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Introduction General  

With the global trend towards renewable energy, scientific research—both experimental 

and theoretical has accelerated toward harnessing one of the most important sources of sustainable 

energy: solar energy, where light energy is converted into electrical energy using solar panels and 

photovoltaic systems [1,2]. 

The basic idea behind the invention of solar panels is based on the possibility of 

generating electrical energy by exposing certain materials to light rays. Following this discovery, 

many studies were conducted, including the discovery of the element selenium, which 

significantly influenced the advancement of this technology and its use in various fields such as 

computers and satellites. The efficiency of these photovoltaic technologies depends on many 

factors, perhaps the most important being the nature of the materials they are made from. 

One of the main obstacles to the implementation of solar panels as an energy generation 

technology is their relatively high cost. Inorganic thin-film solar panels are a proven technology 

that offers significant cost reductions compared to crystalline photovoltaic technology, which 

currently dominates the market. Among these are Delafossite oxide compounds, which are a 

family of materials with a unique crystal structure and interesting electronic properties. These 

materials are composed of transition metals such as copper, nickel, and cobalt, in addition to 

oxygen and sometimes-other elements. The crystal structure consists of layers of transition metal 

ions sandwiched between oxide ions, forming a three-dimensional network. 

Various methods derived from Density Functional Theory (DFT) help in solving the 

Schrödinger equation, revealing insights into structural, elastic, and mechanical properties [2]. 

Perovskite structures, known for their stability and diverse applications, have long captivated 

scientific interest [3]. The term "perovskite" originated from CaTiO3, discovered in 1839 and 

named after Russian mineralogist Lev Aleksevich von Perovski [4]. 

The aim of this study is to enhance our understanding of the structural, electronic, 

thermodynamic, and thermoelectric properties of the perovskite compound AgMnS2 using the 

Wien2k computational software. This research is divided into two main chapters. The first chapter 

provides a theoretical basis for analyzing crystalline systems, based on the principles of quantum 



mechanics. It begins with an exploration of the time-independent Schrödinger equation, which 

describes the behavior of electrons and nuclei within the system. Key approximations such as 

Born-Oppenheimer, Hartree, Hartree-Fock, and Density Functional Theory (DFT) are explained, 

with a particular focus on their role in estimating interactions among electrons. 

In the study of regular crystal lattices, the time-independent Schrödinger equation is summarized, 

describing a system composed of a large number of moving and interacting electrons and nuclei. 

The main approximations adopted to simplify the solution of the Schrödinger equation are then 

highlighted, such as the Born-Oppenheimer approximation, the Hartree approximation, the 

Hartree-Fock approximation, and the Density Functional Theory. In addition, the most important 

approximations used to evaluate electron interaction are presented. The full-potential linearized 

augmented plane wave method (FP-LAPW) is then explained, followed by a description of the 

various software tools used to study the properties of interest. 

The second chapter addresses the calculation of structural properties using GGA approximations 

and has determined some structural properties of the AgMnO2 compound such as lattice constant, 

bulk modulus, and cohesive energy. The Density Functional Theory (DFT) will be used as the 

main tool of the study. In the first step, we will perform a structural phase stability analysis for 

potential phases of the compound. The electronic behavior of the compound was studied, where 

we determined the energy gap value for each phase, in addition to identifying the electronic 

orbitals contributing to each energy band by studying the density of states curves. 

 

[1] M. A. Green, “Third generation photovoltaics: Advanced solar energy conversion,” Springer, 

2006.  

[2] [2] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made 

simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. [ 

[3] 3] N. A. Spaldin, “A beginner’s guide to the modern theory of polarization,” Journal of Solid 

State Chemistry, vol. 195, pp. 2–10, 2012. 

[4]  [4] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic 

distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, pp. 751–767, 

1976. 
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I-1 Introduction  

The study of Delafossite compounds has garnered significant attention due to 

their unique physical properties, which make them promising candidates for various 

technological applications, including transparent conducting oxides, thermoelectric 

materials, and catalysts. Delafossites, with the general formula ABO2, where A is a 

monovalent cation (e.g., Cu, Ag) and B is a trivalent cation (e.g., Al, Ga, In), exhibit a 

layered structure that leads to anisotropic electronic, optical, and magnetic properties. 

Understanding these properties at a fundamental level requires a robust theoretical 

framework that can accurately describe the electronic structure and interactions within 

these materials [1].  

This chapter theoretical foundations necessary for investigating the physical 

properties of Delafossite compounds. We begin with the Schrödinger equation, which 

is the cornerstone of quantum mechanics and provides the basis for understanding the 

behavior of electrons in solids. We then discuss Density Functional Theory (DFT), a 

powerful computational tool for electronic structure calculations. Following this, we 

introduce the Full-Potential Linearized Augmented Plane-Wave (FP-LAPW) method, 

a highly accurate approach for solving the DFT equations in solids. Finally, we 

provide an overview of the Wien2k software package, which 

implements the FP-LAPW method and is widely used in materials 

science research.[1] 

 I-2 Schrödinger Equation  

Schrödinger, an Austrian theoretical physicist, played a key role in advancing 

the wave theory  of matter. His work was shaped by the foundational ideas of early 

quantum theory, which were pioneered by figures such as Max Planck, Albert 

Einstein, and Niels Bohr [2].  
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The description of a material implies knowing its electronic, structural, etc. 

properties, which reflect the interactions between the particles that constitute it 

(electrons and nuclei). Classical mechanics failed to provide answers, so quantum 

mechanics took over. It is essentially based on the resolution of the Schrödinger 

equation [2]. 

The Schrödinger equation is the fundamental equation of quantum physics, 

like Newton's laws in classical physics [03].  

In order to obtain interesting quantities such as energy E or the wave function, 

it is necessary to solve the time-independent Schrödinger equation, which was 

established by Erwin Schrödinger in 1925 and is written as follows : 

𝑯𝛙(𝑹⃗⃗ 𝑰, 𝒓⃗ 𝒊) = 𝑬𝛙(𝑹⃗⃗ 𝑰, 𝒓⃗ 𝒊)                                     (I.1) 

 𝑹⃗⃗ 𝑰 vector the coordinate of the nucleus (I). 

 𝒓⃗ 𝒊 vector the coordinate of the electron (i). 

 𝑯 Hamiltonian operator associated with the system's total kinetic and potential 

energy. 

 𝑬 eigenvalue Energy of the system. 

 𝛙 wave function that is dependent on the nucleus and electron coordinates. 

the Hamiltonian system, which is composed of electrons and nuclei, contains 

the potential energies (electron-electron, electron-nucleus, and nucleus-nucleus) as 

well as the kinetic energy of electrons and nuclei, the expression for the system's total 

Hamiltonian is as follows:  

𝑯 =  𝑻𝒆  +  𝑻𝑵  +  𝑽𝒆−𝒆  +  𝑽𝒆−𝑵 + 𝑽𝑵−𝑵                 (I.2) 

Such as: 
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  𝑻𝒆 = −∑
𝒉𝟐

𝟐𝒎

𝑵
𝒊 𝛁𝒊

𝟐 …………….. is the kinetic energy of the electrons. 

 𝑻𝑵 = −∑
𝒉𝟐

𝟐𝑴

𝑵𝜶
𝒊 𝛁𝑨

𝟐  ……..….… is the kinetic energy of atoms. 

 𝑽𝒆−𝒆 =
𝟏

𝟐
∑ ∑

𝒆𝟐

|𝒓𝒊⃗⃗  ⃗−𝒓𝒋⃗⃗  ⃗|

𝑵
𝒋≠𝒊

𝑵
𝒊   …….. is the electron-electron interaction potential. 

  𝑽𝑵−𝒆 = −∑ ∑
𝒁𝑨𝒆

𝟐

|𝒓𝒊⃗⃗  ⃗−𝑹𝑨⃗⃗ ⃗⃗  ⃗|

𝑵𝜶
𝑨

𝑵
𝒊  …... is the nucleus-electron interaction potential. 

 𝑽𝑵−𝑵 =
𝟏

𝟐
∑ ∑

𝒁𝑨𝒁𝑩𝒆
𝟐

|𝑹𝑨⃗⃗ ⃗⃗  ⃗−𝑹𝑩⃗⃗ ⃗⃗  ⃗|

𝑵𝜶
𝑩≠𝑨

𝑵
𝑨  ..... is the nucleus-nucleus interaction potential. 

 

We can write the Hamiltonian in the form: 

𝐻 = [−∑
ℎ2

2𝑚

𝑁
𝑖 ∇𝑖

2 −∑
ℎ2

2𝑀

𝑁𝛼
𝑖 ∇𝐴

2 +
1

2
∑ ∑

𝑒2

|𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|
− ∑ ∑

𝑍𝐴𝑒
2

|𝑟𝑖⃗⃗⃗  −𝑅𝐴⃗⃗ ⃗⃗  ⃗|
+𝑁𝛼

𝐴
𝑁
𝑖

𝑁
𝑗≠𝑖

𝑁
𝑖

1

2
∑ ∑

𝑍𝐴𝑍𝐵𝑒
2

|𝑅𝐴⃗⃗ ⃗⃗  ⃗−𝑅𝐵⃗⃗ ⃗⃗  ⃗|

𝑁𝛼
𝐵≠𝐴

𝑁
𝐴 ]  (I.3) 

 m : is the mass of electron i. 

 M : is the mass of the nucleus. 

 |𝑟𝑖⃗⃗ − 𝑟𝑗⃗⃗ |:The distance between the two nuclei α and β 

 |𝑟𝑖⃗⃗ − 𝑅𝐴⃗⃗ ⃗⃗  |: The distance between the nucleus α and the electron i 

 |𝑅𝐴⃗⃗ ⃗⃗  − 𝑅𝐵⃗⃗⃗⃗  ⃗|: The distance between the two electrons i and j.  

 The indices i = (1,…, N) and A= (1,… 𝑵𝜶), are thus adopted in order 

to distinguish electronic quantities from nuclear quantities. The 

Schrödinger equation can therefore be represented in the form: 

H =( Te+TN+Ve-e+Ve-N +VN-N )𝝍(r1,r2,…R1,R2,…)=E𝝍(r1,r2,…R1,R2,…)    (I.4) 

The number of particles interacting in solid state physics is of the order of the 

Avogadro number This requires a solution of a system of Schrödinger equations 

containing a number of simultaneous differential equations of the order. Since it is 
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difficult to solve this system of equations, they are given even in the case of 

interactions of a small number of particles. This is why the many approaches to 

solving this equation rely on some fundamental approximations [04]. 

I-2 The different approximations of the Schrödinger equation 

It can be somewhat difficult to solve the Schrödinger equation, particularly for 

systems with many moving parts and electrons and their intricate interconnections. In 

most cases, we are unable to find precise solutions due to its complexity. To get close 

to the correct answer, scientists employ less complex techniques and educated 

estimates. Some of the primary ways they accomplish that are as follows: 

I-2-1 Born-Oppenheimer Approximation 

 

The approximation developed by Born and Oppenheimer in 

1927, known as the Born-Oppenheimer approximation, is a 

cornerstone in understanding many-body quantum systems, 

particularly in molecules and crystalline solids. 

 This approximation relies on the fact that electrons, which 

are much lighter than nuclei, move significantly faster. Due to this 

large difference in mass and speed, the motion of electrons can be 

decoupled from that of the nuclei, greatly simplifying the problem. The kinetic energy 

of the nuclei is neglected, and the nucleus-nucleus repulsion potential is treated as a 

constant, reducing the total Hamiltonian to what is known as the electronic 

Hamiltonian He. The total Hamiltonian of a system of electrons and nuclei (I.2) 

Under the Born-Oppenheimer approximation, the nuclear kinetic energy term TN is 

neglected (since nuclei are assumed to be stationary), and the nucleus-nucleus 
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potential VN-N is treated as a constant. This simplifies the Hamiltonian to 

the electronic Hamiltonian He: 

𝑯𝒆 =  𝑻𝒆  +   𝑽𝒆−𝒆  +  𝑽𝒆−𝑵                                               (I.5) 

 Schrödinger equation : 

H =( Te+Ve-e+Ve-N  )Ψ𝒆(𝑹𝑰⃗⃗⃗⃗ − 𝒓𝒊⃗⃗  ⃗)=E𝒆(𝑹𝑰⃗⃗⃗⃗ )Ψ𝒆(𝑹𝑰⃗⃗⃗⃗ − 𝒓𝒊⃗⃗  ⃗)  (I. 6) 

 This Hamiltonian focuses solely on the motion of electrons in the presence of 

fixed nuclei, making the solution of the quantum equations for electrons more 

tractable. Subsequently, the motion of the nuclei can be studied separately on a 

potential energy surface generated by the electron distribution. This approximation is 

a fundamental tool in quantum chemistry and solid-state physics, contributing to the 

understanding of electronic, optical, and thermal properties of materials. 

                 Although this approximation leads to large simplifications when solving 

the Schrödinger equation for molecules [17] and the Hamiltonian becomes simpler, it 

remains insufficient due to the interactions between electrons which are very 

complicated, thus forced us to resort to additional simplifications such as the Hartree 

and Hartree-Fock approximations [14] 

I-2-2 The Hartree Approximation  

This approximation was first developed by Douglas Hartree in 1928 [07]. It is 

an approach that assumes each electron moves independently in the mean field 

created by the other electrons and the nuclei. So, the problem shifts from a system of 

electron-electron pair repulsion to a problem of a particle immersed in an average 

electrostatic field created by the charge distribution of all the other electrons and 

nuclei. This approximation reduces the problem from N interacting bodies to that of 

independent electrons, which allows for the description of the wave function of the 

electronic system. 𝛙(𝒓 𝟏, 𝒓 𝟐, … , 𝒓 𝑵)  becomes like the direct product of the single-

electron wave functions𝛙𝒊(𝒓 𝐢)  [05]. 
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𝛙(𝒓 𝟏, 𝒓 𝟐, … , 𝒓 𝑵)  = 𝛙(𝒓 𝟏).𝛙(𝒓 𝟐)……  𝛙(𝒓 𝑵)      (I. 7) 

 The Hamiltonian is written as a sum of Hamiltonians, each describing 

the behavior of a single electron: 

𝐻 = ∑ ℎ𝑖𝑖          (I. 8) 

With: 

ℎ𝑖 =
ℎ2

2𝑚
𝛻𝑖
2 + 𝑉𝑒𝑥𝑡 + 𝑉𝑖

𝐻         (I. 9) 

ℎ2

2𝑚
𝛻𝑖
2 :     Kinetic energy of the electron. 

𝑉𝑒𝑥𝑡    :     represents both the potential due to the nuclei. 

𝑉𝑖
𝐻      :     is the Hartree potential for the  electron. 

The Hartree potential for the electron replaces the electrostatic electron-

electron interaction with all other electrons, and it is given by the following relation 

[03]: 

𝑉𝐻 = ∫𝑑3 𝑟
𝜌(𝑟′)

|𝑟−𝑟′|′
    (I. 10) 

The electron density in equation (I.10) is given by: 

𝜌𝑖 = ∑ |𝛙𝑗(𝑟 )|
2𝑁

𝑗(𝑗≠𝑖)  (I. 11) 

The potential that the electron experiences in the field of all the α nuclei is (the 

electron-nuclei interaction) is 𝑉𝑒𝑥𝑡 

𝑉𝑒𝑥𝑡(𝑟 ) = −𝑍𝑒
2∑

1

|𝑟 −𝑅|𝑅    (I. 12) 

We express the effective potential as the sum of these two contributions: 
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𝑉𝑒𝑓𝑓(𝑟 ) = 𝑉
𝐻(𝑟 ) + 𝑉𝑒𝑥𝑡(𝑟 )   (I. 13) 

Nevertheless, this approximation suffers from various problems: The main 

flaw of the Hartree method is that it does not take into account the Pauli principle. 

This method treats electrons as distinguishable particles and neglects electronic 

correlation and exchange effects. This necessitates the use of other approaches to 

better describe the term responsible for this contribution [06]. 

I-2-3 The Hartree – Fock Approximation  

The Hartree-Fock method is widely used in atomic physics and condensed 

matter physics, where it provides an approximate solution to the Schrödinger equation 

for a system of multiple particles. Hartree-Fock is a method for exploring the role of 

electronic correlations, based on the variational principle which specifies that the 

ground state energy of the given system calculated as the expected value of the 

proposed wave function is always greater than, or equal to, the energy that is the exact 

solution of the Schrödinger equation. The studied system of N electrons can be 

described by the wave function 𝜓𝐻𝐹  composed of the spinorbitals 𝜓𝑖(𝑥)𝑖  of N in the 

form of the Slater determinant [07]: 

 

𝜓𝐻𝐹(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

√𝑁!
|

𝜑1(𝑥1) 𝜑2(𝑥1) … 𝜑𝑁(𝑥1)

𝜑1(𝑥2) 𝜑2(𝑥2) … 𝜑𝑁(𝑥2)
⋮ ⋮ ⋱ ⋮

𝜑1(𝑥𝑁) 𝜑2(𝑥𝑁) … 𝜑𝑁(𝑥𝑁)

|   (I. 14) 

Where 
1

|√𝑁|
: is the normalization factor 

Spin orbitals 𝜓𝑖(𝑥)𝑖 are the solutions of the Hartree-Fock equation: 

𝐹𝜑𝑖(𝑥𝑖) = 𝜀𝑖𝜑𝑖(𝑥𝑖)   (I. 15) 
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Where F is the Hartree-Fock operator defined for an electron by 

𝐹 = −
ħ2

2𝑚
∇𝑖
2 + 𝑉𝑒𝑥𝑡 + 𝑉

𝐻𝐹   (I. 16) 

𝑉𝐻𝐹 : is the Hartree-Fock potential that represents the potential applied to 

electron i by the other electrons. This potential is expressed using two operators J and 

K [09]. 

𝑉𝐻𝐹 = ∑  𝑖 𝐽𝑖(𝑥𝑖) − 𝐾𝑖(𝑥𝑖)𝑉
𝐻𝐹 = ∑  𝑖 𝐽𝑖(𝑥𝑖) − 𝐾𝑖(𝑥𝑖)   (I. 17) 

With: 

𝐽𝑖(𝑥1)|𝜑𝑗(𝑥1)⟩ = (∫ 𝜑𝑖
∗(𝑥2)

1

|𝑟2⃗⃗⃗⃗ −𝑟1⃗⃗⃗⃗ |
𝜑𝑖(𝑥2)𝑑𝑥2) |𝜑𝑗(𝑥1)⟩  (I. 18) 

𝐾𝑖(𝑥1)|𝜑𝑗(𝑥1)⟩ = (∫ 𝜑𝑖
∗(𝑥2)

1

|𝑟2⃗⃗⃗⃗ −𝑟1⃗⃗⃗⃗ |
𝜑𝑗(𝑥2)𝑑𝑥2) |𝜑𝑖(𝑥1)⟩  (I. 19) 

Where: 

𝑗𝑖(𝑥1) : is the Coulomb operator. 

𝐾𝑖(𝑥1) : is the exchange operator. 

This method neglects any correlation between the relative positions of two 

electrons other than that introduced by the antisymmetric form. It can therefore only 

handle systems with few electrons, such as small molecules. The Hartree-Fock 

method remains, nonetheless, an indispensable benchmark [07]. 

I-3 Density Functional Theory (DFT) 

Density Functional Theory (DFT) was originally developed primarily within 

the framework of non-relativistic quantum theory and the Born-Oppenheimer 

approximation [10]. The Schrödinger equation 𝐻𝜓 = 𝐸𝜓  and Quantum mechanics 

provide the ideal framework for describing the N electron wave function of the 
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studied system 𝛙(𝒓 𝟏, 𝒓 𝟐, … , 𝒓 𝑵)  [11]. Hence, the Ne electrons are replaced by the 

total electronic density which depends only on 3 spatial variables. Historically, the 

first ideas in this direction were introduced in the works of Thomas and Fermi in 

1927. In their model, electronic interactions are treated classically and the kinetic 

energy is calculated based on a homogeneous electronic density. However, it should 

be noted that DFT was actually established with the exact fundamental theorems of 

Hohenberg [12] and Kohn in 1964 [10], which uniquely relate the ground state energy 

and its density. 

The development of new methods in quantum mechanics, such as Density 

Functional Theory (DFT), was driven by the limitations of earlier approaches like the 

Hartree-Fock (HF) method. The HF method, while foundational, has significant 

drawbacks: it relies on wavefunctions as the primary variable, leading to 

computationally expensive calculations due to the large number of variables involved. 

Moreover, the resulting wavefunctions often lack direct physical meaning, and the 

method fails to account for electron correlation effects, which are crucial for 

accurately describing many physical and chemical systems. These limitations made 

HF impractical for studying complex materials, molecules, and systems where 

electron interactions play a dominant role [13]. 

Methode HF Methode DFT 

 

 

Figure I .1: methods of Hartree-Fock and the Density Functional Theory 

(DFT) 
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To address these challenges, DFT emerged as a more efficient and versatile 

alternative. By using electron density as the fundamental variable, DFT significantly 

reduces the computational complexity and allows for the study of larger systems. 

Grounded in the Hohenberg-Kohn theorems, DFT transforms the many-body problem 

into a more manageable form through the Kohn-Sham equations. Crucially, DFT 

incorporates electron correlation effects via the exchange-correlation functional, 

enabling more accurate predictions of electronic, structural, and chemical properties. 

This combination of computational efficiency and improved accuracy has made DFT 

indispensable in fields like materials science, chemistry, and nanotechnology, where 

understanding the behavior of electrons in complex systems is essential. Thus, the 

need for new methods like DFT arose from the demand for more practical, accurate, 

and scalable tools to tackle the limitations of traditional approaches like HF [14]. 

I-3-1 Formulation of Density Functional Theory (DFT) 

 The basis of Density Functional Theory (DFT) is to write the total energy of a 

system containing multiple interacting electrons as a function of the electron density, 

that is, the calculation of the system's energy based on the electron density instead of 

its wave function, where the expression for the electron density is given by the 

formula [15]: 

𝜌(𝑟 ) = ∑  𝑁
𝑖=1 |Ψ𝑖(𝑟 )|

2                                (I. 20) 

Density Functional Theory (DFT) is based on two main axes: 

I-3-1-1 Theorems of Hohenberg and Kohn 

 The two theorems presented by Hohenberg and Kohn in 1964, [25–27] are 

considered the foundation of density functional theory, these two theorems are proven 

in the articles [28–31]. 
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A- First theorem: 

For any system of interacting particles in an external potential Vext(r), the 

potential is determined when the particle density 𝑝(r)is in its ground state. The total 

energy E is written in the form [16] 

E(𝜌) = F(𝜌) + ∫ 𝜌
𝜌

(r)Vext(r)d
3r                 (I. 21) 

Where : 

 

𝐹[(𝜌)] = 𝑇[(𝜌)] + 𝑉𝑒−𝑒[(𝜌)]                           (I. 22) 

With: 

 𝐹[(𝜌)] : is a universal function of the electronic density. 

 T : Kinetic energy. 

 𝑉𝑒−𝑒 :The energy of electron-electron interaction. 

B -Second theorem: 

This theorem states that the energy of a non-degenerate ground state can be 

determined by the density that minimizes the energy of the ground state. we have 

[15]: 

𝐸0 ≤ 𝐸(𝜌)  (I. 23) 

 

Thus, to obtain the energy of the ground state, we will seek to minimize the total 

energy functional of the system by applying the variational principle (minimization of 

the energy functional). Then we write the minimization relation as follows [14]: 

𝑑𝐸[𝜌(𝑟)]

𝑑𝜌(𝑟)
= 0  (I. 24) 

We find: 
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𝑑𝐹[𝜌(𝑟)]

𝑑𝜌(𝑟)
+ Vext(𝑟) = 0  (I. 25) 

In this expression, the formulas for kinetic energy and exchange-correlation 

remain unknown, with all the properties of a system defined by an external potential 

Vextcan be determined from the electronic density of the ground state. The energy of 

the system E(𝜌)reaches its minimum value if the electronic density is that of the 

ground state.  

There remains a significant problem to solve how to rewrite an exact analytical 

formulation of the functional 𝐹[(𝜌)] for a system with N interacting electrons. 

I-3-1-2 The Kohn-Sham equation 

Kohn and Sham (KS) used variational properties to determine the ground state 

energy and obtain a description of the functional. The idea of Kohn-Sham is to 

introduce a system of non-interacting particles whose ground state is characterized at 

every point by the same density  𝑝(r) as that of the real ground state. This implies 

independent particle equations for the non-interacting system, grouping all the 

complicated and difficult-to-evaluate terms into an exchange-correlation functional  

[17]. 

𝐸𝐾𝑆[𝜌(𝑟)] = 𝐹[𝜌(𝑟)] + ∫ 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)𝑑
3𝑟                                                                      (I. 26)

                  = 𝑇𝑠[𝜌(𝑟)] + 𝐸𝐻[𝜌(𝑟)] + 𝐸𝑥𝑐[𝜌(𝑟)] + ∫ 𝑉𝑒𝑥𝑡(𝑟) 𝜌(𝑟)𝑑
3𝑟

 

Where:   

 Ts The kinetic energy of the non-interacting electron gas. 

 𝐸𝑥𝑐[𝜌(𝑟)] : Is an additional functional that describes the inter-electronic 

interaction called exchange-correlation energy. 

 𝑉𝑒𝑥𝑡(𝑟)Includes the Coulomb interaction with the nuclei and that of the nuclei 

with each other. 
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With: 

𝐸𝐻[𝜌(𝑟)] =
1

2
∫ 𝑑3𝑟𝑑3𝑟′

𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
                                (I. 27) 

The wave functions of a single particle are the N solutions of the lowest energy. of the 

Kohn-Sham equation. (𝐻𝐾𝑆 − 𝜀𝑖)𝜓𝑖(𝑟) = 0 

𝜀𝑖: The eigenvalue. 

𝐻𝐾𝑆: The effective Hamiltonian. 

𝐻𝐾𝑆 = −
ℏ2

2𝑚
𝛥𝑖 + 𝑉𝐾𝑆                                                     (I. 28) 

𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻[𝜌] + 𝑉𝑥𝑐[𝜌]                              (I. 29) 

𝑉𝐻: The Hartree potential given by: 

𝑉𝐻 = ∫
𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′                                                       (I. 31) 

𝑉𝑥𝑐 : The potential for exchange and correlation given by 

𝑉𝑥𝑐 = 𝑉𝑥 + 𝑉𝑐                                                                      (I. 31) 

 The exchange-correlation potential is obtained from the derivative of the 

energy. With respect to the density: 

𝑉𝑥𝑐(𝑟 ) =
∂𝐸𝑥𝑐[𝜌(𝑟 )]

∂𝜌(𝑟 )
                                              (I. 32) 

𝐻𝐾𝑆𝜓𝑖(𝑟 ) = 𝜀𝑖𝜓𝑖(𝑟 )                                                (I. 33) 

[−
ℏ2

2𝑚
𝛥𝑖 + 𝑉𝑒𝑓𝑓(𝑟 )]𝜓𝑖(𝑟 ) = 𝜀𝑖𝜓𝑖(𝑟 )                 (I. 34) 

Solving the Kohn-Sham equation depends on two basic steps:  

 The first step: define all the terms of the effective Kohn-Sham potential, i.e. 

the exchange correlation potential Exc must be determined because this term 

has no mathematical formula but it can be estimated by approximations. 
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 The second step: find the wave functions (Kohn-Sham orbits), which represent 

a solutions for the Kohn-Sham equation given by [3]: 

𝜑𝐾𝑆(𝑟 ) = ∑ 𝐶𝑖𝑗𝑗  𝜑𝑗(𝑟 )                                        (I. 35) 

Where 𝜑𝑖 ( ) are the basis functions and 𝐶𝑖𝑗 are the development coefficients. 

∑𝐶𝑖𝑗
𝑗

 𝐻𝐾𝑆| 𝜑𝑗| =∑𝐶𝑖𝑗
𝑗

𝜀𝐾𝑆|𝜑𝑗|                                    (I. 36) 

 

⟨𝜑𝑘|∑ 𝐶𝑖𝑗𝑗  𝐻𝐾𝑆|𝜑𝑗⟩ = ⟨𝜑𝑘| ∑ 𝐶𝑖𝑗𝑗 𝜀𝐾𝑆|𝜑𝑗⟩                       (I. 37) 

∑  𝑗 (⟨𝜑𝑘|𝐻𝐾𝑆|𝜑𝑗⟩ − 𝜀𝐾𝑆⟨𝜑𝑘|𝜑𝑗⟩)𝐶𝑖𝑗 = 0                     (I. 38) 

 

It remains to determine the coefficients Cij by inserting a developed basis into 

the Kohn-Sham equation. The Kohn-Sham equation is solved using an iterative loop 

illustrated in figure (I.2), where the process is started using an initial density 𝑃𝑖𝑛 for 

the first iteration, this density is used to Pin solve the Kohn-Sham equation, then, We 

use a superposition of atomic densities, then we calculate the Kohn-Sham matrix, and 

we solve the equations for the expansion coefficients to obtain the Kohn-Sham 

orbitals. 

 After this step, by calculating the new density Pout, we perform a test (if 

the density or energy has changed significantly, we return to the first step; otherwise, 

we mix the two charge densities Pout and Pin as follows [3]: 

 𝜌𝑖𝑛
𝑖+1 = (1 − 𝛼)𝜌𝑖𝑛

𝑖 + 𝜌𝑜𝑢𝑡
𝑖                                                        (I. 39) 

Thus, the iterative procedure can be repeated until the convergence condition is met 

[3]. 
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 A Self-consistent calculation is an iterative process used in computational 

methods like Density Functional Theory (DFT) and Hartree-Fock (HF) to solve the 

electronic structure of a system. It begins with an initial guess for the electron density 

or wavefunctions, which is used to construct an effective potential. The Kohn-Sham 

(for DFT) or Hartree-Fock equations are then solved to obtain new orbitals and 

eigenvalues. Using these orbitals, the electron density is updated and compared to the 

previous density. If the change is below a predefined threshold, the calculation is 

considered converged, and the final results (e.g., total energy, electron density, and 

orbitals) are output. If not, the process repeats with the updated density until 

convergence is achieved. This iterative approach ensures that the solution is consistent 

with the system's physical properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin 

Calculate V(r)  

Solve the  

Kohn-sham 

Determine Ef  

Determine Pout 

Test if Pin= 

Calculate 

𝜌𝑖𝑛
𝑖+1 = (1 − 𝛼)𝜌𝑖𝑛

𝑖 + 𝜌𝑜𝑢𝑡
𝑖                                                        

Yes 

No 
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Figure I. 2: Self-consistent calculation flowchart. 

I- 4  The Different Types of Approximation of the 𝐸𝑥𝑐[𝜌] 

 The exchange-correlation potential between electrons lacks an analytical 

expression, hence many methods have been used to estimate its values. The 

mathematical formulation selected for this potential largely determines the accuracy 

of the results produced [18]. 

I- 4 -1 Local density approximation (LDA/LSDA): 

 The LDA approximates the exchange-correlation energy Exc of an 

inhomogeneous electron system (e.g., atoms, molecules, or solids) by assuming that 

the exchange-correlation energy at each point in space depends only on the local 

electron density 𝜌(𝑟 ) at that point. Mathematically, the exchange-correlation energy 

in LDA is expressed as: 

𝐸𝑋𝐶
𝐿𝑆𝐷𝐴 = ∫ 𝜌(𝑟 )𝐸𝑥𝑐[𝜌(𝑟 )]𝑑𝑟                               (I. 40) 

𝑉𝑥𝑐 =
𝑑𝐸𝑋𝐶

𝐿𝐷𝐴[𝜌]

𝑑𝜌
= 𝜀𝑋𝐶

𝐿𝐷𝐴 + 𝜌(𝑟 )
𝑑𝜀𝑋𝐶

𝐿𝐷𝐴

𝑑𝜌
                  (I. 41) 

 𝜌(𝑟 ) is the electron density at position r. 

 Exc(n(r)) is the exchange-correlation energy per particle of a uniform electron 

gas with density 𝜌(𝑟 ) . 

For each spin up or down magnetic order, the total electron density becomes the sum 

of the two electron densities 

𝜌(𝑟 ) = 𝜌↑(𝑟 ) + 𝜌↓(𝑟 )                                                                (I. 42) 

The Kohn-Sham equation for the two spins in the form 

[3]:

{
 
 

 
 (

−ℏ2

2𝑚
∇2 + 𝑉𝑒𝑓𝑓

† (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
† 𝜑𝑖(𝑟 )

(
−ℏ2

2𝑚
∇2 + 𝑉𝑒𝑓𝑓

† (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
† 𝜑𝑖(𝑟 )

                             (I. 43) 
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 The Local Density Approximation (LDA) and its spin-polarized extension 

(LSDA) are foundational approximations in DFT that provide a simple and efficient 

way to estimate the  

exchange-correlation energy. While they have limitations, they remain important tools 

for studying a wide range of materials and systems [19]. 

I- 4 -2 The Generalized Gradient Approximation GGA  

 The Generalized Gradient Approximation (GGA) is an improvement over 

the Local Density Approximation (LDA) in Density Functional Theory (DFT) [20]. It 

is used to describe the exchange-correlation energy of an electronic system more 

accurately than LDA by considering not only the local electron density n(r), but also 

its gradient ∇ n(r). Here is a detailed explanation: 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌(𝑟)] = ∫ 𝑓[𝜌(𝑟), |∇𝜌(𝑟)|]𝑑𝑟            (I. 44) 

 ∇𝜌(𝑟) is the gradient of the electron density, which describes how the density 

varies in space. 

 The Generalized Gradient Approximation (GGA) improves upon the Local 

Density Approximation (LDA) by incorporating information about the spatial 

variation of electron density through its gradient, enabling a more accurate description 

of systems with rapidly changing electron densities, such as atoms, molecules, and 

surfaces. GGA addresses key limitations of LDA, including better prediction 

of molecular binding energies, improved estimation of electronic band gaps (though 

gaps are still often underestimated), and more accurate descriptions of structural 

properties and cohesive energies of materials. Additionally, GGA's flexibility makes 

it adaptable to a wide range of systems, from molecules and solids to surfaces and 

interfaces, making it a versatile and widely used method in electronic structure 

calculations [21]. 
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 Both LDA (Local Density Approximation) and GGA (Generalized Gradient 

Approximation) in density functional theory (DFT) are powerful tools for studying 

the electronic properties of materials, but they have notable limitations. A key issue is 

their tendency to underestimate band gaps in semiconductors and insulators, as they 

fail to fully account for non-local exchange-correlation effects. Additionally, these 

methods struggle to accurately describe strongly correlated systems, such as transition 

metal oxides, where electron-electron interactions play a critical role. Furthermore, 

the accuracy of GGA results heavily depends on the choice of functional, and there is 

no universal functional that works well for all types of systems. These limitations 

highlight the need for more advanced methods, such as hybrid functionals or DFT+U, 

to address these shortcomings [22]. 

I-5 Full-Potential Linearized Augmented Plane-wave Method FP-LAPW 

 The augmented plane wave method with linearization (FP-LAPW) The FP-

LAPW method is primarily the LAPW (Linearized Augmented Plane Wave) method 

used with a full potential resulting from an improved modification of the so-called 

augmented plane wave (APW) method developed by Slater. Thus, before delving into 

the description of the FPLAPW method, we must review some aspects related to the 

APW method [23]. 

I-5-1 The augmented plane wave (APW) method 

 In 1937, Slater presented the APW method in his article. The APW method is 

the most popular technique for solving the electronic structure using the Kohn-Sham 

equations, In the vicinity of an atomic nucleus, the potential and wave functions are of 

the "Muffin-Tin" (MT) form, exhibiting spherical symmetry within the MT sphere of 

radius. Between the atoms, the potential and wave functions can be considered 

smooth. Consequently, the wave functions of the crystal are developed in different 

bases depending on the region considered: Radial solutions of the Schrödinger 

equation inside the MT sphere and plane waves in the interstitial region [24]. 
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Figure I.3: Diagram of the distribution of the unit cell in atomic spheres 

and interstitial region. 

According to the Slater approximation, the core electrons located inside the sphere 

are subjected to the spherical potential, whereas in the interstitial region the potential 

is constant. So, the potential in both regions is given in the form: 

𝑉(𝑟̿) = {
𝑣(𝑟)                         𝑟 ≤ 𝑅𝛼
0                                 𝑟 ≥ 𝑅𝛼

            (I. 45) 

Moreover, the waves that describe the behavior of electrons inside the MT spheres 

differ from those in the interstitial region; they are described by plane waves in the 

interstitial region, while inside the spheres, they are described by radial functions 

multiplied by spherical harmonics. The two different wave functions are given by the 

following expression: 

𝜑(𝑟 ) = {
∑ ∑ 𝐴𝑙𝑚

𝑚
𝑙=0

∞
𝑙=0 𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟)      𝑟 ≤ 𝑅𝛼
1

√Ω
∑ 𝐶𝐺𝐺  𝑒𝑖(𝐾⃗⃗ +𝐺 )𝑟                     𝑟 > 𝑅𝛼

                (I. 46) 

Where  

 Ω The cell volume  

Ra 

MT sphere 

interstitial 

region. 
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 𝑌𝑖𝑚: The spherical harmonics  

 𝐴𝑖𝑚: The coefficients of the expansion 

 𝐶𝐺  , 𝐴𝑖𝑚 the coefficients of the expansion in spherical harmonics. The function 

is a regular solution of the Schrödinger equation for the radial part, which is 

written in the form[41]:  

[−
𝑑2

𝑑𝑟2
+

𝑙(𝑙+1)

𝑟2
+ 𝑉(𝑟) − 𝐸𝑙] 𝑟𝑢𝑙(𝑟) = 0                 (I. 47) 

 𝑉(𝑟) : represents the muffin potential -tin 

 𝐸𝑙 : represents the linearization energy 

 This equation defines the radial function orthogonal to any eigenstate of the 

same Hamiltonian that vanishes at the boundary of the spheres. The overlap of the 

latter is constructed from: 

(𝐸2 − 𝐸1)𝑟𝑢1𝑢2 = 𝑢2
𝑑2𝑢1

𝑑𝑟2
− 𝑢1

𝑑2𝑢2

𝑑𝑟2
                     (I. 48) 

 

Where u1 and u2 are the radial solutions to the different energies E1 and E2 

respectively. 

Slater introduces a modification to this particular choice of these functions by noting 

that plane waves are solutions to the Schrödinger equation when E1 the potential is 

constant. As for the radial functions, they are solutions in the case of a spherical 

potential, when is an eigenvalue. 

 This approximation is very good for materials with a face-centered cubic 

structure, and increasingly less satisfactory as the material's symmetry decreases. 

 To ensure the continuity of the function 𝝓(𝒓)at the surface of the MT sphere, 

the coefficients 𝐴𝑖𝑚 must be developed in terms of the coefficients CG of the plane 

waves existing in the interstitial regions. Thus, after some algebraic calculations, we 

find that: 
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𝐴𝑙𝑚 =
4𝜋𝑖𝑙

√𝛺 𝑢𝑙(𝑅𝛼)
∑ 𝐶𝐺𝐺   𝐽𝑙(|𝑘 + 𝑔|𝑅𝛼)𝑦𝑙𝑚

∗ (𝑘 + 𝐺)                  (I. 49) 

 The origin is taken at the center of the sphere, and the coefficients 𝐴𝑖𝑚 are 

determined from those of the plane waves CG . The parameters of the eigenenergy E1 

are called the variational coefficients of the APW method. The individual functions, 

labeled by G, thus become compatible with the radial functions in the spheres, and we 

then obtain augmented plane waves (APWs). 

 The APW functions are solutions to the Schrödinger equation in spheres, but 

only for the energy E1. Consequently, the energy E1 must be equal to that of the G -

index band. This means that the energy bands (for a k-point) cannot be obtained by 

simple diagonalization, and that it is necessary to treat the secular determinant as a 

function of energy. 

 The APW method, as constructed, presents some difficulties related to the 

function  Ul (Rα) that appears in the denominator of the equation. Indeed, depending 

on the value of the parameter E1, the value of Ul (Rα) can become zero at the surface 

of the MT sphere, leading to a separation of radial functions from plane wave 

functions. In order to overcome this problem, several modifications to the APW 

method have been made, notably those proposed by Koelling and Andersen. The 

modification consists of representing the wave function 𝝓(𝒓)inside the spheres as a 

linear combination of the radial functions Ul(r) and their derivatives with respect to 

energy U’(r), thus giving rise to the FP-LAPW method [25]. 

I-5-2 Principle of the method FP-LAPW 

 In the FP-LAPW method, the basis functions in the MT spheres are linear 

combinations of the radial functions 𝐸𝑙(𝑟), 𝑌𝑙𝑚(𝑟)à  and their 

derivatives ̇𝐸𝑙(𝑟), 𝑌𝑙𝑚(𝑟)with respect to energy. The functions Ul are defined as in 

the APW method and the function𝐸𝑙(𝑟), 𝑌𝑙𝑚(𝑟) must satisfy the following condition 

[26]: 
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{−
𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

𝑟2
+ 𝑉(𝑟) − 𝐸𝑖} 𝑟𝑈̇𝑙(𝑟) = 𝑟𝑈𝑙(𝑟)      (I. 50) 

 In the non-relativistic case, these radial functions Ul and ̇ Ul ensure, at the 

surface of the MT sphere, continuity with the plane waves from the outside. Then, the 

functions wavefunctions thus augmented become the basis functions (LAPW s) of the 

FPLAPW method: 

𝜑(𝑟) = {

1

√Ω
∑ 𝐶𝐺𝐺  𝑒𝑖(𝐾⃗⃗ +𝐺 )𝑟                             𝑟 > 𝑅𝛼

∑ [𝐴𝑙𝑚𝑈𝑙(𝑟) + 𝐵𝑙𝑚𝑈𝑙(𝑟)]𝑌𝑙𝑚
∞
𝑙m           𝑟 < 𝑅𝛼

                 (I. 51) 

 Where the coefficients Blm correspond to the function Ul and are of the same 

nature as the coefficients 𝐴𝑙𝑚The LAPW functions are plane waves only in the 

interstitial regions, as in the APW method. Inside the spheres, LAPW functions are 

better suited than APW functions. Indeed, if El   differs slightly from the band energy 

E, a linear combination will better reproduce the radial function than the APW 

functions. 

 Therefore, the function Ul can be developed in terms of its derivative Ul and 

the energy El  . 

𝑈𝑙(𝐸, 𝑟) = 𝑈𝑙(𝐸𝑙 , 𝑟) + (𝐸 − 𝐸𝑙)𝑈̇𝑙(𝐸, 𝑟) + 𝑂[(𝐸 − 𝐸𝑙)
2]             (I. 51) 

 The FP-LAPW (Full-Potential Linearized Augmented Plane Wave) method 

ensures the continuity of the wave function at the surface of the Muffin-Tin (MT) 

sphere. However, this approach comes at the cost of reduced precision compared to 

the APW (Augmented Plane Wave) method, which reproduces wave functions more 

accurately. Specifically, the FP-LAPW method introduces an error in the wave 

functions on the order of Δψ and an error in the band energies on the order of ΔE. 

 Despite these errors, the LAPW basis functions provide a robust framework 

that allows, with a single k-point, to obtain all valence bands across a wide energy 

range. When this is not feasible, the energy window can typically be divided into two 

parts, which is a significant simplification compared to the APW method. 
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  if the wave function ψ is zero at the surface of the MT sphere, its 

derivative ψ̇ will be non-zero. As a result, the issue of continuity at the MT sphere 

surface does not arise in the FL-LAPW (Full-Potential LAPW) method. This makes 

FL-LAPW a practical and efficient approach for electronic structure calculations, 

despite its slight loss in precision compared to APW. 

I-5-3 The roles of linearization energies 

 The linearization energies play a crucial role in electronic structure calculation 

methods based on Linearized Augmented Plane Waves (LAPW), such as the FP-

LAPW (Full-Potential Linearized Augmented Plane Wave) method. Here are their 

main roles [27]: 

1. Linearization of Radial Equations: 

 The linearization energies (usually denoted as E_l) are used to linearize the 

radial solutions of the Schrödinger equation inside the MT (Muffin-

Tin) spheres. 

 This linearization simplifies calculations by avoiding the direct solution of 

radial differential equations for each energy, making the LAPW method more 

numerically efficient. 

2. Construction of Basis Functions: 

 The linearization energies determine the points around which the radial 

solutions (basis functions) are expanded in a Taylor series. 

 These basis functions are then used to describe electronic states inside the MT 

spheres, while being coupled to plane waves in the interstitial region. 

3. Accuracy of Calculations: 

 The choice of linearization energies affects the accuracy of the results. They 

must be chosen close to the energies of the electronic states of interest (e.g., 

valence or core states). 
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 If the linearization energies are poorly chosen, it can lead to errors in the 

wavefunctions and band energies. 

4. Flexibility in Describing Electronic States: 

 Linearization energies allow for the description of both valence states (usually 

near the Fermi level) and core states (more deeply bound). 

 To improve accuracy, multiple linearization energies can be used for different 

groups of states (e.g., one for valence states and another for core states). 

5. Simplification of Calculations Compared to APW: 

 Unlike the APW (Augmented Plane Wave) method, which requires solving 

radial equations for each energy, the LAPW method uses linearization 

energies to avoid this computationally expensive step. 

 This makes the LAPW method faster and more practical for electronic 

structure calculations, while maintaining good accuracy. 

6. Continuity of Wavefunctions: 

 Linearization energies help ensure the continuity of wavefunctions and their 

derivatives at the surface of the MT spheres, which is essential for the physical 

consistency of the results. 

 linearization energies are key parameters in the FP-LAPW method that 

simplify calculations while maintaining an accurate description of electronic states. 

Their careful selection is essential for obtaining reliable and precise results [15]. 

I-6 Code WIEN2k 

 WIEN2k is a highly advanced computational software package designed for 

electronic structure calculations of solids, based on Density Functional Theory (DFT). 

It utilizes the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method, 
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which is recognized as one of the most accurate approaches for investigating the 

electronic, optical, magnetic, and structural properties of materials[27]. 

  Developed by a team of researchers at the Vienna University of Technology, 

WIEN2k has become an indispensable tool in the fields of condensed matter physics, 

materials science, and chemistry. 

  Its ability to provide precise and reliable results has made it a favorite among 

researchers worldwide. 

I-6 -1 Key Features of WIEN2k 

 WIEN2k is distinguished by its precision and versatility. Some of its standout 

features include [28]: 

 Full-Potential Approach: Unlike pseudopotential methods, WIEN2k treats the 

potential without approximations, ensuring high accuracy in calculations. 

 FP-LAPW Method: This method divides the unit cell into Muffin-Tin 

(MT) spheres and an interstitial region, allowing for an accurate description of 

both localized and delocalized electronic states. 

 Wide Range of Applications: WIEN2k can calculate properties such as band 

structures, density of states (DOS), charge densities, optical properties, 

magnetic properties, and more. 

 User-Friendly Interface: While primarily command-line driven, WIEN2k 

provides graphical tools for visualization and analysis, making it accessible to 

both beginners and advanced users. 

I-6-2 Methodology and Theoretical Background 

 The WIEN2k software is based on the FP-LAPW method, which is a 

realization of DFT. The key steps in its methodology include [29]: 

 Division of Space: The unit cell is divided into non-overlapping MT spheres 

(around atomic sites) and an interstitial region. 
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 Basis Functions: Inside the MT spheres, the wavefunctions are expanded in 

terms of spherical harmonics and radial functions, while plane waves are used 

in the interstitial region. 

 Linearization Energies: These are used to linearize the radial Schrödinger 

equation, improving computational efficiency. 

 Self-Consistent Calculations: WIEN2k solves the Kohn-Sham equations 

iteratively until self-consistency is achieved in the electron density and 

potential[33]. 

I-6-3 Applications of WIEN2k 

 WIEN2k has been used extensively in research to study a wide range of 

materials and properties [30]: 

 Band Structure and DOS: WIEN2k provides accurate band structures and 

density of states, which are essential for understanding electronic properties. 

 Optical Properties: It can calculate optical spectra, including dielectric 

functions and absorption coefficients. 

 Magnetic Properties: WIEN2k supports spin-polarized calculations, making it 

suitable for studying magnetic materials. 

 Structural Optimization: The software can optimize crystal structures by 

minimizing the total energy with respect to atomic positions and lattice 

parameters. 

 Surface and Defect Studies: WIEN2k can model surfaces, interfaces, and 

defects in materials, providing insights into their electronic and structural 

behavior[16]. 

I-6-4 Advantages and Limitations 

 Advantages: 

 High accuracy due to the full-potential approach. 
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 Suitable for a wide range of materials, including metals, 

semiconductors, insulators, and strongly correlated systems. 

 Extensive documentation and a large user community for support. 

 Limitations: 

 Computationally demanding, especially for large systems or high-

precision calculations. 

 Requires careful selection of parameters, such as MT radii and 

linearization energies. 

 Limited to periodic systems, making it less suitable for isolated 

molecules or disordered systems. 

I-6-5 Initialization:  

 It constructs by the spatial configuration (geometry), symmetry operations, 

starting densities, the number of special points necessary for integration in the 

irreducible Brillouin zone…etc. All these operations are carried out thanks to a series 

of small auxiliary programs that generate: 

 NN: This program uses the case.struct file in which the atomic positions in the 

unit cell are specified, calculates the nearest neighbor distances for all atoms, 

and checks that the corresponding atomic spheres (radii) do not overlap [38]. 

 LSTART: this program generates atomic densities and determines how the 

different orbitals are treated in the band structure calculation, such as core 

states with or without local orbitals. 

 SYMMETRY: it allows the generation of atomic densities and determines 

how the different orbitals are treated in the band structure calculation, such as 

core states with or without local orbitals. 

 KGEN: generates a mesh of k points in the Brillouin zone 

 DSTART: generates a starting density for the SCF cycle by superimposing the 

atomic densities gen  
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SCF Calculation the SCF cycle includes the following steps: 

 LAPW0: generates the potential from the density. 

 LAPW1: calculates the valence bands (the eigenvalues and the eigenvectors) 

 LAPW2: calculates the valence densities from the eigenvectors. 

 LCORE: calculates heart states and densities. 

 MIXER: Mixes the input and output densities [17]. 
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I-7 Conclusion  

 The Win2K program utilizes Density Functional Theory (DFT) to solve the 

Schrödinger equation for many-electron systems, providing an efficient and accurate 

approach to studying electronic structures. DFT simplifies the complexity of the 

many-body Schrödinger equation by focusing on electron density rather than 

individual wavefunctions, making it computationally feasible for large systems like 

molecules and solids. Win2K implements the Kohn-Sham equations, which 

approximate the behavior of interacting electrons using a system of non-interacting 

particles in an effective potential. This allows the program to calculate key properties 

such as band structures, density of states, total energies, and atomic forces. By 

leveraging exchange-correlation functionals like LDA or GGA, Win2K delivers 

reliable results for a wide range of materials, including metals, semiconductors, and 

insulators. Its versatility and efficiency make it a powerful tool for exploring 

electronic, magnetic, and optical properties, as well as for predicting material 

behavior in various applications. 
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Chapter 2: Results and Discussion 

II.1. Introduction 

This chapter is dedicated to the theoretical study of the structural, electronic, magnetic, and 

optical properties of the AgMnS₂ compound. Based on the ab initio calculation methods 

described in the previous chapter, particularly the Density Functional Theory (DFT) 

implemented in the WIEN2k code, we aim to explore the fundamental characteristics of this 

material. The objective is to provide a detailed understanding of its behavior, starting with the 

determination of its crystal structure and structural parameters, then examining its electronic, 

magnetic, and optical properties, relying on the provided calculation results.  

Delafossite-structured oxides, with the general formula AMO₂, represent a fascinating class 

of materials that have garnered significant interest due to their unique structural, electronic, and 

optical properties. Named after the French mineralogist Gabriel Delafosse, these compounds 

were first discovered in 1873 by Charles Friedel in a Siberian graphite sample. The Delafossite 

structure consists of alternating layers of monovalent cations (A⁺ = Cu⁺, Ag⁺, Pd⁺, Pt⁺) in linear 

coordination and trivalent transition metals (M³⁺) in edge-sharing octahedral coordination. This 

arrangement leads to a variety of polytypes, primarily the rhombohedral (3R) and hexagonal 

(2H) phases, distinguished by their oxygen stacking sequences. 

Over the years, research on Delafossites has evolved from fundamental crystallographic 

studies to explorations of their potential applications in transparent conductive oxides, 

thermoelectric materials, and photocatalysis. The stability of the Delafossite phase is highly 

dependent on ionic radii and coordination preferences, with the A⁺ cation playing a crucial role 

in structural integrity. Additionally, the distortion of the [MO₆] octahedron and the variation in 

lattice parameters (a, c) with cation size further influence the material's properties. 

This report provides an overview of the historical background, structural characteristics, 

stability factors, and polytypism in Delafossite compounds, with a particular focus on copper-

based Delafossites (CuMO₂). Understanding these aspects is essential for tailoring Delafossite 

materials for advanced technological applications.  
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I-2 History 

In 1873, Charles Friedel first reported the existence of a mixed oxide of copper and iron, 

CuFeO2 during the observation of a graphite sample from Siberia [1].This mineral was named 

Delafossite in honor of French mineralogist and crystallographer Gabriel Delafosse (1795-

1878).Later, the Rogers' work confirmed the existence of this mineral in a number of mines of 

copper in the United States [2,3].The crystalline structure of Delafossite, with the formula 

ABO2, was established in 1935 by Soller and Thompson on a synthetic sample [4] and then 

confirmed by Pabst on a natural sample [5]. 

Delafossite-structured oxides represent an interesting family of materials relatively little 

studied during the 20th century despite the interest both fundamental and applied that they can 

represent.In 1971, Shannon, Prewitt, and Rogers published three major articles on the 

synthesis, crystal structure, and electrical properties of several Delafossite-structured 

compounds (PtCoO2, PdCoO2, CuFeO2, and AgFeO2) [6-8].It was only in 1997 that the interest 

of scientists in the interest of scientists in these Delafossite-structured compounds exploded, 

following the work of Kawazoe and al [9]. 

I-3 Chemical Formula and Stability of the Delafossite Phase 

 Chemical Formula  

Delafossites are compounds of the type AMO2 where A is a monovalent element that adopts 

a linear (II) coordination (A = Ag, Cu, Pd, or Pt) and the cation M can be composed of most 

trivalent transition metals, group III elements, rare earths, or charge-compensated pairs (for 

example M2+ / M4+).A particularity of this structure is that the ionic radius of the trivalent 

element M, which is stabilized in octahedral (VI) coordination, can vary widely from that of 

aluminum (rAl3+ = 0.535 Å) to that of lanthanum (rLa3+ = 1.032 Å), according to Shannon's 

effective ionic radii table [10], which leads to a significant increase in the unit cell volume.The 

different AMO2 compounds with Delafossite structure are represented in FIGURE( II-1).Based 

on the ratio of ionic radii r(A+ II)/r(M+3 VI), Beznosikov et al. [11] even predicted the 

existence of other Delafossite-structured compounds that have not yet been developed. 
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FIGURE( II-1): volume.The different AMO2 compounds with Delafossite 

structure. 

I.4. Stability of the Delafossite phase 

Ternary oxides with the chemical formula AMO2 can form a variety of structural phases.The 

advantage of forming one phase over another depends on several factors.The most important 

factor is the coordination of the cations A and M.Four individual coordination classes of 

AMO2 compounds have been identified [12]. 

They are given in TABLE II-1 with an example of a compound for each 

structure.3+These classes are relatively determined by the diameters of the A+ and M³+ 

cations.Small cations simply cannot withstand significant coordination due to the oxygen 

crowding that would result, while large cations would require higher coordination 

numbers.By combining all the ionic radius information for AMO2 compounds, a 

structure field map can be drawn as shown in FIGURE( II-2) 

TABLE II-1: The coordination classes of AMO2-type compounds. 
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FIGURE( II-2): Structural field map of the AM(B)O2 compounds[12]. 

Delafossites with the formula A+M3+O2 and a coordination scheme of 2:6:4 have a 

constitution that is both limited (for A+) and largely open (for M3+).These compounds 

consist of cation A with the smallest ionic radius of all AMO2-type oxides [12].As seen 

inFIGURE( II-1), the Delafossite structure is stable for only four ions at the A site (Cu+, 

Ag+, Pd+, and Pt+), while several M cations are possible.Even when the Delafossite 

phase can form for a given A-M cation combination, its formation depends on various 

factors.Structural factors that have already been discussed regarding the radius of the 

cations and the coordination environment 

I-5 Structural Properties of Delafossites 

I-5-1 Description of the Delafossite structure 
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The Delafossite structure AMO2 can be visualized as consisting of two alternating 

layers: a planar layer of A cations in a triangular pattern and a layer of MO6 octahedra, 

interconnected by their edges, flattened along the c-axis FIGURE( II-3.a) . 

Thus, this structure is composed of double layers of compact stacking of oxygen atoms 

whose octahedral sites are occupied by M3+ ions and whose internal cohesion (between 

layers) is ensured by A+ ions.The latter are linearly associated with two oxygens 

belonging to the MO6 octahedral layers of two consecutive layers, upper and lower, to 

form AO23- groups.Each A+ ion has six close A+ neighbors in the plane parallel to that of 

the double layers of oxygen.The oxygen ion is in pseudo-tetrahedral coordination with 

one A cation and three FIGURE( II-3.b). 

 

FIGURE( II-3): (a) Representation of the Delafossite-type structure.(b) 

Coordination polyhedron of oxygen. 

I-5-2 Distortion of the octahedron [MO6] 

In the Delafossite structure, although the 6 M-O distances are equal, the [MO6] 

octahedron is slightly flattened along the third-order axis parallel to c (rhombic 

symmetry D3d).The degree of distortion of the octahedron is therefore evaluated through 

the ratio (dO-Oi)/(dO-Oiv), with dO-Oi being the length of the edge of an octahedron 

parallel to the base plane of the hexagonal lattice, and dO-Oiv being the length of the 

edge joining two oxygens on either side of the M3+ ion layer (schematized in the inset of 

FIGURE( II-4)).The evolution of the distortion of the MO6 octahedron as a function of 

the radius of the M3+ ion is illustrated in FIGURE( II-4).[13]. 
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FIGURE( II-4): Variation with the radius of the M3+ ion of the distortion of 

the MO6 octahedron [13]. 

It can be observed in this figure that the ratio (d O-Oi)/(d O-Oiv) increases with the radius 

of the M3+ ion.The importance of the distortion of the D3d symmetry of the octahedron can 

actually be simply correlated with the evolution of the covalence of the M-O bonds.It should 

be taken into consideration that: 

The M-O bond is all the more covalent as the contribution of the 2p orbitals 

of oxygen to this bond is more significant (the 2p orbitals are less 

stable due to the 2s orbital). 

The angle M-O-M is smaller the less flattened the MO6 octahedron is and 

that the ratio (dO-Oi)/(d O-Oiv) approaches unity. 

All these considerations of the bonds show that when the size of M decreases and 

consequently the strength of the M-O bonds increases, one can reasonably expect that the angle 

M-O-M will decrease as well as the ratio (d O-Oi)/(d O-Oiv). 

I-5-3 Polytypes of the Delafossite structure 

Such an atomic arrangement in this type of structure can easily give rise to various 

polytypes according to the different sequences of close packing that can be envisaged for the 

oxygen layers. 
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if we call O1, O2, and O3 the three possible types of oxygen planes, we can observe, for 

example, sequences: 

 

which correspond, respectively, to a rhombohedral polytype (3R) of space groups R-3m 

and a hexagonal polytype (2H) of space groups P63/mmc. The difference between the two 

polytypes lies in the third layer. 

 

 

FIGURE( II-5): Representation of compact stacking sequences in the 

polytypes: (a) 3R and (b) 2H of the compound CuAlO2. 
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In fact, the main difference between the 2H and 3R polytypes lies in the orientation of 

the successive layers [MO6].The 2H Delafossite has its octahedral layers rotated 180° 

relative to each other and consequently, the structure is described with two basic blocks: 

A-B and B-A( FIGURE( II-6).a and b) [14]. 

Whereas in 3R Delafossite, these layers have the same orientation and the structure is 

described with three blocks: A-B, B-C, and C-A (FIGURE( II-6).c and d) [14], where the 

letters A to C indicate the three usual triangular positions in a compact oxygen stacking. 

Due to this difference in stacking, a transformation of the 2H structure into 3R is not possible 

through a topotactic process and requires breaking the M-O bonds. 

 

 

FIGURE( II-6): Schematic representations of the arrangement of octahedra in (a) 

2H and (c) 3R.Representations of the oxygen stacking sequences in (b) 2H and 

(d) 3R 

FIGURE( II-7)(a-f) show representations of the two polytypes of the Delafossite 

structure.FIGURE( II-7). b and e respectively provide a projection onto the (110) 

plane of the two polytypes 2H and 3R. 
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FIGURE( II-7): The structure of Delafossite.(a) 2H polytype; (b) Projection of 2H polytype 

on the (110) plane; (c) Stacking of the two layers in 2H.(d) 3R polytype; (e) Projection of 3R 

polytype on the (110) plane; (c) Stacking of the three layers in 3R [12]. 

I-5-4 The unit cell 

The unit cells of the two polytypes, 2H and 3R, are respectively represented in FIGURE( 

II-8.a) and b.Note that the value of the lattice parameter a in both polytypes is ≈ 3Å, whereas 

the value of c is ≈ 17Å for the 3R polytype and 11Å for the 2H polytype FIGURE( II-8.c) 

 

FIGURE( II-8): Representations of the elementary cells of the polytypes (a) 2H, 

(b) 3R, and (c) 2H and 3R [24]. 

It should be noted that the most frequently encountered polytype is 3R, and only a few 

Delafossites, where M belongs to group IB, exhibit the 2H polytype such as CuAlO2, CuScO2, 

or CuYO2 [15].It should also be noted that a study [17] conducted on CuMO2-type 
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Delafossites, where M is taken from two different groups, IIIA and IIIB, revealed that 

Delafossites from the IIIA and IIIB groups stabilize respectively in rhombohedral and 

hexagonal structures. 

A 6H polytype has also been reported for the Delafossites AgFeO2, AgCoO2, and AgCrO2 

[16], which combines the two polytypes 3R and 2H. 

I-5-5 Lattice Parameter 

The lattice parameters in Delafossite can be correlated with the sizes of the cations A and M, 

which influence the O-A-O, M-O, A-A, or M-M distances [19].In the Delafossite, all O-A-O 

bonds are strictly parallel to the c-axis, and it is expected that the value of the a parameter 

varies according to the A-A or M-M interaction.Experimentally, it appears that the lattice 

parameter along the a-axis preferentially depends on the M cations FIGURE( II-9).This is 

mainly attributed to the larger size of the M cations compared to the A cations, leading to a 

higher M-M repulsion and thus an increase in the lattice parameters along the a-

axis.Furthermore, the +III charge on M compared to the +I charge on A also influenced the 

stronger M-M repulsion [18].Moreover, the lattice parameter a is equal to the length of the 

edges of the octahedra [MO6]. 

It is therefore directly correlated to the radius of the cation M.The lattice parameter along the 

c-axis is largely determined by the length of the O-A-O bond.Due to the repulsive nature of 

M3+ cations along the shared octahedral edges, a distortion occurs, resulting in a shortening of 

the interatomic distances between the oxygen anions.When the radius of the cation M 

increases, the M-O distance increases while the O-O contact distance remains relatively 

unchanged.Therefore, an increase in the size of the cations M has little impact on the c lattice 

parameter FIGURE( II-9) . 
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FIGURE( II-9): Influence of cations M on the lattice parameters a and c of 

Delafossite [19]. 

IV. The family of copper Delafossite 

Regarding Delafossite-type oxides A+M3+O2 with the Cu+ ion in the "A" site, there are 

currently many compounds that contain a wide variety of elements on the "M" site, ranging 

from small cations with an ionic radius between 0.54-0.67Å to large lanthanide cations (0.95Å-

1.16Å). 

In this series of compounds, as observed in FIGURE( II-10) , the value of the lattice 

parameter "a" increases when the size of the M3+ cation grows, while the "c" parameter 

remains almost unchanged. 

TABLE II-2: summarizes the structural data of some compoundsCuMO2, 

CuMII0.5M’IV0.5O2, and CuMII1/3M’III1/3M’IV1/3O2 with Delafossite 

structure known. 
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FIGURE( II-10): The variation of lattice parameters as a function of the ionic 

radius values of M3+ for the Cu+M3+ O2 compounds . 

TABLE II-2: Structural data of CuMO2 Delafossite compounds . 

 

 

Conclusion: 
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Delafossite oxides (AMO₂) exhibit a rich structural chemistry governed by the interplay of 

ionic radii, coordination environments, and stacking sequences. The 3R and 2H polytypes, 

arising from different oxygen layer arrangements, demonstrate how subtle variations in atomic 

positioning can lead to distinct crystallographic phases. The distortion of the [MO₆] 

octahedron, influenced by the M³⁺ cation size, further highlights the delicate balance between 

ionic and covalent bonding in these materials. 

Copper-based Delafossites (CuMO₂) are particularly noteworthy due to their tunable 

electronic properties, making them promising candidates for transparent electronics, 

thermoelectrics, and optoelectronic devices. The nearly constant c-axis parameter (despite 

changes in M³⁺ size) and the increasing a-axis parameter with larger M³⁺ cations underscore the 

structural adaptability of Delafossites. 

Future research should focus on synthesizing new Delafossite variants, exploring 

their electronic and magnetic properties, and optimizing their performance in functional 

applications. Advances in computational modeling and experimental techniques will further 

enhance our understanding of these materials, paving the way for innovative uses in energy 

conversion, catalysis, and beyond. 

 

II.1. Computational Details: 

The calculations of the properties of the AgMnS₂ compound are assumed to be performed 

using the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method within the 

framework of Density Functional Theory (DFT), as implemented in the WIEN2k code. 

Approximations for the exchange-correlation potential, such as the Generalized Gradient 

Approximation (GGA) under the PBE (Perdew-Burke-Ernzerhof) or PBEsol parameterization, 

as well as more advanced approaches like the modified Becke-Johnson potential (mBJ) for 

optoelectronic properties, would typically be employed. Calculation parameters such as the 

number of k-points in the irreducible Brillouin zone, the RMT*Kmax parameter determining 

the plane wave basis set size, and the muffin-tin radii (RMT) for each atom type (Ag, Mn, S) 

should be carefully chosen to ensure calculation convergence. 
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[Note: These details are based on common practices and the methodology of the original 

chapter. Specific details for the AgMnS₂ calculations were not initially available, but the 

graphical results suggest the use of these methods.] 

II.2. Structural Properties 

II.2.1. Crystal Structure of the AgMnS₂ Compound: 

Preliminary analysis based on the available results indicates that the AgMnS₂ compound 

crystallizes in a Tetragonal  schematically illustrates this crystal structure. 

 

FIGURE( II-11): Schematic representation of the Tetragonal crystal structure of 

the AgMnS₂ compound. 

TABLE II-3:. The calculatedatomic positions using PBE-Sol 

approximations of AgMnS2 compound. 

 

   GGA  Autres travaux 

Materials Atoms x y z x  y  z 

AgMnS2 

(R-3/m # 166) 

Ag 

Mn 

S 

0,0000 

0,5000 

0,7701 

0,0000 

0,5000 

0,77010 

0,0000 

0,5000 

0,7701 

0,0000  0,0000  0,0000 

0,0000  0,0000  0,5000 

0,0000  0,0000  0,2508 

 
S 

0,2298 0,2298 0,2298 0,0000  0,0000  0,2508 
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TABLE II-3: The calculated equilibrium lattice constants, bulk modulus, 

and cohesive energy for compound obtained by using PBE-SOL 

approximations. 

 

 

 

FIGURE( II-12).Variation de l’énergie totale en fonction du volume. 

 

 

  a (Å) c(Å) B(GPa) Ecoh(eV/atom) 

AgMnS2 GGA 

Theo 

3.3463 

3,0014 

14,3311 

14,558 

184,9220 

- 

5.22 

- 
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En ce qui concerne l'énergie de cohésion de la molécule, elle a été calculée à l'aide de 

la formule suivante :                                                                          (II.4) 

𝐸𝑐𝑜ℎé𝑠𝑖𝑜𝑛  =
(𝐸𝑎𝑡𝑜𝑚

𝐴𝑔
+ 𝐸𝑎𝑡𝑜𝑚

𝑀𝑛 + 2 × 𝐸𝑎𝑡𝑜𝑚
𝑆 ) − 𝐸𝑡𝑜𝑡

𝐴𝑔𝑀𝑛𝑆2

𝑁𝐴𝑔 + 𝑁𝑀𝑛 + 𝑁𝑆2
 

Où 𝐸𝑡𝑜𝑡
𝐴𝑔𝑀𝑛𝑆2

 est l'énergie totale à l'équilibre. 𝐸𝑎𝑡𝑜𝑚
𝐴𝑔

 𝐸𝑎𝑡𝑜𝑚
𝑀𝑛  , 𝐸𝑎𝑡𝑜𝑚  

𝑆2 sont les énergies 

atomiques 

des atomes de Ag, Mn et S  respectivement.𝑁𝐴𝑔, 𝑁𝑀𝑛 , 𝑁𝑆 Sont les nombres d’atomes 

dans la maille unitaire du composé AgMnS2 

Selon les valeurs de l’énergie de cohésion et le module de compressibilité 

obtenus en utilisant deux approximations, On peut dire que ce composé a une bonne 

rigidité, c'est-à-dire qu'il résiste à la déformation contre la compression. On peut 

également remarquer que ce composé à une plus grande énergie de cohésion à l'état 

ferromagnétique qu'à l'état paramagnétique, ce qui confirme sa stabilité à l'état 

ferromagnétique. 

More detailed information regarding the lattice parameters (a, c), the exact atomic positions 

within the unit cell, and the specific space group of this tetragonal structure for AgMnS₂ are 

not available from the provided data. 

II.3.2. Ground State of AgMnS₂ 

Determining the ground state would normally involve calculating the total energy of the 

AgMnS₂ compound as a function of the unit cell volume for different possible structural or 

magnetic configurations (e.g., ferromagnetic, antiferromagnetic, paramagnetic). Fitting the 

energy-volume curve to an equation of state, such as the Birch-Murnaghan equation, would 

allow the determination of equilibrium parameters: the equilibrium volume (V₀), the bulk 

modulus (B₀), and its first pressure derivative (B'). The cohesive energy could also be 

calculated to assess the thermodynamic stability of the compound. 

    The data in FIGURE( II-12)  show the variation of the magnetic moment as a function of 

volume, suggesting that calculations were performed for different volumes, but the 
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corresponding energy data are not available to determine the ground state and equilibrium 

structural parameters. 

III.1.The origin of magnetism 

In this part we studied the magnetic properties of the compound, and before that we 

will recall the origin of magnetism in materials [7–12], and this at three levels: 

 

FIGURE( II-13). The origin of magnetism of materials. 

III.2.At the electron level : 

as we know, each electric charge is in motion, it generates a magnetic field, and 

since the electron is a particle in motion around itself and around the nucleus , these two 

movements will generate two magnetic moments: 

a) A magnetic moment of  spin       where g is the Landé 

parameter and ℏ is the Planck constant. 

b) An orbital magnetic moment       where 𝜇𝐵 is the Bohr 

magneton. 
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FIGURE( II-14). The origin of magnetism at the electron level
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III.3.At the level of the atom : 

The magnetism of the atom is linked to the electrons in its outer shell; if all 

electrons are placed in the outer layer in a paired manner, the sum of the magnetic 

moments of these two electrons is zero and therefore the atom is non-magnetic, and vice 

versa. 

 

FIGURE( II-15). the origin of magnetism at the atom level. 

III.4.At the level of material : 

The magnetic state of matter depends on the nature of the atoms making up 

the matter (magnetic or not), the distances between the atoms and the exchange 

interactions between them, the effect of temperature and the applied magnetic field. 

Regarding the magnetic interactions between atoms, they are quantum exchange 

interactions related to the magnetic moments of the atoms, the distance between them, and 

the external magnetic field that they are subject to. These interactions were described by 

the Heisenberg Hamiltonians given by: 

          Hmag = ∑ jijS
→ →j S→ →ij+ ∑ giiμBh→ →i S→ →iiij                          (II.4) 

Where 𝜇𝐵  is the Bohr magneton, 𝑔𝑖  is the magnetic ratio,  𝑆→ →𝑖  is a spin operator, 

ℎ→ → is the external magnetic field, and  𝐽𝑖𝑗  is the exchange coupling constant (it depends 
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on the distance between the two atoms). The different states of the magnetic moments of 

the atoms whose exchange interaction is shown in FIGURE( II-16) . 

 

 

FIGURE( II-16). The origin of magnetism at the level of matter (the different 

cases of exchange interaction between the magnetic moments of atoms. 

Depending on the nature of the atoms making up matter and the alignment of 

the magnetic moments, we distinguish five types of magnetism: 

A) Diamagnetism: 

The magnetic material [7–12]  consists of non-magnetic atoms, because all its electrons are 

paired, which means that the total magnetic moment of the atoms is zero. 
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FIGURE( II-17.a).lustration of atoms in a state Diamagnetism 

B) Paramagnetism: 

The atoms of the paramagnetic material    contain unpaired electrons, and therefore these 

atoms have magnetic moments without any exchange interactions between them due to the 

large distance between them. Therefore its magnetic moments are randomly directed so 

that the sum of the total torque of the material is equal to zero[7–12]. 

 

FIGURE( II-17.b). lustration of atoms in a state Paramagnetism. 

C) Ferromagnetism: 

The atoms of the ferromagnetic material are composed of unpaired electrons, an 

exchange interaction occurs between them due to the small distance between them, so that 

the exchange integral 𝐽𝑖𝑗 is negative, so the electrons line up in parallel[7–12]. 
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FIGURE( II-17.c). lustration of atoms in a state Ferromagnetism. 

D) Antiferromagnetism: 

   exchange interaction occurs between them due to the small distance is small enough, so 

the exchange coupling constant 𝐽𝑖𝑗  is positive , so the electrons align themselves 

antiparallel, then the atoms are organized in such a way that two neighboring atoms can 

have opposite magnetic moments and consequently the net moment of the material is 

zero[7–12]. 

 

FIGURE( II-17.d). lustration of atoms in a state Antiferromagnetism. 

E) Ferrimagnetism: 

This is a similar state to the antiferromagnetic case, except that the magnetic moments 

that are arranged antiparallel are not equal, and therefore, the material has a magnetic 

moment which is not zero [7–12]. 



 CHAPTER  II                                                              Results and Discussions
                                                                                                                   

  57 

 

 FIGURE( II-17.e).lustration of atoms in a state Ferrimagnetism. 

III.5.Variation of the magnetic moment under the effect of pressure: 

Using the GGA approximation, we were able to calculate the total moment of the 

maille unitaire as well as the contribution of each atome to this moment. The obtained 

results, which are shown in Table II.3, indicate that the compound BrCdO2 exhibits 

ferromagnetic behavior with a total magnetic moment of 3. 

It is also observed that the predominant magnetic contributors at this time are the 

bromum atomes, with the remaining atomes contributing almost nothing. 

The variation in the maille's volume can have an impact on the total magnetic moment. 

As we can see in the magnetic moment increases as the bulk volume of the  compound 

decreases. 

The study of magnetic properties is crucial, especially for compounds containing transition 

elements like Manganese (Mn).FIGURE( II-18) presents the results of the calculation of 

the total magnetic moment (TOT) and partial moments (for Ag, Mn, S, and the interstitial 

region INT) as a function of the unit cell volume. 
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FIGURE( II-18): Variation of total and partial magnetic moments as a 

function of volume for AgMnS₂. 

Analysis of FIGURE( II-18) reveals several important points: 

• Volume Dependence: The total magnetic moment (TOT) shows a strong dependence on 

volume, increasing significantly with lattice expansion. It rises from approximately 2.15 µB at 

400 a.u.³ to a maximum of about 3.2 µB at 520 a.u.³, before decreasing slightly. This dependence 

suggests a sensitivity of magnetic exchange interactions to interatomic distances. 

• Origin of Magnetism: The main contribution to the magnetic moment clearly comes from the 

Manganese (Mn) atoms. The local magnetic moment on Mn closely follows the trend of the total 

moment, increasing from ~2.0 µB to ~3.1 µB over the studied volume range. This is expected for 

a 3d transition ion like Mn. 

• Minor Contributions: The contributions from Ag and S atoms are negligible, remaining close to 

zero across the entire volume range. The interstitial region (INT) exhibits a small but noticeable 

polarized magnetic moment (~0.15 to 0.25 µB) that also slightly increases with volume. 

• Nature of Magnetic Order: The presence of a significant net magnetic moment, primarily due to 

Mn, indicates a magnetically ordered state, likely ferromagnetic or ferrimagnetic in nature, 

although the exact configuration cannot be determined without additional information (e.g., 

energy comparison of FM and AFM states). 
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These results highlight the dominant role of Mn d-electrons in the magnetism of AgMnS₂ and the 

strong influence of the crystal volume on the magnitude of this magnetism. 

IV.1.Electronic Properties 

The analysis of electronic properties relies mainly on the calculation of the band structure and the 

density of states (DOS), presented in Figures II.3 and II.4, respectively. 

IV.1.1. Band Structure 

FIGURE( II-19) shows the calculated band structure for AgMnS₂ for both spin 

channels(Spin Up and Spin Down). 

 

FIGURE( II-19): Band structure of AgMnS₂ along high symmetry directions 

for Spin Up (top) and Spin Down (bottom) channels. The Fermi level is at 0 

eV. 

The analysis of the band structure reveals distinct behavior for each spin channel: 

• Spin Up Channel (Top): Several bands cross the Fermi level (0 eV). There is no energy gap. 

This clearly indicates metallic behavior for the Spin Up channel. 

• Spin Down Channel (Bottom): The Valence Band Maximum (VBM) and the Conduction Band 

Minimum (CBM) are both located at the G (Γ) high symmetry point. The VBM is slightly below 
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0 eV (~ -0.2 eV) and the CBM is significantly above (~ +1.8 eV). This indicates a direct gap of 

approximately 2.0 eV. This behavior is characteristic of a semiconductor for the Spin Down 

channel. 

The combination of metallic behavior in one spin channel and semiconducting behavior in the 

other spin channel gives the AgMnS₂ compound a Half-metallic nature. This property is highly 

sought after for spintronics applications, as it theoretically allows for a fully spin-polarized 

electron current at the Fermi level. 

IV.2. Electronic Density of States 

FIGURE( II-20) presents the total density of states (TDOS) and partial density of states 

(PDOS) projected onto the atomic orbitals (s, p, d) of each element (Ag, Mn, S). 

 

F
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Ag, Mn, and S in AgMnS₂. Spin Up is positive, Spin Down is negative. The 

Fermi level is at 0 eV. 

The DOS analysis corroborates and details the observations made from the band structure: 

• TDOS: The TDOS confirms the asymmetry between the Spin Up and Spin Down channels, 

characteristic of a magnetic material. It shows a finite density of states at the Fermi level (0 eV) 

for the Spin Up channel (positive) and an absence of states (gap) around the Fermi level for the 

Spin Down channel (negative), confirming the half-metallic nature. 

• PDOS - Manganese (Mn): Mn-d states dominate the density of states near the Fermi level. The 

significant energy shift (exchange splitting) between the Spin Up and Spin Down Mn-d states is 

the primary source of the large observed magnetic moment. Mn-d Spin Up states contribute 

significantly to the density at the Fermi level, explaining the metallic character of this channel.  

• PDOS - Sulfur (S): S-p states are predominant in the valence band, between -6 eV and -2 eV. 

There is notable hybridization between S-p and Mn-d states in this region, indicating significant 

Mn-S covalent bonding that influences the electronic structure. 

• PDOS - Silver (Ag): Ag-d states are localized at lower energies within the valence band (mainly 

between -6 eV and -3 eV). Their contribution near the Fermi level is minimal. 

In summary, the DOS confirms the half-metallic nature of AgMnS₂, highlights the crucial 

role of Mn-d states in magnetism and conduction in the Spin Up channel, and illustrates the    

Mn-d / S-p hybridization in chemical bonding. 

channel. However, the metallic character of the Spin Up channel complicates the overall 

optical analysis and could lead to high reflectivity in certain energy ranges. 

 A detailed study would require the explicit calculation of optical spectra (e.g., absorption 

coefficient, refractive index), which are not available in the provided data. 

 

IV.2. Conclusion 
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This chapter presented a theoretical study of the structural, magnetic, and electronic 

properties of the AgMnS₂ compound based on DFT calculation results provided graphically. The 

analysis revealed that AgMnS₂ crystallizes in a Tetragonal structure and exhibits strong magnetic 

properties dominated by Mn atoms, with a total magnetic moment strongly dependent on volume. 

The study of the electronic structure (bands and DOS) highlighted a remarkable feature: AgMnS₂ 

is a half-metal, behaving as a metal for Spin Up electrons and as a semiconductor with a direct 

gap of approximately 2.0 eV for Spin Down electrons. This property, combined with intrinsic 

magnetism, makes AgMnS₂ potentially interesting for spintronics applications. Mn-d states play a 

predominant role in these properties, with significant hybridization with S-p states. Additional 

information would be needed to determine the exact equilibrium structural parameters and to 

analyze the optical properties in detail. 

 

 

 

 



 62 

References - Chapter II 

[1] C. Friedel, 'Sur un oxyde de cuivre et de fer', Comptes Rendus, vol. 76, p. 1154, 1873. 

[2] A. F. Rogers, 'Notes on American occurrences of Delafossite', Am. Mineral., vol. 1, 

pp. 129–131, 1916. 

[3] A. F. Rogers, 'Delafossite from Colorado', Am. Mineral., vol. 2, pp. 76–78, 1917. 

[4] K. Soller and A. R. Thompson, 'X-ray study of Delafossite', Phys. Rev., vol. 48, no. 1, 

pp. 49–52, 1935. 

[5] A. Pabst, 'Natural Delafossite from Nevada', Am. Mineral., vol. 25, pp. 75–80, 1940. 

[6] R. D. Shannon, C. T. Prewitt, and A. F. Rogers, 'Chemistry of noble metal oxides', 

Inorg. Chem., vol. 10, no. 4, pp. 713–718, 1971. 

[7] J. M. D. Coey, *Magnetism and Magnetic Materials*, Cambridge University Press, 

2010. 

[8] S. Blundell, *Magnetism in Condensed Matter*, Oxford University Press, 2001. 

[9] H. Kawazoe et al., 'P-type electrical conduction in transparent thin films of CuAlO2', 

Nature, vol. 389, pp. 939–942, 1997. 

[10] R. D. Shannon, 'Revised effective ionic radii and systematic studies of interatomic 

distances in halides and chalcogenides', Acta Crystallogr. A, vol. 32, no. 5, pp. 751–767, 

1976. 

[11] A. G. Beznosikov and V. A. Belov, 'Structure field of layered oxides of the 

Delafossite type', Kristallografiya, vol. 41, pp. 991–997, 1996. 

[12] M. Preiser, C. A. Kuntscher, F. Lichtenberg, and A. Loidl, 'Delafossite-type oxides: 

structure and properties', Phys. Rev. B, vol. 70, no. 16, 165109, 2004. 

[13] C. Wolverton and A. Zunger, 'Electronic structure and stability of Delafossite 

oxides', Phys. Rev. B, vol. 52, pp. 8813–8822, 1995. 

[14] T. Okuda et al., 'Structure and transport properties of CuCrO2', J. Solid State Chem., 

vol. 153, no. 2, pp. 317–321, 2000. 

[15] K. Ueda, H. Hosono, and H. Kawazoe, 'Synthesis of new p-type Delafossite oxides', 

Appl. Phys. Lett., vol. 70, no. 25, pp. 3561–3563, 1997. 



 63 

[16] J. Tate et al., 'Structural polytypes in layered oxides: 2H and 3R Delafossites', J. 

Solid State Chem., vol. 146, pp. 555–561, 1999. 

[17] T. Ohta and H. Hosono, 'Electronic structure and phase stability of CuMO2', J. Appl. 

Phys., vol. 90, no. 7, pp. 3296–3300, 2001. 

[18] H. J. Kim et al., 'Lattice parameter trends in Delafossite oxides', J. Mater. Sci., vol. 

42, no. 22, pp. 9374–9381, 2007. 

[19] K. Momma and F. Izumi, 'VESTA: A three-dimensional visualization system for 

electronic and structural analysis', J. Appl. Crystallogr., vol. 44, pp. 1272–1276, 2011. 

[24] D. J. Singh, 'Electronic structure calculations with the LAPW method', Springer, 

2006. 



General Conclusion 

 

Delafossite is considered a material with a promising future, and research is 

ongoing to explore its applications across various sectors. Here, we present some of the 

challenges currently facing research as a prelude to future studies. From the perspective 

of synthesis and processing, these materials should feature low-cost manufacturing 

methods. They also pose a significant challenge in terms of their functions and 

applications in sensor devices, due to their specific advantages in this field. 

The goal we aimed to achieve through this work is to study and investigate the 

structural, electronic, and magnetic properties of the compound AgMnS₂, which is 

considered one of the most important and widely used compounds in many fields. The 

aim is to determine the most suitable domain for utilizing the AgMnS₂ compound, in 

addition to understanding the role and type of each atom that influences a particular 

property. 

This objective was achieved using the WIEN2k simulation software within the 

framework of Density Functional Theory (DFT), based on the Full-Potential Linearized 

Augmented Plane Wave (FP-LAPW) method, in order to solve the Schrödinger equation 

for a crystalline system containing a large number of interacting atoms and electrons. To 

achieve this, we introduced several simplifications, such as the Born-Oppenheimer 

approximation, as well as other approximations like Hartree, Hartree-Fock, and DFT. 

Finally, by evaluating, classifying, and discussing the potential opportunities in 

chalcogenides, this study aims to encourage further research into this growing class of 

semiconductors, thereby enabling future advancements in optoelectronic devices and 

supporting new approaches in the development of thin-film photovoltaic technologies in 

the years to come. 



 

Résumé 

Dans ce travail, nous avons étudié les propriétés structurelles, électroniques et 

magnétiques du composé AgMnS2 en utilisant la méthode des ondes planes 

augmentées linéarisées (FP-LAPW) basée sur la théorie de la fonctionnelle la densité 

(DFT). Pour estimer le terme d'échange-corrélation, nous avons utilisé 

l’approximation GGA. Dans les propriétés structurelles, nous avons calculé les 

paramètres de la maille, le module de compressibilité et l'énergie de cohésion. Pour 

comprendre le comportement électronique du composé, nous avons analysé la 

structure des bandes électronique les spectres de la densité d’états électroniques. Nous 

avons également étudié la distribution de la densité de charge dans la région 

interatomique pour connaitre la nature de la liaison entre les atomes. Nous avons 

calculé le moment magnétique total et partiel du composé.  

Abstract 

In this work, we studied the structural, electronic and magnetic properties of 

the compound AgMnS2  using the linearized augmented plane wave (FP LAPW) 

method based on density functional theory (DFT). To estimate the exchange-

correlation term, we used the GGA approximation. In the structural properties, we 

calculated the mesh parameters, the compressibility modulus and the cohesion energy. 

To understand the electronic behavior of the compound, we analyzed the structure of 

the electronic bands and the spectra of the density of electronic states. We also studied 

the distribution of the charge density in the inter-atomic region to know the nature of 

the bond between the atoms. We calculated the total and partial magnetic moment of 

the compound.  

 ملخـص

باستخدام   AgMnS2في هذا العمل، قمنا بدراسة الخصائص التركيبية والإلكترونية والمغناطيسية لمركب 

). لتقدير DFT)المعتمدة على نظرية الكثافة الوظيفية( FP-LAPWمستوية الخطية المعززة( طريقة الموجة ال

. في الخواص الهيكلية، قمنا بحساب معلمات الشبكة ومعامل GGAمصطلح ارتباط التبادل، استخدمنا تقريب 

ت الإلكترونية وأطياف الانضغاطية وطاقة التماسك. لفهم السلوك الإلكتروني للمركب، قمنا بتحليل بنية النطاقا

كثافة الحالات الإلكترونية. كما قمنا بدراسة توزيع كثافة الشحنة في المنطقة بين الذرات لمعرفة طبيعة الرابطة 

 .بين الذرات. قمنا بحساب العزم المغناطيسي الكلي والجزئي للمركب
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