

Fundamental and Numerical Mathematics Laboratory Laboratory of Applied Mathematics Setif 1 University Ferhat Abbas Department of Mathematics Faculty of Sciences

المعية سطيف 1 فرحسات عباس م الرياضي

CERTIFICATE OF PARTICIPATION

International Conference on Mathematics and its Applications in Science and Technology

ICMAST'2024 - Setif, December 15-16, 2024

This is to certify that

Abdelaziz Hellal

has participated in an online presentation titled:

DOUBLE PHASE PROBLEMS WITH VARIABLE EXPONENTS

at the International Conference on Mathematics and its Applications in Science and Technology (ICMAST'2024), held on December 15-16, 2024, at the University Setif I Ferhat Abbas, Algeria.

Conference Chairman Dr. Mohamed Kara

Setif, December 16, 2024

People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research Setif 1 University Ferhat Abbas Faculty of Sciences Department of Mathematics

INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS IN SCIENCE AND TECHNOLOGY

ICMAST' 2024

Setif, December 15-16, 2024

Auditorium: Mouloud Kacem Nait Belkacem- El Bez

PROGRAM (ONLINE)

PROGRAM OF THE CONFERENCE (Online)

Sunday, December 15th, 2024

Session 1: Differential Equations and its Applications

Chair: A. Saadallah

Google Meet Link: https://meet.google.com/qge-wfpo-uep

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Mohamed Houasni	On the stability of a nonlinear micro temperatures damped porous-elastic system with nonlinear distributed delay
13h 30 – 13h 45	Abdelaziz Hellal	Double phase problems with variable exponents
13h 45 – 14h 00	Hibaterrahmane Benmessaoud	Dynamic evolution of thermo-viscoelastic materials
14h 00 – 14h 15	Mohammed El Amine Riahi	Optimal control for stationary Marguerre-Von Karman equation
14h 15 – 14h 30	Khelifa Daoudi	Mild of solutions for integro-differential impulsive equations with infinite interval
14h 30 – 14h 45	Ishak Kettaf	Existence and uniqueness of solution for a class of superlinear Kirchhoff-type equations
14h 45 – 15h 00	Abeer Hasek	Optical solitons governed by the stochastic RKL equation with multiplicative white noise using the generalized (G'/G) -expansion approach
15h 00 – 15h 15	Amina Chaili	Investigating decay behaviors in system of coupled biharmonic Schrodinger equations with internal fractional damping
15h 15 – 15h 30	Chaima Boulkheloua	Exponential stability of Lord Shulman thermoelastic system with porous damping and delay term

Session 2: Differential Equations and its Applications

Chair: A. Bachmar

Google Meet Link: https://meet.google.com/cqn-jncp-rzp

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Abir Mechaouf	New results for the Marguerre–Von Karman equations with long memory
13h 30 – 13h 45	Fatima Ezahra Bentata	Existence of solution and numerical simulation to a hyperbolic Kirchhoff type problem modeling the free vibration of an elastic string
13h 45 – 14h 00	Abdelatif Kainane Mezadek	Some existence results to weakly coupled system of k semi-linear fractional σ -evolution models
14h 00 – 14h 15	Fatima Zahra Arioui	Caputo fractional stochastic differential inclusions with impulses
14h 15 – 14h 30	Hayet Bouzeraieb	Numerical approach for solving neutral linear differential equations with variable coefficients
14h 30 – 14h 45	Douha Saadi	Numerical solution of nonlocal boundary value problems for partial differential equations
14h 45 – 15h 00	Bouthina Sabah Hammou	Solvability of the second order fractional diffusion equation with non-local condtions
15h 00 – 15h 15	Oussama Khaldi	Well-posedness and exponential stability of Timoshenko system of second sound with time-varying delay and forcing terms
15h 15 – 15h 30	Brahim Kilani	On the stability of swelling soils system with strong damping and neutral delay term

Session 3: Dynamic Systems and Mathematical Biology

Chair: A. Leulmi

Google Meet Link: https://meet.google.com/tmy-vsvr-dgo

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Nadjiba Abdi	A study of an evolution problem driven by maximal monotone operators
13h 30 – 13h 45	Yacine Elhadj Moussa	Analysis of Caputo fractional order derivative of covid-19 transmission dynamics
13h 45 – 14h 00	Rima Chouader	A class of Kolmogorov differential system with one hyperbolic algebraic limit cycle
14h 00 – 14h 15	Ahlam Belfar	On the limit cycles of discontinuous piecewise linear differential systems formed by centers or hamiltonian without equilibria separated by irreducible conic
14h 15 – 14h 30	Hamidi Nabil	A mathematical model of the competition between plasmid-bearing and plasmid-free organisms in a chemostat with substrate inhibition
14h 30 – 14h 45	El Ouahma Bendib	Limit cycles for a certain class of generalized Kukles differential systems
14h 45 – 15h 00	Ali Kessouri	Combinatorics and log-concavity of over Mahonian numbers
15h 00 – 15h 15	Nora Dekkiche	A study on diffusion models for population dynamics incorporating individual behavior at boundaries

Session 4: Algebra, Cryptography and Information Security

Chair: Z. Kebaili

Google Meet Link: https://meet.google.com/tjt-bngf-rux

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Rachid Chergui	Les matrices "QL" et un nouveau type de cryptographie
13h 30 – 13h 45	Adem Aikous	Rota-Baxter operators on Hom-group algebra
13h 45 – 14h 00	Nasser Ghedbane	A new public key cryptosystem using space representations of finite groups
14h 00 – 14h 15	Amina Daoui	New identities for complex bivariate polynomials with some special numbers by symmetric functions
14h 15 – 14h 30	Akila Djoumakh	Some new identities concerning bi-periodic Fibonacci and Lucas sequences
14h 30 – 14h 45	Nadia Amal Messaoudi	A new discrete chao map developped through the combination of sine function and linear function
14h 45 – 15h 00	Safia Seffah	Repdigits expressed as products of two k-Lucas numbers
15h 00 – 15h 15	Yacine Briedj	The $d(1)$ -extensibility of the $d(-1)$ -triple $\{1,5,c\}$ and integer solutions on the associated elliptic curves

Session 5: Numerical Analysis and Simulation

Chair: R. Ziadi

Google Meet Link: https://meet.google.com/ksd-cpxz-ysi

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Meryem Benssaad	Analytic and numerical study intégro-differential Frefholm-Schander equation
13h 30 – 13h 45	Hanane Chinoune	Application of the modified homotopy perturbation method for solving fractional differential equation
13h 45 – 14h 00	Yasmine Fourar	Resolution of Bezout Equations in the synthesis of non-stationary biorthogonal wavelets using cardinal Chebyshev B-splines
14h 00 – 14h 15	Walid Remili	A rational spectral Galerkin method for solving Fredholm integral equation on the whole line
14h 15 – 14h 30	Abdelouahab Mani	Comparative analysis of numerical methods for solving integral delay equations
14h 30 – 14h 45	Mohamed Dellal	Modeling microbial competition with allelopathy and substrate inhibition in chemostat
14h 45 – 15h 00	Khaoula Meansri	Improving large-scale optimization: a three-term enhancement of the conjugate gradient method
15h 00 – 15h 15	Samar Chebbah	Restricted additive Schwarz method for variational inequalities

Session 6: Numerical Analysis and Simulation

Chair: H. Grar

Google Meet Link: https://meet.google.com/utu-ohrz-bfo

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Isma Debbah	Nonparametric estimation of a regression function using the gamma kernel method
13h 30 – 13h 45	Nacira Allaoua	A language shift simulation based on asynchronous cellular automata
13h 45 – 14h 00	Samia Khelladi	Study of a modified Liu-story method based on different line searches
14h 00 – 14h 15	Fatma Kaci	Independence polynomial approach for solving high-order linear Fredholm-Volterra integro- differential equations
14h 15 – 14h 30	Imene Laribi	Stability result of Timoshenko system with thermoelasticity, diffusion effect and memory term
14h 30 – 14h 45	Ameur Lounes	A numerical solution for the single-server queue with phase type distribution service times
14h 45 – 15h 00	Soumia Aici	Lower bounds for the Euclidean operator radius
15h 00 – 15h 15	Linda Menniche	A penalty method for linear programming

Session 7: Fractional Calculus

Chair: A. Djabi

Google Meet Link: https://meet.google.com/izh-ukiw-pmk

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Zineb Bellabes	ψ -Caputo equations through weak topology analysis
13h 30 – 13h 45	Ahlem Sidi Yekhlef	Stabilization of a hyperbolic system with fractional damping, memory term and time delay
13h 45 – 14h 00	Moufida Guechi	Adaptation of homotopy perturbation method for solving nonlinear fractional integro-differential equations
14h 00 – 14h 15	Nedjoua Dria	Homotopy perturbation method for the solution of system of nonlinear fractional order partial differential equations
14h 15 – 14h 30	Souad Guedim	New results for the integral equation with Hadamard derivatives of variable order
14h 30 – 14h 45	Said Rafa	Well-posedness and stabilization of the wave equation by the boundary dissipation with fractional derivative
14h 45 – 15h 00	Ahmed Bouchenak	Fractional initial matrix-value problems solved via conformable Laplace transform
15h 00 – 15h 15	Hammou Benmehidi	Existence, uniqueness and stability analysis of coupled hybrid pantograph systems

Monday, December 16th, 2024

Session 1: Differential Equations and its Applications

Chair: A. Saadallah

Google Meet Link: https://meet.google.com/poe-uknq-mos

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Somia Tamouza	An optimization problem for a fractional differential equation
13h 30 – 13h 45	Farida Meghatria	Predictive mathematical analysis to mitigating obesity diseases
13h 45 – 14h 00	Saiah Seyyid Ali	Well-posedness results for weakly coupled systems of some semi-linear fractional σ -evolution models
14h 00 – 14h 15	Tayeb Mahrouz	Smoothness of solutions of differential equations of constant strength in roumieu spaces
14h 15 – 14h 30	Mahdi Rakah	New uniqueness results for fractional differential equations and some travelling waves
14h 30 – 14h 45	Marwa Saci	On the stability of linear porous elastic materials with microtemperatures effect
14h 45 – 15h 00	Aziza Bachmar	A problem electro-viscoelastic materials
15h 00 – 15h 15	Bochra Amroune	Analytical solution of two dimensional free surface flow via the hodograph method
15h 15 – 15h 30	Aimen Daoudi	Well-posedness of fourth-order nonlinear Caputo viscoelastic equations with relaxation and interaction terms

Session 2: Differential Equations and its Applications

Chair: R. Ziadi

Google Meet Link: https://meet.google.com/ecz-bykm-bhg

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Fatiha Ghejdemis	Application of flower pollination algorithm on differential equations
13h 30 – 13h 45	Ouidad Boulakour	The residual power series method for solving nonlinear time-fractional partial differential equations
13h 45 – 14h 00	Asma Bougherara	Existence and non-existence results for non linear elliptic system involving gradient terms
14h 00 – 14h 15	Raouane Mouedenne	Stability of a Schrodinger equation with internal fractional damping
14h 15 – 14h 30	Fatima Hamani	Class of self similar solution for the time-fractional porous media equation
14h 30 – 14h 45	Rebeiha Allaoua	Integrability and limit cycles surrounding a non-elementary singular point of a class of polynomial differential system
14h 45 – 15h 00	Naziha Belkhir	Well posedness and decay estimate for a porous thermoelastic system free of second spectrum
15h 00 – 15h 15	Chahira Guenoune	Existence and uniqueness results for thermo-elasto viscoplastic contact problem
15h 15 – 15h 30	Sakina Benkaddour	The study of stochastic differential equation driven by a non Gaussian process

Session 3: Dynamic Systems and Mathematical Biology + Algebra, Cryptography and Information Security

Chair: Z. Kebaili

Google Meet Link: https://meet.google.com/ydk-apzz-kgo

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Ines Tababouchet	ON the limit cycles of a family of discontinuous piecewise differential systems separated by a straight line, and formed by an arbitrary linear system and a quadratic center
13h 30 – 13h 45	Sarra Gaouir	Semi-discritisation of nonconvex integro-differential inclusions
13h 45 – 14h 00	Souad Bounouiga	Analysis of malaria transmission dynamics using fractional models and numerical simulations
14h 00 – 14h 15	Noureddine Touati Brahim	On the study of parabolic degenerate P-biharmonic problem with memory
14h 15 – 14h 30	Khadidja Moussaoui	Certain $D(\ell)$ diophantine triples
14h 30 – 14h 45	Ahmed Benkahla	The tree isomorphism theorem in bihom groups
14h 45 – 15h 00	Nacima Rosa Ait-Amrane	Algebraic results on certain dual generalized complex numbers
15h 00 – 15h 15	Chahinaze Djadi	Congruences concerning quadrinomial coefficients
15h 15 – 15h 30	Imane Merzougui	Isogenies based cryptography

Session 4: Numerical Analysis and Simulation

Chair: S. Khalladi

Google Meet Link: https://meet.google.com/pxy-sikm-yyn

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Sabrina Benzamouche	Kernel estimator of relative error regression function for twice censored and dependent data
13h 30 – 13h 45	OumKeltoum Benhamouda	Scheme approximation equation of the one-dimensional variable-order time-fractional diffusion equation
13h 45 – 14h 00	Ahlem Bennani	An adaptive penalty algorithm for quadratic fractional programming
14h 00 – 14h 15	Narimen Hafsi	Cryptanalysis of Merkle-Hellman cipher based on hybrid firefly-genetic algorithms
14h 15 – 14h 30	Saloua Aliouche	Asymptotic normality of the heteroscedastic regression function for left truncated data
14h 30 – 14h 45	Fares Bekhouche	The Laplace residual power series method for solving fractional initial value problems
14h 45 – 15h 00	Othman Yakhlef	Fluid structure evolution interaction problem

Session 5: Fractional Calculus

Chair: A. Khalouta

Google Meet Link: https://meet.google.com/umr-rxpp-htm

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Amine Loumi	A new method for solving in parallel linear systems by using a fractional linear decomposition
13h 30 – 13h 45	Reda Soufiane Bousserhane	Finite time blow up of solutions for coupled system of wave equations with nonlinear memory terms
13h 45 – 14h 00	Aboubaker El-Saddik Bouziane	Applications of a fixed point results for solving fractional Caputo-differential problem with integral boundary conditions
14h 00 – 14h 15	Amira Abdenebi	Numerical solution of fractional linear boundary value problems and beam deflection application
14h 15 – 14h 30	Mohammed Khirani	On boundedness and compactness of Hadamard operators in morrey spaces
14h 30 – 14h 45	Wissame Selmani	A new approximating solution for an abstract fractional Elliptic Cauchy problem
14h 45 – 15h 00	Djamel-eddine Hettadj	Existence of solutions for fractional differential inclusion with multipoint boundary conditions

Session 6: Data Science and Analytics + Mathematical Methods in Engineering

Chair: A. Leulmi

Google Meet Link: https://meet.google.com/vwc-xhwq-wgk

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Roumaissa Elbay	Plug in method for selection an optimal bandwidth for distribution functions with double truncated data
13h 30 – 13h 45	Abida Zahnit	A new robust estimation procedure for the tail index of Heavy-Tailed-Pareto-type distributions under random truncation
13h 45 – 14h 00	Mohammed Bachir Bederina	Enumerating fair solutions for multi-agent problems
14h 00 – 14h 15	Razika Grine	Novel two parameter model: statistical properties
14h 15 – 14h 30	Dihia Belaiza	Analysis of an unreliable M/M/1 retrial G-queue
14h 30 – 14h 45	Nabil Boumedine	An improved simulated annealing algorithm for maximizing the coverage area in wireless sensor networks
14h 45 – 15h 00	Samia Djemai	Presolving a convex quadratic minimization problem

Session 7: Mathematical Finance and Economics + History of science

Chair: A. Djabi

Google Meet Link: https://meet.google.com/ftp-rytx-kdx

Hours	Speakers	Presentation Title
13h 15 – 13h 30	Sylia Abdoun	Effects of stractegic customers on an M/M/1 queue under two distinct vacations
13h 30 – 13h 45	Nour El Houda Djemoui	Estimation bayesienne des parametres et caracteristiques de fiabilite de la distribution exponentielle exponentiee odd lindley : analyse comparative et simulation
13h 45 – 14h 00	Salima Doubbakh	\mathbb{L}^p -Holder continuity of the solutions of Q-BSDES $\left(2 \le p < \frac{q}{2}\right)$
14h 00 – 14h 15	Mourad Azioune	Chaos control and dynamics analysis of a Bertrand Duopoly team game
14h 15 – 14h 30	Elias Taki Eddine Mohammed Chikouche	The one-default model in finance: a mathematical framework for risk assessment
14h 30 – 14h 45	Hadia Messaoudene	History of the number π
14h 45 – 15h 00	Mansour Belarbi	From Poincare to Perelman the fabulous story of the geometrization conjecture

SETIF 1 UNIVERSITY FERHAT ABBAS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS IN SCIENCE AND TECHNOLOGY (ICMAST'2024) December 15 and 16, 2024

DOUBLE PHASE PROBLEMS WITH VARIABLE EXPONENTS

ABDELAZIZ HELLAL

ABSTRACT. In this article, we prove the existence of weak solutions for a specific class of nonlinear double phase problems involving variable exponents and irregular data.

1. Introduction

In this work, we consider the homogeneous Dirichlet problem associated to the model equation:

(1.1)
$$\begin{cases} -\operatorname{div}\left(A(x)|Du|^{p(x)-2}Du\right) - \operatorname{div}\left(F(u)|Du|^{q(x)-2}Du\right) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

where Ω is a bounded open domain in \mathbb{R}^N (N > 2) with Lipschitz boundary $\partial\Omega$ and $A(\cdot)$ is a measurable function such that:

(1.2)
$$\alpha \leq A(x) \leq \beta$$
, a.e. $x \in \Omega$, with $\alpha, \beta > 0$.

Suppose that $F: \mathbb{R} \longrightarrow \mathbb{R}$ such that:

(1.3)
$$F(u) = |u|^{(r(\cdot)-1)q(\cdot)+1},$$

and f is a function belongs to $L^{m(\cdot)}(\Omega)$.

Here, the variable exponents $p: \overline{\Omega} \longrightarrow (1, \infty), q: \overline{\Omega} \longrightarrow (1, \infty), r: \overline{\Omega} \longrightarrow (1, \infty),$ and $m: \overline{\Omega} \longrightarrow (1, \infty)$ are continuous functions for all $x \in \overline{\Omega}$ such that:

(1.4)
$$r(x)q'(x) > 1$$
, and $1 < q^- \le q^+ < p^- \le p^+ < N$

where $p^- := \min_{x \in \overline{\Omega}} p(x), \ p^+ := \max_{x \in \overline{\Omega}} p(x), \ q^- := \min_{x \in \overline{\Omega}} q(x), \ q^+ := \max_{x \in \overline{\Omega}} q(x)$ and

 $q'(\cdot) = \frac{q(\cdot)}{q(\cdot)-1}$. Moreover, $p(\cdot) > 1$ is logarithm Hölder continuous function, that is

(1.5)
$$\exists C > 0: |p(x) - p(y)| \le -\frac{C}{\ln(|x - y|)}, \quad \forall x \ne y \in \Omega: |x - y| \le 1/2.$$

Problem 1.1 can be esteemed as the stationary problem associated with the parabolic equation

$$\partial_t u - \operatorname{div}\left(A(x) |Du|^{p(x)-2} Du\right) - \operatorname{div}\left(F(u) |Du|^{q(x)-2} Du\right) = f$$

²⁰¹⁰ Mathematics Subject Classification. 35J60; 35D30; 35J66.

 $Key\ words\ and\ phrases.$ Nonlinear elliptic equations; weak solutions; double phase problems; variable exponents.

So, it can be seen as the Darcy law of fluid filtration (in a turbulent regime) in a porous media simulating the pressure u.

Our results depend on the presence of the additional term $-\text{div}\left(F(u)\left|Du\right|^{q(\cdot)-2}Du\right)$, which has a regularizing effect on the summability of the solution of the problem 1.1. In the particular case $f \in L^1(\Omega)$, the regularizing effect of this term has been recently investigated in [4]. In point of fact, we shall demonstrate that the solutions of problem 1.1 are more regular than the ones of the problems (see [3] and [9]) under an appropriate balance of the parameters $p(\cdot)$, $q(\cdot)$, $r(\cdot)$, and the summability of f. Inspired by [1, 2, 8], we will provide additional regularity results based on the summability of the source term f. To achieve this, we need to define the notion of weak solution we will use in accordance with the summability of the right-hand side. For simplify our investigation, we will only discuss the case when f belongs to $L^{m(\cdot)}(\Omega)$ with $m(\cdot) > \frac{N}{p(\cdot)}$.

2. Preliminaries

We recall some definitions, facts, and basic properties of Lebesgue-Sobolev spaces with variable exponents. We refer to [6] and references therein. In this work we denote

$$p^+ := \max_{x \in \overline{\Omega}} p(x)$$
 and $p^- := \min_{x \in \overline{\Omega}} p(x)$.

We define the Lebesgue space with variable exponent $L^{p(\cdot)}(\Omega)$ as the set of all measurable functions $u:\Omega\to\mathbb{R}$ for which the convex modular

$$\rho_{p(\cdot)}(u) = \int_{\Omega} |u|^{p(x)} dx,$$

is finite.

The space $L^{p(\cdot)}(\Omega)$ equipped with the norm

$$||u||_{p(\cdot)} := ||u||_{L^{p(\cdot)}(\Omega)} = \inf\{k > 0 : \rho_{p(\cdot)}(\frac{u}{k}) \le 1\},\$$

which called the Luxemburg norm. The space $(L^{p(\cdot)}(\Omega), \|u\|_{p(\cdot)})$ is a separable Banach space. Moreover, if $1 < p^- \le p^+ < +\infty$, then $L^{p(\cdot)}(\Omega)$ is uniformly convex, hence reflexive and its dual space is isomorphic to $L^{p'(\cdot)}(\Omega)$ where $\frac{1}{p(\cdot)} + \frac{1}{p'(\cdot)} = 1$.

For all $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p'(\cdot)}(\Omega)$, the Hölder type inequality

(2.1)
$$\left| \int_{\Omega} uv \, dx \right| \le \left(\frac{1}{p^{-}} + \frac{1}{p'^{-}} \right) ||u||_{p(\cdot)} ||v||_{p'(\cdot)} \le 2||u||_{p(\cdot)} ||v||_{p'(\cdot)},$$

holds.

We define also the Banach space

$$W^{1,p(\cdot)}(\Omega) = \big\{ u \in L^{p(\cdot)}(\Omega) : |\nabla u| \in L^{p(\cdot)}(\Omega) \big\},$$

endowed with the norm

$$||u||_{1,p(\cdot)} = ||u||_{W^{1,p(\cdot)}(\Omega)} = ||u||_{p(\cdot)} + ||\nabla u||_{p(\cdot)}.$$

The space $(W^{1,p(\cdot)}(\Omega), ||u||_{1,p(\cdot)})$ is a Banach space. while

$$W_0^{1,p(\cdot)}(\Omega) = \big\{u \in W^{1,p(\cdot)}(\Omega) : u = 0 \text{ on } \partial\Omega\big\},$$

is Sobolev space with zero boundary values endowed with the norm $\|\cdot\|_{1,p(\cdot)}$. The space $W_0^{1,p(\cdot)}(\Omega)$ is separable and reflexive provided that $1 < p^- \le p^+ < +\infty$.

The smooth functions (i.e. $\mathcal{D}(\Omega)$) are in general not dense in $W_0^{1,p(\cdot)}(\Omega)$, but if the exponent variable $p(\cdot) > 1$ satisfy the logarithmic Hölder continuity condition (1.5) then $\mathcal{D}(\Omega)$ are dense in $W_0^{1,p(\cdot)}(\Omega)$.

For $u \in W_0^{1,p(\cdot)}(\Omega)$ with $p \in C_+(\overline{\Omega})$, the Poincaré inequality holds

$$||u||_{p(\cdot)} \le C||\nabla u||_{p(\cdot)},$$

for some C>0 which depends on Ω and $p(\cdot)$. Therefore, $\|\nabla u\|_{p(\cdot)}$ and $\|u\|_{1,p(\cdot)}$ are equivalent norms.

Our treatment requires to use the following results:

Proposition 1 ([6]). If $(u_n), u \in L^{p(\cdot)}(\Omega)$ and $p^+ < +\infty$, then the following properties hold:

- $||u||_{p(\cdot)} < 1 \text{ (resp. } = 1, > 1) \iff \rho_{p(\cdot)}(u) < 1 \text{ (resp. } = 1, > 1),$
- $\min\left(\rho_{p(\cdot)}(u)^{\frac{1}{p^+}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^-}}\right) \le ||u||_{p(\cdot)} \le \max\left(\rho_{p(\cdot)}(u)^{\frac{1}{p^+}}, \rho_{p(\cdot)}(u)^{\frac{1}{p^-}}\right)$
- $\min\left(\|u\|_{p(\cdot)}^{p^-}, \|u\|_{p(\cdot)}^{p^+}\right) \le \rho_{p(\cdot)}(u) \le \max\left(\|u\|_{p(\cdot)}^{p^-}, \|u\|_{p(\cdot)}^{p^+}\right),$
- $||u||_{p(\cdot)} \le \rho_{p(\cdot)}(u) + 1$, $||u_n u||_{p(\cdot)} \to 0 \iff \rho_{p(\cdot)}(u_n u) \to 0$.

Remark 2.1. As in [7], the following inequality

$$\int_{\Omega} |u|^{p(x)} dx \le C \int_{\Omega} |Du|^{p(x)} dx,$$

in general does not hold. So, thanks to Proposition 1 and (2.2), we get the following inequality which will be used later

$$(2.3) \quad \min\{\|Du\|_{p(\cdot)}^{p^{-}}; \|Du\|_{p(\cdot)}^{p^{+}}\} \le \int_{\Omega} |u(x)|^{p(x)} dx \le \max\{\|Du\|_{p(\cdot)}^{p^{-}}; \|Du\|_{p(\cdot)}^{p^{+}}\}.$$

We need an important embedding as follows

Lemma 2.2 (Sobolev embedding). Let $\Omega \in \mathbb{R}^N$ be an open bounded set with Lipschitz boundary and assume that $p: \overline{\Omega} \to (1, N)$ satisfy the logarithm Hölder continuity condition (1.5). Then we have the following continuous embedding:

$$W^{1,p(\cdot)}(\Omega) \hookrightarrow L^{p^{\star}(\cdot)}(\Omega),$$

where
$$p^{\star}(\cdot) = \frac{Np(\cdot)}{N-p(\cdot)}$$
.

For the notion of weak solutions to problem 1.1, we will use through this work, the truncation function T_k at height k (k > 0) and the associated function which denoted by

(2.4)
$$T_k(t) = \min \{k, \max\{-k, t\}\}, \quad G_k(t) = t - T_k(t)$$

It is obvious that T_k is Lipschitz functions satisfying $|T_k(t)| \leq k$.

Throughout this work, C always indicate any non-negative constant which depends only on data and whose value may change from line to line.

3. Main result:

Definition 3.1. If $f \in L^m(\Omega)$ with m > 1, by a weak solution of the problem 1.1 we mean a function $u \in W_0^{1,p(\cdot)}(\Omega)$ such that

(3.1)
$$F(u) |Du|^{q(\cdot)-1} \in L^{p'(\cdot)}(\Omega)$$

and the integral identity

$$(3.2)\ \int_{\Omega}A(x)\left|Du\right|^{p(x)-2}Du\cdot D\varphi\,dx+\int_{\Omega}F(u)\left|Du\right|^{q(x)-2}Du\cdot D\varphi\,dx=\int_{\Omega}f\varphi\,dx$$

holds for every $\varphi \in W_0^{1,p(\cdot)}(\Omega)$.

We have the following theorem:

Theorem 3.2. Under the assumptions (1.2)-(1.5). If $f \in L^{m(\cdot)}(\Omega)$ with $m(\cdot) > \frac{N}{p(\cdot)}$ then the problem 1.1 has at least one solution $u \in W_0^{1,p(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.

The idea of the proof of Theorem 3.2: The proof is based on three steps: First, we introduce a suitable sequence of problems approximating. In addition, we establish some priori estimates for the solutions of the problem 1.1. Finally, we pass to the limit in the approximate problems.

References

- H. Abdelaziz; Singular Elliptic Equations with Variable Exponents. Int. J. Math. And Appl., 11(4): (2023) 141-168.
- [2] H. Abdelaziz and F. Mokhtari; Nonlinear anisotropic degenerate parabolic equations with variable exponents and irregular data, J. Ellip. Para. Equa. 8 (2022) 513-532.
- [3] F. Achhoud and G.R. Cirmi; Regularity results for an anisotropic nonlinear Dirichlet problem. Complex Variables and Elliptic Equations, (2024) 1-22.
- [4] L. Boccardo and G.R. Cirmi; Regularizing effect in some Mingione's double phase problems with very singular data. Math Eng. 5(3): (2022) 1-15.
- [5] Y. Chen, S. Levine, and M. Rao; Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006) 1383-1406.
- [6] L. Diening, P. Hästö, T. Harjulehto, and M. Ružička; Lebesque and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, (2011).
- [7] X. L. Fan and D. Zhao; On the spaces $L^{p(x)}(U)$, and $W^{m;p(x)}(U)$, J. Math. Anal. Appl., 263 (2001) 424-446.
- [8] F. Mokhtari, K. Bachouche, and H. Abdelaziz; Nonlinear elliptic equations with variable exponents and measure or L^m data, J. Math. Sci. 35 (2015) 73-101.
- [9] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15 (1965) 189-258.

University of M'sila, University Pole, Road Bordj Bou Arreridj, M'sila 28000, Algeria

Email address: abdelaziz.hellal@univ-msila.dz

Double phase problems with variable exponents

Abdelaziz Hellal

University of M'sila, University Pole
International Conference on Mathematics and its Applications in
Science and Technology,
(ICMAST'2024)
Setif 1 University Ferhat Abbas

December 15th - 16th, 2024

- Introduction
- Mathematical models
- Main result
- Conclusion and Perspectives
- **Some references**

Introduction: An example (Material science)

☐ The image shows a composite material with two phases soft and hard under stress.

Physical interpretation

Modeling nonlinear elasticity for composite materials with different properties is an important application of elliptic double phase problems.

$$-\mathrm{div}\left(A(x)\left|Du\right|^{p(x)-2}Du\right)-\mathrm{div}\left(F(u)\left|Du\right|^{q(x)-2}Du\right)=f$$

- ☐ The state of balance of the composite material.
- $\bigcup u$ is the displacement field while Du indicates the rate and direction of change of u at any point.
- ☐ A and F indicate the phase transition between the soft and stiff (hard) material.
- \Box f represents external forces (stress).
- Depending on the spatial region, the different phases show distinct elastic responses in the state of balance of the material.

Discussion

 \square if F is small (soft material), then the composite material exhibits the behavior of the softer material.

$$-\mathrm{div}\left(A(x)\left|Du\right|^{p(x)-2}Du\right)=f$$

 \square if F is large (stiff material), then the modeling focuses on the stiffer material's response.

$$-\mathrm{div}\left(F(u)\left|Du\right|^{q(x)-2}Du\right)=f$$

5/20

Mathematical models

$$\begin{cases} -\operatorname{div}\left(A(x)\left|Du\right|^{p(x)-2}Du\right) - \operatorname{div}\left(F(u)\left|Du\right|^{q(x)-2}Du\right) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1)

where Ω is a bounded open domain in \mathbb{R}^N (N>2) with Lipschitz boundary $\partial\Omega$ and $A(\cdot)$ is a measurable function such that:

$$\alpha \leq A(x) \leq \beta$$
, a.e. $x \in \Omega$,

 $\alpha \le A(x) \le \beta$, a.e. $x \in \Omega$, with $\alpha, \beta > 0$. (2)

Suppose that $F: \mathbb{R} \longrightarrow \mathbb{R}$ such that:

$$F(u) = |u|^{(r(\cdot)-1)q(\cdot)+1},$$
(3)

and

$$f \in L^{m(\cdot)}(\Omega)$$
.

H. Abdelaziz [University of M'sila]

Here, the variable exponents $p: \overline{\Omega} \longrightarrow (1, \infty)$, $q: \overline{\Omega} \longrightarrow (1, \infty)$, $r: \overline{\Omega} \longrightarrow (1, \infty)$, and $m: \overline{\Omega} \longrightarrow (1, \infty)$ are continuous functions for all $x \in \overline{\Omega}$ such that:

$$r(x)q'(x) > 1$$
 and $1 < q(x) < p(x) < N$ (4)

where $q'(\cdot) = \frac{q(\cdot)}{q(\cdot)-1}$. Moreover, $p(\cdot) > 1$ is logarithm Hölder continuous function, that is

$$\exists C > 0: |p(x) - p(y)| \le -\frac{C}{\ln(|x - y|)}, \quad \forall x \ne y \in \Omega: |x - y| \le 1/2.$$
(5)

Some previous results and primary aim

- ☐ The presence of the additional term $-\mathrm{div}\left(\mathit{F}(\mathit{u})\,|\mathit{Du}|^{\mathit{q}(\cdot)-2}\,\mathit{Du}\right)$ which has a regularizing effect on the summability of the solution of the problem 1.
- \square In the particular case $f \in L^1 \log L^1(\Omega)$, the regularizing effect of this term has been recently investigated by L. Boccardo and G.R. Cirmi (2022) [4].
- ☐ The solutions of problem 1 are more regular than the ones of the problems by F. Achhoud and G.R. Cirmi (2024) [3].

Main result

The notion of weak solution

If $f \in L^m(\Omega)$ with m > 1, by a weak solution of the problem 1 we mean a function $u \in W_0^{1,p(\cdot)}(\Omega)$ such that

$$F(u) |Du|^{q(\cdot)-1} \in L^{p'(\cdot)}(\Omega)$$
 (6)

and the integral identity

$$\int_{\Omega} A(x) |Du|^{p(x)-2} |Du \cdot D\varphi| + \int_{\Omega} F(u) |Du|^{q(x)-2} |Du \cdot D\varphi| = \int_{\Omega} f\varphi$$
(7)

holds for every $\varphi \in W_0^{1,p(\cdot)}(\Omega)$.

Theorem

Under the assumptions (2)-(5). If $f \in L^{m(\cdot)}(\Omega)$ with $m(\cdot) > \frac{N}{p(\cdot)}$ then the problem 1 has at least one solution

$$u \in W_0^{1,p(\cdot)}(\Omega) \cap L^\infty(\Omega)$$

- □ Lebesgue-Sobolev spaces with variable exponents (look at the book [2]).
- □ The case $p(\cdot) = p$, $q(\cdot) = q$, $r(\cdot) = r$, and $m(\cdot) = m$ have recently been studied by F. Achhoud and G.R. Cirmi (2024) [3].

Strategy of the proof of the Theorem

- 1. Approximate problem
- 2. A priori estimate
- 3. Passage to the limit

Step 01: Approximate problem

The approximate problem

$$\begin{cases}
-\operatorname{div}\left(A(x)\left|Du_{n}\right|^{p(x)-2}Du_{n}\right) - \operatorname{div}\left(F(T_{n}(u_{n}))\left|Du_{n}\right|^{q(x)-2}Du_{n}\right) = f_{n}, \\
u_{n} = 0,
\end{cases}$$
(8)

where $(f_n)_n$ is a sequence of bounded functions such that

$$f_n \longrightarrow f$$
 strongly in $L^{m(\cdot)}(\Omega)$, (9)

and

$$||f_n||_{L^{m(\cdot)}(\Omega)} \le ||f||_{L^{m(\cdot)}(\Omega)}, \quad \text{for all } n \in \mathbb{N}$$

Theorem: L. Boccardo and G.R. Cirmi (2022); [4]

Assume that (2)-(5) hold and let $f_n \in L^{\infty}(\Omega)$. Then there exists a weak solution $u_n \in W_0^{1,p(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$ which solves the problem 8 in the following weak sense

$$\int_{\Omega} A(x) |Du_n|^{p(x)-2} Du_n \cdot Dv + \int_{\Omega} F(T_k(u_n)) |Du_n|^{q(x)-2} Du_n \cdot Dv = \int_{\Omega} f_n v$$
holds for every $v \in W_0^{1,p(\cdot)}(\Omega)$.

Moreover, due to $f_n \in L^{\infty}(\Omega)$ and adapting the well known method used by G. Stampacchia; [5], each u_n is a bounded function and there exists C > 0, independent on n, such that:

$$||u_n||_{L^{\infty}(\Omega)} \le C \tag{11}$$

 \square Suppose that the assumptions (2)-(5) are satisfied. Then, we have

$$\int_{\Omega} |DT_k(u_n)|^{p(x)} dx \le C_1, \quad \text{for all } n \in \mathbb{N}.$$
 (12)

 \square Let $f \in L^{m(\cdot)}(\Omega)$ with $m(\cdot) > \frac{N}{p(\cdot)}$ and assume that the assumptions (2)-(5) are satisfied. Then, there exists $C_2 > 0$, $C_3 > 0$, independent on n, such that

$$\|u_n\|_{W_0^{1,p(\cdot)}(\Omega)} \le C_2, \quad \text{for all } n \in \mathbb{N}. \tag{13}$$

and

$$\int_{\Omega} \left(|u_n|^{(r(\cdot)-1)q(\cdot)+1} |Du_n|^{q(x)-1} \right)^{p'(x)} dx \le C_3, \quad \text{for all } n \in \mathbb{N}.$$

$$\tag{14}$$

Step 03: Passage to the limit

As a consequence of the estimates (12) and (13), there exists a function $u_n \in W_0^{1,p(\cdot)}(\Omega)$ such that, up to a subsequence still denoted by (u_n) one has

$$T_k(u_n)
ightharpoonup T_k(u)$$
 weakly in $W_0^{1,p(\cdot)}(\Omega)$, $T_k(u_n)
ightharpoonup T_k(u)$ strongly in $L^{p(\cdot)}(\Omega)$ and a.e. in Ω $u_n
ightharpoonup u$ weakly in $W_0^{1,p(\cdot)}(\Omega)$, $u_n
ightharpoonup u$ strongly in $L^{p(\cdot)}(\Omega)$ $u_n
ightharpoonup u$ a.e in Ω

Using the uniform estimate (14), we proceed by

$$T_k(u_n) o T_k(u)$$
 strongly in $W^{1,p(\cdot)}_0(\Omega)$ $Du_n o Du$ a.e in Ω

$$u_n \to u$$
 strongly in $W_0^{1,p(\cdot)}(\Omega)$ (15)

Now, thanks to the previous estimates and convergences, we can pass to the limit in the approximating problems. As a matter of the fact, due to (2) and the last strong convergence (15) we deduce that

$$A(x) |Du_n|^{p(\cdot)-2} Du_n \to A(x) |Du|^{p(\cdot)-2} Du$$
 strongly in $\left(L^{p'(\cdot)}(\Omega)\right)^N$

Therefore, given $\varphi \in W_0^{1,p(\cdot)}(\Omega)$,

$$\int_{\Omega} A(x) |Du_n|^{p(x)-2} Du_n \cdot Dv dx \rightarrow \int_{\Omega} A(x) |Du|^{p(x)-2} Du \cdot Dv dx$$

Moreover,

$$F(u_n)|Du_n|^{q(x)-2}Du_n \to F(u)|Du|^{q(x)-2}Du$$
 a.e in Ω

By Vitali's Theorem, we deduce that

$$F(u_n) |Du_n|^{q(x)-2} Du_n \to F(u) |Du|^{q(x)-2} Du$$
 strongly in $\left(L^{p'(\cdot)}(\Omega)\right)^N$

At last, we are able to pass to the limit in the approximating problems thanks to the last convergences and the proof of the theorem is complete.

Conclusion and Perspectives

Problem 1 looks at complex mathematical models with changing growth conditions. This helps us understand materials that have mixed properties, like varying elasticity or viscosity. By studying the existence, regularity, and uniqueness of solutions, this problem contributes to advancements in material science, engineering, and mathematics, offering insights into real-world applications.

 Problem 1 can be regarded as the stationary problem associated with the parabolic equation

$$\partial_t u - \operatorname{div}\left(A(x)\left|Du\right|^{p(x)-2}Du\right) - \operatorname{div}\left(F(u)\left|Du\right|^{q(x)-2}Du\right) = f$$

This is an open problem worth studying.

Some references

- H. Abdelaziz and F. Mokhtari; Nonlinear anisotropic degenerate parabolic equations with variable exponents and irregular data, J. Ellip. Para. Equa. 8 (2022) 513-532.
- F. Achhoud and G.R. Cirmi; Regularity results for an anisotropic nonlinear Dirichlet problem. Complex Variables and Elliptic Equations, (2024) 1-22.
- L. Boccardo and G.R. Cirmi; Regularizing effect in some Mingione's double phase problems with very singular data. Math Eng. 5(3): (2022) 1-15.
- Y. Chen, S. Levine, and M. Rao; Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006) 1383-1406.

Some references

M. Colombo and G. Mingione; Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215, (2015) 443-496.

L. Diening, P. Hästö, T. Harjulehto, and M. Ružička; *Lebesque* and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, (2011).

 \blacksquare X. L. Fan and D. Zhao; On the spaces $L^{p(x)}(U)$ and $W^{m;p(x)}(U)$. J. Math. Anal. Appl., 263 (2001) 424-446.

F. Mokhtari, K. Bachouche, and H. Abdelaziz; Nonlinear elliptic equations with variable exponents and measure or L^m data, J. Math. Sci. 35 (2015) 73-101.

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15 (1965) 189-258.

Thank you for your attention Questions are welcome