Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

D17

~— —

NP———N, S

dluuoll - caluhgy 2000 daola

Université Mohamed Boudiaf - M'sila

University of Mohamed Boudiaf — M’sila
Faculty of Technology

Department of Electronics

ACADEMIC MASTER’S End of Study Thesis by:
ABUOUN Abdelrahman

Forex Market Prediction Using Recurrent
Neural Network

Members of the jury:

LADJAL Mohamed President
OUALI Mohammed Assam Examiner
DJERIOUI Mohamed Supervisor




Acknowledgement



Dedication



Abstract

This thesis looks at the use of Recurrent Neural Networks (RNNs) to predict
Forex market movements, utilizing their ability to detect temporal dependen-
cies in financial data. The study handles traditional forecasting difficulties
through the use of LSTM and GRU models. Comprehensive data prepro-
cessing and robust model training show that RNNs have the potential to
improve the accuracy of currency exchange rate forecasts.

Keywords: Forex Market, Machine learning, Recurrent Neural Network



Contents

dedication
acknowledgement
abstract
Contents

List of Figures
List of Tables
introduction

1 Review on financial markets
1.1 Imtroduction . . . . . . . . ...
1.2 Typeofanalysis. . . . .. ... .. .. ... ... . ......
1.2.1 Fundamental analysis . . . . . ... ... ... ... ..
1.2.2  Technical analysis . . . . . .. ... ... ... .....
1.3 Datasets . . . . . . . .
1.3.1 Fundamental datasets . . . ... ... ... .. ....
1.3.2 Technical datasets . . .. ... ... ... .. .....
1.4 Pre-processing . . . . . . . . . ...
1.4.1 Pre-processing of technical dataset . . . ... ... ..
1.4.2  Preprocessing of fundamental dataset . . . . . . . . ..
1.5 Conclusion . . . . . . ... ...

2 Deep learning
2.1 Imtroduction . . . . . . .. ..o
2.2 A mathematical overview of machine learning . . . . . . . ..
2.2.1 Learning process . . . . . . . . . ..o
2.2.2 Loss function . . . ... ... .o



2.2.3 Gradient Descent . . . . . . ... ... ... ... ...
2.3 Neural network . . . . . ... ... L
2.3.1 Activation functions . . . . . ... ... ... ..
2.3.2 Forward propagation . . . . . ... ... ... ...
2.3.3 Backward propagation . . . .. ... ... ... ...
2.4 Recurrent Neural Networks . . . . . . . ... ... ... ....
2.4.1 Application domains . . . . . . . ... ... ... ..
2.4.2 Types of architecture . . . . . . . ... ... ... ...
2.5 Long short-term memory . . . . . . .. .. ... ... ... ..
2.6 Gated Recurrent Unit . . . . . .. .. .. ... ... .....
2.7 Differences between LSTM and GRU . . . .. ... ... ...
2.7.1 Advantage and limitation . . . . . ... ... .. ...
2.8 Conclusion . . . . .. ... .
Experiments and Results
3.1 Introduction . . . . . . .. ... ...
3.2 Proposed System . . . ... ... ...
3.3 Dataset Description . . . . . . . .. ... 0L
3.4 Evaluation Metrics . . . . . . ... ... ... ... ... ...
3.4.1 Mean Squared Error . . . . ... ... 0L,
3.4.2 Mean Absolute Error . . . . . ... ... ... ... ..
3.4.3 Root Mean Square Error . . . . . . ... ... ... ..
3.4.4 Mean Absolute Percentage Exrror . . . . .. . .. ...
3.5 Results. . . . ... .. .
3.6 Performance comparison . . . . . ... ... ... ... .. ..
3.7 Comparison with state of theart . . . .. ... ... ... ..
3.8 Discussion . . . . . . ...
3.9 Conclusion . . . . . ... ... ..
conclution

Bibliography

30
30
30
32
33
34
34
35
35
35
37
38
39
40

42

42



List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4

3.5
3.6

3.7

Datasets in Financial market. . . . . . . ... ... ... ... 5
Fundamental dataset. . . . . . . . .. . ... ... ... 6
Technical dataset. . . . . . . .. . ... ... ... ... ... 7
Dataset distribution. . . . . .. . ... 0000 10
Linear regression model. . . . . . . . .. ... ... .. 12
Neural network and human brain. . . . . . . . ... ... ... 13
Neural network model. . . . . . . . . .. ... ... .. .. .. 14
Sigmoid function. . . . . . ... 15
Softmax activation functin. . . . . . . ... ..o 15
Tanh activation function. . . . . . . . . . ... ... ... ... 16
Relu activation function. . . . . . . . . . ... ... .. 17
Network with one hidden layer. . . . . . . ... .. ... ... 18
Recurrent neural network. . . . . . ... ... 20
One-to-many architecture. . . . . . . . ... .. ... ..... 21
Many-to-one architecture. . . . . . . . . ... ... ... 22
Many-to-many architecture. . . . . . . . ... ... ... ... 22
Many-to-many architecture. . . . . . .. ... ... L. 23
LSTM architecture. . . . . . . . . . ... ... ... .. .... 24
GRU architecture. . . . . . ... ... 26
Proposed System. . . . . . . ... 31
Dataset used in this study. . . . . . .. ... ... 33
EURUSD chart including EMA and RSI indicators. . . . . . . 34
Predicted and actual price chart for EURUSD using LSTM

model. . . . ... 36

Predicted and actual price chart for EURUSD using GRU model. 36
Predicted and actual price chart for GBPUSD using LSTM

model. . . ... 36
Predicted and actual price chart for GBPUSD using GRU model. 37



3.8 Predicted and actual price chart for USDCHF using LSTM
model. . . ... 37
3.9 Predicted and actual price chart for USDCHF using GRU model. 37

i



List of Tables

2.1 Differences between LSTM and GRU. . . . . . . ... ... .. 28
3.1 The results using LSTM model. . . . . .. .. ... ... ... 38
3.2 The results using GRU model. . . . . . .. ... ... ..... 38

3.3 The results of the state of the art. . . . . . . . . . . . . . ... 39

il



General Introduction

The financial market plays a crucial role in the global economy, influencing
investment decision-making and financial risk management. The ability to
predict stock market trends has long been a subject of intense research due
to its profound implications for both individual investors and institutional
stakeholders [13, 35]. With the advent of artificial intelligence (AI), the land-
scape of financial market analysis has been significantly transformed. This
thesis aims to explore the effectiveness of Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) models in forecasting stock market trends,
providing a comprehensive overview of the research objectives, methodology,
and structure of the dissertation.

The financial market, characterized by its dynamic and often unpre-
dictable nature, has traditionally been analyzed using fundamental and tech-
nical analysis. Fundamental analysis involves evaluating a company’s finan-
cial statements and economic indicators to determine its intrinsic value, while
technical analysis focuses on historical price and volume data to forecast fu-
ture market movements [33, 53]. With the increasing availability of financial
data and advances in computational power, Al has emerged as a powerful
tool for enhancing these traditional approaches [9, 20].

Artificial intelligence, particularly machine learning, has revolutionized
various domains, including finance. Machine learning models, such as neural
networks, have demonstrated remarkable capabilities in identifying complex
patterns and making predictions based on large datasets. Recurrent Neural
Networks (RNNs), and their advanced variants LSTM and GRU, have shown
significant promise in time series forecasting due to their ability to capture
temporal dependencies and long-term patterns in sequential data. This thesis
investigates how these models can be leveraged to enhance stock market
prediction[17].

The literature review delves into the existing body of knowledge on stock
market prediction, highlighting the pivotal role of datasets and pre-processing
techniques in model development. It also underscores the necessity of inte-
grating both fundamental and technical indicators to construct robust pre-



dictive models. Subsequently, the methodology section offers an in-depth
examination of machine learning principles, focusing on neural networks and
RNNs, thereby setting the stage for comprehending LSTM and GRU archi-
tectures. The experimental design is meticulously detailed, encompassing
dataset descriptions and the evaluation metrics employed to assess model
performance[22].

Following the methodology, the results and discussion section presents
the empirical findings of the study. It elucidates the performance of LSTM
and GRU models in predicting stock market trends, providing a compara-
tive analysis of their respective strengths and weaknesses. This section also
explores the broader implications of the results, situating them within the
context of existing stock market prediction research. Moreover, the compar-
ison with state-of-the-art approaches highlights the novelty and significance
of the contributions made by this research[26].

In conclusion, this thesis aims to advance the understanding of machine
learning techniques in the realm of stock market prediction. By evaluating
the performance of LSTM and GRU models and benchmarking them against
current methodologies, the study seeks to offer valuable insights that can in-
form investment strategies and enhance financial decision-making processes.
The findings contribute to the ongoing discourse on the application of Al in
finance, demonstrating how modern computational methods can improve the
accuracy and reliability of stock market forecasts[15, 16].



Chapter 1

Review on financial markets

1.1 Introduction

Financial market prediction is one of the most challenging problems that
scientists have faced for decades, especially because there is a team of scien-
tists who believe in a random walk hypothesis (RMH) and see that financial
market prices evolve according to a random walk. Hence, price changes are
random, and thus it is impossible to predict. On the other side, another team
of scientists believes in the efficient market hypothesis (EMH) and sees that
the price in the financial markets is predictable. They then developed various
theories and techniques to forecast the prices in the financial market[24, 18].

Artificial intelligence, in recent years, has entered almost all fields of life.
In the beginning, scientists faced some challenges in applying artificial intel-
ligence techniques in financial markets, and they did not achieve satisfactory
results; the accuracy was low. However, with the rapid development of arti-
ficial intelligence branches and techniques, the results improved and became
better.

1.2 Type of analysis

In financial market prediction, there are two well-known analytical approaches
that analysts and investors use in predicting future prices: fundamental anal-
ysis and technical analysis.



1.2.1 Fundamental analysis

Fundamental analysis is a method of measuring a stock’s intrinsic value. An-
alysts who follow this method try to find undervalued or overvalued stocks.
It measures a security’s intrinsic value by examining related economic and
financial factors. Intrinsic value is the value of an investment based on the
issuing company’s financial situation and current market. Fundamental ana-
lysts study anything that can affect the security’s value, from macroeconomic
factors such as the state of the economy and industry conditions to microeco-
nomic factors like the company’s management. The end goal is to determine
a number that an investor can compare with a security’s current price to
see whether the security is undervalued or overvalued. Fundamental analysis
is a valuation tool used by stock analysts to determine whether a stock is
overvalued or undervalued by the market. It considers economic, market,
industry, and company conditions to estimate the intrinsic value of a firm
and find opportunities to buy at a discount or sell at a premium. Fundamen-
tal analysis is used most often for stocks, but it is useful for evaluating any
security, from a bond to a derivative[41, 27].

1.2.2 Technical analysis

Technical analysis predicts the appropriate time to buy or sell a stock used
by those believing in the castle-in-the-air view of stock pricing. It is the
technique of applying the tenets of the firm-foundation theory to the selec-
tion of individual stocks. Technical analysis is essentially the making and
interpreting of stock charts. Its practitioners, called chartists, study the past
movements of common stock prices and the volume of trading for a clue to
the direction of future change. Most chartists believe that the market is only
10 percent logical and 90 percent psychological. They generally subscribe to
the castle-in-the-air school and view the investment game as one of anticipat-
ing how the other players will behave. Technical analysis uses price trends
and price action to create indicators. Some of the indicators create patterns
that have names resembling their shapes, such as the head and shoulders
pattern. Others use trend, support, and resistance lines to demonstrate how
traders view investments and indicate what will happen. Technical analysts
favor studying the historical price trends of the stock to predict short-term
future trends[39, 12].



1.3 Datasets

There are a variety of datasets that can used in financial prediction, these
datasets vary depending on the analysis method used. For fundamental
analysis, the dataset is textual, and for the technical dataset, the data is
numerical. In this work, we propose to classify the datasets into two main
categories according to the mentioned analysis methods, and each category
has sub-categories, as shown in Figure 1.1.

-
S

-_*-—

Figure 1.1: Datasets in Financial market.

1.3.1 Fundamental datasets

Fundamental datasets constitute an essential component of financial analysis,
offering insights into the underlying drivers of market movements. Financial
news serves as a real-time source of information, delivering updates on cor-
porate actions, industry developments, and geopolitical events that impact
asset prices. This data enables investors to stay abreast of current market
conditions and make informed decisions based on the latest trends and devel-
opments. Additionally, fundamental datasets encompass macroeconomic in-
dicators, providing a comprehensive view of the broader economic landscape.
Metrics such as GDP growth, inflation rates, and employment figures offer



valuable context for understanding the fundamental forces shaping market
dynamics, and guiding investors in assessing the overall health of economies
and sectors. Figure 1.2 shows an example of a Fundamental dataset.

& Date = # Label

2008-08-08 2016-07-01 o

A Topl =

1289

unique values

1989

unique values

1988

unique values

2p08-08-88 2] b"Georgia 'downs tw b' BREAKING: b'Russia Today:
Ri ial s raf to be Columns of troops
a impeached roll into
b Ossetia, ag
from fighting
(YouTube)
2608-88-11 1 E: b'Bush put: h Georgian
7 If down on Geo r: Thanks to
T wont help us conflict raeli training,
now, why did we help fending off
them in Irag?’ "
2888-88-12 B b’ Remember that b"Russia 'ends b "If we had no
adorable 9-year-old Georgia operation sexual harassment we
who ng at the would have no
open ceremonies? children. .
That was fake, too.'
b"When the president

2pB8-88-13 8 b* U.5. refuses
Israel weapons to ordered to attack
attack Iran: report’ Tskhinvali [the

Figure 1.2: Fundamental dataset.

1.3.2 Technical datasets

technical datasets focus on quantitative metrics derived from market activ-
ity, providing valuable insights into price movements and market sentiment.
Historical prices offer a historical record of asset valuations over time, en-
abling investors to identify trends, patterns, and key support and resistance
levels. By analyzing historical price data, traders can gain a deeper under-
standing of market behavior and anticipate potential future price movements.
Moreover, technical indicators employ mathematical calculations to assess
market momentum, volatility, and trend strength. These indicators, ranging
from simple moving averages to complex oscillators, offer valuable signals
for timing trades and identifying potential entry and exit points. Overall,
technical datasets play a crucial role in guiding trading strategies and risk
management, complementing fundamental analysis to provide a holistic view
of market opportunities and risks. Figure shows 1.3 an example of a technical



dataset.

& Date = # Open = # Close = # EMAS0 = # RSl =
1999-01-06 2024-02-01 0.83 1.6 0.83 1.6 116 119 12.2 91.5
1999.81.86 20:08 1.16 1.1623 1.173195294 21.88449848
1999.81.87 @0:08 1.1623 1.1634 1.173238437 24.59941323
1999.81.87 e4:08 1.1635 1.1641 1.173265882 26.35353964
1999.81.87 @8:88 1.1657 1.1657 1.173328627 36.34258826
1999.81.47 12:60 1.1656 1.1604 1.173473725 38.62173496
1999.81.47 16:68 1.169 1.1713 1.173548235 42 .46726898
1999.87.47 20:08 1.1712 1.1712 1.173544314 4225953143
1999.01.88 @0:00 1.1713 1.1713 1.173548235 42 .47533862
1999.81.88 84:08 1.1711 1.1685 1.173438437 38TIINTIIT
1999.871.88 85:08 1.1686 1.1666 1.173363922 35.54244154

Figure 1.3: Technical dataset.

1.4 Pre-processing

Preprocessing is the process of handling problems in datasets, such as noises,
missing values, or other faults, that can dramatically impair the perfor-
mance of machine learning models. These problems can be handled by pre-
processing algorithms. During this process, the data will be cleaned up and
converted appropriately. In order to get the data ready for a machine learning
model, pre-processing is an essential step that must be taken. Specifically,
it entails converting the input into a format that is suitable with the model
and maximizing convergence in order to enhance the quality of the outputs.

1.4.1 Pre-processing of technical dataset

In this type of data, in which the actual value depends on the previous value
directly, we should not have to eliminate any row of the dataset, so firstly
we should have to ensure that the collected data is proper, and there are no
missing values, and does not contain defects as much as possible. Some of the
articles applied normalization as an essential step before feeding data to the
model to eliminate the destructive effect of outliers and to make convergence



better, and other articles do not apply any pre-processing[36, 29, 47].

Based on the literature that we have consulted for this study, we can
conclude that if the dataset is in the same range and does not have missing
values or other defects we should not have to apply the preprocessing step.

1.4.2 Preprocessing of fundamental dataset

Fundamental data like news articles, social media tweets, etc. is textual data,
and to process this type of data we use a subfield of Natural Language Pro-
cessing(NLP) called sentiment analysis. Sentiment analysis also known as
opinion mining is a subfield of NLP that analyzes textual data to determine
whether a text conveys a positive, negative, or natural. To analyze and iden-
tify these textual data, firstly we have to remove useless information from the
extracted articles, and then we need a sentiment dictionary(sentiment lexi-
con) which contains words and sentiment types. We can create a sentiment

lexicon or use an existing one, and there are a variety of sentiment lexicons
that we can use in this step like NTUSD, HowNet, SentiWord Net[5, 31, 4].

1.5 Conclusion

In conclusion, the chapter on stock market prediction using machine learn-
ing examines financial market complexities and forecasting challenges. It
discusses the Random Walk and Efficient Market Hypotheses, noting ma-
chine learning’s potential to uncover patterns despite these theories. The
chapter covers fundamental and technical analysis, emphasizing the impor-
tance of diverse, high-quality datasets and preprocessing steps. It highlights
the promise of machine learning in improving forecast accuracy and decision-
making in financial markets through interdisciplinary approaches and robust
data handling.



Chapter 2

Deep learning

2.1 Introduction

In this chapter, we will carefully present the core and conceptual foundations
of machine learning. We will begin with a mathematical overview of machine
learning to establish a solid base for understanding. Following this, we will
introduce neural networks and the corresponding mathematical principles
that underpin their functionality. Finally, we will delve into recurrent neural
networks, exploring their unique characteristics and applications in depth.
This comprehensive approach will provide a robust framework for grasping
the fundamental concepts and advanced techniques in machine learning.

2.2 A mathematical overview of machine learn-
ing
2.2.1 Learning process

In machine learning, a model is a mathematical function that represents
the relationship between input variables, known as features, and an output
variable, known as the target[38]. This function can take various forms,
including linear, polynomial, or other non-linear functions. The general form
of a linear model is given by:

=0

In Equation 2.1, g is the predicted target, representing the model’s output.
The term z; denotes the features, which are the variables of this equation.



The parameter n represents the number of features in the dataset, and wj
are referred to as weights or parameters. These weights are crucial as they
determine the influence of each feature on the predicted output. We will ex-
plain the mathematical significance and role of these weights in the learning
process in the following example[7].

In this example, we will use a virtual dataset with one feature to illus-
trate the mathematical concept of the learning process. Before selecting our
model, we examine the dataset to determine if any preprocessing steps are
necessary. After preprocessing, we analyze how the feature’s samples are dis-
tributed in relation to the output y. This step is essential to understand the
relationship between the feature and the target variable, which will inform
our model selection and training approach.

Data distribution

[s)
°
o
8 e o
° °
° )
o
6 « ®
> ¢ ®
o
sl
4 °
[
oo o
e ®
2 e ® @
o
T T T T T T T T T
1 2 3 4 5 6 7 8 9
X

Figure 2.1: Dataset distribution.

In Figure 2.1, we observe that the distribution of points is approximately
linear. Therefore, we employ a linear model as described in Equation 2.2. In
this model, wy represents the bias, which shifts the curve vertically. On the
other hand, w; represents the slope, which determines the incline of the curve.
This linear model helps us capture the relationship between the feature and
the target variable effectively.

J=wo+ws *x (2.2)

10



The learning process is geared towards determining optimal values for
these weights such that the curve represented by gy closely approximates the
data distribution. This entails ensuring that for each sample in the dataset,
the predicted output is highly consistent with the actual output. In essence,
the objective is to minimize the discrepancy between the predicted values
and the ground truth, thereby enhancing the model’s predictive accuracy
and fidelity to the underlying data distribution[19].

2.2.2 Loss function

Loss functions serve as mathematical measures to quantify the disparity be-
tween the predicted output generated by the model and the actual output
observed in the dataset. While a plethora of loss functions exists, the choice
of a specific one is contingent upon the nature of the task at hand[17]. In
the case of regression tasks, the mean squared error (MSE) is a commonly
employed metric. MSE calculates the average squared difference between the
predicted output and the actual output. Mathematically, it is represented
as:

Tw) = =S ) (23

This function is characterized by its continuity and differentiability, prop-
erties that are crucial in calculus for determining minimum and maximum
values of a function. Therefore, in the learning process, the objective is to
iteratively update the weights of the model in order to minimize the loss
function. The ultimate aim is to find the values of the weights that either
achieve the minimum value of the loss function or converge to a value close
to it. This iterative optimization process involves adjusting the weights in a
manner that systematically reduces the prediction error, thereby enhancing
the model’s accuracy and effectiveness in capturing the underlying patterns
in the data.

2.2.3 Gradient Descent

It is an optimization algorithm used to find the optimal values for the weights
that achieve the minimum loss function[38]. It works by iteratively updating
the values of the weights, this process is called training the model. But how
does this algorithm update the values to new values closer to the optimal
values rather than farther away? In mathematics, the first derivative of a
continuous function in a point represents the slope at this point, if it is

11



equal to a positive value, that means the curve at this point is increasing,
and if it is equal to a negative value, that means the curve at this point
is decreasing[51]. so we update wy and w; by deriving J(w) in 2.3 partial
derivation to know whether we should increase or decrease their values if the
derivative is positive that means the curve is increasing at these points and
the minimum value is lower than the actual value, so we should decrease the
actual values and vice versa. the gradient descent equation that achieves this
is given by:

)
5 ) (2.4)

wi:wi—ﬁ*

In 2.4 7 is the learning rate and it is a small value that controls the step size
at which the optimization algorithm updates the model’s weights. In our
example, the gradient descent equations are as follows:

wp = wy — £ * %Z(g)—y) (2.5)
W = wy —E*%Z((Q—y)*x) (2.6)

after applying the gradient descent to the model in 2.2, we get the result
in Figure 2.2 where wy = 0.11447 and wg = 0.98483. The final model is
7 = 0.98483x 4 0.11447.

Predicted model

10 A

Figure 2.2: Linear regression model.

12



2.3 Neural network

A neural network (NN) is a computational model inspired by the structure
and functionality of the human brain, as illustrated in Figure 2.3. It consists
of interconnected nodes, or neurons, organized into layers. These networks
are capable of learning complex patterns and relationships from data. From
a mathematical perspective, it is important to understand what lies within
these networks and what exactly a neuron or node signifies. A neuron in
a neural network represents a mathematical function that takes inputs, ap-
plies weights, adds a bias, and then passes the result through an activation
function. This process allows the network to learn and model complex rela-
tionships within the data[15].

Inputs
—

Dendrites Outputs

Output

Linear
Function

Nucleus Activation

Function

Figure 2.3: Neural network and human brain.

In the example from the previous section, the data distribution was linear,
so we used and learned a linear model. If the data were polynomial, we would
use a polynomial model. However, in real applications, data distributions are
typically more complex. Mathematically, we can combine multiple models to
create a more complex one. For instance, in Figure 2.4, three linear models
are summed to form a single, more complex model. In neural networks (NNs),
each neuron represents a simple model, and by summing these models across
layers, we construct a highly complex model in the output layer. This layered
approach allows NNs to capture and learn intricate patterns in the data.

13



2.2 9

2.0

1.8

1.6 4

144

Figure 2.4: Neural network model.

2.3.1 Activation functions

In neural networks, if all the layers use only linear transformations, the out-
put of the network is still a linear combination of the inputs, in this case,
the model will not be able to recognize complex patterns and then will not
be able to handle complex problems, so we need to break the linearity in
the layers to capture complex patterns instead of linear ones. Activation
functions break this linearity by applying a nonlinear transformation to the
output of each layer before passing it to the next layer, this allows the neural
network to build complex patterns[25]. The main condition when applying
any activation function is to be a differentiable function because in the gra-
dient descent algorithm, we use the derivative of this function in updating
the weights[7]. Many activation functions can be expressed mathematically
in a neural network’s node. Here are some of them:

Sigmoid function

It is a mathematical function that converts the input value to a value between
0 and 1, it is particularly used in the output layer in NN where the output
is a probability value between 0 and 1 so we use it with binary classification
problems, and according to a defined threshold we say the output belongs to
class 1 or class 0[50]. Figure 2.5 shows sigmoid curve and it is defined as:

a(z) = (2.7)

14



Lo}
Z) =
¢(z) 1+e%
= o5}
0.0}
-8 "6 - = 0 2 4 6 8

Figure 2.5: Sigmoid function.

Softmax activation function

It is a mathematical function that converts the input vectors into a proba-
bility distribution vector between 0 and 1, where the probabilities sum to 1,
and the input vector belongs to the highest probability[49], as illustrated in
Figure 2.6, it is defined as:

Zi

e
= (2.8)
Zj:l €%

where z; is the ith component of the input vector, and n is the total number
of components. This activation function used with multi-class classification
problems.

softmax(z;) =

Soft I
Output layer O, m'ax Probabilities
activation
11 e 0.7
2 L % —P | 0.2
z.
. . e~
1.74 2321 0.1

Figure 2.6: Softmax activation functin.

15



Hyperbolic Tangent Activation Function

It is a mathematical function that converts the input value to a value between
-1 and 1, as shown in Figure 2.7, providing symmetry about the origin. This
characteristic aids in maintaining data normalization within the network,
facilitating gradient propagation, and potentially contributing to faster con-
vergence during training. it is given by:
er —e”
tanh(z) = pr— (2.9)
It is commonly employed in hidden layers and recurrent neural network
(RNN) architectures, such as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), where the symmetric range is particularly useful for
sequential data processing.

One limitation of the tanh function is that it can be affected by the van-
ishing gradient problem, where the gradients become very small during back-
propagation, making it difficult to train the network effectively. To mitigate
this issue, other activation functions like ReLLU have been developed[25].

Tanh
1.0

Figure 2.7: Tanh activation function.

Rectified Linear Unit

The Rectified Linear Unit (ReLU) activation function is a cornerstone in neu-
ral networks, renowned for its computational simplicity and ability to address
the vanishing gradient problem commonly seen with other activation func-
tions like sigmoid and tanh. Defined mathematically as: ReLU(x)=max(0,x),
it introduces nonlinearity while retaining computational efficiency, allowing

16



for faster training in deep architectures. RelLU’s sparse representations, cre-
ated by outputting zero for non-positive inputs, lead to more efficient com-
putations and reduced memory usage. Despite these benefits, ReLU has
limitations, such as the "dying ReLLU” problem, where neurons can become
inactive due to persistently negative inputs. Variants like Leaky ReLLU, Para-
metric ReLU (PReLU), and Exponential Linear Unit (ELU) aim to address
these issues by incorporating a small slope or smooth transitions for nega-
tive inputs. ReLLU’s widespread adoption in deep neural networks, especially
in convolutional layers and deep feedforward architectures, underscores its
significant role in advancing deep learning methodologies|[1].

y!\

1 #(x) = max(x,0)

~
> m
E Wi X
i=1

Figure 2.8: Relu activation function.

2.3.2 Forward propagation

Forward propagation is the process by which data is passed through a neural
network from the input layer to the output layer. Each layer of the network
performs calculations on the input data and passes the results to the next
layer. This process continues until the data reaches the output layer, where
the final predictions are made. To illustrate the forward propagation process,
consider the network shown in Figure 2.9. In this network, the input data is
first processed by the initial layer, which applies weights and biases and passes
the result through an activation function. The output of this layer becomes
the input for the next layer, and this process repeats through all subsequent
layers until the final output is produced. This step-by-step transformation
of data through the network layers is what enables neural networks to learn
and model complex relationships within the data|[38].

17



Inputs Hidden layer

X1
\—' @ Output
X2

Figure 2.9: Network with one hidden layer.

We begin this process by feeding the input vector into the first hidden
layer and computing the output from each perceptron. Subsequently, we
apply the activation function to the outputs to introduce non-linearity. The
mathematical equation defines the operation of the first layer is expressed as
follows:

a1 =by +wil * 2y + w2 * 29 (2.10)
a9 = by + wal * T + we2 * 9 (2.11)
as = bs + wsl * 11 + w32 * 29 (2.12)

After computing the output of this layer and applying the activation func-
tion, we utilize it as inputs to the next layer. This process is iterated for each
perceptron in all layers until the final output is obtained. To simplify these
calculations, we leverage linear algebra and vectorize these equations. In
linear algebra notation, the previous equations can be represented as follows:

la1] = [ba] + [21 23] ZZZE Zji (2.13)
laz] = [bﬂ + [1’1 332} :zi Zji (2.14)
las] = [bs] + [21 2] l‘gi Zi (2.15)
Finally, we vectorize all equations in this layer as follows:
1=[by by bg]+ [z1 @) [Zi Qw”i Zﬂ (2.16)

18



2.3.3 Backward propagation

Backward propagation, often referred to as backpropagation, is a method
used in NN for training neural networks. It is an algorithm that adjusts the
weights and biases of a neural network in response to errors in its output. It
does this by calculating the gradient of the error function with respect to each
weight and bias in the network, and then adjusting those weights and biases
to minimize the error. The chain rule plays a central role in this process,
as it allows the decomposition of complex gradient calculations into simpler
parts by considering the derivative of each layer’s activation function with
respect to its input. Through partial derivatives, backpropagation calculates
how changes in the network’s parameters (weights and biases) affect the loss
function, providing the necessary information to adjust these parameters us-
ing an optimization algorithm, such as stochastic gradient descent or Adam.
This iterative process, repeated across multiple epochs, is fundamental to
the supervised learning paradigm in neural networks, driving the model’s
convergence towards a lower loss and improved predictive performance[38].

For network with tow hidden layer the backward propagation equations

is as follows: .
B= (- ) (217)

where y is the true output. During the backward pass, this error is propa-
gated backward to update the weights.

The partial derivative of the error with respect to each weight is computed
using the chain rule. For instance, the error gradient with respect to a weight
w;; in the second hidden layer is:

oF o oF 8@ 8a2 822

- = . . . 2.1
Owij 8:& 8a2 822 Gwij ( 8)

where as is the activation function output and z, is the weighted sum of
inputs for the second hidden layer. This gradient is then used to update the
weights using a learning rate n:

The same process is applied to the first hidden layer, where the gradient
for a weight wj;, is:

OF . OF 0@ 8&2 822 ) (9a1 821

8U)jk N 8_g . 8a2 . 822 . 8@1 821 - 8wjk

19



where a; and z; correspond to the activation and weighted sum in the first
hidden layer. By iteratively applying backpropagation through each layer,
the network gradually learns to reduce the error, improving its performance
in tasks such as classification and regression.

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) represent a type of artificial neural net-
work (ANN) characterized by a memory-based architecture specifically de-
signed to process sequential data, often referred to as time series data. RNNs
maintain a memory of past inputs through hidden states, enabling subsequent
inputs to be influenced by outputs from other nodes within the network. The
primary distinction between ANN and RNN architectures lies in their data
flow patterns. In ANN architecture, data travels unidirectionally, from the
input layer to the output layer, constituting what is known as feed-forward
architecture. In contrast, RNN architectures feature recurrent connections
that facilitate bidirectional data flow, as depicted in Figure 2.10, a charac-
teristic commonly referred to as feedback[17].

Y
., Y Y Yti2
Why Why Why Why
h f t=1 h[ _ t+1
) f f f
Wxh Wxh Wxh Wxh
X X X X

Figure 2.10: Recurrent neural network.

2.4.1 Application domains

Recurrent Neural Networks (RNNs) are widely employed across various do-
mains due to their effectiveness in processing sequential data. In Natural
Language Processing (NLP), RNNs play a pivotal role in tasks like language
translation, sentiment analysis, and text generation. Their ability to com-
prehend and generate human-like text contributes to the development of con-
versational agents and virtual assistants. Moreover, RNNs are instrumental

20



in speech recognition systems, accurately transcribing spoken language into
textual format, and powering voice-activated devices and applications[26].

In the financial sector, RNNs are utilized for time series prediction, aid-
ing in stock market forecasting, asset price prediction, and risk assessment.
Additionally, in computer vision, RNNs are applied in image captioning, gen-
erating descriptive textual annotations for visual content, thereby enhancing
image accessibility and interoperability[26].

Beyond these domains, RNNs find applications in diverse fields such as
music generation, DNA sequence analysis, and healthcare for patient mon-
itoring and disease prediction. The versatility of RNNs serves as a cata-
lyst for innovation and advancement across various industries and academic
disciplines|26].

2.4.2 Types of architecture

According to inputs and outputs sequences, RNNs have many types of ar-
chitecture as follows|[15, 2]:

e One-to-many: In this architecture, a vector serves as the input at
the initial time step, generating a sequence of vectors across all subse-
quent time steps. Image captioning exemplifies this type of architec-
ture, where an image serves as the input, and the output comprises a
sequence of words describing the image[52]. This approach enables the
network to process complex inputs, such as images, and generate mean-
ingful textual descriptions, capturing the essence of the visual content.

Figure 2.11: One-to-many architecture.

e Many-to-one: In this architecture, a sequence of vectors is utilized
as the input at each time step, culminating in the generation of a sin-
gle vector at the final time step. Sentiment analysis exemplifies this

21



architecture, where the input comprises a sentence represented as a se-
quence of words, and the output is an expression of sentiment, typically
ranging from positive to negative, or rated on a scale from 0 to 5[44].
This framework enables the network to analyze and interpret sequential
data, such as text, and produce meaningful insights or classifications
based on the overall context of the input sequence.

Figure 2.12: Many-to-one architecture.

e Many-to-many: In this architecture, there are two types of networks,
in the first type for each time step there is a vector as an input and
a vector as an output as shown in Figure 2.13 so the input sequence
is equal to the output sequence Tx = Ty that means the input and
the output have the same length. One example of this type is Part-
of-speech tagging, the task is to tag each word in a sentence as verb,
noun, adjective, etc.[21].

) Yy Yy

(I 1
a<0> ‘_. S

1 t i

<1> <2> <Ty >

Figure 2.13: Many-to-many architecture.

In the second type, the input is a sequence and the output is a sequence
same as the first type, but in this network, the first time steps are fed

22



by a sequence as input and the next time steps generate a sequence
as output as shown in Figure 2.14, in other words, we feed input and
generate output form different time steps, in this case, the input length
can equal to output length or not. One example of this type is machine
translation, firstly we write the complete text in a language and then
generate the text in another language[34].

=_-00-.-0---00--0

Figure 2.14: Many-to-many architecture.

2.5 Long short-term memory

Long Short-Term Memory (LSTM) networks have a significant advantage
over traditional Recurrent Neural Networks (RNNs) due to their gating mech-
anism. This mechanism enables LSTMs to retain long-term memory, which
is particularly beneficial for sequential tasks and natural language processing
(NLP). For instance, consider a task where the network is required to gen-
erate the next word in a sequence of text. Traditional RNNs often struggle
with this task because they typically rely on short-term memory, retaining
information from only the most recent few sentences. This limitation can
lead to inaccuracies, as the RNN may fail to utilize relevant information
from earlier in the text.

In contrast, LSTMs can maintain information over longer periods, which
allows them to generate more accurate and contextually appropriate predic-
tions. For example, in network-generated text, when provided with specific
information such as a name or an object, an LSTM can recall and correctly
incorporate this information even after several intervening sentences. This
capability enhances the LSTM’s performance in generating text that is coher-
ent and contextually relevant, demonstrating a clear advantage in tasks that
require understanding and leveraging long-term dependencies.[22, 14, 16].

LSTM Component can be described deeply as follows:

23



Vs

T {————0
F Input R
| (e os
"] "[e] ¢ [en] o]
Hidden state 1 } } . H
Hy O l( J
Input X,

Figure 2.15: LSTM architecture.

Forget Gate: The forget f; gate in an LSTM network is responsible
for determining which information from the previous cell state should
be discarded. This gate uses a sigmoid activation function to produce
a value between 0 and 1 for each number in the cell state C;_;. A value
of 1 indicates "keep this entirely,” while a value of 0 indicates ”forget
this completely.” The gate’s decision is based on the current input z;
and the previous hidden state h;_;, combined through a weighted sum
and a bias term. This allows the LSTM to selectively forget irrelevant
information, which is crucial for handling long-term dependencies in
the data. The mathematical equation in the forget gate is given by:

ft = O'(Wf . [htfl, SL’t] + bf) (2.19)
Input Gate: The input gate controls the amount of new information
added to the cell state C. It also uses a sigmoid function to create
an input gate activation vector i;, which decides which values will be
updated. Simultaneously, the LSTM computes a vector of candidate
values C, using the hyperbolic tangent (tanh) function. The actual
update to the cell state is a combination of these two vectors, allowing
the network to selectively add new information based on the current
input x; and the previous hidden state h;_.

th = O'(Wz . [htflth] + bz) (220)
Candidate Cell State: The candidate cell state C; represents the new
information that could be added to the cell state. It is calculated using

24



the tanh function applied to the weighted sum of the current input x;
and the previous hidden state h;_;. This candidate state is then mod-
ulated by the input gate to ensure only the most relevant information
is added to the cell state, helping the network to maintain pertinent
information while avoiding overloading the memory with unnecessary
data. .

Ct = tanh(WC : [ht—b fL’t] + bc) (221)

Cell State: The cell state C; is the core of the LSTM’s memory. It
is updated by combining the old cell state C;_;, modulated by the for-
get gate f,, with the candidate cell state Cy, modulated by the input
gate 7;. This dual control mechanism allows the LSTM to preserve
important information over long periods while incorporating relevant
new information. The cell state acts as a conveyor belt, carrying infor-
mation across many time steps without significant modifications, thus
effectively managing long-term dependencies.

Cr=fixCry+ixCy (2.22)

Output Gate: he output gate determines the value of the next hidden
state h;, which is also used as the output of the LSTM unit. The gate
uses a sigmoid function to create an output gate activation vectoroy,
which decides which parts of the cell state should be output. The cell
state C; is then passed through a tanh function to push the values to
be between -1 and 1, and is multiplied by the output gate’s activation
vector. This filtered version of the cell state forms the hidden state h;,
which influences both the current output and the subsequent states.

op =Wy - [hi_1, 2] + by) (2.23)

Hidden State: The hidden state h; is the output of the LSTM cell
for the current time step and serves as the input to the next LSTM cell
in the sequence. It is computed by taking the tanh of the current cell
state C; and modulating it with the output gate o;,. This state encap-
sulates both the long-term memory contained in C; and the short-term
dynamics captured by the current input x; and the previous hidden
state h;_;. The hidden state is crucial as it carries forward the relevant
information needed for predicting the next steps in the sequence.

hy = o, * tanh(Cy) (2.24)

25



2.6 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a type of recurrent neural network de-
signed to manage and utilize long-term dependencies more efficiently than
traditional RNNs. It employs two key mechanisms: the update gate and
the reset gate. The update gate controls how much of the previous hidden
state is carried forward to the current hidden state, enabling the network to
maintain and use information over extended time periods. The reset gate, on
the other hand, determines how much of the past information to forget when
incorporating new input, allowing the GRU to reset its memory when neces-
sary. By combining these gates, the GRU can adaptively preserve and update
its memory, ensuring that relevant information is retained while irrelevant
information is discarded. This makes GRUs particularly effective for tasks
involving sequential data, such as language modeling and time-series predic-
tion, where capturing long-term dependencies is crucial. Additionally, GRUs
are computationally efficient compared to LSTMs, as they use fewer param-
eters, making them a popular choice in many practical applications[11, 26].

Hidden state '/_ Py _\'
" 'm -©

B -0

®

(@ Reset Update
gate gate Candidate
| a |R' | a |Zr |tar-.|1|...._ hidden state

i J J "

e

kf” j

Input X,

Figure 2.16: GRU architecture.

GRU Components can be described deeply as follows:

e Update Gate: The update gate in a GRU controls how much of
the previous hidden state h;_; needs to be passed along to the current
hidden state h;. This gate uses a sigmoid function to produce an update
gate vector z; that decides the weight given to the old hidden state
versus the candidate hidden state. By combining the information from

26



the current input x; and the previous hidden state h;_;, the update
gate helps the GRU maintain information over multiple time steps,
balancing between preserving past knowledge and incorporating new
information.

zp=0(W, - [h—1, 2] +0,) (2.25)

Reset Gate: The reset gate in a GRU determines how much of the past
information to forget. It uses a sigmoid activation function to compute
the reset gate vector r;, which decides the degree to which the previous
hidden state h;_; influences the candidate hidden state ﬂt. When the
reset gate is close to zero, the GRU effectively forgets the past hidden
state, focusing only on the current input x;. This mechanism allows
the GRU to reset its memory when processing sequences with long
dependencies.

Ty = O'(Wr . [ht—lu fL’t] + br) (226)

Candidate Hidden State: The candidate hidden state ﬂt in a GRU
represents the new content to be added to the current hidden state.
It is calculated using the tanh function applied to a weighted sum of
the current input z; and the element-wise product of the reset gate r;
and the previous hidden state h;_;. This interaction ensures that the
influence of the past state is modulated by the reset gate, allowing the
network to adaptively decide how much past information is relevant for
the current time step.

ilt = tanh(Wh . [Tt * ht—la fL't] + bh) (227)

Hidden State: The hidden state h; in a GRU is a blend of the previous
hidden state h;_; and the candidate hidden state Ht. This is controlled
by the update gate z;, which decides the proportion of the old state to
retain versus the new candidate state to incorporate. The hidden state
is computed by Equation 2.28 This formulation allows the GRU to
preserve long-term dependencies by maintaining relevant information
over many time steps, while also integrating new information efficiently.

ht = (1 — Zt) X ht—l + 2 % iLt (228)

27



2.7 Differences between LSTM and GRU

Table 2.7 represents the main differences between LSTM and GRU.

LSTM GRU
Gates Has three gates (input, | Has two gates (update, re-
forget, output) set)

Memory Cell

Maintains a separate cell
state

Combines the cell state
and hidden state into a
single hidden state

learning long-term depen-
dencies.

Complexity More complex due to the | Simpler and often faster
additional gate and sepa- | to compute due to fewer
rate cell state gates and combined state

Performance Better for tasks requiring | Comparable performance

in many tasks, with fewer
parameters and faster

training

Table 2.1: Differences between LSTM and GRU.

There are few more differences between LSTM and GRU. First, LSTM
can control on the exposure of memory, while GRU exposes the memory,
which is not controllable. Then, GRU does not have the output gate like
in LSTM. Also, the input gate and forget gate in LSTM are substituted by
the update gate, and thus the reset gate is directly applied to the previous
hidden state. Since GRU has fewer parameters than LSTM, we could make
a preliminary guess that GRU will be faster than LSTM and need less data.
However, if the data scale is large, LSTM may lead to a better result.

2.7.1 Advantage and limitation
Advantages

LSTM and GRU networks provide significant advantages in handling sequen-
tial data compared to traditional recurrent neural networks (RNNs). Both
architectures introduce gating mechanisms that enable the networks to se-
lectively retain or forget information over multiple time steps, facilitating
more effective learning and prediction. One notable advantage of LSTM net-
works is their explicit memory cell and gating structures, which offer greater
flexibility in modeling complex temporal relationships and handling longer
sequences of data. LSTMs are particularly effective in tasks that require
modeling long-range dependencies, such as natural language processing and

28



speech recognition. On the other hand, GRU networks offer a simpler ar-
chitecture with fewer parameters compared to LSTMs, resulting in faster
training and lower computational overhead. GRUs also tend to perform well
in scenarios with limited training data or when computational resources are
constrained[17, 14].

limitations

Despite their advantages, LSTM and GRU architectures have certain limi-
tations that should be considered. One common limitation is their suscep-
tibility to overfitting, especially when dealing with small datasets or when
the model complexity is high. Additionally, interpreting the inner workings
of these gated recurrent units can be challenging, making it difficult to gain
insights into the learned representations. This lack of interpretability can
hinder the debugging and optimization processes, particularly in complex
models. Furthermore, while LSTMs and GRUs offer significant advantages
in handling sequential data, they may not always outperform simpler models
or alternative architectures in certain tasks. Careful consideration of these
limitations is essential when choosing the appropriate architecture for a given
task, ensuring that the selected model effectively balances performance and
complexity[17, 11].

2.8 Conclusion

This chapter provides a comprehensive analysis of the mathematical and
conceptual foundations of machine learning and neural networks. It covers
loss functions, gradient descent, and the training and optimization of models.
Detailed explanations of neural networks, activation functions, forward and
backward propagation, and advanced models like RNNs, LSTMs, and GRUs
are included. The chapter establishes a robust groundwork for understanding
and exploring advanced Al techniques in subsequent chapters.

29



Chapter 3

Experiments and Results

3.1 Introduction

In this chapter, we propose a system designed to predict forex prices us-
ing LSTM and GRU. We will provide a detailed explanation of our system,
including the architecture and methodologies employed. Following this, we
will present the results obtained from our predictive models and conduct a
thorough comparison with state-of-the-art approaches to assess the efficacy
and accuracy of our system.

3.2 Proposed System

The proposed system, shown in Figure 3.1, aims to accurately predict fi-
nancial time series data using LSTM and GRU network. The process ini-
tiates with the collection of a comprehensive dataset from the MetaTrader
database, which offers historical financial data essential for robust model
training. This dataset is divided into three subsets: 70% for training, 15%
for validation, and 15% for testing, ensuring a balanced framework for model
evaluation and fine-tuning. To effectively capture temporal dependencies, the
dataset is segmented into overlapping time steps, creating sliding windows
of sequential data optimized for LSTM and GRU processing. These sequen-
tial data windows are subsequently fed into the model, which is specifically
designed to learn and predict complex patterns over time. This approach
leverages the LSTM and GRU’s ability to model long-term dependencies,
thereby enhancing predictive performance and reliability[22]. This method-
ological framework ensures that the model is trained on a diverse array of data
points, validated to mitigate overfitting, and tested to assess its generaliza-
tion capabilities on new, unseen data. The comprehensive preprocessing and

30



structured data handling establish a solid foundation for the LSTM model,
resulting in accurate and dependable financial time series predictions[14].

-
- Collecting dataset

\ 4

[ Window sliding ]
Dataset
[Training & Valldation} [ Testing ]

¥ ¥

Model Trained model
Rime— HEE
|-

A 4

Predict price

AKX

Figure 3.1: Proposed System.

The proposed architecture employs a deep learning architecture built us-
ing the Sequential API of TensorFlow’s Keras. The model comprises three
RNN (LSTM or GRU) layers, designed to capture and learn from the tem-
poral dependencies in sequential data. The first RNN layer consists of 180
units, the second RNN layer with 90 units, and the third RNN layer with 20
units, providing a robust foundation for extracting complex patterns from
the input sequences. To mitigate overfitting and enhance generalization, a
Dropout layer with a dropout rate of 0.2 is introduced between the layers[28].
Finally, a Dense layer with a single unit is used to produce the output, mak-

31



ing the model suitable for regression tasks. This architecture balances depth
and complexity, ensuring the model is both powerful and efficient for various
time-series prediction problems.

3.3 Dataset Description

The dataset used in this study comprises detailed financial metrics and tech-
nical indicators essential for predictive modeling in financial time series anal-
ysis. It includes the fundamental price data: open, high, low, and close
prices, which provide comprehensive insights into daily market fluctuations.
Additionally, the dataset incorporates two critical technical indicators: the
30-day Exponential Moving Average (EMA) and the Relative Strength In-
dex (RSI). The EMA is a widely used tool that gives more weight to re-
cent prices, making it particularly useful for identifying short-term trends
and momentum. The RSI, on the other hand, is a momentum oscillator
that measures the speed and change of price movements, offering valuable
information about overbought or oversold market conditions[37]. By inte-
grating these technical indicators with the core price data, the dataset pro-
vides a robust foundation for building predictive models that can capture
both trend-following and mean-reverting behaviors in financial markets. This
comprehensive dataset enables the application of advanced machine learning
techniques, facilitating the development of models with enhanced predictive
accuracy and reliability[46].

To calculate the 30-day Exponential Moving Average (EMA) and the
Relative Strength Index (RSI), specific formulas and steps are employed to
ensure accurate representation of market trends and momentum. The EMA
is calculated by applying more weight to recent prices, using the formula in
Equation 3.1, where P, is the current price, « is the smoothing factor given
by niﬂ and n is the number of days, and EM A;_; is the EMA of the previous
day. This method ensures the EMA responds more swiftly to recent price
changes compared to the Simple Moving Average.

EMA, = (P, x a) + (EMA,_, x (1 —a)) (3.1)

The RSI is calculated to measure the magnitude of recent price changes
to evaluate overbought or oversold conditions. It involves two main steps:
calculating the average gains and losses over a specified period (usually 14
days), and then applying these averages in the RSI formula in Equation 3.2,
where RS is (Relative Strength) is the ratio of average gain to average loss.
The average gain is calculated as the sum of all gains over the period divided

32



Date Open High Low Close EMAS0  RSI

1999.01.06 20:00 116 11836  1.1589  1.1623 1.173195 21.8845
1999.01.07 00:00 11623  1.1841  1.1612  1.1634 1.173238 24.58541
1999.01.07 04:00 1.1635  1.1848  1.1635  1.1641 1.173266 26.35354
1999.01.07 08:00 1.1657  1.1679  1.1651  1.1657 1.173329 30.34251
1999.01.07 12:00 1.1656  1.1898  1.1627  1.1694 1.173474 38.62173
1999.01.07 16:00 1.169  1.1735 11656  1.1713 1.173548 42.40726
1999.01.07 20:00 11712 11723 11701 11712 1.173544 42.25953
1999.01.08 00:00 1.1713 1.172 1.169  1.1713 1.173548 42.47534
1999.01.08 04:00 11711 11715 1.1682  1.1685 1.173438 38.17318
1999.01.08 08:00 11686  1.1893  1.1651  1.1666 1.173364 35.54244
1999.01.08 12:00 11663 11673  1.1575  1.1587 1.173054 27.16094
1999.01.08 16:00 1.1586  1.1819  1.1533  1.1572 1.172995 25.9115
1999.01.08 20:00 1.1595 116  1.1574  1.1585 1.173046 28.96151
1999.01.11 00:00 1.1575  1.1582  1.1561  1.1579 1.173023 28.38079
1999.01.11 04:00 1.1571 1,159  1.1569  1.1586 1.17305 30.14075
1999.01.11 08:00 1.1585 1.161  1.1569  1.1588 1.173058  30.665
1999.01.11 12:00 1.159  1.1552  1.1513  1.1517 1.17278 23.82838
1999.01.11 16:00 1.1514 11557  1.1485  1.1502 1.172721 232.67827
1999.01.11 20:00 1.1492  1.1508  1.1487  1.1503 1.172725 232.94533

1999.01.12 00:00 1.1504  1.1518  1.1447  1.1479 1.172631 21.06488

Figure 3.2: Dataset used in this study.

by the number of days, and similarly, the average loss is the sum of all losses
divided by the number of days. These calculations yield an oscillator that
fluctuates between 0 and 100, providing insights into the momentum and
potential reversal points in the market.

100
=100 — ——— .2
RS 00 T F RS (3.2)

Figure 3.3 shows these indicators on the EURUSD chart.

3.4 Evaluation Metrics

Evaluation metrics in machine learning are quantitative measures used to
assess the performance and effectiveness of a predictive model. These met-
rics provide insights into how well a model’s predictions match the actual
outcomes, guiding improvements in model development and selection. Dif-
ferent metrics capture various aspects of performance, such as accuracy, error
rates, and the ability to generalize to new data, making them essential tools
for validating and comparing models in diverse applications|[7].

33



1096100
109308

109000

108390
106088
1.07780
107478
i

107170
106868
106860

106258

RSI(14)62.13 100.00

‘JM 30.00

Figure 3.3: EURUSD chart including EMA and RSI indicators.

3.4.1 Mean Squared Error

Mean Squared Error (MSE) is a common evaluation metric used in regres-
sion tasks within machine learning to measure the average squared difference
between the observed actual values and the predicted values by a model. The
MSE provides a quantifiable measure of the accuracy of predictions, where
lower values indicate better model performance[8]. Mathematically, MSE is
defined as:

n

1
MSE = — )2 .
S " ;:1 (yi — i) (3.3)

3.4.2 Mean Absolute Error

Mean Absolute Error (MAE) is another widely used evaluation metric for
regression models that assesses the average magnitude of the errors in a set
of predictions, without considering their direction. MAE measures the aver-
age absolute difference between the actual values and the predicted values,
providing a straightforward interpretation of prediction accuracy|8]. Mathe-
matically, MAE is defined as:

1 n
MAE = — i — Ui 3.4
P (3.4)

34



3.4.3 Root Mean Square Error

The Root Mean Square Error (RMSE) is a widely used metric for evaluat-
ing the accuracy of a predictive model, particularly in regression tasks. It
measures the average magnitude of the errors between predicted values and
actual values, providing a sense of how well the model performs. The RMSE
is calculated by taking the square root of the average of the squared dif-
ferences between predicted and actual values[8]. Mathematically, RMSE is
defined as:

1 A
RMSE = | =3 (yi = §:)” (3.5)
i=1

3.4.4 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a common metric for evalu-
ating the accuracy of predictive models, especially in time series forecasting.
It measures the average absolute percentage difference between the predicted
and actual values, providing a normalized measure of prediction accuracy.
MAPE is particularly useful because it expresses error as a percentage, mak-
ing it easier to interpret and compare across different datasets[8]. Mathe-
matically, MAPE is defined as:

n

1
MAPE = - ;

Yi — Ui
Yi

x 100 (3.6)

3.5 Results

This section aims to present the obtained results in the form of price charts.
By visualizing the predicted versus actual prices for each of the three currency
pairs—EURUSD, GBPUSD, and USDCHF—we can effectively illustrate the
performance of the LSTM and GRU models. These charts will provide a
clear, graphical representation of how closely the predicted values follow the
actual market trends, allowing for an intuitive comparison of model accuracy.
Additionally, the price charts will help in identifying any discrepancies or
patterns in the predictions, facilitating a deeper understanding of the models’
predictive capabilities and areas for potential improvement.

35



EURUSD

Figure 3.4: Predicted and actual price chart for EURUSD using LSTM
model.

EURUSD

) E ES 7 w0 e 1500 i En
Time

Figure 3.5: Predicted and actual price chart for EURUSD using GRU model.

GBPUSD

Price

[ s00 1000 1500 000 0 2000 3500 000

Time

Figure 3.6: Predicted and actual price chart for GBPUSD using LSTM
model.

36



GBPUSD

Price

2000
Time

Figure 3.7: Predicted and actual price chart for GBPUSD using GRU model.

USDCHF

Price

a0
Time

Figure 3.8: Predicted and actual price chart for USDCHF using LSTM
model.

USDCHF

Price

a0
Time

Figure 3.9: Predicted and actual price chart for USDCHF using GRU model.

3.6 Performance comparison

In evaluating the efficacy of LSTM and GRU models for financial market
prediction, it is essential to consider the robustness of the methodology and

37



the reliability of the findings results. Two fundamental evaluation metrics,
MAPE and RMSE, were appropriately employed to quantify the accuracy
of the forecasts, aligning with established practices in financial forecasting
research. The results, carefully reported in Tables 3.6 and 3.6 for LSTM and
GRU, respectively, provide an in-depth overview of the model’s predictive
ability across a wide range of experimental settings and time periods. MAPE
and RMSE are highly recognized in financial research for their usefulness in
evaluating predictive models.

Target MAPE RMSE
EURUSD 0.365 0.006
GBPUSD 0.2981  0.0065
USDCHF  0.323 0.0068

Table 3.1: The results using LSTM model.

Target MAPE RMSE
EURUSD 0.4058  0.0062
GBPUSD 0.344 0.0074
USDCHF 0.4621  0.0085

Table 3.2: The results using GRU model.

3.7 Comparison with state of the art

This section aims to compare our study with current state-of-the-art method-
ologies and results in the field. By performing an accurate comparison, we
can evaluate our study’s novelty, efficacy, and contributions to the larger
landscape of existing research. We begin by reviewing the most recent and
relevant literature in the field, focusing on studies that address similar re-
search questions or employ comparable methodologies. This allows us to
establish a baseline understanding of the prevailing approaches and findings
in our domain of interest. Next, we systematically evaluate the key dif-
ferences and similarities between our study and the state-of-the-art. This
includes a comparative analysis of the research objectives, methodologies,
datasets used, and experimental results. We also consider any advancements
or innovations introduced in our study that distinguish it from prior works.
Furthermore, we critically examine the strengths and limitations of both our
study and the state-of-the-art methodologies. This includes an assessment of

38



the robustness, scalability, and generalizability of the results, as well as any
potential biases or constraints inherent in the methodologies employed. By
synthesizing these comparisons, we aim to highlight the unique contributions
and advancements offered by our study, as well as identify areas for further
research and improvement. Ultimately, this comparative analysis provides
valuable insights into the current state of the field and the positioning of our
study within it. The results of reviewed research, are carefully reported in
Table 3.7.

Study Target MSE RMSE MAE MAPE
3] Tesla 0.0033 0.0581  0.0413 /

[43] TCS 0.0025 0.0497  0.0397  0.1715
[45] COL 225 1.5 / 1.96
[42] Carbon  3.1695 / 1.0504 /

[30] Gold / 18.0720 12.0819 0.7879
[32] 600000.SH. / 0.7019 / /

[6] S&P 500  / 40.8362 / 1.0269
[48] CSI300  0.0091 / 0.0693  1.1216
[10] Bitcoin ~ / 33026/ 0.0357
23] STC 0.72 1707 028  0.721
[40] CSI300 201.37 17.07  11.96 /
Proposed model Forex / 0.0065 / 0.298

Table 3.3: The results of the state of the art.

3.8 Discussion

In this study, the performance of two deep learning models, Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), was evaluated
for predicting financial time series data for three major currency pairs: EU-
RUSD, GBPUSD, and USDCHEF. The results demonstrated that the LSTM
model consistently outperformed the GRU model in both Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE). Specifically,
the LSTM model achieved RMSE values of 0.365 for EURUSD, 0.2981 for
GBPUSD, and 0.323 for USDCHF, while the GRU model showed higher
RMSE values of 0.4058, 0.344, and 0.4621, respectively. This suggests that
the LSTM model is more effective at capturing long-term dependencies in
financial data, a critical factor for accurate predictions.

When comparing these results with state-of-the-art studies, such as an
RMSE of 0.0581 for Tesla stock prices [3] and 0.0497 for TCS stock prices

39



[43], our models exhibit competitive performance, especially given the com-
plexities inherent in forex market predictions. Additionally, the low MAPE
values for both models, particularly the LSTM’s 0.006 for EURUSD, indi-
cate strong predictive reliability. These findings are consistent with existing
literature, which highlights the effectiveness of LSTM networks in time series
forecasting due to their ability to model temporal dependencies effectively

However, it is crucial to note that direct comparisons with state-of-the-
art studies are challenging due to differences in datasets, target variables,
and evaluation metrics. Despite these nuances, our study makes a significant
contribution by demonstrating the practical applicability of LSTM and GRU
models in financial forecasting, offering a methodological framework that can
be further optimized and validated across different datasets. Future research
should focus on enhancing these models’ performance through advanced op-
timization techniques and testing their robustness across a broader range of
financial instruments and market conditions.

Overall, this research provides valuable insights into the application of
deep learning techniques in financial time series analysis, confirming the
LSTM model’s superior capability in predicting complex financial data and
paving the way for further advancements in this field.

3.9 Conclusion

In conclusion, our study demonstrates that Long Short-Term Memory (LSTM)
networks exhibit superior accuracy compared to Gated Recurrent Units (GRUs)
in the context of predicting financial time series data. The LSTM model con-
sistently outperforms the GRU model across various metrics, indicating its
enhanced capability to capture and leverage long-term dependencies in se-
quential data. Moreover, when benchmarked against the state-of-the-art, our
results are competitive and within acceptable ranges, validating the effective-
ness of our approach. These findings reinforce the utility of LSTM networks
in applications requiring precise sequential data modeling and highlight the
robustness of our proposed methodology.

40



General conclusion

In conclusion, this dissertation has undertaken a comprehensive investigation
into the efficacy of Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) models in forecasting stock market trends. The research en-
deavor has been underpinned by a rigorous examination of existing litera-
ture in stock market prediction, with meticulous attention to fundamental
and technical analysis approaches. Moreover, the significance of datasets
and pre-processing techniques has been duly acknowledged, drawing upon
reputable sources in the field.

The methodological approach adopted in this dissertation adheres to high
academic standards, providing a thorough exposition of machine learning
concepts and neural network architectures. The experimental design up-
holds principles of credibility and validity, ensuring robustness in dataset
descriptions and evaluation metrics.

The results and discussion section rigorously analyzes empirical findings,
offering insights into the performance of LSTM and GRU models in stock
market prediction. The comparative analysis conducted herein underscores
the scholarly integrity of the research, providing a nuanced interpretation of
the implications of the results within the broader landscape of stock mar-
ket prediction research. Additionally, a comparison with state-of-the-art
methodologies serves to reinforce the credibility and significance of the dis-
sertation’s contributions to the field.

In summation, this dissertation represents a notable contribution to the
understanding of machine learning techniques in stock market prediction,
upholding scholarly rigor and integrity throughout. By evaluating LSTM
and GRU models and comparing them with established methodologies, this
research endeavor provides valuable insights that can inform decision-making
processes in finance and investment.

41



Bibliography

3]

Abien Fred Agarap. Deep learning using rectified linear units (relu).
arXw preprint arXiw:1803.08375, 2018.

Shervine Amidi. Cs230: Cheatsheet - recurrent neural networks. Stan-
ford University.

Yasmeen Ansari, Sadaf Yasmin, Sheneela Naz, Hira Zaffar, Zeeshan Alj,
Jihoon Moon, and Seungmin Rho. A deep reinforcement learning-based

decision support system for automated stock market trading. IFEE
Access, 10:127469-127501, 2022.

Matin N Ashtiani and Bijan Raahemi. News-based intelligent predic-
tion of financial markets using text mining and machine learning: A
systematic literature review. Ezpert Systems with Applications, 2023.

C Sarai R Avila. Tweet influence on market trends: Analyzing the
impact of social media sentiment on biotech stocks. arXiv preprint
arXiv:2402.03353, 2024.

Hum Nath Bhandari, Binod Rimal, Nawa Raj Pokhrel, Ramchandra
Rimal, Keshab R Dahal, and Rajendra KC Khatri. Predicting stock
market index using Istm. Machine Learning with Applications, 9:100320,
2022.

Christopher M Bishop. Pattern recognition and machine learning.
Springer google schola, 2:1122-1128, 2006.

Alexei Botchkarev. Performance metrics (error measures) in machine
learning regression, forecasting and prognostics: Properties and typol-
ogy. arXiw preprint arXiv:1809.03006, 2018.

William Brock, Josef Lakonishok, and Blake LeBaron. Simple technical
trading rules and the stochastic properties of stock returns. The Journal
of finance, 47(5):1731-1764, 1992.

42



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Junwei Chen. Analysis of bitcoin price prediction using machine learn-
ing. Journal of Risk and Financial Management, 16(1):51, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXw preprint arXiw:1412.3555, 2014.

Robert D. Edwards, John Magee, and W. H. C. Bassetti. Technical
Analysis of Stock Trends. CRC Press, 11 edition, 2018.

Eugene F Fama. Efficient capital markets. Journal of finance, 25(2):383—
417, 1970.

Thomas Fischer and Christopher Krauss. Deep learning with long short-
term memory networks for financial market predictions. Furopean jour-
nal of operational research, 270(2):654-669, 2018.

A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’Reilly Media, 2019.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to for-
get: Continual prediction with Istm. Neural computation, 12(10):2451—
2471, 2000.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2016.

S. Harder. The Efficient Market Hypothesis and Its Application to Stock
Markets. GRIN Verlag, 2010.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: data mining, inference,
and prediction, volume 2. Springer, 2009.

Bruno Miranda Henrique, Vinicius Amorim Sobreiro, and Herbert
Kimura. Literature review: Machine learning techniques applied to fi-
nancial market prediction. Fxpert Systems with Applications, 124:226—
251, 2019.

Sintayehu Hirpassa and G.S. Lehal. Improving part-of-speech tagging
in amharic language using deep neural network. Heliyon, 9(7), 2023.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

43



23]

[24]

[26]

[27]
28]

[29]

[30]

31]

32]

Mutasem Jarrah and Morched Derbali. Predicting saudi stock market

index by using multivariate time series based on deep learning. Applied
Sciences, 13(14):8356, 2023.

D.J. Jittner. The Random Walk Hypothesis and Stock Market Effi-
ciency. Research paper. School of Economic and Financial Studies,
Macquarie University, 1974.

Bekir Karlik and A Vehbi Olgac. Performance analysis of various activa-
tion functions in generalized mlp architectures of neural networks. Inter-
national Journal of Artificial Intelligence and Expert Systems, 1(4):111—
122, 2011.

S. Kostadinov. Recurrent Neural Networks with Python Quick Start
Guide: Sequential learning and language modeling with TensorFlow.
Packt Publishing, 2018.

M. Krantz. Fundamental Analysis For Dummies. Wiley, 2023.

Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural net-
works with alpha-divergences. In International conference on machine
learning, pages 2052-2061. PMLR, 2017.

Yanhui Liang, Yu Lin, and Qin Lu. Forecasting gold price using a novel
hybrid model with iceemdan and lstm-cnn-cbam. FExpert Systems with
Applications, 206, 2022.

Yanhui Liang, Yu Lin, and Qin Lu. Forecasting gold price using a novel
hybrid model with iceemdan and lstm-cnn-cbam. Ezpert Systems with
Applications, 206:117847, 2022.

Ying-Lei Lin, Chi-Ju Lai, and Ping-Feng Pai. Using deep learning tech-
niques in forecasting stock markets by hybrid data with multilingual
sentiment analysis. Flectronics, 2022.

Keyan Liu, Jianan Zhou, and Dayong Dong. Improving stock price
prediction using the long short-term memory model combined with on-
line social networks. Journal of Behavioral and Experimental Finance,
30:100507, 2021.

Andrew Lo. Adaptive markets: Financial evolution at the speed of
thought. Princeton University Press, 2017.

44



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effec-
tive approaches to attention-based neural machine translation. arXiv
preprint arXiw:1508.04025, 2015.

Burton G Malkiel. The efficient market hypothesis and its critics. Jour-
nal of economic perspectives, 17(1):59-82, 2003.

Mahdi Massahi and Masoud Mahootchi. A deep g-learning based algo-
rithmic trading system for commodity futures markets. Expert Systems
with Applications, 237, 2024.

John J Murphy. Technical analysis of the financial markets: A compre-
hensive guide to trading methods and applications. Penguin, 1999.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

Cheol-Ho Park and Scott Irwin. The profitability of technical analysis:
A review. Research Report 2004-04, AgMAS Project, 2004.

Chenyang Qi, Jiaying Ren, and Jin Su. Gru neural network based
on ceemdan—wavelet for stock price prediction. Applied Sciences,
13(12):7104, 2023.

Scott Richardson, Irem Tuna, and Peter Wysocki. Accounting anomalies
and fundamental analysis: A review of recent research advances. Journal
of Accounting and Economics, 50(2), 2010.

Hanxiao Shi, Anlei Wei, Xiaozhen Xu, Yaqi Zhu, Hao Hu, and Songjun
Tang. A cnn-lstm based deep learning model with high accuracy and
robustness for carbon price forecasting: A case of shenzhen’s carbon
market in china. Journal of Environmental Management, 352:120131,
2024.

Pushpendra Singh Sisodia, Anish Gupta, Yogesh Kumar, and Gau-
rav Kumar Ameta. Stock market analysis and prediction for nifty50
using Istm deep learning approach. In 2022 2nd international confer-
ence on innovative practices in technology and management (ICIPTM),
volume 2, pages 156-161. IEEE, 2022.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated
recurrent neural network for sentiment classification. In Proceedings of
the 2015 conference on empirical methods in natural language processing,
pages 1422-1432, 2015.

45



[45]

[46]
[47]

[48]

[49]

[53]

Yassine Touzani and Khadija Douzi. An Istm and gru based trading
strategy adapted to the moroccan market. Journal of big Data, 8(1):126,
2021.

Ruey S Tsay. Analysis of financial time series. John wiley & sons, 2005.

Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qiuhui Zhang. Stock
market index prediction using deep transformer model. FExpert Systems
with Applications, 208, 2022.

Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qiuhui Zhang. Stock
market index prediction using deep transformer model. Expert Systems
with Applications, 208:118128, 2022.

Meiqi Wang, Siyuan Lu, Danyang Zhu, Jun Lin, and Zhongfeng Wang.
A high-speed and low-complexity architecture for softmax function in

deep learning. In 2018 IEEE asia pacific conference on circuits and
systems (APCCAS), pages 223-226. IEEE, 2018.

Anjar Wanto, Agus Perdana Windarto, Dedy Hartama, and Iin Parlina.
Use of binary sigmoid function and linear identity in artificial neural
networks for forecasting population density. IJISTECH (International
Journal of Information System and Technology), 1(1):43-54, 2017.

Stephen J Wright. Numerical optimization, 2006.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048-2057. PMLR,
2015.

Yudong Zhang and Lenan Wu. Stock market prediction of s&p 500 via
combination of improved bco approach and bp neural network. Ezpert
systems with applications, 36(5):8849-8854, 2009.

46



	dedication
	acknowledgement
	abstract
	Contents
	List of Figures
	List of Tables
	introduction
	Review on financial markets
	Introduction
	Type of analysis
	Fundamental analysis
	Technical analysis

	Datasets
	Fundamental datasets
	Technical datasets

	Pre-processing
	Pre-processing of technical dataset
	Preprocessing of fundamental dataset

	Conclusion

	Deep learning
	Introduction
	A mathematical overview of machine learning
	Learning process
	Loss function
	Gradient Descent

	Neural network
	Activation functions
	Forward propagation
	Backward propagation

	Recurrent Neural Networks
	Application domains
	Types of architecture

	Long short-term memory
	Gated Recurrent Unit
	Differences between LSTM and GRU
	Advantage and limitation

	Conclusion

	Experiments and Results
	Introduction
	Proposed System
	Dataset Description
	Evaluation Metrics
	Mean Squared Error
	Mean Absolute Error
	Root Mean Square Error
	Mean Absolute Percentage Error

	Results
	Performance comparison
	Comparison with state of the art
	Discussion
	Conclusion

	conclution
	Bibliography

