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Introduction General

With the global trend towards renewable energy, scientific research—both experimental
and theoretical has accelerated toward harnessing one of the most important sources of sustainable
energy: solar energy, where light energy is converted into electrical energy using solar panels and
photovoltaic systems [1,2].

The basic idea behind the invention of solar panels is based on the possibility of
generating electrical energy by exposing certain materials to light rays. Following this discovery,
many studies were conducted, including the discovery of the element selenium, which
significantly influenced the advancement of this technology and its use in various fields such as
computers and satellites. The efficiency of these photovoltaic technologies depends on many
factors, perhaps the most important being the nature of the materials they are made from.

One of the main obstacles to the implementation of solar panels as an energy generation
technology is their relatively high cost. Inorganic thin-film solar panels are a proven technology
that offers significant cost reductions compared to crystalline photovoltaic technology, which
currently dominates the market. Among these are Delafossite oxide compounds, which are a
family of materials with a unique crystal structure and interesting electronic properties. These
materials are composed of transition metals such as copper, nickel, and cobalt, in addition to
oxygen and sometimes-other elements. The crystal structure consists of layers of transition metal

ions sandwiched between oxide ions, forming a three-dimensional network.

Various methods derived from Density Functional Theory (DFT) help in solving the

Schrédinger equation, revealing insights into structural, elastic, and mechanical properties [2].

Perovskite structures, known for their stability and diverse applications, have long captivated
scientific interest [3]. The term "perovskite" originated from CaTiO3, discovered in 1839 and

named after Russian mineralogist Lev Aleksevich von Perovski [4].

The aim of this study is to enhance our understanding of the structural, electronic,
thermodynamic, and thermoelectric properties of the perovskite compound AgMnS; using the
Wien2k computational software. This research is divided into two main chapters. The first chapter

provides a theoretical basis for analyzing crystalline systems, based on the principles of quantum



mechanics. It begins with an exploration of the time-independent Schrodinger equation, which
describes the behavior of electrons and nuclei within the system. Key approximations such as
Born-Oppenheimer, Hartree, Hartree-Fock, and Density Functional Theory (DFT) are explained,

with a particular focus on their role in estimating interactions among electrons.

In the study of regular crystal lattices, the time-independent Schrédinger equation is summarized,
describing a system composed of a large number of moving and interacting electrons and nuclei.
The main approximations adopted to simplify the solution of the Schrédinger equation are then
highlighted, such as the Born-Oppenheimer approximation, the Hartree approximation, the
Hartree-Fock approximation, and the Density Functional Theory. In addition, the most important
approximations used to evaluate electron interaction are presented. The full-potential linearized
augmented plane wave method (FP-LAPW) is then explained, followed by a description of the

various software tools used to study the properties of interest.

The second chapter addresses the calculation of structural properties using GGA approximations
and has determined some structural properties of the AgMnO>, compound such as lattice constant,
bulk modulus, and cohesive energy. The Density Functional Theory (DFT) will be used as the
main tool of the study. In the first step, we will perform a structural phase stability analysis for
potential phases of the compound. The electronic behavior of the compound was studied, where
we determined the energy gap value for each phase, in addition to identifying the electronic

orbitals contributing to each energy band by studying the density of states curves.

[1] M. A. Green, “Third generation photovoltaics: Advanced solar energy conversion,” Springer,
2006.

[2] [2] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple,” Physical Review Letters, vol. 77, no. 18, pp. 38653868, 1996. [

[3] 3] N. A. Spaldin, “A beginner’s guide to the modern theory of polarization,” Journal of Solid
State Chemistry, vol. 195, pp. 2-10, 2012.

[4] [4] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, pp. 751-767,
1976.



CHAPTER I THEORETICAL STUDY OF MANY-PARTICLESSYSTEM

I-1 Introduction

The study of Delafossite compounds has garnered significant attention due to
their unique physical properties, which make them promising candidates for various
technological applications, including transparent conducting oxides, thermoelectric
materials, and catalysts. Delafossites, with the general formula ABO,, where A is a
monovalent cation (e.g., Cu, Ag) and B is a trivalent cation (e.g., Al, Ga, In), exhibit a
layered structure that leads to anisotropic electronic, optical, and magnetic properties.
Understanding these properties at a fundamental level requires a robust theoretical
framework that can accurately describe the electronic structure and interactions within

these materials [1].

This chapter theoretical foundations necessary for investigating the physical
properties of Delafossite compounds. We begin with the Schrédinger equation, which
is the cornerstone of quantum mechanics and provides the basis for understanding the
behavior of electrons in solids. We then discuss Density Functional Theory (DFT), a
powerful computational tool for electronic structure calculations. Following this, we
introduce the Full-Potential Linearized Augmented Plane-Wave (FP-LAPW) method,
a highly accurate approach for solving the DFT equations in solids. Finally, we
provide an overview of the Wien2k software package, which
implements the FP-LAPW method and is widely used in materials

science research.[1]

I-2 Schrodinger Equation

Schrédinger, an Austrian theoretical physicist, played a key role in advancing
the wave theory of matter. His work was shaped by the foundational ideas of early
quantum theory, which were pioneered by figures such as Max Planck, Albert

Einstein, and Niels Bohr [2].
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The description of a material implies knowing its electronic, structural, etc.
properties, which reflect the interactions between the particles that constitute it
(electrons and nuclei). Classical mechanics failed to provide answers, so quantum
mechanics took over. It is essentially based on the resolution of the Schrddinger

equation [2].

The Schrédinger equation is the fundamental equation of quantum physics,

like Newton's laws in classical physics [03].

In order to obtain interesting quantities such as energy E or the wave function,
it is necessary to solve the time-independent Schrddinger equation, which was

established by Erwin Schrodinger in 1925 and is written as follows :
HY (R, 7;) = EY(R,, 7)) (1.1)

— I_i, vector the coordinate of the nucleus (1).

— 7; vector the coordinate of the electron (i).

— H Hamiltonian operator associated with the system's total kinetic and potential
energy.

— E eigenvalue Energy of the system.

— P wave function that is dependent on the nucleus and electron coordinates.
the Hamiltonian system, which is composed of electrons and nuclei, contains

the potential energies (electron-electron, electron-nucleus, and nucleus-nucleus) as

well as the Kkinetic energy of electrons and nuclei, the expression for the system's total

Hamiltonian is as follows:
H - Te + TN + Ve_e + Ve—N + VN—N (IZ)

Such as:
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h? . o
= T,=-3VF P V2 is the kinetic energy of the electrons.
h? . o
= Ty=-YV “ﬁ V2 o is the kinetic energy of atoms.
T lywyw € is the el lectron interaction potential
e-e =320 Ljsifr .. is the electron-electron interaction potential.
z : . . .
" Vy_e=—YNyNe 242 . is the nucleus-electron interaction potential.
e i LA |Tz |
1oNvNa ZaZpe” - . - .
" EZA 2BEa Ry is the nucleus-nucleus interaction potential.
A—RB

We can write the Hamiltonian in the form:

Z
H = [ ZN—VZ Zéva VA+ ZN ]¢l|_) _)| ZNZAa _)Ae_)

Tl_ A|

Leimye, e (1.9

— m : is the mass of electron i.

— M : is the mass of the nucleus.

— |7 — 7| The distance between the two nuclei o and p

- |7L - Rjﬂ: The distance between the nucleus a and the electron i

— |R, — Rp|: The distance between the two electrons i and j.

— The indices i = (1,..., N) and A= (1,... N), are thus adopted in order
to distinguish electronic quantities from nuclear quantities. The

Schrddinger equation can therefore be represented in the form:

H =(Te+Ty+Ve.e+Ven +Vnn )P (r102,-.R1, R, ) =EY(ry,1rz,..R1,R,.)  (1.4)

The number of particles interacting in solid state physics is of the order of the
Avogadro number This requires a solution of a system of Schrédinger equations

containing a number of simultaneous differential equations of the order. Since it is
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difficult to solve this system of equations, they are given even in the case of
interactions of a small number of particles. This is why the many approaches to

solving this equation rely on some fundamental approximations [04].

I-2 The different approximations of the Schrddinger equation

It can be somewhat difficult to solve the Schrédinger equation, particularly for
systems with many moving parts and electrons and their intricate interconnections. In
most cases, we are unable to find precise solutions due to its complexity. To get close
to the correct answer, scientists employ less complex techniques and educated

estimates. Some of the primary ways they accomplish that are as follows:

I-2-1 Born-Oppenheimer Approximation

B

1 The approximation developed by Born and Oppenheimer in

1927, known as the Born-Oppenheimer approximation, is a

cornerstone in understanding many-body quantum systems,

particularly in molecules and crystalline solids.

This approximation relies on the fact that electrons, which

are much lighter than nuclei, move significantly faster. Due to this

large difference in mass and speed, the motion of electrons can be
decoupled from that of the nuclei, greatly simplifying the problem. The Kinetic energy
of the nuclei is neglected, and the nucleus-nucleus repulsion potential is treated as a
constant, reducing the total Hamiltonian to what is known as the electronic
Hamiltonian He. The total Hamiltonian of a system of electrons and nuclei (1.2)
Under the Born-Oppenheimer approximation, the nuclear Kinetic energy term Ty is

neglected (since nuclei are assumed to be stationary), and the nucleus-nucleus
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potential VN~ is treated as a constant. This simplifies the Hamiltonian to

the electronic Hamiltonian He:

He = Ty + Voo + Voy (L.5)

Schrodinger equation :

H=( Te+Vee+Ven )qle(E - Fl)) =Ee(il))qje® - Fl)) (1.6)

This Hamiltonian focuses solely on the motion of electrons in the presence of
fixed nuclei, making the solution of the quantum equations for electrons more
tractable. Subsequently, the motion of the nuclei can be studied separately on a
potential energy surface generated by the electron distribution. This approximation is
a fundamental tool in quantum chemistry and solid-state physics, contributing to the

understanding of electronic, optical, and thermal properties of materials.

Although this approximation leads to large simplifications when solving
the Schrédinger equation for molecules [17] and the Hamiltonian becomes simpler, it
remains insufficient due to the interactions between electrons which are very
complicated, thus forced us to resort to additional simplifications such as the Hartree

and Hartree-Fock approximations [14]

[-2-2 The Hartree Approximation

This approximation was first developed by Douglas Hartree in 1928 [07]. It is
an approach that assumes each electron moves independently in the mean field
created by the other electrons and the nuclei. So, the problem shifts from a system of
electron-electron pair repulsion to a problem of a particle immersed in an average
electrostatic field created by the charge distribution of all the other electrons and
nuclei. This approximation reduces the problem from N interacting bodies to that of
independent electrons, which allows for the description of the wave function of the
electronic system. (r 4,7 5, ..., y) becomes like the direct product of the single-

electron wave functionsys;(r;) [05].
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Yr,ra ... ry) =P ). Pr,) ... Yry) @.7)

The Hamiltonian is written as a sum of Hamiltonians, each describing

the behavior of a single electron:
H=3h (1.8)

With:

2
hi = Zh_m Viz + Vext + I/iH (I 9)

2
zh—m VZ: Kinetic energy of the electron.
Vot ©  represents both the potential due to the nuclei.
VA . isthe Hartree potential for the electron.

The Hartree potential for the electron replaces the electrostatic electron-
electron interaction with all other electrons, and it is given by the following relation

[03]:

vH = 37200 (110)

[r=r'|!

The electron density in equation (1.10) is given by:

pi =Xl (11D

The potential that the electron experiences in the field of all the a nuclei is (the

electron-nuclei interaction) is V..

1
|7—R|

Vert (7)) = —Ze? YR (1.12)

We express the effective potential as the sum of these two contributions:
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Veff () = vH () + Vext(f)) (1.13)

Nevertheless, this approximation suffers from various problems: The main
flaw of the Hartree method is that it does not take into account the Pauli principle.
This method treats electrons as distinguishable particles and neglects electronic
correlation and exchange effects. This necessitates the use of other approaches to

better describe the term responsible for this contribution [06].

I-2-3 The Hartree — Fock Approximation

The Hartree-Fock method is widely used in atomic physics and condensed
matter physics, where it provides an approximate solution to the Schrddinger equation
for a system of multiple particles. Hartree-Fock is a method for exploring the role of
electronic correlations, based on the variational principle which specifies that the
ground state energy of the given system calculated as the expected value of the
proposed wave function is always greater than, or equal to, the energy that is the exact
solution of the Schrddinger equation. The studied system of N electrons can be
described by the wave function ¥ composed of the spinorbitals 1;(x); of N in the

form of the Slater determinant [07]:

01(x1)  @a(x1) .. on(xp)
l/)HF (xl' Xo, .. ‘xN) — \/% @1 (:xz) (pZ(ExZ) (pNExZ) (I 14)
o1(xy) @ (xy) .. @y(xy)

Where —: is the normalization factor
[VN|

Spin orbitals y; (x); are the solutions of the Hartree-Fock equation:

Foi(x;) = &¢;(x;) (1.15)
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Where F is the Hartree-Fock operator defined for an electron by
h? o2 HF
F ===V} 4 Vere +V* (1.16)

VHF: is the Hartree-Fock potential that represents the potential applied to
electron i by the other electrons. This potential is expressed using two operators J and

K [09].
VHE =3 Ji(x) = K (xe)VHE =3 Ji(x) — Ki(x) (1.17)
With:

JiGeDo;6e0) = ( 07 Cr2) == 012Dz ) 9 () (1:18)

K (x)|@;(x1)) = (f QD?(Xz)ﬁ(pj(xz)dxz) lp;(x1)) (1.19)
2 1

Where:

ji(x;) :is the Coulomb operator.

K;(x,) : is the exchange operator.

This method neglects any correlation between the relative positions of two
electrons other than that introduced by the antisymmetric form. It can therefore only
handle systems with few electrons, such as small molecules. The Hartree-Fock

method remains, nonetheless, an indispensable benchmark [07].

I-3 Density Functional Theory (DFT)

Density Functional Theory (DFT) was originally developed primarily within
the framework of non-relativistic quantum theory and the Born-Oppenheimer
approximation [10]. The Schrddinger equation Hy = Ey and Quantum mechanics

provide the ideal framework for describing the N electron wave function of the

10
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studied system Y (r 4,7 5, ...,7 5) [11]. Hence, the Ne electrons are replaced by the
total electronic density which depends only on 3 spatial variables. Historically, the
first ideas in this direction were introduced in the works of Thomas and Fermi in
1927. In their model, electronic interactions are treated classically and the Kinetic
energy is calculated based on a homogeneous electronic density. However, it should
be noted that DFT was actually established with the exact fundamental theorems of
Hohenberg [12] and Kohn in 1964 [10], which uniquely relate the ground state energy

and its density.

The development of new methods in quantum mechanics, such as Density
Functional Theory (DFT), was driven by the limitations of earlier approaches like the
Hartree-Fock (HF) method. The HF method, while foundational, has significant
drawbacks: it relies on wavefunctions as the primary variable, leading to
computationally expensive calculations due to the large number of variables involved.
Moreover, the resulting wavefunctions often lack direct physical meaning, and the
method fails to account for electron correlation effects, which are crucial for
accurately describing many physical and chemical systems. These limitations made
HF impractical for studying complex materials, molecules, and systems where

electron interactions play a dominant role [13].

Methode HF Methode DFT

Figure I .1: methods of Hartree-Fock and the Density Functional Theory

(DFT)

11
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To address these challenges, DFT emerged as a more efficient and versatile
alternative. By using electron density as the fundamental variable, DFT significantly
reduces the computational complexity and allows for the study of larger systems.
Grounded in the Hohenberg-Kohn theorems, DFT transforms the many-body problem
into a more manageable form through the Kohn-Sham equations. Crucially, DFT
incorporates electron correlation effects via the exchange-correlation functional,
enabling more accurate predictions of electronic, structural, and chemical properties.
This combination of computational efficiency and improved accuracy has made DFT
indispensable in fields like materials science, chemistry, and nanotechnology, where
understanding the behavior of electrons in complex systems is essential. Thus, the
need for new methods like DFT arose from the demand for more practical, accurate,

and scalable tools to tackle the limitations of traditional approaches like HF [14].

I-3-1 Formulation of Density Functional Theory (DFT)

The basis of Density Functional Theory (DFT) is to write the total energy of a
system containing multiple interacting electrons as a function of the electron density,
that is, the calculation of the system's energy based on the electron density instead of
its wave function, where the expression for the electron density is given by the

formula [15]:
HGEHERLAGIE (1.20)

Density Functional Theory (DFT) is based on two main axes:

I-3-1-1 Theorems of Hohenberg and Kohn

The two theorems presented by Hohenberg and Kohn in 1964, [25-27] are
considered the foundation of density functional theory, these two theorems are proven

in the articles [28-31].

12
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A- First theorem:

For any system of interacting particles in an external potential Ve, (r), the
potential is determined when the particle density p(r)is in its ground state. The total

energy E is written in the form [16]

E(p) = F(p) + [, p (NVexe(r)d’r (1.21)
Where :

F[(p)] = T[(p)] + V,_.[(p)] (1.22)
With:

— F[(p)] : is a universal function of the electronic density.
— T : Kinetic energy.

— V,_. :The energy of electron-electron interaction.

B -Second theorem:

This theorem states that the energy of a non-degenerate ground state can be
determined by the density that minimizes the energy of the ground state. we have
[15]:

E, < E(p) (1.23)
Thus, to obtain the energy of the ground state, we will seek to minimize the total
energy functional of the system by applying the variational principle (minimization of
the energy functional). Then we write the minimization relation as follows [14]:
aelp(m] _

a0 0 (I.24)

We find:

13
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dr[p(r)] _
a0 + Veyrt (1) = 0 (1.25)

In this expression, the formulas for kinetic energy and exchange-correlation
remain unknown, with all the properties of a system defined by an external potential
VextCan be determined from the electronic density of the ground state. The energy of
the system E(p)reaches its minimum value if the electronic density is that of the

ground state.

There remains a significant problem to solve how to rewrite an exact analytical

formulation of the functional F[(p)] for a system with N interacting electrons.
[-3-1-2 The Kohn-Sham equation

Kohn and Sham (KS) used variational properties to determine the ground state
energy and obtain a description of the functional. The idea of Kohn-Sham is to
introduce a system of non-interacting particles whose ground state is characterized at
every point by the same density p(r) as that of the real ground state. This implies
independent particle equations for the non-interacting system, grouping all the
complicated and difficult-to-evaluate terms into an exchange-correlation functional

[17].

Exslp(M] = Flp(M]+ [ Vore (Mp(r)d3r (1.26)

=T [p(r)] + Ey [p(r)] + Ey. [,D(T')] + f Vert (1) p(r)d3r
Where:
— Ts The kinetic energy of the non-interacting electron gas.

— E,.[p(r)]: Is an additional functional that describes the inter-electronic

interaction called exchange-correlation energy.

— Vexte (r)Includes the Coulomb interaction with the nuclei and that of the nuclei
with each other.
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With:

Eqlp()] =1 drair 202 (1.27)

[r=r']

The wave functions of a single particle are the N solutions of the lowest energy. of the

Kohn-Sham equation. (Hgxs — €)y;(r) =0
&;: The eigenvalue.

Hgs: The effective Hamiltonian.

2
HKS = _ﬁAl + VKS (128)

Vis(r) = Vort (1) + Vy[p] + Ve [p] (1.29)

Vi The Hartree potential given by:

v, = [ 20 gy (1.31)

r=r’|
V.c: The potential for exchange and correlation given by
Vee = Vi + V. (1.31)

The exchange-correlation potential is obtained from the derivative of the

energy. With respect to the density:

L O [p(P)]
Vee (F) = W (1.32)
Hysp; () = g () (1.33)
hZ
= i+ Ver (D) |9 (7) = i (7) (1.34)

Solving the Kohn-Sham equation depends on two basic steps:

e The first step: define all the terms of the effective Kohn-Sham potential, i.e.
the exchange correlation potential Exc must be determined because this term

has no mathematical formula but it can be estimated by approximations.
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e The second step: find the wave functions (Kohn-Sham orbits), which represent

a solutions for the Kohn-Sham equation given by [3]:
s (@) =X Cij ;) (I1.35)

Where ¢; (’F) are the basis functions and C;; are the development coefficients.

Z Cij Hgs| @)l = Z Cij exs|oj] (1.36)
Jj Jj

(pilZ; Cij His|o;) = (@il 2 Cij exs|o;) (1.37)

Y (oelHislo;) — exs{oil9;))Ciy = 0 (1.38)

It remains to determine the coefficients Cj; by inserting a developed basis into
the Kohn-Sham equation. The Kohn-Sham equation is solved using an iterative loop
illustrated in figure (1.2), where the process is started using an initial density P;, for
the first iteration, this density is used to Pi, solve the Kohn-Sham equation, then, We
use a superposition of atomic densities, then we calculate the Kohn-Sham matrix, and
we solve the equations for the expansion coefficients to obtain the Kohn-Sham

orbitals.

After this step, by calculating the new density Pout, we perform a test (if
the density or energy has changed significantly, we return to the first step; otherwise,

we mix the two charge densities Pout and Pin as follows [3]:

i+1 _

phl = (1 — a)pl, + plue (1.39)

Thus, the iterative procedure can be repeated until the convergence condition is met

[3].
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A Self-consistent calculation is an iterative process used in computational
methods like Density Functional Theory (DFT) and Hartree-Fock (HF) to solve the
electronic structure of a system. It begins with an initial guess for the electron density
or wavefunctions, which is used to construct an effective potential. The Kohn-Sham
(for DFT) or Hartree-Fock equations are then solved to obtain new orbitals and
eigenvalues. Using these orbitals, the electron density is updated and compared to the
previous density. If the change is below a predefined threshold, the calculation is
considered converged, and the final results (e.g., total energy, electron density, and
orbitals) are output. If not, the process repeats with the updated density until
convergence is achieved. This iterative approach ensures that the solution is consistent

with the system's physical properties.

Pin
Calculate V(r)

Solve the

Kohn-sham

Determine E:

Determine P+

No
pi‘ﬁl =(1- a)piln + Pout Test if p..-

Yes
Calculate
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Figure I. 2: Self-consistent calculation flowchart.

I- 4 The Different Types of Approximation of the E,..[p]

The exchange-correlation potential between electrons lacks an analytical
expression, hence many methods have been used to estimate its values. The
mathematical formulation selected for this potential largely determines the accuracy

of the results produced [18].

I- 4-1 Local density approximation (LDA/LSDA):

The LDA approximates the exchange-correlation energy Exc of an
inhomogeneous electron system (e.g., atoms, molecules, or solids) by assuming that
the exchange-correlation energy at each point in space depends only on the local
electron density p(7) at that point. Mathematically, the exchange-correlation energy

in LDA is expressed as:

EEPA = [ p(PEy [p(P)]dF (1. 40)
dEX2A(p] o dgkDA
xc = X;p £ = exet + p(P) Z);C (I.41)

— p(7) is the electron density at position r.

— Exc(n(r)) is the exchange-correlation energy per particle of a uniform electron

gas with density p(7) .

For each spin up or down magnetic order, the total electron density becomes the sum

of the two electron densities

p(@) = pr(F) + p(¥) (1.42)

The  Kohn-Sham  equation for the two spins in the form

J (;—ZVZ + V;}ﬂﬂ) @(7) = S;Esﬁoi(f)
[3]: (1.43)
I
\

_hzv2 V'|' = > T =
Py, + eff(T') ¢i(T)—€K5§0i(T)
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The Local Density Approximation (LDA) and its spin-polarized extension
(LSDA) are foundational approximations in DFT that provide a simple and efficient

way to estimate the

exchange-correlation energy. While they have limitations, they remain important tools

for studying a wide range of materials and systems [19].

I- 4-2 The Generalized Gradient Approximation GGA

The Generalized Gradient Approximation (GGA) is an improvement over
the Local Density Approximation (LDA) in Density Functional Theory (DFT) [20]. It
is used to describe the exchange-correlation energy of an electronic system more
accurately than LDA by considering not only the local electron density n(r), but also

its gradient V n(r). Here is a detailed explanation:

EE e = [ flp(), 1Vp()|ldr (1.44)

— Vp(r) is the gradient of the electron density, which describes how the density

varies in space.

The Generalized Gradient Approximation (GGA) improves upon the Local
Density Approximation (LDA) by incorporating information about the spatial
variation of electron density through its gradient, enabling a more accurate description
of systems with rapidly changing electron densities, such as atoms, molecules, and
surfaces. GGA addresses key limitations of LDA, including better prediction
of molecular binding energies, improved estimation of electronic band gaps (though
gaps are still often underestimated), and more accurate descriptions of structural
properties and cohesive energies of materials. Additionally, GGA's flexibility makes
it adaptable to a wide range of systems, from molecules and solids to surfaces and
interfaces, making it a versatile and widely used method in electronic structure

calculations [21].
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Both LDA (Local Density Approximation) and GGA (Generalized Gradient
Approximation) in density functional theory (DFT) are powerful tools for studying
the electronic properties of materials, but they have notable limitations. A key issue is
their tendency to underestimate band gaps in semiconductors and insulators, as they
fail to fully account for non-local exchange-correlation effects. Additionally, these
methods struggle to accurately describe strongly correlated systems, such as transition
metal oxides, where electron-electron interactions play a critical role. Furthermore,
the accuracy of GGA results heavily depends on the choice of functional, and there is
no universal functional that works well for all types of systems. These limitations
highlight the need for more advanced methods, such as hybrid functionals or DFT+U,

to address these shortcomings [22].

I-5 Full-Potential Linearized Augmented Plane-wave Method FP-LAPW

The augmented plane wave method with linearization (FP-LAPW) The FP-
LAPW method is primarily the LAPW (Linearized Augmented Plane Wave) method
used with a full potential resulting from an improved modification of the so-called
augmented plane wave (APW) method developed by Slater. Thus, before delving into
the description of the FPLAPW method, we must review some aspects related to the

APW method [23].
I-5-1 The augmented plane wave (APW) method

In 1937, Slater presented the APW method in his article. The APW method is
the most popular technique for solving the electronic structure using the Kohn-Sham
equations, In the vicinity of an atomic nucleus, the potential and wave functions are of
the "Muffin-Tin" (MT) form, exhibiting spherical symmetry within the MT sphere of
radius. Between the atoms, the potential and wave functions can be considered
smooth. Consequently, the wave functions of the crystal are developed in different
bases depending on the region considered: Radial solutions of the Schrodinger

equation inside the MT sphere and plane waves in the interstitial region [24].
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MT sphere

Figure 1.3: Diagram of the distribution of the unit cell in atomic spheres

and interstitial region.

According to the Slater approximation, the core electrons located inside the sphere
are subjected to the spherical potential, whereas in the interstitial region the potential

is constant. So, the potential in both regions is given in the form:

V(F) = {(;’ ) ’;i%; (1.45)

Moreover, the waves that describe the behavior of electrons inside the MT spheres
differ from those in the interstitial region; they are described by plane waves in the
interstitial region, while inside the spheres, they are described by radial functions
multiplied by spherical harmonics. The two different wave functions are given by the

following expression:

(_)) Z?io Z?;OAlm Ul(r)Ylm(r) r<R, (I 4-6)
pr)= \/%ZG Co o I(R+G)F r>R, .
Where

— QThe cell volume
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— Y. The spherical harmonics
— A;m: The coefficients of the expansion

— C¢ , A, the coefficients of the expansion in spherical harmonics. The function
is a regular solution of the Schrodinger equation for the radial part, which is

written in the form[41]:

[ d? n 1(1+1) +V(r) - El] ru,(r) =0 (1.47)

T ar? r2
— V(r) : represents the muffin potential -tin
— E; : represents the linearization energy

This equation defines the radial function orthogonal to any eigenstate of the
same Hamiltonian that vanishes at the boundary of the spheres. The overlap of the

latter is constructed from:

d2u1 dzuz
E,—E)ruu, =u,— —1u
( 2 1) 142 2 drz 1 er

(1.48)

Where u; and uy are the radial solutions to the different energies E; and E>
respectively.
Slater introduces a modification to this particular choice of these functions by noting
that plane waves are solutions to the Schrddinger equation when Ej the potential is
constant. As for the radial functions, they are solutions in the case of a spherical

potential, when is an eigenvalue.

This approximation is very good for materials with a face-centered cubic

structure, and increasingly less satisfactory as the material's symmetry decreases.

To ensure the continuity of the function ¢(r)at the surface of the MT sphere,
the coefficients A;,,, must be developed in terms of the coefficients Cg of the plane
waves existing in the interstitial regions. Thus, after some algebraic calculations, we

find that:
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4mil .
Am = mZG Ce 1k + glR)yjm(k + G) (1.49)

The origin is taken at the center of the sphere, and the coefficients A;,, are
determined from those of the plane waves Cg . The parameters of the eigenenergy E:
are called the variational coefficients of the APW method. The individual functions,
labeled by G, thus become compatible with the radial functions in the spheres, and we

then obtain augmented plane waves (APWS).

The APW functions are solutions to the Schrédinger equation in spheres, but
only for the energy Ei. Consequently, the energy E1 must be equal to that of the G -
index band. This means that the energy bands (for a k-point) cannot be obtained by
simple diagonalization, and that it is necessary to treat the secular determinant as a

function of energy.

The APW method, as constructed, presents some difficulties related to the
function U (Re) that appears in the denominator of the equation. Indeed, depending
on the value of the parameter E, the value of U, (R,) can become zero at the surface
of the MT sphere, leading to a separation of radial functions from plane wave
functions. In order to overcome this problem, several modifications to the APW
method have been made, notably those proposed by Koelling and Andersen. The
modification consists of representing the wave function ¢p(r)inside the spheres as a
linear combination of the radial functions U(r) and their derivatives with respect to

energy U-(r), thus giving rise to the FP-LAPW method [25].

I-5-2 Principle of the method FP-LAPW

In the FP-LAPW method, the basis functions in the MT spheres are linear
combinations of the radial functions E;(r),Ylm(r)a and their
derivatives E;(r), YIm(r)with respect to energy. The functions U, are defined as in
the APW method and the functionE;(r), Yim(r) must satisfy the following condition
[26]:
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{ d> 1(l+1)

) 2 +V(T)_Ei}rUl(T)=rUl(T) (1.50)
dr T

In the non-relativistic case, these radial functions U; and" Ul ensure, at the
surface of the MT sphere, continuity with the plane waves from the outside. Then, the

functions wavefunctions thus augmented become the basis functions (LAPW s) of the

FPLAPW method:
1 e 2\ =
Ly . oi(K+G)F >R
o(r) = { Ve Co "= Ha (1.51)
Z?;)n[AlmUl (T) + By U, (T)]Ylm r <R,

Where the coefficients Bim correspond to the function U, and are of the same
nature as the coefficients A;,, The LAPW functions are plane waves only in the
interstitial regions, as in the APW method. Inside the spheres, LAPW functions are
better suited than APW functions. Indeed, if E; differs slightly from the band energy
E, a linear combination will better reproduce the radial function than the APW

functions.

Therefore, the function U, can be developed in terms of its derivative U and

the energy E; .
U,(E,r) = U (E;,7) + (E — EDU,(E,7) + O[(E — E)?] (1.51)

The FP-LAPW (Full-Potential Linearized Augmented Plane Wave) method
ensures the continuity of the wave function at the surface of the Muffin-Tin (MT)
sphere. However, this approach comes at the cost of reduced precision compared to
the APW (Augmented Plane Wave) method, which reproduces wave functions more
accurately. Specifically, the FP-LAPW method introduces an error in the wave

functions on the order of Ay and an error in the band energies on the order of AE.

Despite these errors, the LAPW basis functions provide a robust framework
that allows, with a single k-point, to obtain all valence bands across a wide energy
range. When this is not feasible, the energy window can typically be divided into two

parts, which is a significant simplification compared to the APW method.
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if the wave functionyis zero at the surface of the MT sphere, its
derivative v will be non-zero. As a result, the issue of continuity at the MT sphere
surface does not arise in the FL-LAPW (Full-Potential LAPW) method. This makes
FL-LAPW a practical and efficient approach for electronic structure calculations,

despite its slight loss in precision compared to APW.
I-5-3 The roles of linearization energies

The linearization energies play a crucial role in electronic structure calculation
methods based on Linearized Augmented Plane Waves (LAPW), such as the FP-
LAPW (Full-Potential Linearized Augmented Plane Wave) method. Here are their

main roles [27]:
1. Linearization of Radial Equations:

e The linearization energies (usually denoted as E_I) are used to linearize the
radial solutions of the Schrddinger equation inside the MT (Muffin-

Tin) spheres.

e This linearization simplifies calculations by avoiding the direct solution of
radial differential equations for each energy, making the LAPW method more

numerically efficient.
2. Construction of Basis Functions:

e The linearization energies determine the points around which the radial

solutions (basis functions) are expanded in a Taylor series.

e These basis functions are then used to describe electronic states inside the MT

spheres, while being coupled to plane waves in the interstitial region.
3. Accuracy of Calculations:

e The choice of linearization energies affects the accuracy of the results. They
must be chosen close to the energies of the electronic states of interest (e.g.,

valence or core states).
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If the linearization energies are poorly chosen, it can lead to errors in the

wavefunctions and band energies.

4. Flexibility in Describing Electronic States:

Linearization energies allow for the description of both valence states (usually

near the Fermi level) and core states (more deeply bound).

To improve accuracy, multiple linearization energies can be used for different

groups of states (e.g., one for valence states and another for core states).

5. Simplification of Calculations Compared to APW:

Unlike the APW (Augmented Plane Wave) method, which requires solving
radial equations for each energy, the LAPW method uses linearization

energies to avoid this computationally expensive step.

This makes the LAPW method faster and more practical for electronic

structure calculations, while maintaining good accuracy.

6. Continuity of Wavefunctions:

Linearization energies help ensure the continuity of wavefunctions and their
derivatives at the surface of the MT spheres, which is essential for the physical

consistency of the results.

linearization energies are key parameters in the FP-LAPW method that

simplify calculations while maintaining an accurate description of electronic states.

Their careful selection is essential for obtaining reliable and precise results [15].

[-6 Code WIENZ2k

WIENZ2k is a highly advanced computational software package designed for

electronic structure calculations of solids, based on Density Functional Theory (DFT).

It utilizes the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method,
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which is recognized as one of the most accurate approaches for investigating the

electronic, optical, magnetic, and structural properties of materials[27].

Developed by a team of researchers at the Vienna University of Technology,
WIENZ2k has become an indispensable tool in the fields of condensed matter physics,

materials science, and chemistry.

Its ability to provide precise and reliable results has made it a favorite among

researchers worldwide.
I-6 -1 Key Features of WIEN2k

WIENZ2K is distinguished by its precision and versatility. Some of its standout

features include [28]:

o Full-Potential Approach: Unlike pseudopotential methods, WIENZ2k treats the
potential without approximations, ensuring high accuracy in calculations.

e FP-LAPW Method: This method divides the unit cell into Muffin-Tin
(MT) spheres and an interstitial region, allowing for an accurate description of
both localized and delocalized electronic states.

e Wide Range of Applications: WIEN2k can calculate properties such as band
structures, density of states (DOS), charge densities, optical properties,
magnetic properties, and more.

e User-Friendly Interface: While primarily command-line driven, WIEN2k
provides graphical tools for visualization and analysis, making it accessible to

both beginners and advanced users.

I-6-2 Methodology and Theoretical Background

The WIEN2k software is based on the FP-LAPW method, which is a
realization of DFT. The key steps in its methodology include [29]:

o Division of Space: The unit cell is divided into non-overlapping MT spheres

(around atomic sites) and an interstitial region.
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Basis Functions: Inside the MT spheres, the wavefunctions are expanded in
terms of spherical harmonics and radial functions, while plane waves are used
in the interstitial region.

Linearization Energies: These are used to linearize the radial Schrodinger
equation, improving computational efficiency.

Self-Consistent Calculations: WIEN2k solves the Kohn-Sham equations
iteratively until self-consistency is achieved in the electron density and

potential[33].

I-6-3 Applications of WIEN2k

WIENZ2k has been used extensively in research to study a wide range of

materials and properties [30]:

Band Structure and DOS: WIEN2k provides accurate band structures and
density of states, which are essential for understanding electronic properties.
Optical Properties: It can calculate optical spectra, including dielectric
functions and absorption coefficients.

Magnetic Properties: WIEN2k supports spin-polarized calculations, making it
suitable for studying magnetic materials.

Structural Optimization: The software can optimize crystal structures by
minimizing the total energy with respect to atomic positions and lattice
parameters.

Surface and Defect Studies: WIEN2k can model surfaces, interfaces, and
defects in materials, providing insights into their electronic and structural

behavior[16].

I-6-4 Advantages and Limitations

Advantages:

= High accuracy due to the full-potential approach.
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= Suitable for a wide range of materials, including metals,
semiconductors, insulators, and strongly correlated systems.
= Extensive documentation and a large user community for support.

Limitations:

= Computationally demanding, especially for large systems or high-
precision calculations.

= Requires careful selection of parameters, such as MT radii and
linearization energies.

= Limited to periodic systems, making it less suitable for isolated

molecules or disordered systems.

I-6-5 Initialization:

It constructs by the spatial configuration (geometry), symmetry operations,

starting densities, the number of special points necessary for integration in the

irreducible Brillouin zone...etc. All these operations are carried out thanks to a series

of small auxiliary programs that generate:

NN: This program uses the case.struct file in which the atomic positions in the
unit cell are specified, calculates the nearest neighbor distances for all atoms,

and checks that the corresponding atomic spheres (radii) do not overlap [38].

LSTART: this program generates atomic densities and determines how the
different orbitals are treated in the band structure calculation, such as core

states with or without local orbitals.

SYMMETRY: it allows the generation of atomic densities and determines
how the different orbitals are treated in the band structure calculation, such as

core states with or without local orbitals.
KGEN: generates a mesh of k points in the Brillouin zone

DSTART: generates a starting density for the SCF cycle by superimposing the

atomic densities gen
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SCF Calculation the SCF cycle includes the following steps:

LAPWO: generates the potential from the density.

LAPW!1: calculates the valence bands (the eigenvalues and the eigenvectors)

LAPW2: calculates the valence densities from the eigenvectors.

LCORE: calculates heart states and densities.

MIXER: Mixes the input and output densities [17].

NN
Check the name
overlap of the

\Y/

LAPW1

LSTART SYMMETRY DSTART
Atomic
Atomic Structure file Superposition
density Input input file of atomic
p(r)
KGEN
Mesh
generation
LAPWO
V2V, =
V=T +Ve
VM’T‘
p Pcore LCORE
vol Ecore Atomic
Poia
MIXER
Pnew = Pold @(pvol +
STOP VE Conve NO

Figure 1.4: algorithm of code win2k
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[-7 Conclusion

The Win2K program utilizes Density Functional Theory (DFT) to solve the
Schrodinger equation for many-electron systems, providing an efficient and accurate
approach to studying electronic structures. DFT simplifies the complexity of the
many-body Schrodinger equation by focusing on electron density rather than
individual wavefunctions, making it computationally feasible for large systems like
molecules and solids. Win2K implements the Kohn-Sham equations, which
approximate the behavior of interacting electrons using a system of non-interacting
particles in an effective potential. This allows the program to calculate key properties
such as band structures, density of states, total energies, and atomic forces. By
leveraging exchange-correlation functionals like LDA or GGA, Win2K delivers
reliable results for a wide range of materials, including metals, semiconductors, and
insulators. Its versatility and efficiency make it a powerful tool for exploring
electronic, magnetic, and optical properties, as well as for predicting material

behavior in various applications.
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Chapter 2: Results and Discussion

II.1. Introduction

This chapter is dedicated to the theoretical study of the structural, electronic, magnetic, and
optical properties of the AgMnS. compound. Based on the ab initio calculation methods
described in the previous chapter, particularly the Density Functional Theory (DFT)
implemented in the WIEN2k code, we aim to explore the fundamental characteristics of this
material. The objective is to provide a detailed understanding of its behavior, starting with the
determination of its crystal structure and structural parameters, then examining its electronic,

magnetic, and optical properties, relying on the provided calculation results.

Delafossite-structured oxides, with the general formula AMO:, represent a fascinating class
of materials that have garnered significant interest due to their unique structural, electronic, and
optical properties. Named after the French mineralogist Gabriel Delafosse, these compounds
were first discovered in 1873 by Charles Friedel in a Siberian graphite sample. The Delafossite
structure consists of alternating layers of monovalent cations (A* = Cu*, Ag*, Pd*, Pt*) in linear
coordination and trivalent transition metals (M?*") in edge-sharing octahedral coordination. This
arrangement leads to a variety of polytypes, primarily the rhombohedral (3R) and hexagonal

(2H) phases, distinguished by their oxygen stacking sequences.

Over the years, research on Delafossites has evolved from fundamental crystallographic
studies to explorations of their potential applications in transparent conductive oxides,
thermoelectric materials, and photocatalysis. The stability of the Delafossite phase is highly
dependent on ionic radii and coordination preferences, with the A* cation playing a crucial role
in structural integrity. Additionally, the distortion of the [MOs] octahedron and the variation in

lattice parameters (a, ¢) with cation size further influence the material's properties.

This report provides an overview of the historical background, structural characteristics,
stability factors, and polytypism in Delafossite compounds, with a particular focus on copper-
based Delafossites (CuMO.). Understanding these aspects is essential for tailoring Delafossite

materials for advanced technological applications.
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[-2 History

In 1873, Charles Friedel first reported the existence of a mixed oxide of copper and iron,
CuFeO; during the observation of a graphite sample from Siberia [1].This mineral was named
Delafossite in honor of French mineralogist and crystallographer Gabriel Delafosse (1795-
1878).Later, the Rogers' work confirmed the existence of this mineral in a number of mines of
copper in the United States [2,3].The crystalline structure of Delafossite, with the formula
ABO», was established in 1935 by Soller and Thompson on a synthetic sample [4] and then

confirmed by Pabst on a natural sample [5].

Delafossite-structured oxides represent an interesting family of materials relatively little
studied during the 20th century despite the interest both fundamental and applied that they can
represent.In 1971, Shannon, Prewitt, and Rogers published three major articles on the
synthesis, crystal structure, and electrical properties of several Delafossite-structured
compounds (PtCoO,, PdCoO,, CuFeO», and AgFeO») [6-8].1t was only in 1997 that the interest
of scientists in the interest of scientists in these Delafossite-structured compounds exploded,

following the work of Kawazoe and al [9].

[-3 Chemical Formula and Stability of the Delafossite Phase

Chemical Formula

Delafossites are compounds of the type AMO> where A is a monovalent element that adopts
a linear (II) coordination (A = Ag, Cu, Pd, or Pt) and the cation M can be composed of most
trivalent transition metals, group III elements, rare earths, or charge-compensated pairs (for
example M?" / M*).A particularity of this structure is that the ionic radius of the trivalent
element M, which is stabilized in octahedral (VI) coordination, can vary widely from that of
aluminum (rA* = 0.535 A) to that of lanthanum (rLa** = 1.032 A), according to Shannon's
effective ionic radii table [10], which leads to a significant increase in the unit cell volume.The
different AMO> compounds with Delafossite structure are represented in FIGURE( II-1).Based
on the ratio of ionic radii r(A" II)/r(M™ VI), Beznosikov et al. [11] even predicted the

existence of other Delafossite-structured compounds that have not yet been developed.
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FIGURE( II-1): volume.The different AMO;, compounds with Delafossite

structure.

1.4. Stability of the Delafossite phase

Ternary oxides with the chemical formula AMO> can form a variety of structural phases.The
advantage of forming one phase over another depends on several factors.The most important
factor is the coordination of the cations A and M.Four individual coordination classes of

AMO: compounds have been identified [12].

They are given in TABLE II-1 with an example of a compound for each
structure.3"These classes are relatively determined by the diameters of the A" and M3*
cations.Small cations simply cannot withstand significant coordination due to the oxygen
crowding that would result, while large cations would require higher coordination
numbers.By combining all the ionic radius information for AMO; compounds, a
structure field map can be drawn as shown in FIGURE( 11-2)

TABLE II-1: The coordination classes of AMO»,-type compounds.

Classe de coordination Composés typique Symétrie
AV BYIO, NacCl Cubique
a-NaCl Rhomboédrique
a-LiFeO-> Teétragonal
AYBVO,™ B-NaFeO- Orthorhombique
AYVITgIVO, VT KFeO-> Orthorhombique
ATBYTO,™ CuFeO:> Delafossite Rhomboédrique
Cu¥Y O> Delafossite Hexagonal
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FIGURE( II-2): Structural field map of the AM(B)O, compounds[12].

Delafossites with the formula A*"M>"0, and a coordination scheme of 2:6:4 have a
constitution that is both limited (for A™) and largely open (for M**).These compounds
consist of cation A with the smallest ionic radius of all AMO»-type oxides [12].As seen
inFIGURE( II-1), the Delafossite structure is stable for only four ions at the A site (Cu”,
Ag", Pd’, and Pt"), while several M cations are possible.Even when the Delafossite
phase can form for a given A-M cation combination, its formation depends on various
factors.Structural factors that have already been discussed regarding the radius of the

cations and the coordination environment

[-5 Structural Properties of Delafossites

[-5-1 Description of the Delafossite structure
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The Delafossite structure AMO> can be visualized as consisting of two alternating
layers: a planar layer of A cations in a triangular pattern and a layer of MOg octahedra,

interconnected by their edges, flattened along the c-axis FIGURE( 1I-3.a) .

Thus, this structure is composed of double layers of compact stacking of oxygen atoms
whose octahedral sites are occupied by M** ions and whose internal cohesion (between
layers) is ensured by A" ions.The latter are linearly associated with two oxygens
belonging to the MOg octahedral layers of two consecutive layers, upper and lower, to
form AO** groups.Each A" ion has six close A* neighbors in the plane parallel to that of
the double layers of oxygen.The oxygen ion is in pseudo-tetrahedral coordination with

one A cation and three FIGURE( 11-3.b).

FIGURE( II-3): (a) Representation of the Delafossite-type structure.(b)

Coordination polyhedron of oxygen.

I-5-2 Distortion of the octahedron [MOg]

In the Delafossite structure, although the 6 M-O distances are equal, the [MOg¢]
octahedron is slightly flattened along the third-order axis parallel to ¢ (rhombic
symmetry D3d).The degree of distortion of the octahedron is therefore evaluated through
the ratio (dO-01)/(dO-Oiv), with dO-O1 being the length of the edge of an octahedron
parallel to the base plane of the hexagonal lattice, and dO-Oiv being the length of the
edge joining two oxygens on either side of the M>" ion layer (schematized in the inset of
FIGURE( 11-4)).The evolution of the distortion of the MOs octahedron as a function of
the radius of the M** ion is illustrated in FIGURE( 1I-4).[13].
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FIGURE( I1-4): Variation with the radius of the M*" ion of the distortion of
the MOg octahedron [13].

It can be observed in this figure that the ratio (d O-O1)/(d O-Oiv) increases with the radius
of the M>" ion.The importance of the distortion of the D3d symmetry of the octahedron can
actually be simply correlated with the evolution of the covalence of the M-O bonds.It should

be taken into consideration that:

The M-O bond is all the more covalent as the contribution of the 2p orbitals
of oxygen to this bond is more significant (the 2p orbitals are less

stable due to the 2s orbital).

The angle M-O-M is smaller the less flattened the MOg octahedron is and
that the ratio (dO-0O1)/(d O-Oiv) approaches unity.

All these considerations of the bonds show that when the size of M decreases and
consequently the strength of the M-O bonds increases, one can reasonably expect that the angle

M-O-M will decrease as well as the ratio (d O-O1)/(d O-Oiv).
I-5-3 Polytypes of the Delafossite structure

Such an atomic arrangement in this type of structure can easily give rise to various
polytypes according to the different sequences of close packing that can be envisaged for the

oxygen layers.
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if we call O1, Oz, and O3 the three possible types of oxygen planes, we can observe, for

examp le, sequences:

O[AO[_ M_OZAOZ— M— O3A03_M_O11i\01

(polytype 3R, Fig. 1.5.a)

Cc

”
I‘

ou:

»
i

OA0L_M_0,A0,__M__0,A0,
»l

i

C

|‘
r-

(polytype 2H, Fig. 1.5.b)

which correspond, respectively, to a rhombohedral polytype (3R) of space groups R-3m

and a hexagonal polytype (2H) of space groups P63/mmec. The difference between the two

polytypes lies in the third layer.
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FIGURE( II-5): Representation of compact stacking sequences in the
polytypes: (a) 3R and (b) 2H of the compound CuAlO,.
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In fact, the main difference between the 2H and 3R polytypes lies in the orientation of
the successive layers [MOg].The 2H Delafossite has its octahedral layers rotated 180°
relative to each other and consequently, the structure is described with two basic blocks:

A-B and B-A( FIGURE( 11-6).a and b) [14].

Whereas in 3R Delafossite, these layers have the same orientation and the structure is
described with three blocks: A-B, B-C, and C-A (FIGURE( II-6).c and d) [14], where the

letters A to C indicate the three usual triangular positions in a compact oxygen stacking.

Due to this difference in stacking, a transformation of the 2H structure into 3R is not possible

through a topotactic process and requires breaking the M-O bonds.

(a) ©

FIGURE( I1-6): Schematic representations of the arrangement of octahedra in (a)
2H and (c) 3R.Representations of the oxygen stacking sequences in (b) 2H and
(d) 3R

FIGURE( II-7)(a-f) show representations of the two polytypes of the Delafossite
structure. FIGURE( 11I-7). b and e respectively provide a projection onto the (110)
plane of the two polytypes 2H and 3R.
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(a) ©

FIGURE( II-7): The structure of Delafossite.(a) 2H polytype; (b) Projection of 2H polytype
on the (110) plane; (c) Stacking of the two layers in 2H.(d) 3R polytype; (e) Projection of 3R
polytype on the (110) plane; (c) Stacking of the three layers in 3R [12].

[-5-4 The unit cell

The unit cells of the two polytypes, 2H and 3R, are respectively represented in FIGURE(
11-8.a) and b.Note that the value of the lattice parameter a in both polytypes is = 3A, whereas
the value of ¢ is = 17A for the 3R polytype and 11A for the 2H polytype FIGURE( 1I-8.¢)

(b) 3R(R-3m)

(© a-3Ac-17A

(a)

a

2H(P63/mme) |

a3 A1l A
© L gl —i b

FIGURE( II-8): Representations of the elementary cells of the polytypes (a) 2H,
(b) 3R, and (c) 2H and 3R [24].

It should be noted that the most frequently encountered polytype is 3R, and only a few
Delafossites, where M belongs to group IB, exhibit the 2H polytype such as CuAlO2, CuScO-,
or CuYO [15].It should also be noted that a study [17] conducted on CuMO:-type
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Delafossites, where M is taken from two different groups, IIIA and IIIB, revealed that
Delafossites from the IIIA and IIIB groups stabilize respectively in rhombohedral and

hexagonal structures.

A 6H polytype has also been reported for the Delafossites AgFeO>, AgCoO», and AgCrO>
[16], which combines the two polytypes 3R and 2H.

[-5-5 Lattice Parameter

The lattice parameters in Delafossite can be correlated with the sizes of the cations A and M,
which influence the O-A-O, M-O, A-A, or M-M distances [19].In the Delafossite, all O-A-O
bonds are strictly parallel to the c-axis, and it is expected that the value of the a parameter
varies according to the A-A or M-M interaction.Experimentally, it appears that the lattice
parameter along the a-axis preferentially depends on the M cations FIGURE( II-9).This is
mainly attributed to the larger size of the M cations compared to the A cations, leading to a
higher M-M repulsion and thus an increase in the lattice parameters along the a-
axis.Furthermore, the +III charge on M compared to the +I charge on A also influenced the
stronger M-M repulsion [18].Moreover, the lattice parameter a is equal to the length of the

edges of the octahedra [MOs].

It is therefore directly correlated to the radius of the cation M.The lattice parameter along the
c-axis is largely determined by the length of the O-A-O bond.Due to the repulsive nature of
M3* cations along the shared octahedral edges, a distortion occurs, resulting in a shortening of
the interatomic distances between the oxygen anions.When the radius of the cation M
increases, the M-O distance increases while the O-O contact distance remains relatively
unchanged.Therefore, an increase in the size of the cations M has little impact on the c lattice

parameter FIGURE( 1I-9) .
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FIGURE( 11-9): Influence of cations M on the lattice parameters a and c¢ of

IV. The family of copper Delafossite

Regarding Delafossite-type oxides A'M>*O, with the Cu+ ion in the "A" site, there are

currently many compounds that contain a wide variety of elements on the "M" site, ranging

from small cations with an ionic radius between 0.54-0.67A to large lanthanide cations (0.95A-
1.16A).

In this series of compounds, as observed in FIGURE( II-10) , the value of the lattice
parameter "a"

remains almost unchanged.

increases when the size of the M>" cation grows, while the

TABLE II-2: summarizes the structural data of some compoundsCuMO,,

n.n

¢’ parameter

CuMII0.5M’1V0.50;, and CuMII1/3M’1111/3M’IV1/30, with Delafossite
structure known.
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FIGURE( II-10): The variation of lattice parameters as a function of the ionic

radius values of M>** for the Cu"M>*" O, compounds .

TABLE II-2: Structural data of CuMO, Delafossite compounds .

Compoxsé P4 _»\{;'7 ) A Polvivpe a (A) ce4)

CuAlO, 0535 3R 28571 16.930

2H 28630 11. 312
CuCoO= 0.610 3R 2_848% 16,920
CuCsO, 0.615 3R 29750 17.096
CuGaO- 0.620 3R 29750 17.1538
CuFeO2 0.645 3R 30351 17.166
CuRhO, 0.665 3R 307420 17.0942
CuScO- 0.745 3R 32204 17.100

2H 32230 11. 413
CulnO, 0O_R00 3R 32922 17.338
CuYOs 0.900 3R 3.5330 17.136

2H 3.5310 11 418
CuBEuO, 0947 3R 36300 1 7.020
CuSmO, 0_958 3R 3.6500 17.030
CuNJdO- 0983 3R 3.7100 17.090
CuPrO, 0990 3R 3.7500 17.050
Cul a0 1.032 3R 3.8300 17.100
CuCogsTig<Oa 0.675 3R 3.0330 17.183

2H 30177 11 439
CuCup sTia Oz 0.668 3R 3.0350 17.163

2H 30300 11 460
CuNi, <Sng O 0.690 3R 3.0090 17.240
CuNiy sTig<sO= 0.648 3R 3.1170 17.329
CuNi; s VasO0s 0.637 3R 2 9865 17.191

Conclusion:
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Delafossite oxides (AMO-) exhibit a rich structural chemistry governed by the interplay of
ionic radii, coordination environments, and stacking sequences. The 3R and 2H polytypes,
arising from different oxygen layer arrangements, demonstrate how subtle variations in atomic
positioning can lead to distinct crystallographic phases. The distortion of the [MOs]
octahedron, influenced by the M3" cation size, further highlights the delicate balance between

ionic and covalent bonding in these materials.

Copper-based Delafossites (CuMO:2) are particularly noteworthy due to their tunable
electronic properties, making them promising candidates for transparent electronics,
thermoelectrics, and optoelectronic devices. The nearly constant c-axis parameter (despite
changes in M** size) and the increasing a-axis parameter with larger M*" cations underscore the

structural adaptability of Delafossites.

Future research should focus on synthesizing new Delafossite variants, exploring
their electronic and magnetic properties, and optimizing their performance in functional
applications. Advances in computational modeling and experimental techniques will further
enhance our understanding of these materials, paving the way for innovative uses in energy

conversion, catalysis, and beyond.

I1.1. Computational Details:

The calculations of the properties of the AgMnS: compound are assumed to be performed
using the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method within the
framework of Density Functional Theory (DFT), as implemented in the WIEN2k code.
Approximations for the exchange-correlation potential, such as the Generalized Gradient
Approximation (GGA) under the PBE (Perdew-Burke-Ernzerhof) or PBEsol parameterization,
as well as more advanced approaches like the modified Becke-Johnson potential (mBJ) for
optoelectronic properties, would typically be employed. Calculation parameters such as the
number of k-points in the irreducible Brillouin zone, the RMT*Kmax parameter determining
the plane wave basis set size, and the muffin-tin radii (RMT) for each atom type (Ag, Mn, S)

should be carefully chosen to ensure calculation convergence.
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[Note: These details are based on common practices and the methodology of the original
chapter. Specific details for the AgMnS. calculations were not initially available, but the

graphical results suggest the use of these methods. ]
I1.2. Structural Properties
I1.2.1. Crystal Structure of the AgMnS. Compound:

Preliminary analysis based on the available results indicates that the AgMnS. compound

crystallizes in a Tetragonal schematically illustrates this crystal structure.

FIGURE( II-11): Schematic representation of the Tetragonal crystal structure of
the AgMnS. compound.

TABLE II-3:. The calculatedatomic positions using PBE-Sol
approximations of AgMnS; compound.

GGA Autres travaux

Materials Atoms X y z Xy z

Ag 0,0000 0,0000 0,0000 0,0000 0,0000  0,0000

AgMnS2 Mn 05000 0,5000 0.5000 0,0000 0,0000 0,500
(R-3/m # 166) S 07701 0,77010 0,7701 0,0000 0,0000  0,2508
¢ 02208 02298 02298 0,0000 0,0000 02508
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TABLE 1I-3: The calculated equilibrium lattice constants, bulk modulus,
and cohesive energy for compound obtained by using PBE-SOL

approximations.
a (A) c(A) B(GPa)  Ecoh(eV/atom)
Agvns:  GGA 33463 14,3311 184,9220  5.22
Theo  3,0014 14,558 - -
-3739.02 . . . T . .
-3739.03 |- AgMnS2 |
\
-3739.04 - \ -
\
-3739.05 | . .
\
-3739.06 |- i
~\
-3739.07 } N -
\ -
\ r
-3739.08 | e i
-3739.09 . . ' ' : ' ! I
220 230 240 250 260 270 280 290

Volume (a.u)’

FIGURE( II-12).Variation de I’énergie totale en fonction du volume.
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En ce qui concerne I'énergie de cohésion de la molécule, elle a été calculée a l'aide de

la formule suivante : (IL4)

(Eat

atom

: + EMR 4+ 2 X ES) — ELIMT?
cohésion — NAg + NMn + NSZ

tot

. LAgMnS2 s o A L
ou E,j] est I'énergie totale a I'équilibre. E,2 ~ EMn ESZ . sont les énergies

atomiques

des atomes de Ag, Mn et S respectivement.Nyg, Ny, , Ng Sont les nombres d’atomes

dans la maille unitaire du composé AgMnS>

Selon les valeurs de I’énergie de cohésion et le module de compressibilité
obtenus en utilisant deux approximations, On peut dire que ce composé a une bonne
rigidité, c'est-a-dire qu'il résiste a la déformation contre la compression. On peut
¢galement remarquer que ce compos¢ a une plus grande énergie de cohésion a I'état
ferromagnétique qu'a 1'état paramagnétique, ce qui confirme sa stabilit¢ a 1'état

ferromagnétique.

More detailed information regarding the lattice parameters (a, c¢), the exact atomic positions
within the unit cell, and the specific space group of this tetragonal structure for AgMnS: are

not available from the provided data.
[1.3.2. Ground State of AgMnS:

Determining the ground state would normally involve calculating the total energy of the
AgMnS: compound as a function of the unit cell volume for different possible structural or
magnetic configurations (e.g., ferromagnetic, antiferromagnetic, paramagnetic). Fitting the
energy-volume curve to an equation of state, such as the Birch-Murnaghan equation, would
allow the determination of equilibrium parameters: the equilibrium volume (Vo), the bulk
modulus (Bo), and its first pressure derivative (B'). The cohesive energy could also be
calculated to assess the thermodynamic stability of the compound.

The data in FIGURE( 1I-12) show the variation of the magnetic moment as a function of

volume, suggesting that calculations were performed for different volumes, but the
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corresponding energy data are not available to determine the ground state and equilibrium

structural parameters.

[I.1.The origin of magnetism

In this part we studied the magnetic properties of the compound, and before that we

will recall the origin of magnetism in materials [7—12], and this at three levels:

material ATOM Electron

-
Ty

Core

size (meter) 1O 1O

FIGURE( II-13). The origin of magnetism of materials.

II1.2. At the electron level :

as we know, each electric charge is in motion, it generates a magnetic field, and

since the electron is a particle in motion around itself and around the nucleus , these two

movements will generate two magnetic moments:

- — H_B -
a) A magnetic moment of spin s = =87 S where g is the Landé
parameter and # is the Planck constant.

isl = L21°
b) An orbital magnetic moment HSE= %70 Where Ug is the Bohr
magneton.
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FIGURE( II-14). The origin of magnetism at the electron level
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I11.3. At the level of the atom :

The magnetism of the atom is linked to the electrons in its outer shell; if all

electrons are placed in the outer layer in a paired manner, the sum of the magnetic
moments of these two electrons is zero and therefore the atom is non-magnetic, and vice

versa.

Paired electrons Unpaired electron

\ / \ /
_The sum of the magr!etic moments The sum of magnetic moments different
is zero (non-magnetic atom) from zero (non-magnetic atom)

FIGURE( II-15). the origin of magnetism at the atom level.

I11.4.At the level of material :

The magnetic state of matter depends on the nature of the atoms making up

the matter (magnetic or not), the distances between the atoms and the exchange
interactions between them, the effect of temperature and the applied magnetic field.
Regarding the magnetic interactions between atoms, they are quantum exchange
interactions related to the magnetic moments of the atoms, the distance between them, and
the external magnetic field that they are subject to. These interactions were described by

the Heisenberg Hamiltonians given by:
Himag = XijjijS™ = S7 =4+ Xigligh™ —=; S7 =4 (IL4)

Where pp is the Bohr magneton, g; is the magnetic ratio, S~ —; is a spin operator,

h™ — is the external magnetic field, and J;; is the exchange coupling constant (it depends
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on the distance between the two atoms). The different states of the magnetic moments of

the atoms whose exchange interaction is shown in FIGURE( 1I-16) .
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(Non-Magnetic) Magnetic) /

FIGURE( II-16). The origin of magnetism at the level of matter (the different

cases of exchange interaction between the magnetic moments of atoms.

Depending on the nature of the atoms making up matter and the alignment of

the magnetic moments, we distinguish five types of magnetism:
A) Diamagnetism:

The magnetic material [7-12] consists of non-magnetic atoms, because all its electrons are

paired, which means that the total magnetic moment of the atoms is zero.
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FIGURE( II-17.a).lustration of atoms in a state Diamagnetism
B) Paramagnetism:

The atoms of the paramagnetic material  contain unpaired electrons, and therefore these
atoms have magnetic moments without any exchange interactions between them due to the
large distance between them. Therefore its magnetic moments are randomly directed so

that the sum of the total torque of the material is equal to zero[7—12].
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FIGURE( II-17.b). lustration of atoms in a state Paramagnetism.

C) Ferromagnetism:

The atoms of the ferromagnetic material are composed of unpaired electrons, an
exchange interaction occurs between them due to the small distance between them, so that

the exchange integral J;; is negative, so the electrons line up in parallel[7-12].
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FIGURE( II-17.c). lustration of atoms in a state Ferromagnetism.

D) Antiferromagnetism:

exchange interaction occurs between them due to the small distance is small enough, so
the exchange coupling constant J;; is positive , so the electrons align themselves
antiparallel, then the atoms are organized in such a way that two neighboring atoms can
have opposite magnetic moments and consequently the net moment of the material is

zero[7-12].
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FIGURE( II-17.d). lustration of atoms in a state Antiferromagnetism.

E) Ferrimagnetism:

This is a similar state to the antiferromagnetic case, except that the magnetic moments
that are arranged antiparallel are not equal, and therefore, the material has a magnetic

moment which is not zero [7-12].
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e

FIGURE( II-17.e).lustration of atoms in a state Ferrimagnetism.

[I1.5.Variation of the magnetic moment under the effect of pressure:

Using the GGA approximation, we were able to calculate the total moment of the
maille unitaire as well as the contribution of each atome to this moment. The obtained
results, which are shown in Table II.3, indicate that the compound BrCdO, exhibits

ferromagnetic behavior with a total magnetic moment of 3.

It is also observed that the predominant magnetic contributors at this time are the

bromum atomes, with the remaining atomes contributing almost nothing.

The variation in the maille's volume can have an impact on the total magnetic moment.
As we can see in the magnetic moment increases as the bulk volume of the compound

decreases.

The study of magnetic properties is crucial, especially for compounds containing transition
elements like Manganese (Mn).FIGURE( II-18) presents the results of the calculation of
the total magnetic moment (TOT) and partial moments (for Ag, Mn, S, and the interstitial

region INT) as a function of the unit cell volume.
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FIGURE( II-18): Variation of total and partial magnetic moments as a

function of volume for AgMnS..

Analysis of FIGURE( II-18) reveals several important points:

* Volume Dependence: The total magnetic moment (TOT) shows a strong dependence on
volume, increasing significantly with lattice expansion. It rises from approximately 2.15 uB at
400 a.u.? to a maximum of about 3.2 uB at 520 a.u.?, before decreasing slightly. This dependence

suggests a sensitivity of magnetic exchange interactions to interatomic distances.

* Origin of Magnetism: The main contribution to the magnetic moment clearly comes from the
Manganese (Mn) atoms. The local magnetic moment on Mn closely follows the trend of the total
moment, increasing from ~2.0 uB to ~3.1 uB over the studied volume range. This is expected for

a 3d transition ion like Mn.

* Minor Contributions: The contributions from Ag and S atoms are negligible, remaining close to
zero across the entire volume range. The interstitial region (INT) exhibits a small but noticeable

polarized magnetic moment (~0.15 to 0.25 pB) that also slightly increases with volume.

* Nature of Magnetic Order: The presence of a significant net magnetic moment, primarily due to
Mn, indicates a magnetically ordered state, likely ferromagnetic or ferrimagnetic in nature,
although the exact configuration cannot be determined without additional information (e.g.,

energy comparison of FM and AFM states).
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These results highlight the dominant role of Mn d-electrons in the magnetism of AgMnS: and the

strong influence of the crystal volume on the magnitude of this magnetism.
IV.1.Electronic Properties

The analysis of electronic properties relies mainly on the calculation of the band structure and the

density of states (DOS), presented in Figures I1.3 and I1.4, respectively.

IV.1.1. Band Structure

FIGURE( I1-19) shows the calculated band structure for AgMnS: for both spin

channels(Spin Up and Spin Down).
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FIGURE( II-19): Band structure of AgMnS: along high symmetry directions
for Spin Up (top) and Spin Down (bottom) channels. The Fermi level is at 0

eV.

The analysis of the band structure reveals distinct behavior for each spin channel:

* Spin Up Channel (Top): Several bands cross the Fermi level (0 eV). There is no energy gap.

This clearly indicates metallic behavior for the Spin Up channel.

* Spin Down Channel (Bottom): The Valence Band Maximum (VBM) and the Conduction Band

Minimum (CBM) are both located at the G (I') high symmetry point. The VBM is slightly below
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0 eV (~-0.2 eV) and the CBM is significantly above (~ +1.8 eV). This indicates a direct gap of
approximately 2.0 eV. This behavior is characteristic of a semiconductor for the Spin Down

channel.

The combination of metallic behavior in one spin channel and semiconducting behavior in the
other spin channel gives the AgMnS: compound a Half-metallic nature. This property is highly
sought after for spintronics applications, as it theoretically allows for a fully spin-polarized

electron current at the Fermi level.

IV.2. Electronic Density of States

FIGURE( 11-20) presents the total density of states (TDOS) and partial density of states

(PDOS) projected onto the atomic orbitals (s, p, d) of each element (Ag, Mn, S).
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Ag, Mn, and S in AgMnS.. Spin Up is positive, Spin Down is negative. The

Fermi level 1s at 0 eV.

The DOS analysis corroborates and details the observations made from the band structure:

* TDOS: The TDOS confirms the asymmetry between the Spin Up and Spin Down channels,
characteristic of a magnetic material. It shows a finite density of states at the Fermi level (0 eV)
for the Spin Up channel (positive) and an absence of states (gap) around the Fermi level for the

Spin Down channel (negative), confirming the half-metallic nature.

* PDOS - Manganese (Mn): Mn-d states dominate the density of states near the Fermi level. The
significant energy shift (exchange splitting) between the Spin Up and Spin Down Mn-d states is
the primary source of the large observed magnetic moment. Mn-d Spin Up states contribute

significantly to the density at the Fermi level, explaining the metallic character of this channel.

* PDOS - Sulfur (S): S-p states are predominant in the valence band, between -6 eV and -2 eV.
There is notable hybridization between S-p and Mn-d states in this region, indicating significant

Mn-S covalent bonding that influences the electronic structure.

* PDOS - Silver (Ag): Ag-d states are localized at lower energies within the valence band (mainly

between -6 eV and -3 eV). Their contribution near the Fermi level is minimal.

In summary, the DOS confirms the half-metallic nature of AgMnS:, highlights the crucial
role of Mn-d states in magnetism and conduction in the Spin Up channel, and illustrates the

Mn-d / S-p hybridization in chemical bonding.

channel. However, the metallic character of the Spin Up channel complicates the overall
optical analysis and could lead to high reflectivity in certain energy ranges.
A detailed study would require the explicit calculation of optical spectra (e.g., absorption

coefficient, refractive index), which are not available in the provided data.

IV.2. Conclusion
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This chapter presented a theoretical study of the structural, magnetic, and electronic
properties of the AgMnS. compound based on DFT calculation results provided graphically. The
analysis revealed that AgMnS: crystallizes in a Tetragonal structure and exhibits strong magnetic
properties dominated by Mn atoms, with a total magnetic moment strongly dependent on volume.
The study of the electronic structure (bands and DOS) highlighted a remarkable feature: AgMnS2
is a half-metal, behaving as a metal for Spin Up electrons and as a semiconductor with a direct
gap of approximately 2.0 eV for Spin Down electrons. This property, combined with intrinsic
magnetism, makes AgMnS: potentially interesting for spintronics applications. Mn-d states play a
predominant role in these properties, with significant hybridization with S-p states. Additional
information would be needed to determine the exact equilibrium structural parameters and to

analyze the optical properties in detail.
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General Conclusion

Delafossite is considered a material with a promising future, and research is
ongoing to explore its applications across various sectors. Here, we present some of the
challenges currently facing research as a prelude to future studies. From the perspective
of synthesis and processing, these materials should feature low-cost manufacturing
methods. They also pose a significant challenge in terms of their functions and

applications in sensor devices, due to their specific advantages in this field.

The goal we aimed to achieve through this work is to study and investigate the
structural, electronic, and magnetic properties of the compound AgMnS:, which is
considered one of the most important and widely used compounds in many fields. The
aim is to determine the most suitable domain for utilizing the AgMnS. compound, in

addition to understanding the role and type of each atom that influences a particular

property.

This objective was achieved using the WIEN2k simulation software within the
framework of Density Functional Theory (DFT), based on the Full-Potential Linearized
Augmented Plane Wave (FP-LAPW) method, in order to solve the Schrédinger equation
for a crystalline system containing a large number of interacting atoms and electrons. To
achieve this, we introduced several simplifications, such as the Born-Oppenheimer

approximation, as well as other approximations like Hartree, Hartree-Fock, and DFT.

Finally, by evaluating, classifying, and discussing the potential opportunities in
chalcogenides, this study aims to encourage further research into this growing class of
semiconductors, thereby enabling future advancements in optoelectronic devices and
supporting new approaches in the development of thin-film photovoltaic technologies in

the years to come.



Résumé

Dans ce travail, nous avons étudié les propriétés structurelles, électroniques et
magnétiques du composé AgMnS; en utilisant la méthode des ondes planes
augmentées linéarisées (FP-LAPW) basée sur la théorie de la fonctionnelle la densité
(DFT). Pour estimer le terme d'échange-corrélation, nous avons utilisé
I’approximation GGA. Dans les propriétés structurelles, nous avons calculé les
parametres de la maille, le module de compressibilité et 1'énergie de cohésion. Pour
comprendre le comportement ¢lectronique du compos€, nous avons analysé la
structure des bandes ¢€lectronique les spectres de la densité d’états €lectroniques. Nous
avons également étudi¢ la distribution de la densit¢ de charge dans la région
interatomique pour connaitre la nature de la liaison entre les atomes. Nous avons

calculé le moment magnétique total et partiel du composé.

Abstract

In this work, we studied the structural, electronic and magnetic properties of
the compound AgMnS, wusing the linearized augmented plane wave (FP LAPW)
method based on density functional theory (DFT). To estimate the exchange-
correlation term, we used the GGA approximation. In the structural properties, we
calculated the mesh parameters, the compressibility modulus and the cohesion energy.
To understand the electronic behavior of the compound, we analyzed the structure of
the electronic bands and the spectra of the density of electronic states. We also studied
the distribution of the charge density in the inter-atomic region to know the nature of
the bond between the atoms. We calculated the total and partial magnetic moment of

the compound.
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