I’intégration numérique et I’expansion de fraction
continue
La technique de I’expansion en fraction continue (CFE) qui approxime une fonction
irrationnelle par une fonction rationnelle a été aussi utilisée pour la discrétisation des
opérateurs d’ordre fractionnaire. Dans la référence [29], cette technique d’approximation a été

appliqué pour le dérivateur et I’intégrateur d’ordre fractionnaire s™et s~ respectivement, lorsque la

fonction génératrice de Tustin donnée par la régle de discrétisation de 1’opérateur dérivateur s =

21-z71 - , . . fox
- 1+§_1 est utilisé. Alors, I’expression suivante a été obtenue:
21—z~ 1\ ™ T 1-z-1\I™ Tm Pp(z71
stm= (2E) =P cpE|(22L) (=T 227 (1.65)
T14+Z-1 1+z-1 Qq(z71H)
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Ou T est la période d’échantillonnage, petq sont les ordres de 1’approximation des polynémes P

et Q.

1.4 Conclusion

Ce chapitre constitue une introduction aux éléments de base du calcul fractionnaire. Nous
y avons présenté quelques définitions mathématiques des opérateurs fractionnaires, ainsi que leurs
proprietés et leurs transformées de Laplace. Nous avons également introduit deux classes de
meéthodes d'approximation pour la dérivée et l'intégrale d'ordre fractionnaire : les méthodes

fréquentielles et les méthodes numériques.
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CHAPITRE Il
Commande PID et PID fractionnaire

1.1 Introduction

La commande PID (Proportionnelle-Intégrale-Dérivée) est une technique de régulation
largement utilisée dans les systéemes de contréle industriels en raison de sa simplicité de mise en
ceuvre et de son efficacité pour une large gamme d'applications. Le régulateur PID classique ajuste
la sortie d'un systeme en fonction de I'erreur entre la valeur mesurée et la valeur de consigne, en
utilisant une combinaison d'actions proportionnelle, intégrale et dérivée. Malgré sa popularité et sa
robustesse, le PID classique présente certaines limitations, notamment en termes de performance

face aux systémes présentant des dynamiques complexes et des comportements non linéaires.

Pour surmonter ces limitations, la commande PID fractionnaire a été introduite. Cette
méthode étend le concept de régulation PID en incorporant des dérivées et intégrales d'ordre
fractionnaire, offrant ainsi une flexibilite accrue et une capacité amelioree a gérer les systemes avec
des dynamiques complexes et des effets de mémoire. Le contr6leur PID fractionnaire (FOPID)
permet d'améliorer les performances du systeme en termes de rapidité, précision et stabilité, tout

en conservant les avantages de la commande PID classique.

Dans ce chapitre, nous explorerons les principes fondamentaux de la regulation, les
performances des systemes réglés, et les concepts clés de la commande PID classique et
fractionnaire. Nous commencerons par une revue des principes genéraux de la régulation, en
soulignant I'importance des performances des systemes réglés en termes de rapidité, précision et
stabilité. En outre, nous aborderons la méthode d'optimisation par essaims particulaires (PSO), une
technique moderne utilisée pour ajuster les parameétres des régulateurs PID et FOPID afin

d'optimiser leurs performances
11.2 Principe général de la régulation

Il est nécessaire de maintenir certaines dimensions physiques a des valeurs spécifiques dans
la plupart des machines industrielles et domestiques, méme si des variations externes ou internes
peuvent les altérer. Prenons I'exemple du niveau d'eau d'un réservoir, de la température d'une étuve,
de la vitesse et de la position des moteurs, qui sont intrinsequement variables et qui nécessitent

donc des mesures appropriées pour réguler ce processus.

Si les perturbations influencant la grandeur a contréler sont lentes ou négligeables, un simple

réglage en boucle ouverte permet d'obtenir et de maintenir la valeur souhaitée (par exemple, I'action
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sur un robinet d'eau). Cependant, dans la plupart des cas, ce type de réglage n'est pas suffisant car
il ne fournit pas d'information sur la sortie. 11 est alors nécessaire de comparer en permanence la
valeur mesurée de la grandeur réglée a celle désirée, et d'agir en consequence sur la grandeur
d'action, dite grandeur réglant. Cela constitue une boucle de régulation et, plus généralement, une
boucle d'asservissement. Cette boucle nécessite la mise en ceuvre d’un ensemble de moyens de
mesure, de traitement de signal ou de calcul, d’amplification et de commande d’actionneur,
constituant une chaine de régulation ou d’asservissement. La consigne est maintenue constante et
il se produit sur le procédé une modification d’une des entrées perturbatrices. L aspect régulation
est considéré comme le plus important dans le milieu industriel, car les valeurs des consignes sont
souvent fixes, néanmoins, pour tester les performances et la qualité d’une boucle de régulation, on

s’intéresse a I’aspect asservissement [8, 9].
11.2.1 Performances des systemes reglés [10]

Les performances des systemes réglés définies dans un cahier des charges, sont illustrées par
la figure (11.1).

v (1) 5% de Ay,

-5% de Ay,

ty; - est le temps de montée

t

Figure I11.1: Performances d’un systéme de commande

1.2.1.1 Rapidité

La rapidité quantifie le temps de réponse du systéme. Elle correspond au temps de réaction
de la sortie par rapport a la consigne. Le temps mis par la réponse pour ne plus dépasser 5% de la

valeur finale. Ce temps est retenu comme critére de rapidité 5%.
11.2.1.2 Précision

La précision quantifié I'erreur lorsque I'équilibre est atteint, Avec I’entrée sortie et la de méme
nature. Autrement, un systéme est précis si la sortie suit la consigne en toutes circonstances avec

un écart inférieur a la valeur définie dans un cahier des charges.
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11.2.1.3 Stabilité

On dit qu'un systéeme est stable lorsque celui-ci tend a revenir & son état d'équilibre pour une

consigne constante, la sortie doit étre constante.

ot AN AL
/ \/J \J

T‘ystéme instable Systeme stable *

Figure 11.2: Stabilité du systeme
11.3 Le correcteur

Le correcteur constitue la partie « intelligente » de 1’asservissement et sa détermination
judicieuse confére a 1’asservissement ses qualités. Aisé a modifier, le correcteur peut étre muni
d’une variation automatique de ses paramétres suivant la plage de fonctionnement du procéde, dans

le cas ou celle-ci évolue lentement [1].
11.4 But de la correction

Le but de la correction est de doter I’asservissement des qualités attendues, par le calcul et
I’implantation du correcteur nécessaire. Les opérateurs essentiels du correcteur sont réalisables a
partir d’amplificateurs a courant continu et d’¢éléments résistances/capacités. La réalisation
numérique peut se transposer aisément a partir d’un schéma analogique, en conservant la méme
organisation fonctionnelle et en associant un intégrateur numérique a chaque intégrateur

électronique [11, 9].
1.5 La commande PID classique

Aujourd’hui, le correcteur PID est la structure de commande la plus utilisée dans les boucles
de rétroaction. Plus de 90% des boucles d'asservissement sont des correcteurs PID. Généralement,
le correcteur PID classique est implémenté dans des systemes de commande a retour unitaire

classique donné par la figure (11.3).

uft) vit)

Cs) e G(s) T

Figure 11.3: Systéme de commande & retour unitaire classique
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ou:

u( t):Le signal de commande

e(t):L’ é cart ré sultant de la diffé rence entre la consigne r(t) et le signal de retour x(t)
y(t):La grandeur a commander

C (s):La fonction de transfert du correcteur

G (s):La fonction de transfert de systeme.

Le comportement du correcteur proportionnel intégral dérivé (PID) classique est décrit par

la loi de commande suivante :

u(t) = Kpe(t) + K; [; e (t)dt + Kq = (11.1)

En appliquant la transformée de Laplace a 1’équation (I1.1) avec les conditions initiales
nulles, on trouve :

K:
U(s) = KpE(s) + ?lE(s) + K;SE(s)
= Kp (1+ =+ Ty.5) E(s) (11.2)
Kp
Avec: T} = — & Ty =—
K; Kp
La fonction de transfert de correcteur PID peut étre exprimé par :

C(s) = Kp (1 +T—1is +Td.s) (11.3)

N U
Ou:C(s) =£

Les parametres du correcteur associés a ces différents termes sont le gain proportionnel K, ,
la constante d’intégration T; et la constante de dérivation T,;.Les trois termes proportionnel, intégral

et dérive possedent des caracteéristiques différentes et agissent de maniere complémentaire [3].
11.5.1 Paramétres d’un régulateur PID

L’idée de base de ce régulateur est de générer une commande u( t) donnée par le

régulateur PID [4], dans sa forme classique est décrite par 1’équation (11.1)
Elle est composée de la somme de trois termes :
e Le terme proportionnel<< P > (proportionnel a 1’erreur) :

P = K,e(t) (1.3)
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e Le terme intégral (proportionnel a I’intégrale de 1’erreur) :
t
I=K; [, e()dt (11.4)
e Leterme dérivatif < P > (proportionnel a la dérive de 1’erreur)

D =Ky =0 (11.4)

K,, K;, K4 est le gain proportionnel, intégral et dérivé respectivement.
11.5.2 Aspects fonctionnels du régulateur PID
La réalisation de la boucle d’asservissement par un PID comporte deux aspects essentiels :

e Le réglage du régulateur PID, pour lequel la connaissance d’un modéle dynamique du
procédé d’une part et les performances désirées d’autre part déterminent le choix de la

méthode de synthese.

e L’implantation du régulateur dans une version analogique ou numérique et dans une

configuration série, paralléle ou mixte [1].
11.5.2.1 Action Proportionnelle Intégrale Dérivée (PID)

Les régulateurs rencontrés sur les installations industrielles combinent les effets
proportionnel, intégral et dérivée. La fonction de transfert d’un régulateur PID standard, avec
filtrage de la dérivée est comme suit [1]

C(s) = Ky <1+T—1+ TdS) (I1.5)

Tgq
1+-2s

K,, K;, K4 Sont en fonction des valeurs des résistances et des capacités du montage montré par la

figure (11.4)

GHD
- L -
Eity L - S(th
N
R2
c1 ca

Figure 11.4: Schéma électronique du correcteur Proportionnel Intégral Dérivé
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I1.5.3 Algorithmes d’ajustement des paramétres de Contréleur PID

Le réglage d'un régulateur PID implique d'influencer les trois paramétres des différentes
actions (gain du proportionnel, gain de l'intégral, gain de la dérivée) afin d'obtenir la réponse
appropriée en termes de précision, de rapidité, de stabilité et de robustesse a la sortie du procédé.

Pour cela, il existe plusieurs méthodes de réglage [8] [16].

Il existe plusieurs méthodes de calcul des paramétres du régulateur PID. Elles sont basées

sur les spécifications temporelles comme
e Méthode Ziegler—Nichols (ZN)
e | algorithme de Wang—Juang—Chan

11.6 Controéleur PI*D* d’ordre fractionnaire

Le controleur PID est largement employé dans le domaine industriel en raison de sa
simplicité. Cependant, ses performances peuvent étre insuffisantes en raison de retards importants
dans le modéle du procéde ou de variations des parametres du procédé. D'autres algorithmes de
réglage sont utilisés dans cette situation, tels que le réglage par retour d'état, le réglage par modéle

interne, le réglage par régime glissant, et ainsi de suite.

Mais récemment, Podlubny, pour améliorer le comportement du correcteur PID,a proposer

le contrdleur PI*D* fractionnaire, comportant un intégrateur d’ordre A et un différentiateur d’ordre

I, ou A et u appartiennent a I’ensemble des nombre réels.

Le correcteur PI*D* d'ordre fractionnaire présente un avantage majeur en ce qu'il peut
parfaitement controler la dynamique des systemes d'ordre fractionnaire. Les correcteurs
PI*D*d'ordre fractionnaire présentent un autre avantage important : ils sont moins sensibles aux
variations des paramétres du systeme commandeé, ce qui améliore leur robustesse. Ceci est parce
que les correcteurs PI*D* d’ordre fractionnaire ayant deux degrés de liberté supplémentaires pour
mieux ajuster les propriétés dynamiques de systemes de commande d'ordre fractionnaire. Puisque
les ordres A et u sont des nombres réels arbitraires, le correcteur PI*D# d'ordre fractionnaire est
plus flexible et donne 1’avantage de mieux régler les propriétés dynamiques des systémes [35,36].
Des activités de recherche sont dirigées pour définir de nouvelles techniques de réglage des

correcteurs PI*D# d’ordre fractionnaire par I’extension de la théorie de la commande classique.
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11.6.1 Structure de correcteur PID fractionnaire

Le correcteur PID fractionnaire est implémenté dans des systémes de commande a retour
unitaire classique donné par la figure Fig.IV.1. Ou u( t) désigne le signal de commande et e( t)
I’écart résultant de la différence entre la consigne r( t) et la grandeur a commander y(t), C(t) est
la fonction de transfert du correcteur fractionnaire, Gp( t)est la fonction de transfert de systeme,

dans notre cas c’est le moteur a courant continu.

R(s) __E(s) O] Y(s)
C(s) : p(s) >
FOPID Controller
Correcteur Systéme

Figure 11.5: Systeme de commande a retour unitaire classique

L’équation de sortie du correcteur PI*D* d’ordre fractionnaire dans le domaine de temps

est donnée sous la forme :
u(t) = K, [e(®) + = D*(e(t)) + TuD*(e(t)) (11.6)

En appliquant la transformée de Laplace a I’équation (I1.6) avec les conditions initiales

nulles, la fonction de transfere de ce correcteur peut étre exprimé par :
C(s) = Ky + %+ Kgs* (11.7)

Ou les d’intégration K; et de dérivation K, sont liés aux paramétres de la forme classique par

les relations suivantes :

K, = % (11.8)
Kd = KpKd (“9)

La fonction de transféré C(s) d’un correcteur est :

C(s) = Kp(1 + = + Tpsh) (11.10)

-
En plus de K, K; et K, le correcteur PI*D* possédé deux autre paramétré de réglage 1 et

u . Ceci le rend plus flexible et donc une opportunité pour mieux ajuster les propriétés dynamiques
des systétmes de commande d’ordre fractionnaire. S’inspirant de I’idée du correcteur

PI*D*#;plisieurs travaux sur les technique de réglage sont actuellement publiés [33].
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11.6.2 Principe de fonctionnement

Par comparaison aux correcteurs classiques, les correcteurs d’ordre fractionnaire possedent
en plus deux autres parametres notés A et u qui présentent 1’ordre d’intégration et de dérivation
respectivement. Suivant la variation de ces deux parametres, on peut distinguer différentes

possibilités des correcteurs d’ordre fractionnaire. [30]

PD PID
®

(a) (h)
Figure 11.6: PI*D* (a) Ordre entier, (b) Ordre fractionnaire
D’apres cette figure, on peut donner les cas suivants :

e Lorsque A =0 etu = 0,0naun correcteur P classique.

Lorsque A = 1 et u = 0 ,0n a un correcteur PIclassique.

Lorsque A = 0 et u = 1 ,0n a un correcteur PD classique.

Lorsque A = 1 et u = 1 ,0n a un correcteurPID classique.

Lorsque 0 < A < 1etu =1 ,0naun correcteurPI fractionnaire.

Lorsque A = 0et 0 < u < 1 ,0naun correcteur PD fractionnaire.

e Lorsque0 <A< 1et0<u<1,0nauncorrecteur PID fractionnaire.

D’aprés ces résultats, on constante que les correcteurs classiques sont des cas particuliers des

correcteurs d’ordre fractionnaires.
1.7 La fractionalisation des Correcteurs Pl et PID

La fractionalisation de PI classique ainsi que PID classique est obtenue en modifiant le terme
integrateur dans les fonctions de transferts des correcteurs précédent. L’intégrateur 1/s est

fractionalisé comme suit [38, 39] :
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1
s

7

—>

— 1 >
S[X

\

S1—a

Figure 11.7: Fractionalisation d’un intégrateur

Tel que :

1 1 1

Avec a est un nombreréel: 0 < a < 1.

s  sts-a

La fonction de transfert d’un correcteur classique Pl est :

1
C =K, +—
p1(D) p T Ip
La fonction de transfert d’un correcteur Pl fractionnalisé est donnée comme suite :

1 1 kaip+1

CPIf = ﬁpa—l (

Avec0<a <1

Soit la fonction de transfert d’un correcteur classique PID donné par la fonction suivante :
1
C(s) =K,(1+ e + Tys)
Le correcteur PID fractionnalisé est défini par la fonction suivante [26] :

1 (kadTl'Sz + kaiS + kp

Ti

C(s) =< ( -

1 1 ((kadTisz+kais+kp

5% s(1-a) T

Avec0<a <1

11.8 Approximation d’Oustaloup

(11.11)

(11.12)

(11.13)

(11.14)

Dans ce mémoire de fin d’études, nous avons utilis¢ la méthode d'Oustaloup pour

approximer l'ordre intégral ou dérivateur fractionnaire.
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11.8.1 Parametres du filtre d'Oustaloup

Pour comprendre comment les paramétres du filtre, & savoir I'ordre et la bande de fréquence,

influencent la qualité de I'approximation, considérons I'exemple suivant de la fonction de transfert

d'ordre fractionnaire : G(s) = L Les différentes approximations d'Oustaloup de cette fonction

505

pour différents paramétres sont :
Pour un ordre de N = 5 dans une bande de fréquence de [0.01; 100]rad/s:

1 0.1s° + 7.497s* + 76.85s3 + 121.85% + 29.855s + 1
s05 " §5 4+ 29.85s% + 121.8s3 + 76.85s2 + 7.497s + 0.1

Pour un ordre de N = 5 dans une bande de fréquence de [0.001; 1000]rad/s:

1 0.03162s5 + 16.92s* + 537.1s3 + 1072s%2 + 134.4s + 1
s05 7§54+ 134.4s* + 1072s3 + 537.1s2 + 16.92s + 0.03162

Pour unordre de N = 7 dans une bande de fréquence de [0.01; 100]rad/s:

1 0.1s7 + 9.834s% + 204.55° + 1079s* + 149953 + 548.7s? + 50.94s + 1

s95  §7 4+ 50.94s6 + 548.755 + 1499s* + 1079s3 + 204.552 + 9.834s + 0.1

Les diagrammes de Bode de G (s) et de ses approximations d'Oustaloup sont montrés dans

la figure 11.7 .

Diagramme de Bode

30 Ty oo Trorrg T T T rrrrmr T
\ G(s)
20

- Gapp (s) pour N=5 dans [0.01,100]
——G,,, (5) pour N=5 dans [0.001,1000]
—Gapp (s) pour N=7 dans [0.01,100]

Amplitude (dB)
o
T

Phase (deg)

10 102 10° 10? 10*
Fréquence (rad/s)

Figure 11.8: Diagrammes de Bode de la fonction G(s) et de ses approximations d'Oustaloup
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A partir de la figure ci-dessus, nous pouvons observer les points suivants :

o Engénéral, le filtre d'Oustaloup donne une approximation précise des fonctions de transfert
d'ordre fractionnaire dans la bande de fréquence souhaitée.

e En dehors de la bande de fréquence d'Oustaloup, la fonction de transfert approximee
présente une amplitude et une phase différentes de celles de la fonction réelle.

e La phase de la fonction approximée est plus sensible que I'amplitude, ou nous observons
qu'elle ne correspond pas a la phase de la fonction réelle prés des fréquences de transition
wyp et wy,.

o L'élargissement de la bande de fréquence entraine des erreurs d'approximation ou les
valeurs de la phase et de lI'amplitude de la fonction approximée commencent a osciller
autour des valeurs de la phase et de lI'amplitude de la fonction réelle.

o L'augmentation de l'ordre du filtre diminue les erreurs d'approximation dans la bande de

fréquence, mais augmente le temps de calcul.
11.9 Optimisation par essaim particulaire (PSO)

11.9.1. Définition

L’optimisation par essaim de particules (OEP) ou (particle swarm optimization) (PSO) en
anglais, est une technique d’optimisation parallele développée par Kennedy et Eberhart, comme
une alternative aux algorithmes génétiques standards. Ces algorithmes sont inspirés des essaims
d’insectes ou des bancs de poissons ou des nuées d’oiseaux Figure (11.8) et de leurs mouvements
coordonnés. En effet, tout comme ces animaux se déplacent en groupe pour trouver la source de
nourriture ou éviter les prédateurs, les algorithmes a essaim de particules recherchent des solutions

pour un probléme d’optimisation [28].

Les individus de 1’algorithme sont appelés particules et la population est appelée essaim.
Dans cet algorithme, une particule décide de son prochain mouvement en fonction de sa propre
expérience, qui est dans ce cas la mémoire de la meilleure position qu’elle a rencontrée, et en
fonction de son meilleur voisin. Ce voisinage peut étre défini spatialement en prenant par exemple
la distance euclidienne entre les positions de deux particules ou sociométrique ment (position dans
I’essaim de I’individu) [29].
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Les nouvelles vitesses et directions de la particule seront définies en fonction de trois

tendances : la propension a suivre son propre chemin, sa tendance a revenir vers sa meilleure

position atteinte et sa tendance a aller vers son meilleur voisin.

11.9.2. Principe de base de I’algorithme (PSO)

Figure 11.9: Groupe de : (a) Oiseaux, (b) Poissons

Dans le PSO, on appelle (particule) chaque individu de la population, tandis que la

population est appelée (swarm). Il est important de souligner que les mouvements des autres

particules dans la méme population peuvent étre utilisés par la particule pour ajuster sa position et

sa vitesse pendant le processus d'optimisation. Chaque individu se sert des informations locales

qu'il peut obtenir sur le déplacement de ses voisins les plus proches pour prendre sa décision de

déplacement. Il suffit de régles tres simples telles que « étre prés des autres », « aller dans la méme

direction », « aller a la méme vitesse » pour maintenir la cohésion du groupe dans son ensemble.

L’espace de recherche est défini comme « voisinage », différentes topologies sont

considérées : Topologie en (étoile, rayon, circulaire,.), le plus utilisé est le circulaire tel que

schématisé sur la figure (111.7) [30]

‘i" ,';. - - —
. ,-'.. :1.'
V7O e @3

L H
®
H " ".4

Figure 11.10: Le cercle virtuel pour un warm de sept particules. Le groupe d’information de taille trois de

la particule 1 est composé des particules 1, 2 et 7
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11.9.3. Définition de la position et de la vitesse courante associée a une particule

Les particules sont caractérisées par deux caractéristiques principales : leur position et leur
vitesse. La position de chaque particule correspond a un point dans I'espace de recherche, ce qui
peut étre une solution potentielle au probleme d'optimisation. La vitesse est utilisée pour définir la
direction vers une position nouvelle. Les propriétés des particules changent a chaque itération. Elles
sont mises a jour par les équations (111.9) [31]

v = w.vf + cr.rand; (Ppestij — XI5 + co.rand, (gpesej — X55)
(IL15)
xkHt = x4 plet
=12, Npj=12......, Ng
k=12.... , iteryqx : désignelerangdel’itération.

Ou:
e N,:Nombre de particules de ’essaim.
e N,;:Nombre de variables du probleme (c-a-d dimension d’une particule)
e itemyq:Nombre maximal d’itération.

e vf5: La vitesse de la j“™ composante de la i'¢ me particule de I'essaim, a la k'é me

itération.

®  Dpestij: LA j*me composante de la meilleure position occupée par la i*™€ particule de

I’essaim, enregistrée dans les itérations précédentes (particule best).

®  Jpestj: La jiéme composante de la meilleure position occupée par la meilleure particule

globale de I’essaim (global best).
e xf:Laj'¢ me coordonnée de la position actuelle de la particule i, a la k™™ itération.

e : est une pondération qui change a chaque itération. Elle est calculée par 1’expression :

. Wmax — Wnmin
w(iter) = Wmax BT am— iter
itetmax

iter: Le rang de I'itération actuelle.
W, q.:La valeur initiale de la pondération, on la prend généralement égale a 0.9

w.in:Valeur finale de la pondération, elle est comprise entre 0.3 et 0.4.
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cq et ¢, Sont les coefficients d“accélération elles caractérisent la capacité de la particule a chercher
dans un autre endroit de 1’espace de recherche, ou bien a affiner sa recherche a I’endroit ou elle se

trouve. En général, on choisit c; et ¢, telsque ¢; + ¢, < 4.
rand, et rand, Sont deux nombres aléatoires compris entre 0 et 1 [32].

L’analyse de 1’équation (I1.15), schématisée par la figure (11.10), montre que 1’évolution de

la vitesse d’une particule est la somme de trois termes et meéne aux constatations suivantes:

e Le premier terme v;;: c’est la direction précédente, elle signifie que la particule continue

d’évoluer dans le méme sens, sans tenir compte ni de Py, Ni de g,.s: (elle avance en

aveugle).

o Le deuxiéme terme (Ppeq, T xﬁj-): indique la direction vers la meilleure position déja

occupee par la particule x{‘j (elle fait confiance a sa propre expérience) .

e Le troisieme terme (gbest]- —xﬁj-): indique la direction vers la meilleure position déja

occupée par ’ensemble de I’essaim (elle fait confiance au groupe).

Ensuite chacun de ces trois termes est pondéré par un coefficient qui permet de favoriser I'un ou

’autre de ces trois termes puisqu’a la fin. On fait leur somme. Voir La figure (11.10)

Vers sa meilleure

performance
- Nouvelle
Position ——7~ g pOsition Vers la meilleure
actuelle . —> performance des

particules voisines

Vers le point
accessible avec sa
vitesse courante

Figure 11.11: Schéma de principe du déplacement d’une particule

Pour réaliser son prochain mouvement, chaque particule combine trois tendances : suivre sa
vitesse propre, revenir vers sa meilleure performance, aller vers la meilleure performance de ses

informatrices.
11.9.4. L’organigramme et les étapes de la méthode PSO

L’algorithme de d’optimisation par Essaim de Particules PSO peut étre décrit comme suit:
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Initialisation de population

v

Caleul de la fitness de chaque particule
|

¥
Calcul de la meilleure fitness de lo population actuelle

.

Calcul de la meilleure fitness de toutes les populations

Calcul de la vitesse
Calcul de la position
T=T=+I

Caleul de la fonctlon sélective de la
nouvelle population

Terminer

Resultat

Figure 11.12: Organigramme de la méthode PSO

167 étape: Initialisation des coefficients c; et ¢, ,le coefficient d’inertie (w)

2¢émeétape: La création de la population initiale aléatoirement et le calcul de la fitness de chaque
particule (P,.q;): la meilleure position de la particule i dans la population actuelle ; (Pgbest):la
meilleure position dans toute les populations (la meilleure des meilleures).

3émegtape: Le calcul de la nouvelle vitesse et nouvelle position de chaque particule

4¢megtape: Le calcul de la meilleure fitness de la population initiale et comparer pan avec

précédente pour trouver la meilleure de toute les populations (Pgbest).

5émestape::Incrémentation du nombre d’itération t=t+1.

6°™¢ Etape: Siun critére d“arrét est satisfait alors passer a I“étape suivante. Autrement, aller a la

3éme étape.

7¢me étape : La position enregistrée dans (Pybest ) est la solution optimale.
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11.10. Conclusion

Ce chapitre a fourni une compréhension approfondie des principes fondamentaux de la
régulation, en mettant en lumiere les performances des systémes réglés en termes de rapidité,
précision et stabilité. Nous avons exploré les concepts clés de la commande PID classique et
fractionnaire, soulignant les avantages et les limitations de chacune. En particulier, nous avons
démontré comment la commande PID fractionnaire offre une flexibilité accrue pour les systémes
complexes. Enfin, nous avons introduit la méthode d'optimisation par essaims particulaires (PSO)
comme une technique efficace pour ajuster les parametres des régulateurs PID et FOPID,
optimisant ainsi leurs performances pour répondre aux exigences spécifiques des applications

industrielles.
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Chapitre 111 :

Simulations & Applications

I11.1. Introduction

Dans ce chapitre nous allons présenter deux exemples de simulation, d’un systéme
fractionnaire et d’un systéme fractionnaire avec retard en utilisant les algorithmes de commande
PID d’ordre entier et d’ordre fractionnaire présenté dans les chapitres I & Il . Nous montrons aussi

que la supériorité de contréleur fractionnaire.

I11.2 Approximation sous-optimale des FOTFs

Dans cette section, nous considérons les systéemes généralisés linéaires a temps invariant
(FO-LTI) avec des ordres fractionnaires non commensurables comme suit :

bysYm + by _qsYm-1 + .-+ bys"1 + b
G(s) = = m-l ! 0 (111. 1)
a,s’ + a,_,sM-1 +---+ a,;8™M + q,

Utiliser les schémas d'approximation susmentionnés pour un seul s™ puis pour le systéme
général FO-LTI (111.1) pourrait étre tres fastidieux, conduisant a un modéle de tres haut ordre. Dans
cette section, nous proposons dutiliser un algorithme numérique pour obtenir une bonne
approximation de la fonction de transfert globale (I11.1) en utilisant une fonction de transfert
rationnelle d'ordre entier a dimension finie avec un terme de retard possible, et illustrons comment
utiliser le modele d'ordre entier approximé pour la conception d'un contréleur d'ordre entier.

Notre objectif maintenant est de trouver un modele d'ordre entier approximatif avec un ordre
relativement bas, éventuellement avec un retard temporel sous la forme suivante :

Pis" + -+ BrS + Brig e TS
sS4 as™ T+t a1+ ay,

Gr/mq(S) = (111. 2)

Une fonction objectif pour minimiser la norme H, du signal d'erreur de réduction e(t) peut étre
définie comme suit :

] = mein iié(s) - Gr/m,r(s)iizl (11L. 3)
ou @ est I'ensemble des parametres a optimiser de maniére a ce que :

0 =By, .. Pras, -, iy, 7] (111. 4)

Pour une évaluation aisée du critere /, le terme retarde dans le modele d'ordre réduit G, - (s)peut
étre davantage approximé par une fonction rationnelle G,,,(s) en utilisant la technique
d'approximation de Padé [47]. Ainsi, le critére révisé peut alors étre défini par :

J = minf|6(s) = Grpm(), (1L 5)
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et le calcul de la norme H,peut étre évalué de maniere récursive en utilisant I'algorithme .

Supposons que pour une fonction de transfert stable du type E(s) = G(s) — Gy/m(s) = B(s)/A(s),
les polyndmes A, (s) et B, (s) peuvent étre définis de telle sorte que :

Ap(s) = af + aks + -+ aks* By (s) = b¥ + b¥s + - + bk_,sk1 (11L. 6)

Les valeurs de a¥~* et b¥~peuvent étre évaluées de maniére récursive a partir de :

g1 = {a{<+1, LV 0k — 1 (I1L.7)
' a¥,, —agal,,, iodd t

Et

k .
bt = {b?l, e k-1, (111.8)
biy1 — Brajy, iodd

Ol ay, = ak/a¥ et B, = b¥/ak.

La norme H, du signal d'erreur de réduction approximatif é(t) peut étre évaluée a partir de :
n n 2
Bi (p1)
]=27=zzkk_ (111.9)

Le modele d'ordre réduit de norme H, sous-optimal pour le modéle original de haut ordre & ordre
fractionnaire peut étre obtenu en utilisant la procédure suivante [47]:

1. Sélectionnez un modele réduit initial G*r/mO0(s)
Evaluez une erreur |G (s) — G2 (s) ii2 a partir de I'équation (II1. 9).
Utilisez un algorithme d'optimisation (par exemple, l'algorithme de Powell [48]) pour
itérer une étape afin d'obtenir un modéle estimé C?rl/m (s). plus précis.

4. Définissez @S/m(s) « @rl/m(s), revenez a I'étape 2 jusqu'a I'obtention d'un modeéle réduit
optimal G, ().

5. Extrayez le retard de G /m (5), le cas échéant.

Nous appelons la procédure ci-dessus sous-optimale car la méthode d'Oustaloup est utilisée pour
chaque terme s¥ dans I'équation (III. 1), et I'approximation de Padé est utilisée pour les termes de
retard pur.

I11.3 Régles d’ajustement des systémes de premier ordre avec retard

De nombreux algorithmes classiques de réglage PID sont proposés en partant du principe que le
processus ou systeme peut étre bien modélisée par un modéle de premier ordre avec temps mort
(FOPDT).

Le modéle FOPDT est exprimé par

k
= —Ls
G(s) Tsr1¢ (111. 10)
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Basé sur un tel modele typique, de nombreux algorithmes de réglage de contrdleur PID peuvent
étre utilisés pour concevoir des controleurs PID d’ordre entier, de bonnes références peuvent étre
trouvées dans [49]. Par exemple, la formule de réglage classique de Ziegler—Nichols et I'algorithme
de Wang-Juang—Chan [50] peuvent étre utilisés pour concevoir des contrbleurs PID optimaux

selon le critére ITAE.

(¢ _ (07303 +05307T/L)(T +05L)
| % = K(T +1L)
4 T, =T +0.5L (1L 11)
I 0.5TL
7
T+ 0.5L

Par conséquent, les procédures suivantes peuvent étre utilisées pour concevoir des contrdleurs
PID pour une classe de systéme d’ordre fractionnaire :
1. Sile systeme peut étre bien approxime par un modele FOPDT, alors trouvez ses parametres
clesT,LetK
2. Concevez un controleur PID avec, par exemple, I'algorithme de Wang—Juang—Chan.
3. Observez le comportement en boucle fermée sous ce contréleur. Si le comportement n'est

pas satisfaisant, essayez un autre algorithme de réglage.

111.4 Application 1: Considérons le systtme FO-LTI non commensurable suivant :

1
§2:642.2515+2.9513+3.32509+1’

G(s) = (11 12)

Un modele d'ordre extrémement élevé (HOA : High Order Approximation) peut étre obtenu avec
le filtre d'Oustaloup, de sorte que :

Groa(s)
0.01585 529 + 39.38 5% + 3.71e04 s'® + 1.66e07 s7 + 3.596e09 s'® + 3.515e11 s1°
+1.721el3 s'* + 4.398e14 s'2 + 5.696e15 s'? + 3.434e16 s'* + 1.049e17 s'° + 1.68e17 s°
+1.366e17 s® + 5.173el6 s7 + 9.902el5 s® + 9.895el4 s5 + 4.963el3 s* + 1.124e€l2 s3
+1.227el0 s*2 + 6.368e07s + 1.259e05
$22 4+ 1989 s21 + 1.394e06 s2° + 4.299e08 s1° + 5.985e10 s18 + 4.079e12 s1° + 1.437el14 s16
+ 2.69815 s15 + 2.772e16 s1* + 1.685e17 s13 + 6.224el17 s12 + 1.378e18 st + 1.773e18 s10
+ 1.281e18 s° + 5.154e17 s + 1.192e17 s7 + 1.628e16 s® + 1.299el5 s> + 5.683e13 s* + 1.207el2 s3
+ 1.275el0 s2 + 6.488e07 s + 1.267e05

Et l'ordre de l'approximation rationnelle du modeéle d'ordre original est le 22 pour N = 5. Pour
des valeurs plus grandes de N, l'ordre de lI'approximation rationnelle peut étre beaucoup plus éleve.
Par exemple, l'ordre de l'approximation peut atteindre respectivement le 30°™ et le 38°™ ordre

pour les sélections N = 7et N = 9, avec des coefficients extrémement grands.
36



CHAPITRE |11 Simulations & Applications

Les résultats de réduction de modele approximatifs optimaux obtenus sont énumérés comme suit
(N=5; wl=1e—-3; w2 =1e3;).

—0.298 5% + 0.9992 s + 0.1929

G,(s) = .14
2(5) $3 +7.5975242.1465+0.1942 ( )
Continuous-time transfer function.
—0.01905 s3 + 0.3121 5% + 2.261 s + 0.3235
G3(s) = ” > (111.15)
s4410.4753 +17.16524+4.183s+ 0.3256
—0.04183 s* +0.3479 s3 + 1.544 52 + 5.474 s + 0.7693
G4(s) = > (111.16)
$548.2365%+31.0953 +42.17524+10.045+0.7744

Les réponses indiciaires peuvent étre comparées dans la Figure 3.1, et il peut étre constaté que

I'approximation des différents ordres sont satisfaisantes.

Réponse indicielle

1.2 T T T T T
1 - T~ T—— -
= = ((s): fonction fractionnaire
08F G2_approx (s) réduit d'ordre 2/3 ||
G3_approx (s) réduit d'ordre 3/4
S 06 —— G4_approx (s) réduit d'ordre 4/5 | |
3 f
= /
g ‘
< 0471 / ]
/
0.2 / g
ol ]
_0.2 1 1 1 1 1
0 10 20 30 40 50 60

Temps (seconds)

Figure 111.1 Comparaison des réponses indicielle

On peut constater qu'avec les modeles d'ordre inférieur obtenus, la réponse du systeme peut ne pas
changer beaucoup. L'algorithme d'ajustement sous-optimal présenté peut étre utile dans une classe

d'approximation de systemes linéaires d'ordre fractionnaire

111.4.1 Commande PID classique appliquée au systéeme fractionnaire

Approchons-le d'abord avec la méthode d'Oustaloup, puis ajustons-le avec une structure de modéle

fixe connue sous le nom de modéle de premier ordre avec retard (FOPDT), ou

k

G =
(s) Ts+1

eLs (111. 17)
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AVec:

K: Le gain statique

L : Constante de temps retard

T : Constante de temps

Le modéle FOPDT optimal obtenu est le suivant :

—0.827s

e
G.(s) = 01836m (11.18)

Un contrdleur PID peut étre congu avec l'algorithme de Wang-Juang-Chan dans (I11. 19)

« _ (0.7303 + 0.5307T/L)(T +0.5L) 0.5TL

To=T+05L, Ty= — o I 1
b KT +1) =T +05L Ta =7 5e7 (H1.19)

La comparaison de la réponse indicielle en boucle ouverte est montrée a la Figure 111.2. On

peut observer que 1’approximation est assez efficace

Réponse indicielle

1.2

= = Systéme fractionnaire
le modéle approximé FOPDT

10 BT

Amplitude

0 10 20 30 40 50 60
Temps (seconds)

Figure 111.2 Comparaison des réponses indicielle du modéle FOLPD optimal et du modéle original

Considérons maintenant la conception d'un contr6leur PID a ordre entier pour le modele réduit de
maniére optimale G, (s) et voyons si le contréleur congu fonctionne toujours pour le systéme

original. Le contréleur PID a ordre entier a concevoir est sous la forme suivante :

K:
G.(s) = K, + ?l + K;s
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1
G.(s) =K,(1 +ﬁ+ T;s)

=

Kq
T, =-L2,T; =—
L Kp

)
i

Avec T; et T; sont les constantes d’integration et derivation respectivement.

Sur la base de cet algorithme de réglage (Eq.I11.19), un contrdleur PID peut étre congu pour

G,-(s) comme suit :
Ona: K = 0.9934,L = 0.8275etT = 5.4094.

D’aprés I’algorithme donné en (eq.111.19) nous trouverons les parameétres de correcteur PID

d’ordre entier :
Kp = 3.9471,Ti = 5.8232etTd = 0.3843.

Le contrOleur PID peut étre congu comme :

G.(s) = 3.9474(1 + + 0.3843s).

5.8232s

Les fonctions de transferts de modéle d'ordre extrémement élevé obtenu avec le filtre d'Oustaloup
du systeme fractionnaire et le correcteur d’ordre entier, ainsi le systéme fractionnaire avec le

correcteur d’ordre entier sont données par les équations ci-dessous :

systéme d’ordre élevé G oa+pip(S)

0.02404 s%2 + 59.8 s?1 4+ 5.643e04 s2° + 2.533e07 s1° 4+ 5.521e09 s18 + 5.475e11 s’
+2.75el3 s + 7.354€l4 s15 + 1.039el6 s1* + 7.488el6 s13 + 2.985¢el7 s12 + 6.921el7 s!!
+9.415el7 s + 7.317e17 s? + 3.118e17 s8 + 7.565e16 s” + 1.069e16 s° + 8.683e14 s°

+3.81el3 s* + 8.102ell s3 + 8.571e09 s%2 + 4.366e07 s + 8.533e04

52341989 522 +1.394€06 s21 + 4.29e08 520 + 5.988e10 s19 + 4.084e12 s18 + 1.442e14 s17

+ 2.726e15516 + 2.845e16s15 + 1.789e17s4 + 6.973e17s13 + 1.677e18 s12
+2.466e18s11 + 2.222e18s10 + 1.247e18s° + 4.311e17s8 +9.193e16s” + 1.199e16s°
+9.252e14s5 + 3.93e13s% + 8.229e11s3 + 8.636e09s2 + 4.379e07 s + 8.533e04

1.517 s* + 3.9471 s + 0.67783
s36 +3.35%° + 29523 + 1.517 s? + 3.32 519 + 4.9471s + 0.67783

Gsysfmc +PID (S) =

Enfin, la réponse en échelon du systéme FO-LT]I original avec le contréleur PID congu

ci-dessus est montrée dans la Figure (I11.3).
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Réponse indicielle

Ordre entier
- - - = Fractionnaire

<
o
:
|

o
o
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|
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o
~
T
|

0.2r 7

0 . . .
0 5 10 15 20
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Figure 111.3 : Réponses indicielle en boucle fermée sous le contréleur PID.

On peut voir que les deux systéemes sont assez proches. Par conséquent, nous croyons que la
méthode présentée peut étre utilisée pour la conception de contréleurs a ordre entier pour des

systemes FO-LTI généraux.

Les diagrammes de Bode en boucle ouverte peuvent étre obtenus comme indiqué a la Figure (111.4).

Diagramme de Bode
100

50

Amplitude (dB)
o

&
o
T

Ordre entier
- - - - Fractionnaire

2 10° 102 10
Fréquence (rad/s)

107 10

Figure. 111.4 : Comparaisons des diagrammes de Bode.
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111.4.2 Commande PID Fractionnaire appliquée au systéeme fractionnaire

L'approche d'optimisation numérique présentée dans la section 3.3 peut également étre
étendue aux problemes de conception de contréleurs PID a ordre fractionnaire pour des modeles
de systéme a ordre fractionnaire donnés. Cette idée est d'abord démontrée a travers un simple
exemple. Ensuite, des procédures de conception universelles sont présentées pour tous les systemes
linéaires a ordre fractionnaire.

Pour optimiser les paramétres de correcteur fractionnaire (FOPID) tout en veillant a ce qu'ils
restent dans des bornes spécifiées nous avon utilisé une fonction Matlab “fminsearchbnd™ qui

étend “fminsearch™ pour gérer les contraintes de bornes spécifiées.
La syntaxe est : [x, fval] = fminsearchbnd(fun, x0, Ib, ub).
Description des parametres

fun: La fonction a minimiser.

X0: L'estimation initiale des parametres.

Ib: Les bornes inférieures des parametres.

ub: Les bornes supérieures des parametres.
Valeurs de retour

e X: Le vecteur de parametres qui minimise la fonction.

o fval: La valeur minimale de la fonction.

Dans notre cas : Supposons que le temps de simulation est de 8 secondes, et aussi que les
parametres du controleur PID fractionnaire sont tous inférieurs a 30, et que les ordres fractionnaires
sont dans l'intervalle (0, 2). Il est recommandé d'utiliser la fonction fminsearchbnd() pour trouver

le contréleur PID fractionnaire optimal.
Le contrdleur PID fractionnaire optimal est :
Gropip(s) = 30 + 2.8766s~ 11483 4 137401508928

La fonction de transfert corrigée est :

13.745 20407 1 30 s1.148 5 g7g¢
537481 3 3 52648 ) g 524481 3 39 ¢2.048 1 13 745 s2.0407 1 31 s1.148 1 5 g7g¢

Ger(s)=
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Les réponses des systemes sous ce contrleur et celui obtenu dans I'exemple précédent sont
présentées comme montré dans la Figure (I111.5). On peut voir que le controleur PID a ordre

fractionnaire est meilleur que celui a ordre entier.

Réponse indicielle

1.2
= PID Fractionnaire
1 |-
0.8
(]
kS
£0.6
(=1
£
<
04r
0.2
0 1 2 3 4 5 6 7 8

Temps (seconds)
Figure 111.5. Réponse indicielle sous le controleur PID fractionnaire optimal.

La fonction Matlab “fpidtune™ peux également étre utilisée pour concevoir le contréleur
PID d’ordre entier optimal ou d’ordre fractionnaire optimal. “fpidtune” est une fonction MATLAB
utilisée pour concevoir et régler des controleurs PID a ordre fractionnaire. Elle appartient
généralement a une boite a outils spécialisée comme FOMCON (Fractional-Order Modeling and

Control) ou d'autres boites a outils dédiées au contréle a ordre fractionnaire.
La syntaxe est [Gc, info] = fpidtune(G, type, crossover_freq, varargin)
Description des parametres

G: La fonction de transfert de systéme que vous souhaitez contréler.

e type: Le type de contrdleur PID a concevoir. Il peut s'agir de 'P', 'PI', 'PD', 'PID', 'FOPID',
etc.
e crossover_freq: La fréquence de croisement désirée en radians par seconde.
e varargin: Parameétres optionnels supplémentaires pour spécifier des marges de gain et de
phase, par exemple:
o 'GainMargin": La marge de gain désirée.

o 'PhaseMargin': La marge de phase désirée.
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Valeurs de retour

e Gc: Le controleur PID & ordre fractionnaire congu.
« info: Informations sur le réglage, y compris les marges de gain et de phase atteintes, les

fréquences de croisement, etc

En appliquant la fonction Matlab “’fpidtune’’, nous trouverons les paramétres de correcteur PID

d’ordre fractionnaire suivants :

Kp = 28,8474 ,Ki = 3.1758,Kd = 15.0266,1 = 1.1041 et u = 0.8568.

Le controleur PID fractionnaire optimal est :

8
— .85
GFOPID(S) = 28,84‘74‘ + 51.1041 + 15.0266 508 68

Le contrdleur PID d’ordre entier optimal est :

3.9413
+ 20.1348s.

GPID(S) =30+

Les réponses indicielles en boucle fermée sous les deux contréleurs sont présentées dans la
Figure (111.6) On peut constater que la réponse en boucle fermée sous le contréleur PID
fractionnaire est bien meilleure que celle du contréleur PID conventionnel pour le modele de

systéme a ordre fractionnaire.

Réponse indielle

1.2

o~

=
o
.

= PID d'ordre Fractionnaire |

= PID d'ordre entier

Amplitude
[e]
o

e
I
:

0.2

0 1 2 3 4 5 6 7 8
Temps (seconds)

Figure 111.6. Comparaison des différents contréleurs
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Les réponses indicielles en boucle fermée pour les trois configurations (modéle
fractionnaire + correcteur fractionnaire, modele fractionnaire approximé + correcteur
fractionnaire approximé et modéle fractionnaire approxime + correcteur d'ordre entier) sont

présentées dans la Figure (111.7).

Réponse indicielle

1.2
1 L.
[ = = Modéle approximé + correcteur FOPID approximé
0.8
) Modéle fractionnaire + correcteur fractionnaire
E Modéle approximé + correcteur d'ordre entier
=06
€
<
0.4 r
0.2
0

0 1 2 3 4 5 6 7 8
Temps (seconds)

Figure 111.7. Comparaison des différentes configurations

On constate que les réponses en boucle fermée pour le controleur PID fractionnaire et le PID
fractionnaire approximé appliqués au systéme fractionnaire et au systeme fractionnaire approximé
sont assez proches et nettement meilleures que les résultats obtenus en appliquant le controleur

d'ordre entier.

I11.5 Application 2 : Systeme fractionnaire avec retard

Consideérant le systeme fractionnaire suivant :

1
08522 + 05599 + 1.

111.5 .1 Commande PID classique appliquée au systéeme fractionnaire avec retard

)

G(s) =

FOPID-ITAE

0.5761 L3702
Gropin(s) = 0.45966 + 55 + 049337513722,

Et

6
GPID(S) = 0.0795 + + 0.35875.

44



CHAPITRE |11 Simulations & Applications

Les réponses indicielles en boucle fermée sous les trois controleurs sont présentées dans la
Figure (111.8).

Réponse indicielle
:

1.2 T T
1F 7Q #_/\ . e
———PID Frac avec ITAE
0.8 ——PID classique i
PID Frac avec ISE
3 L
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é_
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Figure 111.8. Réponses indicielles sous les contr6leurs PID fractionnaires optimaux.

On peut constater que la réponse indicielle sous le controleur PID Frac-ITAE est satisfaisante,
tandis que celle sous le contréleur PID Frac-ISE est tres médiocre, car le signal d'erreur est traité
de maniere égale a tous les instants. Par conséquent, dans la pratique, le critere ITAE est fortement
recommandé. On observe également que le contréleur PID a ordre entier optimal ne peut pas

contréler la plante de maniere satisfaisante.
111.6 Conclusion

Le chapitre démontre clairement que les contrdleurs PID d'ordre fractionnaire sont supérieurs aux
contr6leurs PID d'ordre entier pour les systemes FO-LTI, y compris ceux avec retard. Les
techniques d'approximation sous-optimale et les méthodes d'optimisation numérique sont efficaces
pour concevoir des contrleurs PID d'ordre fractionnaire qui améliorent les performances des

systemes fractionnaires.
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Conclusion Générale

L'étude présentée dans ce mémoire démontre de maniére claire et convaincante la
supériorité des contrdleurs PID d'ordre fractionnaire par rapport aux contréleurs PID d'ordre entier
pour les systémes linéaires a temps invariant fractionnaires (FO-LTI), y compris ceux présentant
des délais. Grace a l'utilisation de techniques d'optimisation numérique et de méthodes
d'approximation sous-optimale, il a été possible de concevoir des contréleurs PID d'ordre
fractionnaire qui améliorent significativement les performances des systémes en termes de

précision, de stabilité et de réactivite.

Les études de cas et les simulations effectuées montrent que les contréleurs PID
fractionnaires permettent une meilleure précision, une stabilité accrue et une réactivité optimisée
dans divers scénarios. Ces résultats soulignent leur pertinence pour des applications industrielles
et de recherche avancée. La mise en ceuvre de ces techniques offre des solutions robustes et
flexibles face aux défis complexes des systéemes de controle modernes. De plus, les techniques
d'approximation d'Oustaloup se sont révélées efficaces pour la conception de contréleurs PID
d'ordre fractionnaire, permettant ainsi des améliorations significatives des performances des

systéemes FO-LTI et démontrant leur potentiel pour des applications pratiques.

L'importance de cette recherche réside également dans sa capacité a proposer des approches
novatrices pour le contrdle des systemes fractionnaires, ouvrant la voie a de nouvelles possibilités
dans le domaine de l'ingénierie et des sciences appliquées. Les résultats obtenus peuvent étre
utilisés comme base pour des développements futurs, visant toujours a améliorer les performances

des systémes de contrdle dans des environnements de plus en plus complexes et exigeants.

En conclusion, cette étude met en lumiére les avantages des contrdleurs PID d'ordre
fractionnaire et l'efficacité des techniques d'optimisation numérique et dapproximation sous-
optimale pour améliorer les performances des systemes FO-LTI. Ces contributions sont essentielles
pour le développement de solutions de contrble avancées, adaptées aux besoins des industries

modernes et des recherches académiques.
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Résumé -

Ce mémoire de fin d’études explore les avantages des contréleurs PID d'ordre fractionnaire pour
les systémes linéaires a temps invariant fractionnaires (FO-LTI). Les méthodes d'optimisation
numérique et d'approximation sous-optimale utilisées démontrent une meilleure précision, stabilité
et réactivité par rapport aux controleurs PID d'ordre entier. Les simulations et études de cas
confirment leur pertinence pour des applications industrielles et de recherche avanceée. Les résultats
montrent également I'efficacité de I'optimisation par essaims particulaires (PSO) et des techniques

d'approximation d'Oustaloup, soulignant leur potentiel pour des applications pratiques.

Mots-clés : Calcul fractionnaire, Systéemes linéaires, Contréleur PID, Optimisation numérique
Abstract:

This thesis explores the advantages of fractional-order PID controllers for fractional linear time-
invariant (FO-LTI) systems. The numerical optimization and suboptimal approximation methods
used demonstrate better precision, stability, and responsiveness compared to integer-order PID
controllers. Simulations and case studies confirm their relevance for industrial and advanced
research applications. The results also show the effectiveness of particle swarm optimization (PSO)

and Oustaloup approximation techniques, highlighting their potential for practical applications.
Keywords: Robust control, Fractional-order systems, PID controller, Numerical optimization.
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