

Certificate of Participation

This certificate is presented to

Dr. Bilal Basti, Ziane Achour University of Djelfa, Algeria

for participation as a Speaker in the

23rd International Pure Mathematics Conference 2023

26-28 August 2023, Islamabad, Pakistan

The title of his talk was A Hybrid Model for a Class of Multidimensional Nonlinear Free Energy Equations

Dr. Muhammad Sarwar Saeed

MSc, MPhil (Pak), PhD (UK) Conference Secretary Emeritus Professor Dr. Qaiser Mushtaq

Quin Mush leg)

Department of Mathematics Quaid-i-Azam University, Islamabad

&

President, Pakistan Mathematical Society Convener, 23rd IPMC 2023

A hybrid model for a class of multidimensional nonlinear free energy equations

Bilal Basti^{*1}, Rabah Djemiat²

^{1,2}Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University of M'sila, Algeria.

Abstract

This paper discusses and theoretically studies the existence and uniqueness of radially symmetric solutions for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation that enables treating vibration and control, signal and image processing, and modeling earthquakes, among other physical phenomena. Additionally, applying Schauder's and Banach's fixed point theorems facilitates identifying the existence and uniqueness of solutions for the selected equation.

1 Introduction and statement of results

In this work, we shall give an example of a class of fractional-order's PDEs, which helps to describe various complex phenomena; it is a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation and is written as follows:

$$\partial_t^{\alpha} u - \kappa^2 \Delta u = F\left(t, x, u, \partial_t^{\beta} u, (-\Delta)^s u\right), \text{ for } 0 < s \le 1 < \beta \le \alpha \le 2, \tag{1}$$

where u = u(t, x) is a scalar function of the time $t \ge 0$ and space variables $x \in \mathbb{R}^m$, with $m \in \mathbb{N}^*$. Also $F : [0, \infty) \times \mathbb{R}^m \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is a nonlinear function, $\kappa \in \mathbb{R}^*$ is a real constant the symbol $(-\Delta)^s$ defines the fractional Laplacian operator [2].

1.1 The significance of the equation

Equation (1) is a representation of a large class of linear and nonlinear equations. Note that, for $F \equiv 0$ and $\alpha = 1$ (resp. $\alpha = 2$), the PDE (1) represents the standard heat equation (resp. the wave equation). In addition to that, it becomes the Klein-Gordon equation when we choose $F = \kappa u$,

^{*}¹Correspondence to: Bilal Basti, Department of mathematics, Ziane Achour University of Djelfa, 17000, Algeria. Email: bilalbasti@gmail.com

 $[\]textbf{2020 Mathematics Subject Classification:} \ 35R11; \ 35A01; \ 34A08; \ 35C06; \ 34K37.$

Keywords: Multidimensional nonlinear equation; reaction-diffusion/wave; time and space-fractional order; radially symmetric solutions; existence and uniqueness.

 $|\kappa| = 1$ and $\alpha = 2$. All these equations fall under the name of the fractional reaction-diffusion/wave equation (see table 1).

Obviously, the development of accurate mathematical models for the description of complex anomalous systems depends on swapping the fractional Laplacian with integer-order Laplacian, e.g.

Fractional equation	Formula
Reaction-diffusion/wave $[3-10]$	$\partial_t^{\alpha} u + \kappa^2 \left(-\Delta\right)^s u + c\left(t, x\right) u = 0$
Quasi-geostrophic [11]	$\partial_t v + \theta \cdot \nabla v + \kappa \left(-\Delta\right)^s v = f$
Cahn-Hilliard $[12-14]$	$\partial_t w + (-\Delta)^s \left(-\varepsilon^2 \Delta w + f(w) \right) = 0$
Porous medium [12–15]	$\partial_t u + (-\Delta)^s \left(u ^{m-1} \operatorname{sign} u \right) = 0$
Schrödinger [16]	$i\hbar\partial_{t}\psi=\partial_{t}^{\alpha}\left(-\hbar^{2}\Delta\right)^{s}\psi+c\left(t,x\right)\psi$
Ultrasound [17, 18]	$\frac{1}{c_0^2}\partial_t^2\theta = \nabla^2\theta - \left\{\tau\partial_t\left(-\Delta\right)^s + \eta\left(-\Delta\right)^{s+\frac{1}{2}}\right\}\theta$

Table 1: Significant equations involving fractional Laplacian

1.2 Problem statement and main results

Let $0 < s \le 1$, $1 < \beta \le \alpha \le 2$, $\varepsilon, \ell > 0$, and $T_{\varepsilon} = \ell \varepsilon^{\frac{2}{\alpha}}$ be such that $\Omega = [0, T_{\varepsilon}] \times [\varepsilon/\sqrt{m}, +\infty)^{m}$. We consider:

$$\begin{cases}
\partial_t^{\alpha} u - \kappa^2 \Delta u = F\left(t, x, u, \partial_t^{\beta} u, (-\Delta)^s u\right), & (t, x) \in \Omega, \ \kappa \in \mathbb{R}^*, \\
u(0, x) = |x|^{\delta} u_0, \ \frac{\partial u}{\partial t}(0, x) = 0, & \delta, u_0 \in \mathbb{C},
\end{cases}$$
(2)

where $F: \Omega \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is a nonlinear function.

This paper's contribution regards determining the existence, uniqueness, and main properties of the general solution of stability problems obtained through replacing classical rules with fractional quadrature rules of the radially symmetric solution (see [3–7, 19–21]),

$$u(t,x) = |x|^{\delta} f\left(|x|^{-\frac{2}{\alpha}}t\right), \text{ for } |x| = \sqrt{x_1^2 + \dots + x_m^2}, \text{ and } \delta \in \mathbb{C},$$
 (3)

the basic profile f is not known in advance and is to be identified.

For the forthcoming analysis, we impose the following hypotheses:

(hyp.1) $F: \Omega \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is a continuous function that is invariant by the change of scale (3). It gives us:

$$F\left(t,x,u,\partial_{t}^{\beta}u,\left(-\Delta\right)^{s}u\right) = |x|^{\delta-2}\left(J\left(\eta,f\left(\eta\right),f'\left(\eta\right),{}^{C}\mathcal{D}_{0+}^{\beta}f\left(\eta\right)\right) - \frac{4\kappa^{2}}{\alpha^{2}}\eta^{2}f''\left(\eta\right)\right),\tag{4}$$

where $\eta = |x|^{-\frac{2}{\alpha}} t$ and $J : [0, \ell] \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is a continuous function.

(hyp.2) There exist three positive constants $\omega_1, \omega_2, \omega_3 > 0$ so that the continuous function J given by (4) satisfies:

$$\left|J\left(\eta,f,g,h\right)-J\left(\eta,\tilde{f},\tilde{g},\tilde{h}\right)\right|\leq\omega_{1}\left|f-\tilde{f}\right|+\omega_{2}\left|g-\tilde{g}\right|+\omega_{3}\left|h-\tilde{h}\right|,$$

for any $f, g, h, \tilde{f}, \tilde{g}, \tilde{h} \in \mathbb{C}$.

(hyp.3) There exist four positive functions $a, b, c, d \in C([0, \ell], \mathbb{R}_+)$ such that the continuous function J given by (4) satisfies:

$$\left|J\left(\eta,f,g,h\right)\right|\leq a\left(\eta\right)+b\left(\eta\right)\left|f\right|+c\left(\eta\right)\left|g\right|+d\left(\eta\right)\left|h\right|,$$

for any $f, g, h \in \mathbb{C}$ and $\eta \in [0, \ell]$.

 λ denotes the positive constant defined by

$$\lambda = \max \left\{ \frac{\alpha \ell^{\beta - 1} \left(|q| + c^* \right) + d^*}{\ell^{\beta - \alpha} \Gamma \left(\alpha - \beta + 1 \right)}, \frac{\alpha \ell^{\beta - 1} \left(|q| + \omega_2 \right) + \omega_3}{\ell^{\beta - \alpha} \Gamma \left(\alpha - \beta + 1 \right)} \right\},$$

where $q = -\frac{2\kappa^2}{\alpha^2} \left(\alpha \left(2\delta + m + 2 \right) + 2 \right)$ and

$$a^* = \sup_{\eta \in [0,\ell]} a(\eta), \ b^* = \sup_{\eta \in [0,\ell]} b(\eta), \ c^* = \sup_{\eta \in [0,\ell]} c(\eta) \text{ and } d^* = \sup_{\eta \in [0,\ell]} d(\eta).$$

Now, we give the main theorems of this work.

Theorem 1. Assume the hypotheses (hyp.1)-(hyp.3) hold. If we put $\lambda \in (0,1)$ and

$$\frac{T_{\varepsilon}^{\alpha}\left(\left|\delta\kappa^{2}\left(\delta+m-2\right)\right|+b^{*}\right)}{\Gamma\left(\alpha+1\right)\left(1-\lambda\right)}<\varepsilon^{2},\tag{5}$$

then, there is at least one solution to the problem (2) on Ω in the radially symmetric form (3).

Theorem 2. Assume the hypotheses (hyp.1), (hyp.2) hold. We give $\lambda \in (0,1)$ and

$$\mathcal{K} = \left(\frac{\Gamma\left(\alpha+1\right)\left(1-\lambda\right)}{\left|\delta\kappa^{2}\left(\delta+m-2\right)\right|+\omega_{1}}\right)^{\frac{1}{\alpha}}.$$

If we put

$$T_{\varepsilon} < \varepsilon^{\frac{2}{\alpha}} \mathcal{K},$$
 (6)

then the problem (2) admits a unique solution in the radially symmetric form (3) on Ω .

References

- [1] K. Diethelm, The Analysis of Fractional Differential Equations, Springer Berlin, 2010.
- [2] M. Kwaśnicki, Ten equivalent definitions of the frac. Laplace operator, Fract. Calc. App. Anal. 20(2017), 7–51.
- [3] B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-type's space-fractional heat equation, Surv. Math. Appl., 15 (2020), 153–168.
- [4] B. Basti and N. Benhamidouche, Global existence and blow-up of generalized self-similar solutions to nonlinear degenerate diffusion equation not in divergence form, Appl. Math. E-Notes, 20 (2020), 367–387.
- [5] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl. 227(1) (1998), 81–97.
- [6] R. Djemiat, B. Basti and N. Benhamidouche, Existence of traveling wave solutions for a free boundary problem of a higher-order space-fractional wave equation, Appl. Math. E-Notes, 22 (2022), 427–436.

- [7] R. Iagar, A. Sánchez and J. L. Vázquez, Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl. 89(1) (2008) 1–24.
- [8] R. Metzler and T. F. Nonnemacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys. 284 (2002), 67–90.
- [9] T. Pierantozzi and L. Vázquez, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like, J. Math. Phys. 46 (2005), 113512.
- [10] M. Yamamoto, Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian, SIAM J. Math. Anal. 44(6) (2012), 3786–3805.
- [11] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30(5) (1999), 937–948.
- [12] G. Akagi, G. Schimperna and A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations, J. Differ. Equ. 261(6) (2016), 2935–2985.
- [13] M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal. 55(4) (2017), 1689–1718.
- [14] M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation, Chaos Solitons Fractals 102(2017), 264–273.
- [15] A. de Pablo, F. Quirós, A. Rodríguez and J.L. Vázquez, A fractional porous medium equation, Adv. Math. 226(2) (2011), 1378–1409.
- [16] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268(4) (2000), 298–305.
- [17] B.E. Treeby and B.T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian, J. Acoust. Soc. Am. 127(5) (2010), 2741–2748.
- [18] W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Am. 115(4) (2004), 1424–1430.
- [19] Y. Luchko and R. Gorenfl, Scale-invariant solutions of a partial diffrential equation of fractional order, Fract. Calc. Appl. Anal. 1(1) (1998), 63–78.
- [20] L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Cal. Appl. Anal. 14 (2011), 334–342.
- [21] J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173(1) (2000), 103–153.

Programme-23rd IPMC 2023

Kar Peng Shum Day

Professor Kar Peng Shum (02.01.1940 – 08.06.2023)

He was Honorary Director of the Institute of Mathematics at Yunnan University Kunming, PRC. He will be remembered not only for his remarkable achievements and dedication to the field of mathematics but also for his genuine passion for promoting education around the world. He has collaborated in research with leading experts in his field, in particular, Yonghua Xu, Leonid A. Bokut, B.H. Neumann, Cong Xin Wu, Liang Zhang, Ann Chi Kim and Qaiser Mushtaq. He visited Pakistan three times for the IPMC on the invitation of Professor Qaiser Mushtaq.

III VILLUIOII OI I IO	invitation of Professor Qaiser Wushtaq.		
	Saturday 26 th August 2023, Face-to-Face		
09:00 - 09:10	Recitation		
	Inaugural Speech		
09:10 - 09:30	Emeritus Professor Dr. Qaiser Mushtaq, Quaid-i-Azam University, Islamabad		
	Convener 23 rd IPMC 2023		
09:30 - 09:50	Introduction to the IPMC Series		
	Dr. Muhammad Sarwar Saeed, Secretary Organizing Committee, IPMC		
09:50 - 10:10	Chief Guest Speech Professor Dr. Niaz Ahmad Akhtar (Sitara-i-Imtiaz)		
09.30 - 10.10	Vice Chancellor, Quaid-i-Azam University, Islamabad		
	Short Break		
10.00 10.10	Dr. Tahir Mahmood, International Islamic University, Islamabad		
10:20 – 10:40	Fuzzy Sets and Their Applications in Group Theory		
	Dr. Shahida Bashir, University of Gujrat, Gujrat		
10:50 - 11:10	An Efficient Model for the Approximation of Intuitionistic Fuzzy Sets in terms of Soft		
	Relations with Applications in Decision Making		
11:20 – 11:40	Dr. Muhammad Javaid, University of Management and Technology, Lahore		
11020 11010	On Fractional Metric Dimensions of Connected Graphs		
11:50 - 12:10	Dr. Khizar Hayat, University of Kotli, AJ&K		
	Type-2 Soft Graphs Dr. Amna Kalsoom, International Islamic University, Islamabad		
12:20 - 12:40	Fixed Point Property for Semitopological Semigroups		
12:50 – 13:50	Lunch Break		
	Keynote Lecture		
14:00 - 14:40	Emeritus Professor Dr. Qaiser Mushtaq, Quaid-i-Azam University, Islamabad		
	Coset Diagrams for the Modular Group		
14:50 – 15:10	Dr. Muhammad Naseer Khan, Govt. Postgraduate College Rawalakot AJ & K		
11100 10110	The Structures of Path Coalgebra of a Weak Hopf Quiver		
15:20 – 15:40	Dr. Usman Ali, University of Management and Technology, Lahore		
	Computing Zagreb Connection Indices of the Cartesian Product for Molecular Networks		
15.50 17.10	Mr. Syed Sikander Shirazi, Muhammad Ali Jinnah University, Karachi		
15:50 – 16:10	Jensen-Steffensen, Jensen-Mercer and Niezgoda's Inequalities for Convexifiable Functions with Applications		
	Dr. Kifayat Ullah, Riphah International University, Lahore Campus		
16:20 – 16:40	Spherical and T-Spherical Fuzzy Sets for Decision Making Problems		
	Tea		
	Lou		

M. M. Deza Day

Professor Michel Marie Deza (27.04.1939 – 23.11.2016)

He was an eminent Professor of mathematics specializing in combinatorics, discrete geometry and graph theory. He retired as a Director of the famous French National Centre for Scientific Research (CNRS). Professor Deza visited Pakistan for IPMC twice on the invitation of Professor Qaiser Mushtaq.

Sunday, 27 th August 2023-Online			
08:50 - 09:00	Welcome address by the Convener of the 23 rd IPMC 2023 Emeritus Professor Dr. Qaiser Mushtaq, Quaid-i-Azam University, Islamabad		
09:00 - 09:40	Keynote Lecture Professor Khalik Guseinov, Eskisehir Technical University, Turkiye Continuity of L_p Balls and an Application to Input-Output System Described by the Urysohn Type Integral Operator		
09:50 - 10:30	Keynote Lecture Dr. Loredana Simcic, University of Rijeka, Croatia Uniqueness of a Generalized Solution for a Micropolar Real Gas Flow with Spherical Symmetry		
	Channel A	Channel B	Channel C
10:40 – 11:00	Dr. Maram Alossaimi The Poisson spectrum of a class of Poisson algebras	Miss Sabah Baibeche Numerical analysis for nonlinear wave equations with micro temperatures	Dr. Rebiha Benterki Phase portraits of of Piecewise differential Systems with a Pseudo equilibria
11:05 – 11:25	Dr. Milica Kolundžija The generalization of Sherman- Morrison-Woodbury formula for the generalized Drazin inverse	Miss Abibssi Imane Existence of mild solutions for second order partial functional perturbed pseudo integrodifferential with finite state dependent delay	Mrs. Nardjis Lachachi Mild Solutions For Perturbed Partial Evolution Equations with Finite State-Dependent Delay involving Caputo's Fractional order Derivative
11:30 – 11:50	Dr. Saima Mustafa Subclasses of Analytic functions based on Hpergeometric and Cho-Kwon-Srivastava Operators	Dr. Rebiha Saffidine Necessary and Sufficient condition for observability of a class of hybrid control systems	Mr. Babar Sultan Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent
11:55 – 12:15	Mrs. MA Mateos Camacho Some results of the Total Triple Roman Domination in Graphs	Dr. Lila Ihaddadene On the stabilization of an Navier's elastic model for thin plates	Mr. Ibrahim Merabet Open Problem in the Calculus Of Variations
12:20 – 12:40	Dr. Ammara Nosheen Interval valued Jensen's inequalities for h-convex functions on time scales	Dr. Kheireddine Biroud Nonlocal Elliptic Systems with Gradient Source Terms	Miss Hayat Bensella On diophantine equation related to linear reccurent sequences and Baker's method
12:45 – 13:00	Dr. Mehamdia Abd elhamid Extension of modified Hestenes-Stiefel conjugate gradient method to non parametric estimation	Ms Nour Elhouda Allaoui Existence and regularity of Pseudo-monotone operator with irregular data	Miss INES GARTI Well-posedness of solutions for the generalized Boussinesq equations
13:00 - 14:00	Break		

	Keynote Lecture		
14:00 - 14:40	· ·		
	Keynote Lecture		
	Dr. Ozen Ozer, Kırklareli University, Turkiye		
14:50 – 15:30			·
	On the Benefits of Diophantine Equations and Some Particular Types with New Perspections' Solutions		
		Terspections Solutions	
	Champal A	Channel D	Champal C
	Channel A	Channel B	Channel C
	Dr. Abid Ali	Dr. Zaamoune Faiza	Miss Zahra Ameur
15:40 – 16:00	Integral subgroups of Kac-	Extended Maximum Attractor	Some results concerning the
15:40 - 10:00	Moody groups	Range to Multispirals Chaotic	Diophantine equation $(x^n -$
		Attractors in Chua's system	$1)(y^m-1)=z^2$
	Dr. Irfan Younas	Dr. Mebarki Maroua	Dr. Benseghir Aissa
16:05 – 16:25	Presentations and Graphs of	Study of reaction diffusion system	Study of the asymptotic behavior
	Inverse LA-semigroups	with diagonal matrix	of a frictionless contact problem
	Dr. Muhammad Nazam	Dr. Raouf Ziadi	Miss Bouacida Ichrak
16.20 16.50	On Orthogonal Interpolative	A covering method combined	Approximate Controllability of
16:30 – 16:50	Iterative Mappings with	with the Hook-Jeeves algorithm	Sobolev Type (k, ψ)-Hilfer
	Applications in Multiplicative	for continuous global	Fractional Integro-Differential
	Calculus	optimization problems	Equations In Hilbert Space
	Dr. Tabchouche Nesrine Primal-Dual Interior Point	Dr. Helal Mohamed Perturbed Hadamard Fractional	Miss Besma Laouadi
16:55 – 17:15	Methods for SDLCP Based on a		A Proposed Coincidence Point
	New Type of Kernel Functions	Integral Equations in Fréchet Spaces	Theorem Using C-Class Function
	Dr. Mehsin Jabel Atteya	Dr. Zakia Tebba	Miss Samiha Djemai
17:20 – 17:30	Notes on Multiplicative	Result of global existence and	Pattern formation in reaction-
	Generalized (σ, τ)-Reverse	finite time blow-up in a new class	diffusion system
	Derivations with Lie Ideals of	of non-linear viscoelastic wave	- diffusion system
	Semiprime *-Rings	equation	

I.B.S. Passi Day

Professor I.B.S. Passi (20.08.1939 – 02.10.2021)

He was an eminent mathematician who specialized in group theory. He was a doctoral student of David Rees. After retiring as a Dean, he was appointed as an Emeritus Professor at Punjab University, India. His results on the dimension subgroups, augmentation powers in group rings received wide recognition. He visited Pakistan for IPMC on the invitation of Professor Qaiser Mushtaq.

Monday, 28 th August 2023-Online			
09:00 - 09:40	Keynote Lecture Dr. Taras Goy, Vasyl Stefanyk Precarpathian National University, Ukraine Lucas Identities Using the Generalized Trudi Formula		
09:50 - 10:30	Keynote Lecture Dr. Ferit Gurbuz, Kırklareli University, Turkiye		
0,000	Variable Exponent Vanishing Morrey Type Spaces on Unbounded Domains		
	Channel A	Channel B	Channel C
10:40 – 10:55	Dr. Ashar Ghulam Constructing an example of a Fractal	Miss Mehvish Sultan Grand weighted Herz spaces	Mr. Mbekezeli Nxumalo On open maps over the Salbany compactification
11:00 – 11:15	Dr. Harrouche Nesrine Hilbert solution of fuzzy fractional boundary value problems	Dr. Khalil Ahmad New Exact Solutions of Burgers' Equation Using Power Index Method	Ms Imane Ouakil Solvability of frictional contact problem for viscoelastic materials
11:20 – 11:35	Dr. Farheen Ibraheem Supervised Computing Algorithm for Predicting Data Patterns	Mr. Jabbar Ahmad T-bipolar soft rings and their algebraic properties	Mr. Muhammad Bilal Some inequalities related to Csiszár divergence via diamond integral on time scales
11:40 – 11:55	Dr. Djamel Abid Existence Result For A Fractional Elliptic Problem Involving Critical Exponent Via Nehari Manifold	Ms Marwa Khemis Existence and uniqueness results of a neutral iterative differential equation via Krasnoselskii's fixed point theorem	Mr. Youssouf Mezzar Converting linear systems into matrix equations and vice versa using Kronecker sum decomposition
12:00 – 12:15	Dr. Tehreem Multigranulation Roughness in Semihypergroups	Ms Asma Hammou Duality in Spaces of p-Nuclear Operators	Ms Meriem Chabekh Discrete Energy Behavior of a Bresse-Timoshenko System
12:20 – 12:35	Miss Roufaida Ketfi Asymptotic analysis of solutions to the problem $\mathcal{E}^2\Delta u + \lambda u = F(u)$ on a ring in R^n	Mr. Hassan Messaoudi Long-time behavior of the solution of the nolinear piezoelectric beam system	Miss Ikram Hamed Risk-Neutral for System Driven by Fractional Brownian Motion
12:40 – 12:55	Dr. Radhouane Aounallah Global Existence and Energy Decay Analysis of a Timoshenko Beam System with Internal Fractional Feedback: A Lyapunov-based Approach	Dr. Semmar Billel Dynamical Analysis of a New Three-Dimensional Lotka- Volterra Mode with Incommensurate Conformable Fractional Order	Mr. Sami Loucif Exponential stability of some evolution problems with thermal effect and distributed delay
13:00 - 14:00	Break		

14:00 – 14:40	Keynote Lecture Prof. Shi Yin, Hebei Agricultural University, China Artificial intelligence-driven bioenergy system: Digital green innovation partner selection of bioenergy enterprises based on interval fuzzy multi-criteria decision making		
14:50 – 15:30	Keynote Lecture Professor Vijay Kumar, Manav Rachna International Institute of Research & Studies, Faridabad, India Generalized Theorem for 0-Cauchy Completion in Partial Fuzzy Metric Space		
	Channel A	Channel B	Channel C
15:40 – 15:55	Dr. Bilal Basti A hybrid model for a class of multidimensional nonlinear free energy equations	Miss Nawal Bettayeb On Caputo Tempered Fractional Differential Equations	Mr. Mohammed Amine Benmelouka An abstract approach for the study of an elliptic problem
15:55 – 16:10	Mr. Ubaid ur Rehman Bipolar Complex Fuzzy Linguistic set	Prof. Mohamed Dalah An implicit scheme for the fractional advection equation: Codes Matlab	Dr. Djamila Benterki The existence of solutions of nonlinear Mindlin-Timoshenko with thermodifusion effects
16:10 – 16:25	Mrs. Lina Chetioui Numerical solution of general fractional Riccati differential equation	Ms Chaima Saadi Existence results for non-linear fractional problem involving a distributional Riesz gradient	Dr. Selmani Wissame Attractors and Strange Attractors
16:25 – 16:40	Miss Lynda Mezghiche New results for a housefly model with iterative source term	Dr. Nazeran Idrees Distance Two Labeling of Olive tree, W-graph and H-graph	Dr. Kaid Mohammed Existence of solution for nonlinear FDEs
16:40 – 16:55	Dr. Munir Ahmed Weak Hopf Algebra and Kaplansky's Sixth Conjecture	Kainat Naeem Advancing Convex Optimization: Modern and Current Evolution and Future Directions	
Conclusion			

NOTE: There are three parallel channels of talks.

Talks including keynote lectures listed in the column colored blue will be held in Channel A

Talks listed in the column colored red will be held in Channel B

Talks listed in the column colored green will be held in Channel C