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Résumé

Dans cette these on étudie trois problemes, le premier est la composition des opérateurs
(bornés en particulier) et leurs propriétés telles que la continuité, la différentiabilité,
la multiplication, la régularité, le deuxieme est de généraliser certains résultats con-
cernant la composition de plus de deux fonctions et le troisieme est de généraliser le

Théoréme de Peetre.

Mots clés

e Opérateurs, Composition.
* Espaces de Besov homogenes, Espaces des fonctions a p-variation bornées.

* Continuité, Différentiabilité, Opérateurs bornés, Régularité.

Abstract

In this thesis we study three problems, the first is the superposition of the operators and
their proprieties such as those of boundedness, continuity, multiplication, regularity,
smoothness, the second is to generalize some results of the composition of more than

two functions, and the third is to give a generalization of Peetre’s theorem

Key words

* Operators, Composition or Superpopsition.
* Homogeneous spaces of Besov, Spaces of bounded p- variation functions.

* Continuity, Smoothness and Differentiability, Boundedness, Regularity .
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Notations

e Pourtout o = (g, e, ..., ) € N*, & = (21,29, ...7,) € R" ,ona

, telque o) = a1 +as + ... + ay,

o C'=C(R") : Dénote I’espace des fonctions continues.

CR") ={u:R"—R,; Vrg € R" Ve > 0,30 > 0,Vx € R ||z — xo]| < = |u(z) —u(xo)| < e}

*C"(R") ={feCR") ; D*f € C(R"), pourtout |af<r}
ERMN=C*R")={feCR") ; Df e C(R"), pourtout o€ N"},

« supp (f) = Adhérence ({z € R* ; f(x) #0}) : Support de la fonction f
DR")=C(R")={feC[R") ; supp (f) estun support compact} ,

x S (R™) : est ]’ espace de Schwartz et S’ (R") est I’espace des distributions tempérées

S(R") = {906 C*[R") ;5 |ellsgny ~ Prm (9) = sup ( sup < sup  [279%p (@\)) < OO}

z€R™ \ aeN” |a|<m \ BeN",|8|<k

SRY)={T:S—R,3Ik e N, Im e N,3C;,, > 0,Vp € S(R") ; T, )| < CrmPrm ()}

* On définit 1a norme de ’espace de Lebesgue LP (R™) par

1 .
I lrgeny = () |f (@)[" dz)>, si p>1

[l e ny = nf{c>0 [f @)l < e (pp)}=ess suwp [f ()],

* Pour tout f,g € S (R™), la convolution f * g vérifie f x g € S (R™), tel que

VEER"; frg (S) —/ nf(€).gW)dt = [ f(u).mug (§) du,ob 79 (§) =g({—u)
n RTL
* SifeS(R"), on définit la transformée de Fourier et son inverse par

Ff) = f(f) w / e @8 f(x) dz |, pour tout & €R"
FrE) = f(&) - (27?)_"/ @8 f (x) dz , pour tout &€ R"

A ~

FO) () = T =T(f), F'T)H=T()=T(f) pour tout T e (R")

i



* [s] : Dénote la partie entiere de s € R

1 1
e p': Dénote I’exposant conjugué de p > 1, défini par — + — =1
p Jjug p 0

* P, (R") : est I’ensemble des polyndmes de degré au plus m , m € N telle que

Pn(R)={ PeS R ; P(z)= Y a,2®, x€R"p Py (R") = {0}

laj<m
* P (R") =P (R") : Le sous espace de S’ (R") des polyndmes ou multinémes.

x [f] : La classe d’équivalence d’une distribution f € &' (R") modulo P, (R")

(679

on ol = agqllaglag!

« On convient de prendre % = z{'.z5%... x
t% = (t" w1, t*xg.. .t xy,) , (t > 0), et (z,y) = 2101 + T2y + ... TpYn,

« On introduit I’espace Sy (R™) défini par les fonctions de S (R") a moment nul

So (R") = {f eSR") 0°F f(0) = / 2%f (z) de =0, pour tout « € N"}
Rn
‘SA’O(R") = {f ; fedo (R”)} ={feSR") ; 0% f(0) =0, pour tout « € N"}.

SR") = S (R") /Sy (R") =8 (R") /P (R")

* Pour chaque s € RT\N, on définit I’espace de Holder par

C*(R") = {fELoo : | f cs(Rn):HfHOo—i— sup —|f(x)—f8(y)| <oo}, si0<s< 1
z,y€R" | £y |17 - y|
CCR") = SFeCY®RY) ;e = D 1D flleany <00 ¢ sis=[s]+a, 0<a<1

1BI<[s]

* Pour chaque s € N, on définit I’espace de Zygmund par

ct (Rn) — {f e (Rn) : Hf”Cl(Rn) _ sup |U (ZL‘ + h) +u (ZL‘ — h) —2u (IL')| < OO} ’
h#0, z € R" ‘h|
C*(R") = {feC'R") ; D*f e C', pour tout || <s—1},sis#1

* A < B : Signifie que pour deux expressions paramétriques A et B ,
il existe une constante indépendante ¢ > 0, tel que A < c¢B

x A~ B:SiA<S BetB S A, alors ils existent ¢, co > 0, tels que ;B < A< B

i



Introduction

Les principaux résultats de cette these sont liés a trois problemes

. Le premier probleme a été étudié par plusieurs auteurs, G.Bourdaud, [1], [2], [3],
W.Sickel [16], D.Kateb [11] , S.Igari [10], et qui consiste a résoudre le probleme de
superposition des opérateurs en trouvant une condition nécessaire et suffisante pour qu’un
opérateur de composition , Tg : E— E | telleque T (f) = G o f, ou G est une fonc-
tion réelle a valeurs réelles, réalise la condition 7 (E) C £ . Plusieurs chercheurs ont
essayé de trouver des opérateurs non triviaux (Associés a des fonctions non affines) vérifiant

la condition T¢; (E') C E, pour un espace fonctionnel donné £ .

. Le deuxieme probleme consiste a donner une formule générale de la dérivée de la com-
position de plusieurs fonctions, d’utiliser une inégalité de base introduite dans [2]] pour
généraliser certains résultats , d’étudier les propriétés des opérateurs de composition (bornés
en particulier), telles que la différentiabilité et de vérifier les inégalités des normes pour la

composition de plus de deux fonctions .

. Le troisieme probléme consiste a donner une extension au célebre théoreme de Peetre, en

se basant sur les travaux introduits dans [2], et [14].
Notre travail est organisé€ en quatre chapitres :

Dans le premier chapitre on présente les espaces fonctionnels connus , tels que les espaces
de Besov ainsi que leurs propriétés . On définit les espaces BV, (R) , BV, (R) a partir des

espaces des fonctions a p- variation bornées pour p > 1 et leurs normes .

Dans le deuxieme chapitre on étudie le probleme de composition des opérateurs dans les

espaces BV;} (R), 1< p < oo, en se basant sur les travaux introduits dans [2], [3],

1l



ainsi que certaines propriétés de multiplication, de continuité, et on va étendre certains
résultats concernant une inégalité de base pour la composition de plusieurs fonctions. Ainsi

on obtient un algorithme de base donnant la dérivée de la composition de plusieurs fonctions .

Dans le troisieme chapitre on étudie le calcul fonctionnel dans les espaces de Besov ho-

mogenes B, (R") , en présentant les conditions nécessaires et suffisantes pour la compo-

sition des opérateurs .

Dans le quatrieme chapitre on présente un nouveau espace fonctionnel BV;* (R) défini grace
a 'espace V5 (R), introduit dans [14] et on généralise le Théoreme (3.17) de Peetre aux

espaces BV* (R) , p €]1,+00[, 0 < a < 1, ainsi que des exemples d’application pour

affirmer les résultas énoncés .

v



Chapitre 1
Quelques résultats préliminaires

Dans ce chapitre on va rappeler les notions essentielles a savoir les séries de Littelwood-
Paley ainsi que les différences finies qui vont nous permettre de construire des normes
équivalentes pour les espaces de Besov, enfin on donnera un apercu sur les fonctions a

p-variations bornées, ainsi que leurs propriétés qui nous seront tres utiles par la suite .

1.1 Séries de Littlewood-Paley

Dans ce paragraphe on donne une définition de la partition de 1’unité dans C§° (R"),

suivi d’un exemple, et pour plus de détails voir [18]] .

1.1.1 Partition de ’unité

Soit la suite des réels A = {A4;}, -y C R™, tels qu’ils existent 0 < Ao < Ay avec
Mdj < A < M4, j€ N
Il existe alors ¢y, € N tel que
24; < Aj, pourtout j, ket j+ 4y <k.

On définit Q4 = {Q; 4} un recouvrement de R™, associé a A, tel que

jEN »

{éeR" 3 |£| SAj+€0} s Si ]20,1760—1

{€eR Aj_ <& < Ajrno si Jj =>4



Définition 1.1
On dit que la suite des fonctions ps = {(lpj1A}jeN C Cg° (R™) est une partition de [’unité par
rapport a ) 4, si les conditions suivantes sont vérifiées :

(i) 0ja(§) 20, €R™, jEN

(ii) supp(pja) CQja, jEN

(iii) Pour tout o € N" | il existe une constante c,, > 0, telle que

« 2 —‘OL|/2 n 3
[D%pja (@) <ca(L+[E]7) 77, £€R?, jEN

(iv) 1l existe une constante c, > 0, telle que
0<ngj714(§):c¢<oo, EeR".
j=0

Pour A; =27, {y =1, ¢, =1, ona une partition dyadique de I’unité .
La partition p4 = {¢;, A}j cn » €st dite inhomogene qui peut €tre remplacée par la partition

{Spij}jGZ ) dite hOmOgéne .

Exemple 1.2

Soit K > 1, considérons le recouvrement {C’p}fio , défini par
C, = {¢eR" K12r < [¢] < K201}
C. = BOK={eR ;  |¢f<K}
{Cp}f;}o , est un recouvrement uniformément fini pour R", c a d
{¢geN ; C,NC, #+ &} est un ensemble fini .

On peut construire {¢o,V,}, v € N, une décomposition de Littlewood-Paley inhomogéne de

[’unité telles que

wu (6) = ¢l/ (5) - (bufl (f) 7€t ¢V (5) = ¢0 (271/5) ’

ot ¢y € C° (R™) est réelle, et ¢y = 1 sur la boule fermée B (0,1) , supp () C B (0,K),

tel que <¢0 + Zwy> u=u, ueS (R").

veN

En effet une telle décomposition existe car on a le lemme suivant .

2



Lemme 1.3

Ils existent p, 1 € C§° (R™) , avec supp (¢) C C_y,supp (p) C Cy, tel que

PO+ w27 = 1,

et

YO+ Y (27 = v (2.

Preuve
Soit 6 € C§° (R™), avec, 0 <0 <1, supp(0) CCy, 0(&) =1, pour 1 <|{| < 2.
On pose s(€)= > 6277, eR"\{0}.
p=—00

Puisque {C,} 77", est un recouvrement uniformément fini pour R alors, s € C* (R™\ {0}).

On définit donc ¢ € C§° (R") par ¢ (&) = %, tel que

I SRR I Sa A R )
Soient |{| > K ,p < —1, alors nous avons

277 |¢| = 2P [¢] > 2PIK > 2K | et 2776 ¢ Gy,

d’ou 0 (27P) =0,etdoncsi [{| > K, € R"\C_4, alors

T s 1
pz;%p(z 5)_ Z @(2 5)_ Z $<27p€)_210:;_009(27p£)_1'

p=—00 p=—00

Sionprend ¢ (§) =1 — ZOOO ¢ (277¢) , alors ¢ € Cg° (R™) , tel que supp (¢) C C_y.
p=

En prenant pourtout j € Z, ; () = ¢ (277(¢]) et Py (§) =1— i Y (€) alors on
k=1

a les propriétés suivantes

1, est paire telle que supp (¢;) C Cj, pour tout jeN
21/1]- (&) = 1, pour tout &€ R"
=0
CnN supp (Y;) = @, si Im—j|>1
Vi1 (§) + 15 (§) + ¢4 (§) = 1, pourtout § € supp (¢;), j€N.

3



Et pour construire une partition homogene sur Z, on introduit la suite ®; € S (R") , telles que

Y5 (§)
> Uk (§)

kez
D; () = 27Dy (2¢) , pour tout & €R™,

/ o0, (x) dz = M (0)=0, (keN") .

) 5 (6) %:ij(@
On a donc ;Qj(g);(lgzwk(f)) :lgz¢k(€):1’ (£ e R™\ {0}) .

0 ~
Puisque 1 — > ®; est indéfiniment différentiable et a support compact, alors on peut choisir
j=1
comme fonction ¥ € S (R"), telle que

\I/—I—ZCI)J, ol W0 sur|¢] <1 etdonc ‘I/—i-Z(I) =1
7j=1

Posons 1 (£) =W (€) et ¢ (277€) = d; (€) , alors on a
+Z] e(27) =1, (€eRY). (L.1)

Ona ¥ (27V) + 3 ¢ (277V¢) = () + N;O P27+ 5 210~ L

p=0

o0

dol Do) = Y e(277),
p=0

=N

3

et donc Y27V = Y€ NZ
On prouve par récurrence si e (27 = p(27f 5) v (27N,
et puisque P (27N = (¢ ﬁ: 277¢)
i
alors on a Y (27 Ve) = )+ p (27
= ¢ (2<Nf1:>05) + (270 )
d’ol o (27De) = 4 (27VHE) — g (27 NF )



1.1.2 Décomposition d’une fonction / € S’ (R")

Puisque ®; est réelle, paire alors <i>j est réelle, paire et son support est C,
d’ou ®; € Sy (R™) et donc ®; + f est défini pour tout f € S; (R").
Si on multiplie les deux cotés de 1’égalité (1.1) par u € S (R™) on obtient avec la

transformée inverse de Fourier

u:\IJ*u—i—Z ®; xu, pour tout wue€S(R"),
jeN

et I’on déduit sa relation duale

f = \I/*f+z<l>j*f, pour tout feS (R"),

jEN

d’ou u = Z ®; x u, pour tout u € Sy (R")
jEZ

et donc f = Z ®,; x f, pourtout f € Sy (R").
j€z

Pour tout j, k € Z, on définit les opérateurs continus Ay, @), , par

Ap:S(R") —S'(R") et Q;:S(R") — S (R"), telles que

Y

Qif = (W@7)) ' *xf =27 (2 )xf pour (j=0,1,2,..),

Avf = (") % f =2 (2")« f pour (k=1,2,..).

On a donc AF(€) = ®(€).F(&), do ALf (&)= Be (&) f(6),
et on pose Qf (&) = F(§).

Pour tout f € &' (R") etk € N, (Convergence dans S’ (R")), ona

Quf = > A,
JEL, j<k
et f = ZAjf:F—I—ZAjf, pour tout fe§; (R"),
jez j=1



telle que Zj\fséo,surAj et () #0 , pour || <1.
Si¢ =0, alors I’expression ) Cf)j (0) = 0, implique 1} , car si
jEL
#®) =0, pour tout ke N",

alors i est vérifiée pour tout ¢ € So (R™).

1.1.3 Décomposition de Ay (f . g)

Calculons

Ap(f.9) = A (Z >, Ajf.Azg)

jeN (eN

= Z Z A (A f - Aeg)

jEN (eN

= Z Ak (A f - Ag)

j€eN, LeN

- (I1,,+1L,,+11,,) 90 -
ol Hh1 (f,9) = Dway(f.9) =A% (Ekf-Qng)
Hm(f’g) = Ak (f-9)=<Qk+1f-5kg>=Hk72(g,f)
[I,0F9) = A (f9 =" A(AfB) .
avec A= 37 A, e

j=k—2

_ k+1
A, = Z Aj;, (Calcul des supports)

j=k—1



1.2 Les opérateurs des différences finies A}’

Définition 1.4
Soient x,h € R", m € N et f une fonction quelconque, introduisons I’opérateur de différence

finie Ay telle que

Ahf = T,hf—f,O?\L Thf(x):f(x_h)a

et on pose Arf(r) = Apf(x) =f(x+h)—f(2).
Les opérateurs A}'f sont définis par la relation de récurrence
AR f () = Ap (AR f (2) , m > 2, (1.2)
On déduit donc que
ALS (@) = Ap (ALf (2) = [ (2 +2h) = 2f (x + 1) + [ (2)

Lemme 1.5
Soient x,h € R", m € N et [ une fonction quelconque définie dans une partie de R", alors le
terme général de A} f (x) peut s’écrire sous la forme
 (m Em ~ (m ¢
Al f(x) = -1 T z) = —1) T—m x
pre =2 () 0@ =3 () 0 et 0

Preuve
(i) Puisqu’on a
m n m B m+1
/-1 14 N 14 ’
et

(_1)m—£ _ (_1)m+€ _ (_1)m+€—1 _ (_1)m+€+1’



m

on déduit donc par récurrence que si A}'f (z) = Z < E) (=)™ 7y f (z) , alors selon (T:2)
=0

AP (@)

An (AR f () = AR f (w + h) = A7 f (@)

A f (z) = ; (m”z z) (—1)™ f (2 + (h) .

£ = (—1)m+g, etpour 0 </ <m,ona0<m—¢<m, doncpourm—{ =k ona

APS (@) =Z( ") O =§mj(’}j) () @+ m—k)h)



Définition 1.6

Soienth € R m e Nt >0,et f € LP(R"), on définit

w;ﬂ (t7 f) = Sup HA;LanLP(R”) ) (13)

|h|<t, heRn

comme le m™® ordre du module de continuité de f dans L? (R").
Ce module de continuité est utilisé pour trouver des normes équivalentes

Remarque 1.7

a) La continuité d’une fonction f en x est définie par
lim |ALf ()] = lim |f(z+h)— f(z)] —0
h—0 h—0

b) La différentiabilité d’une fonction f en x est décrite par

Al
lim 12 (@) <c<oo, (¢ >0)
h—0 |h‘

¢) Les modules de continuité définis en convergent pour la norme LP | et sont monotones

pour l’opérateur sup, et m—différentiables (Régularité d’ordre m).
d) w, (t, f) = 0 si et seulement si f est un polynome de degré < r — 1.

e) Pour tout s > 0, on a une norme équivalente pour ’espace C° (R™) de Holder-Zygmund

If

cs(@®n) ™ f&@ |f (x)] + sup |h|™® ‘Aif ()| , pour tout keN, k>s

z€R™, 0<|h|<1
1.3 Les normes dans les espaces de Besov

On donne dans ce paragraphe les définitions des normes des espaces de Besov, en

utilisant la théorie de Littlewood-Paley et les différences finies



1.3.1 Par la théorie de Littlewood-Paley

Définition 1.8
Soient s € R, p,q € [1,400] , alors on dit que la fonction , f appartient a Bf;q (R™) , I’espace

de Besov homogéne si et seulement si f € S’ (R") /P (R") et f = Z A, f telles que

JEZ
( 1/q
<Z (253'H(I>j*f||p>q> < oo, pourl<g<oo
I lggogn =9
sup (28j |D; * f||p> < 00, pour q = 00
\ JEL

Proposition 1.9 [l/§]

Pour tout f € B;’q (R™) et tout X > 0, ils existent deux constantes 0 < ¢; < ¢y, telles que

c1 [|f]

Bpeen < AT (O)]

B;,q(Rn) S Co ||f| B;’Q(Rn) (14)

Preuve
e Soientg(z)=f(A\z),y=s—n/p, A=2" u=2N2 , d’ott du = 2"V dx, alors on a

;% g(z) = /n®j(t)g(x—t)dt:/n2j<1>0(2jt)f(2N(x—t)) dt
- /an_N(IDO(Qj_Nu)f(QNx—u) du:/ Dy (u) f(2¥2 —u) du

n

= (Dij * f (2N$) s d’ou

Q=

lgll grogany = (Z(st (/Rn @, f(2V2)[" dx)i)q)

jez
1\ 9\ g
= (Z <2jS”N/p23N5N (/ 1PN * f (u)]” du) ) ) ycar dr =2""Vdu
JET R™

_ (2N)sfn/p ( Z <2k5 [ f(')||p>q> =\ ||f||B;’q(]R")

k=j—N€Z
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« Considérons, A > 0, tel que 2V=! < A < 2V | (N € Z) , pour prouver (1.4) on prouve

Boimny S € 1f]

I"une de ses inégalités car si || f (\-)] (e - alors

1 lge@m = [1£ AT QO pagny < € NF Aoy -
Ona f = ZAjf, donc Akfzék*f:z:@k*Ajf,
JEZ JEZL
or supp (Apf) <[22,
d’ou Akf = Z (I)k * Ajf = (I)k * Ak_lf + (I)k * Ak+1f + (I)k * Akf .
JEZ

Par récurrence si A f , Ar_1f , Py sont décroissantes alors ®y, Py x Ap_1f , Pp *x Apf

sont décroissantes et donc @y, x Ag, 1 f, est décroissante ainsi que Ay, f, d” ou
S (I)k * Ak_lf + q)k * Ak+1f + (I)k * Akf ( 2N_1 (ZL‘ - t))

= Ak’f (2N_1 (.Z' - t)) )

et M=) =D AF (=) < YAV @ —1) = f2Y (@ - 1),

JEZ JEZ

on déduit donc que f (2N (x — t)) < fA(x=t)<f (2N_1 (x — t)) ,
et i f(2YTN() < Oy fA() S B f(2V (),
alors on a ;% f(A()] < max (|®;*f (2N (N, Y1 ()],
et donc 1D+ f (NN, < max(([®; F (2% ()], . |25 F 2 O)):
o lollsgomny < max(]f ¥ O e -1 @ O ggegeny)
< 20 @2Y) N lspegeny < OV Ifll oy » et C =27,
on peut donc écrire Il BlUmn) ™ AP L) B3R
Si A=2" alors |f(2™)|gragsy = 2™ £ BYI(R") -
Si =2 alors  [If M)llge@ey = I O)Mliew@ny = X7 W lganny = 2P 11l s gy -
On a aussi 1 Oy = A 1l



Définition 1.10
Soient s € R, p, q € [1,400], alors on dit que la fonction f appartient a By (R™), l’espace

de Besov non homogene, si et seulement si

FES R et f=Quf+ > Af, tellesque

jz1
r 1/q
, q
H\I/>x<f||p+<Z<25J||<I>j*f||p> ) < oo, pour 1<q<oo

JEN

1f1

By (R =

% fl, +sup (2925 f],) <00, pour g=oo
je

1.3.2 Par les différences finies

Lemme 1.11 [/§)]

Pourtout0 < s <1, ona

22j5|<pj ()| < cx= 1) pour tout x>0, (c > 0)
JEZ

Preuve

e Siz =27V alors ®y € S, implique [P (x)| < cz™2, dou

Z 2|0, (x)] = Z 97 (s+1) |<I>0 (231:)| < Z ga D=2 = —__ oNla=1),;=2 _ ; p=(+s)
- _ (1) T S——
j=N+1 Jj=N+1 n=N+1 LQ,_/ LL‘_(H_S)
c>0
Puisque @, , est bornée alors
N N
D20 () S e D 20 = NI = ¢ g ()
j=—o00 j=—00

¢ Si2 N <x <27Vt N €7, etdeladécroissance de ®; , ona

D270 (2)] < Y 2@ (27Y)]

JEZ JEZ
S c. 2N(1+8) — (21+Sc) 2(N—1)(1+8) S c/ ) x—(l-‘rs)

12



Lemme 1.12 [I8)]

Soient1 <p<oo, keN, feS(R"), alors

(i) N7-nf = fll, < RIS,

(i) | ALf] < [RFF®Y ) (k> 2)
Preuve
(i) En utilisant I’'inégalité suivante
@) = F @I <z =y If,
etpuisque p>1, donmne0<1-—1/p<1, etenprenant, h =z —y, onobtient
I7nf = Fll, < B2 10, < R,
(i) On obtient par récurrence

|kl = llan @k, <10l @55)

= nl 2k,

< A < )

p

Proposition 1.13 [/8]

Soient h e R", 0 <s<1,1<p<oo,1<qg<oo,alorsfe By (R") sietseulement si

f e LP(R") , telle que

s dh
/ (B o f = F1L)7 < oo, (1.5)
. i

et f € B;’q (R™), sietseulementsi f €S (R™) /P (R"), telle que (1.5 soit vérifiée
Preuve
D’abord prenons le cas le plus simple ¢ = n = 1, car le cas ¢ = 0o, ainsi que le cas général de

R™, peuvent facilement en étre déduits en utilisant le théoréme de I’interpolation de deux espaces

de Besov qui donne un autre espace de Besov ainsi que le théoréme de Marcinkiewicz .
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(1) Soit f = F+ 3> A;f € By! (R),alors  f € LP telque > [|A;f], < oo,
jEN jEN
et donc par le Lemme on a

277 dh 2” dh
WAL (A, </ w7 (A
/0"” f)H|h|_0|!||fH|h|

. 277 j
@], [ I an =2 ],

VAN

- L dh ) ; /
et/Zj R 1AL AN, 7 = 2lA40) H/ |h| ™ qu (A1)

Plnl ~
(g

con [ AL, L - / -
o [ Akl g = [

dh
an

<022J8H (A, f) H

JEN

(2) Soit f € Lp,et/ |h|~* HA}L (f) H < oo,alors fxWU e [P,
0

Ona @;xf(zx) = / ®; (y) (f (x —y) — f(z)) dy, d’ou par I'inégalité de Minkowski
R

[, % 7], = H/ 80 (=)~ @) dy+ [ 80 (=0~ @) dy

p
< 9 / B ()] 1Ay f1l, dy.

En utilisant le Lemme 1.11|, on obtient f € B3 (R), car

Sy s, < 2[0S 2l - 11, dy

JEN JEN

< / |y|‘”+5)||7—yf—f||pdy:c/ B AL D], 7 < oo
) . v Th]

_ dh
on note que lIl est équivalente a / <|h| “Nrenf — pr)q —— . car
hi<1 Id

L s =l = [ s [ an,

o - dh
et ’intégrale / (1R~ Ir-nf = fII,)1 T se transforme par un changement de variable
|h|>1

convenant en, / (|A]" lr=nf — pr)qd_qul
<t A

14



Théoreme 1.14 [16]
Soienth e R" ;s >0,1<q¢<o00, 1<p<oo, MeN, M <s< M+1, alors

f € By (R") si et seulement si, f eS8 (R")/P(R"), ettelle que

1
s dh \ ¢

Le terme ( / ...dh) , peut étre remplacé par ( / ...dh), pour n’importe quel

|h|<e

/]

e > 0, et en général on prend pour € = 1, le terme ( ...dh) dans le sens des
|h|<1
semi-normes équivalentes .

Preuve

— Comme dans la preuve de la Proposition, supposons f € B;’l (R),0<s<1
donc felLl et / |h|® ||Ahf|| W < 00.
0
Puisque U * f € LP  alors pour tout j € N, ona
1955 £, < e[ Anf]], -

Par le Lemmel|l.12], et pour 2-U*1) < h < 277 on obtient

277 277 dh ]
h A > oF h|™° — = 2% ||®;
J A TV R R LR N e =l L

2—(+1)

Tou S 2|0y fl| < CZ/
=0

(G+1)

< o [ I ot o < o

-Sis>1,alors M<s<M+1l,dou 0<s—M<1, etdonc

gy ~ [ 7 skl

~ h* AM+1
|,

15



Théoreme 1.15 [16]

Soient he R", 0<g¢g<o0,0<p<oo, M &N, et notons o, , par

(i) Supposons que o, < s < M , alors

s dh
Byi®r) ™ (/ I ”AMqu » A" )

(ii)) Si 0<g<o0,0<p<oo,s>0,, M<s<M+1,alors

/1

HfHB;’q(lR” (/ ‘h‘_sq ”AMHqu |h| )‘1

Preuve

Pour la preuve, voir par exemple [17], paragraphe.3.5.3

1.4 Les fonctions a p-variations bornées
Dans tout ce paragraphe / désigne un intervalle de R.

1.4.1 Notions générales

Dans ce sous paragraphe on donne les définitions des fonctions a p-variations bornées
V, (I) etles espaces BV, (I), BV, (I), de leurs classes d’équivalence avec la re-
lation d ’équivalence 1’égalité presque partout ainsi que I’espace de leurs primitives

BVP1 (I) , et leurs propriétés qu’on utilisera par la suite
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Définition 1.16
Soit p € |1, + 00 [, alorslafonction f : I — R, estdite a p-variations
bornées ou brievement a p-v b, si pour toutes les suites réelles, finies et strictes

to <t; < ... < ty, de I, il existe c > 0, telle que

\f (tr) — f (t_1)]? < P, oubien si

1=

N
wp[§jvaw—fuhnf < o0
{tk}CI k=1
— On dénote I’ensemble de ces fonctions par V,, (1), (V, si I =R), etle minimum
de telles constantes ¢ par rapport a f parv, (f, I), (v, (f) si I =R)
N
vy (f, I) = irclf {c > 0: Z If (te) = f (t_1)|P < P {titicicn C ]} .

k=1

La Définition est équivalente au fait que pour toute famille d’intervalles disjoints

I, = [ag,bx] C I, ona

O 1f (@) = fF)")? < e < o0, (¢ > 0).

L’espace V; (/) ou simplement V (1) est appelé ’espace des fonctions a variation born

ées sur [ et V., (I) est un espace de Banach pour la norme

[ ety = Voo (s 1) = sup |f ()]

zel

Définition 1.17
Une fonction f : A— R", A C R", estdite v-Lipchitzienne, v > 0 , d’ordre o, 0 < o < 1, si
et seulement si

|f (@)= fW)] S vle—yl*, pour tout wx,ye A

17



L’ensemble de ces fonctions est noté Lip, (A) , (Lip, si A = R™), on dit aussi qu’une
fonction est Lipchitzienne si elle est  -Lipchitzienne, pour un certain v > 0, et on

munit Lip, (A) de la norme suivante

||fHLipa(A) _ sup |f(l') — f(y)| '

(e}
z,Y€A, x#y |z —y

Une fonction f: A— R" est dite localement yv—Lipchitzienne si a tout point en A

il existe un voisinage ou f est y-Lipchitzienne. Il faut remarquer que

B3*(R) =C°(R) = Lips(R) , si0<s<1

Proposition 1.18 /2/]
Pourtoutx, y € I etp € [1, + 00], chaque élément de V, (1) est une fonction bornée,

de plus V, (I) devient un espace de Banach s’il est doté de la norme suivante
1£llvy 0y = sup1f (@) + 2 (. 1) (1.6)

Preuve

Par une suite avec seulement deux termes, nous obtenons

\f (te) = f (te—1)[” < (v, (f, 1))’ ,pour tout ty,t,_,€1.

Sionprend t,_y =0,ett, =z, alors |f(tx) — f(0)] <, (f, I),

dou  [f(z)] = [f(t)—F(0)+ f(0)
< 1f () = FO)] + 1 (0)]

< vy (S 1) +1f(0)]=C < oo,

et donc chaque fonction de V, () est bornée, et la norme (1.6} vérifie toutes les con-

ditions rendant V, (/) un espace de Banach.

18



1.4.2 Les fonctions a p-v.b comme distributions

Définition 1.19 [2/]
Soit p € [1, 4+ oo |, nous dénotons par BV, (I), [’ensemble des fonctions f : R— R

telle qu’il existe une fonction g €V, (I) qui coincide avec f presque partout,

BY,(I) = {f:1—R; 3geV,(I), telque f =g (p.p)} .

etonpose ¢, (f,I) = inf{y, (9,1) ; g€V, (I), telque g =f (pp)},

— Nous dénotons par BV, (1), 1’ensemble quotient par rapport a la relation d’équivalence

” égalité dans BV, (/) presque partout”, telles que

f = {9eBV, (), telqueg=f (p.p)},

et BV, (I) = { f telque feBY, (1)}=va (I) Je.p.p

- Sih € BV, (I), nousdénotons par e, (h,I),lenombrec, (f,I), pour n’importe quels des

représentants f de h.

Définition 1.20
Soit f : I — R, une fonction ayant des discontinuités seulement du premier type, alors on dit

que f est normalisée si

(f(z) + f(z7)), pour tout x€ },

N =

et f(x) = lim f(y), pour tout ye€ INIl,
y—x, ye;

on Ol =1 \I est la frontiere de I , I est ’Adhérence, et I est 'Intérieur , tel que

flz¥)y= lim f(z+h), et f(x)= lim f(z—h)

h>0, h—0 h>0, h—0
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Proposition 1.21 /2/]

Si f estune fonction dans V, (1), alors la fonction f définie par

f(@ = %(f(ﬁ) + f(z7))  pour tout x € }, et
f(x) = lim  f(y) pour tout x € 1IN,
y%x, ye;

est normalisée, et appartient a V, (1), et satisfait les inégalités suivantes
Vp(f7]>gyp<f7l)7 et Sl;p|.f| Ssgplf’

Preuve

Pour la preuve voir 2], [3]

Proposition 1.22 [2)]

Soient p € [1,+00], et f € BV,(R),alors f aun représentatif normal unique fe V,,

tel que ey (f) = v, (f).

On considere donc I’espace BV,(R) comme un espace de Banach des distributions,

doté de lanorme suivante || f||py, &) = & (f) +[[fllc = v(f f) + sup ‘f ‘ , Sip < oo,
zeR
et W lsvee = Il =sup|f (@)
z€eR
Définition 1.23

Soitp € [ 1, + oo |, alors toute fonction f : I — R, appartient a BV;} (1), s’ils existent

a,z9 € R et g€ BV, (1), tel que pour tout x € I, on ait

f(ac)zoﬁ—/xg(t) dt (1.7)

Zo
Si (1.7) est vérifiée, alors f est une fonction de Lipchitz continue et nous dotons
BV} (I) avec la norme 1 gy = 1 @o)l + [/l v,y » pour laquelle BV} (I)
devient un espace de Banach, et a chaque point xy € I, nous lui obtenons une norme

équivalente .
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Proposition 1.24 /3)]
Pour tout intervalle I de R I’espace V, (I), p > 1 estun espace d’algébre de Banach pour la

multiplication ponctuelle des fonctions, tel que

Hf-guvp(l) < Hva,,(I) : HQHVP(I) . pour tout f,g€V,(I).

Preuve
Soit g < z1 < ... < x,,, une suite finiedans [ et f,g € V, (I).

Puisque p > 1, et en utilisant I’inégalité de Minkowski on obtient

P

(i |f9(z;) — f-g(l‘j—l)|p> <

p P

(iumw@u»—m%AMﬁ +(iw@fnuwa—ﬂ%4mﬂ

D=

N N
< sup |- g () = gla;-))P)7 +Sup\g\ DI (25) = Flzga)P)
I j=1 j=1
< 81I1p|f|.yp(g,])—|—81}p|g|.yp(f,l), d’ou

vp(f.9,1) = sup (Zlf-g(fﬂj)—f.g(xj—l)\”> < St}plfl.Vp(971)+81}p\9\.vp(f,f), et donc

1f-9llv,y = Vp(f-g,I)JrSl;p!f\-sgp\g\S St}plf!-vp(g,l)+St}p!9!-vp(f,f)+sgp\f!-Sgp!g!

< sup|f]-vp(9, 1) +suplg|. vp(f, T) +sup |f]. sup|g| + [v(g, [). (S, D)]

-~

>0
= (sup 114500 (suplal + 0. )) = 1l lalhyn
et on déduit donc que

||f-9||vp(1) < ||f||vp(1) ~ ||9||vp([) , pour tout f,g€V,(I).
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Chapitre 2

Composition des opérateurs dans les

espaces BV}} (1)

Dans ce chapitre on donne un rappel de quelques notions de base concernant les opérateurs de
composition, ensuite on présente les propriétés des espaces B V;} (1), ou I est un intervalle de
R, puis on présente quelques résultats fondamentaux du calcul fonctionnel sur ces espaces,

ensuite on présente deux Théoremes fondamentaux et , dis aux travaux de [2] .
Enfin on donne notre contribution a savoir, le Théoreme qui est une généralisation d’une
inégalité fondamentale, (Théoreme , en se basant sur le Lemme qui est un algorithme

donnant la dérivée de la composition de n fonctions.

2.1 Rappel

Définition 2.1
Soit E un espace fonctionnel et soit ¢ une fonction réelle a valeurs réelles, on définit I’opérateur

de composition Ty , associé a ¢ par
Ts(f)=¢of, pour tout fekE.

En général, T, estnon-linéaire, et le Probleme de composition (Superposition) des
Opérateurs ( P.S.O) pour E consiste en trouvant I’ensemble S(F) des fonctions ¢ réelles a

valeurs réelles telle que 7, (F) C E
S(E) ={6: R—R ;  T,(E)CE}.

SiT, (E) C E, alors on dit que ’opérateur de composition T, : £ —E opere sur ’espace

fonctionnel F .
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Remarque 2.2 [2)]
On convient de dire qu’ un opérateur de superposition, Ty : FE——FE satisfait la propriété

d’inégalité des normes de composition pour un espace normé F s’il vérifie
1Ty (9)lg <cr L+ llgllg), (e >0) pour tout g€ E .

1l faut remarquer que si un opérateur de composition satisfait la propriété d’inégalité des normes

dans ’espace normé E, ceci implique qu’il opére sur E.

2.2 Propriétés des espaces BV (I)

Dans tout ce qui suit / désigne un intervalle de R .

Tous les résultats de ce paragraphe sont diis a [2] et [3]]

Proposition 2.3 /3]
Si f e BV;} (1), alors f peut étre prolongé d’une maniére unique a une fonction dans BVp1 (I_ )

avec la méme norme de f dans BV, (I).

Preuve

Pour la preuve voir [3]].

Par la Proposition ci-dessus, et I’exploitation des transformations affines, 1’étude des espaces

BV} (I) peut étre réduite aux trois cas suivants :

[ =R, I=[0, +oo[, I =[0,1].

Proposition 2.4

La propriété d’homogénéité
Hf (A (.))/Hva =\ ||f'||BVp , pour tout A >0
est vérifiée pour chaque fonction f dans BV, (R) ou BV,}([0,+00) .
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Ainsi les espaces BV, (R) et BV,/([0, +oc[) peuvent étre vus comme analogues a I’espace

homogene de Sobolev
Wi (R)={f: feL’(R},

doté de la semi-norme || /|| ,, et quant a I’espace habituel de Sobolev W' (R) qui est non
homogene W'? (R) = W' (R) N L? (R),
Proposition 2.5 /3]
(i) BV} (I)N L (I) = BV,} (I) si et seulement si I est borné

p

(ii) BV, (I)NLP(I) s’injecte continiiment dans BV,,(I).

Preuve

Pour la preuve voir [3]]

Théoreme 2.6 /3]

BV} (I) WLP (I) est un espace d’algébre de Banach.

Preuve

Pour la preuve voir [2]] et [3]

Proposition 2.7 /3]

Soit I un intervalle compact de R, alors on a les suivantes propriétés de multiplication
Sif,g€ val (R), et supp (g) C I, alors f.g € val (R),
en outre il existe ¢ > 0, tel que pour tout f,g € BV;} (R), supp (g) C 1, onait
||f-9||va1(R) <c ||f||BVp1(R) ||9||va1(R)

Preuve

Pour la preuve voir [2] et [3]
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2.3 Solution du S.O.P dans les espaces BV;}(I )

Les Théoréemes et sont dds a [2] .

Lemme 2.8 [§]
Soienta, b, c € R, a < b < c, et soit h une fonction mesurable définie dans |a, c| a valeurs

réelles telles que

b
/h(x)da: > 0, et

/ h(z)de < 0,
b
alors ils existent u, v € |a, c[, tel que

h(u).h(v) <0

Preuve
En appliquant le théoreme de Bonnet (second théoreme de la moyenne pour les intégrales) a la

fonction % sur I'intervalle [a, ] alors il existe une valeur moyenne (h), ;; = u € |a, b[ , tel que
b b
/h(m)dx = h(u)/ ldz

= h(u)(b—a),

b
et puisque / h(z)dx >0,etb—a>0,alors h(u) > 0, de méme pour I’intervalle [b, c], il

existe une valeur moyenne (h)y, , = v € ]b, c[,
tel que / h(x) dz = h(v)(c—Db),
b
et puisque / h(z)dx <0,etc—b>0,alors h(v) <0,doulexistence de u, v dans |a, c[ ,
b

tel que h(u)h(v) <0
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Théoreme 2.9 [2l] (Inégalité de Base)

Sipe[l,4oo[ ,toel,aec R, heV,(I), tel que

g(t) = oH—/th(a:) dz, f €V, (g(1)) ,alors

to

vp((fog).-hI) < v (f,9(1)) -(sgp |B] + 2.1, (B, 1)) + v (B, 1) -sup 11, (2.1)
1(Fog)-hllyay < 2Py, oy - 1P, - (2.2)
Preuve
1) Ona in 0g)-h(t;) = (feg). h(tj-1)l = kki: [(fog)-h(tesa) — (fog). h(tw)]
k=N-1 7
= 2 [f o g (tisr) = (fog) (te)]-h (tk) + f o g (Lerr) - (R (trsr) — B ()],

d’ou par I’Inégalité de Minkowski

P

<Zl(fog)~h(tj) - (fog)-h(tj—1)|p> < A7+ B,
telles que A = I[f 0 g (tera) — (fog) (te)] 2 (te)]”

et By = [ 09 (tha) - [h (trea) = h (8]
Puisque |f o g (tgs1)| <sup|f|, pour tout k € N, alors
9(I)

BE < (sup 1. S [h(tesa) — b8V < (sup | f)vp (e 1) -

g(I) =0 g(I)

Il existe une suite 0 = ng < n; < ... < ny = N |, telle que pour tous les indices j =1, ..., J ona

27



(i) Larestrictions; de (g (tx))o<pen @ {k},, | <p<n, ren > €St monotone.

(i) Larestrictionde (g (tx))o<p<y @ {k},, <x<p,+1>0'est pas monotone.
D’ou [0, N] = [ng,m - ]_] U [nl,ng - 1] .. [nj_l,nj - ]_] .. [nj_27nj_1 - 1] U [NJ_17TLJ - ]_] .

Posons A; = As + B, |, telles que

J—1 nj—1

Ay = SN F (g t) = F @)k (P

jzl k::n]-_l

ny—1

et By = Y f(g(tesn) = f (g ()" [ (t)"

k=nj_1

-Si J#1, alors By < vE(f,g(I)).suplhf’
I

et
J—-1
A < (g (D). 3 [hit)[

Il existe toujours un certain a; € |ty tn, 1], telque  h(a;).h(ty,) <0.Sih(ty,) =0ousih
change de signe a I’intervalle }tkj s b4 [ le résultat est direct sinon on peut considérer une
fonction / définie & partir des fonctions de la forme, +h telles que

b T
~ J ~
/ h (z) dz >0 et / h (z) dz <0, oub € |ty bty [,
kj b
alors selon le Lemme , ils existent a’;, a} € ]tkj stnj 11 [ , tel que

h(d}).h(a]) <0,

doit V j=1,....0 =1, 3a; €ty tu, 11 : h(ay).h(ty,) <0,

J—1 J—1
telles que ST =3 )B(tkj)‘p et v (h,I) =v2(h, 1),
j=1 j=1

Soit M =max{meN: 2m+1<J}, alors
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2
> |at)|” si. J—lest pair,
j=1

221\:4 \h(te)|” + B (tr,,)|", si J—1 est impair,
j=1

Y

NE

2M M
d’ou Z ‘h(tk’g)‘p |h (tk’zl) —h (a21)|p + Z |h (tkzl—1) —h (a21—1) 8
J=1 =1

=1

etona A (tk, )" < | (te, ) = B(as-1)|”

Par les inégalités ¢, | <ty <t,,, et { <a; <tp41, pourtout j=1,...,J—1,0n

déduit que a; <t 41 <tn,, < kg,

-SiJ>4et j=1,..,J — 3, alors les intervalles [t,,,ay] sont disjoints, deux a deux pour
[=1,...,M., etlesintervalles [tk%l,ay,l} sont disjoints deux a deux si J est impair, tel que
l=1,...M+1.

—Si J estpair, alors

=B
A
M=

VAN
)
AN
s
—~
>
~
N—

d’ou |h(te)|” < 208 (h,1).

Puisque (s;) est monotone et p > 1, et vu les inégalités ci-dessus on a

1/p
(700 h) < vy (). (250D sup AP ) o (1, 1) s

g(I)

1/p
et (21/1@7 (h,[)+31}p\h\p) < (2YP, (h,[)+51}p|h]),

doi b(Foa)hD) € vy (fg (D). (200, (1) -+ suplb] ) + 0y (1. 1).sup ]
g(l

2) L’inégalité (2.2)), découle directement de I’inégalité (2.1)).
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Théoreme 2.10 /3]
Soient deux fonctions fi(x) et fo(x) définies, continues et dérivables sur un ensemble compact de

la,b], telle que fi(x) = fi(x), (p.p) alors fi(x) — fo(x) est une constante

Preuve

Ce théoreme est dii a De la Vallée-Poussin, et pour la preuve voir [[13]]

Théoreme 2.11 /9]
Soit ) C R" un ouvert, et soit f : Q—R", une fonction Lipchitzienne, alors f est différentiable

presque partout sur §) , de plus les assertions suivantes sont vérifiées

(i) [ est différentiable presque partout sur I’ensemble L (f) tel que

L(f) = {zeQ: Lipf(z)<oo},

on Lip f(z) = lim sup

(ii) Toute fonction f € WP (Q), p € [1,+00] est différentiable (p.p)

Preuve
Ce théoreme de Rademacher est une généralisation du théoreme de Lebesgue au cas
n=m=1, Q= ]a,b], aux fonctions a variation bornée, et pour la preuve voir [9],

I’assertion (7) est die a un théoréme de Stepanov et (i) a un théoreme de Calderon.

Proposition 2.12 /9]

Soit f : [a,b] —R , une fonction de Lipchitz, alors

f<b>—f<a>=/f’<t>dt,

de plus f . |[a,b] —R est absolument continue si et seulement s’il existe une fonction
€T

d
g € L'[a,b] telle que, f(z) = f(a) + / g(t) dt, x € [a,b] , et dans ce cas la dérivée d—i

a

d
existe pour presque partout x € [a,b] telle que d—f =g € L'[a,b]
x
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Théoreme 2.13 [2/]

Soit 1 < p < oo, alors les assertions suivantes sont vérifiées :
(i) Sif, g € BV} (R), alors fogec BV, (R), et
1 0 sy < 1 lsve (1+ 277 l9lpe )

(ii)) Soit f : R— R, une fonction mesurable de Borel, alors I’opérateur Ty opére sur
BV} (R) si et seulement si f € BV,} (R) .
Ce Théoreme [2.13] est fondamental car il résout le probleme de composition des opérateurs
telque  S(BV)(R)) =BV} (R)={¢: R—R ; T, (BV, (R)) € BV} (R)}

p p

Preuve

. . 1 . . . . 2 N
(i) Puisque [, g € BV, (R) alors f, g sont continues et Lipchitziennes et par le théoréme de

Rademacher elles sont différentiables presque partout et on a donc

(fog) (z)=(fog).g (z).

Par le Théoréme|2.10|de De La Vallee Poussin la quantit¢  (f o g) (:p)—/ f(g) g (t)dt
0

est une constante et en appliquant la Proposition [2.12{, on obtient

(f og) (@) = (f og)(0>+/0xf'(g(t))g’(t) .

Puisque f’, ¢’ € V, (R), alors nous pouvons appliquer le Théoréme, et nous concluons

que (f'og)g" €V, (R), tel que

I ong vy < 277171, o 191, b < o0

—~—

Ona 1700l ~ 1foa@)l+|(Fooy|,
< Up || (fY &)
S Afegl+ 27 {[(|, M@y, -
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Posons g (z9) = o, on a alors

f/

~ 1
< = ~/
170 0llsvye S |7 wo)| +27 |7 18T,

]E/

!

1
+27.
)

7

- (19T, 5y + o o) )25 (1 o)l + 13l s ) -1 (o)

~ 1 ~ 1
Pl ) [142 (l0 G0+ 180h,0)] % 1wy (142 Igllaryin)
P

Vp(R

f (%o)
|

1 (o)l + |

<
<
d’ou
1 0 9l S 1 lovsa (1+ 277 l9lsuie )
(i)
- Si f € BV} (R), alors selon (i)

If OgHBVpl(R) S HfHBVpl(R) (1 + 217 HgHBVpl(R)> < oo, pour tout g € BV, (R),

dod fog € BV, (R), pour tout g € BV, (R)

etdonc f opere sur BV, (R)

— Si f opere sur BV} (R) alors Ty (BV}' (R)) € BV, (R).

p — p

Ona idg () = =

xo

= x0+/ 1dt, telque 1 € BV, (R),

o
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de pIUS, ||idR||val(R) ~ |f(l‘0)| + H(idR),”BVp(R)

~ ol + [l gy, )

Q

|wo| 4 (1) + sup [1
z€R

= |zo| +0+1 < o0,

d’ou ide € BV, (R),
et donc f = [foidg =Ty (idg) € BV, (R)

2.4 Enoncé des résultats

Dans ce paragraphe , nous présentons le Théoreme [2.15], qui représente notre contri-
bution, a savoir une généralisation de 1’'inégalité de base introduite dans le Théoreme
2.9 ( [2]) par le Lemme [2.14], donnant la dérivée de n fonctions, suivi de I’exemple

[2.16] pour affirmer les résultats obtenus et on convient de prendre

gnOGgn+1©: 0G0 0>gnm, si mZn

=m

B id si m<n
et

i=m Ay X Ay XA, si m>n

[+ -

i=n 1, st m<n
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Lemme 2.14 (Algorithme de base)
Soit (I1.)y< <, une suite d’intervalles de R et soit (g1.), <<, » une suite de fonctions dérivables

telles que g : Ip— 11, alors

voz2: [Tl =g, XH{% (] 20Y )1 ﬁ{ (a =41 J)]

i=1

Preuve
Pourn=3,0na (g10g2093) = (g10(g2093)) = (g2093) x (g} 0(g209))
= g3 x (gh093) % (g10(g2093)) = g5 X (g1 0g2093) X (g5093) -

Par récurrence, supposons qu’on a pour n termes

(g10920...09n) =gl X (¢ 0920 ...0¢n) X ... X (g}, © Grt1-- © Gn) X co. X ghy_1 0 G -

On déduit que pour n + 1 termes, en prenant comme 1n°™ terme (g, © gni1)

(1o 0(gnognin)) = (gnognt1) X (6100 (gn 0 gns1)) X oo X Gy © (Gn © Gnt1) -
PUisque (gn © gn+1), = g;H—l X (g; © gnJrl) ,alors
(910920...0(gn0gnt1)) = Ghi1 X (910..0 000 Gns1) X coe X Ghh_1 0 (1 © Gnt1) X (g}, © Gns1)
d’ou
i=n-+1 / i=n / , i=n /
B8] = (o] = b [F] o

n—1
j=n
= Gh % [g; x Hgé 0 (j_gH gj)] © Gt
= o1 X (95 0 Gnt1) [H g; 0 ( ) Ogn+1]

n—1
i n+1
= gny1 X 97/1 O Gn+1 X ng{o (; S g])]

i=1
. ’ J n+1
- gn+1 X ng (] H—l )] .
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Théoreme 2.15

Soientp € [1,400[ , n>2, heV,(I), tellesque pour tout tel , t,el,

(1)

(i) On a selon le Lemme|2.14|,

Et

o (30) 0

d’ou

IN
V]

=n /
2ol

V(1)

Vp(I)

IN

]nl
]H—l

Vp(gnfl(gn(l)))

Vi(gn (1))

<2, (0,
P i

Vp(f)

’; (t) = « —|—/ h(z)dx et feV, (ET‘% (])) , alors

Jetife ()

a€eR,

Nl xHIlng (8, 0e0)
l=k+1

) <0 H LNE

Preuve

Vp(gn—1(gn(I))

35

<]n3

X \gh-1lly, gy

)

Jj=t+1

)

'o j_
Yi —z+1 Yi

Vp(gn—2((gn-1(gn(1)))))

/

X Gn

)

Vp(I)

X ||97/1—2 va@nfl(gn(l)))



De proche en proche on obtient

o Tt (/5,9

27 1lgally, XH”ng w(

, selon le Lemme [2.14]

V(1)

IN

B aD)

D’autre part on a par récurrence

1=n—+1 / i=n / =n ! /
el = [l(Ea)ean]] = ||(Ea) cmn] <o
= =t Vo(I)

i=1
/
X H g +1va 0 selon 1} du Théoreme
Vp(gn+1(1))

27 2r 19701, gn 2 (1) Hllng (

Vp(I) Vp(I)

IA
o

IN

e(gn+1(1))> 8 ||g;l+1HV”(I)

l=k+1

= 2¢ ||ghally, ) % [HHng w(,3

x |ld’
Z(gn+1(1))> ||gn||vp(gn+1(1))]

l=k+1

= 2 Hg':z—l-IHVp(I) X g ||92||V ( i (I))

l=k+1 ¢

i—n /
(ii) Puisque h(t) = (Z‘?—)1gi (t)) , et selon 1| ona

[l7o(ta)] <

bl

Vp(I)

i=n /
(5 9)

< ol/p . >
Vo(I) HfHVp(i_gl gi(l))

< [21/p||f|| (_ gi(1)>] [ Hg”HVP XHHgk“ ( gz(f))]

= 2% Hf”vp(i:gf ) 19nlly, 1) XHHng (Z ngg(z))
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Exemple 2.16

* Pourn =2, soit g0 g, = h, alorsona

1
@ [[(gr092)]],, 1y = llgs x (910 92)lly, 0y = Mgt 0 92) % Gallv, 1y < 27 Ity (guinyy 19211y,
.. 1 1 ,
(i) [|f o (910 g2) % h”vp(f) < 2r Hf“vp(glogz(z)) Hthp(z) =27 ”fHVp(glogg(I)) H(g1 ° g2) va(l)

1 1
< [2” HfHVp(glogg(I)):| : [2’7 Hg;.HVp(gg(I)) Hgéuvp(z)}

< 2 I\fllv,,<91092 i 1911, (o 1921, 1)

etona 2 ||f|| ( ) 19211y, (1) H ||gk:|| (

2
)= 20 £ 11y, 91090y 19211, 1) 1911y, (g )

{=k+1

* Pourn =3, soit g1 0gs0g3=h, alorsona
@)
(g1 © g2 093)/va(1) = {|((g1 0 92) 093)/va(1) = ||g5 % (g1 0 92) OQSHV = || [(91 0 g2) 0 gs] x 93HV o (1)
< 2 H(gl o 92)/“\;1)(93(1)) Hg:/%va(j)
1ol / /
< 20 (25 68, gutgucon 19810, ato | 1950t

2
= 2 Hg,lHVP(gQ(gg(I))) HQQHVP (g3(I Hgéva
3—1

etona 27 =2
Mok Tk ) = 2 Il I)Hngkn (3 p0)

L=k+1

= 210 H93va H91“ (Z e 1)) H92HVP(£3W(I)> = 217 ”93”\),,(1) Hglnvp(gong(I)) HQQHVP(gg(I))
1

(ii) |[f o (g1092093) % thp([) <2 ||f||vp(91092093(1)) ||h||vp(1)

1 /
= 2 ||fHVp(gloggogg(I)) ||(g1 ©g20 g3) HVp(I)

IA

2% 23 / / /

HfHVp(gloggogg(I)) b ||93||vp(1) H91||vp(gzog3(1)) ||92||vp(g3(1))
3

< 20 ||f‘|vp(gloggog3 ||g§||vp(1 ||91||vp(ggog3(1)) ||9§”v,,(g3(1)) .

D’autre part puisque ,
part puisq H||9k|| w2 a0) lgll,, (3 >||92|| v 3 )

3 3
alors 27 ||f]| (2 = 25 I llv, 1020002 195, 1) 1981, ooy 198 vy
4 i

/
(I)) ||93||vp H ||9k|| (Z k+lge(1)>
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Chapitre 3

Composition des opérateurs dans les

espaces de Besov homogénes B, (R")

Dans ce chapitre on présente d’abord un rappel de quelques notions de base, puis on
définit les normes des espaces de Besov homogenes, et leurs réalisations ainsi que le
calcul fonctionnel en présentant deux Théorémes fondamentaux ([3.12) et , en-
fin on donne une extension du Théoréme de Peetre ( , ainsi que sa démonstration

en introduisant certains espaces fonctionnels en se basant sur les travaux de [2], [3] .

Définition 3.1
Soient (X, ||.|Ix), (Y, |.|ly), deux espaces vectoriels normés, on dénote par X — 'Y [’injection

de X dans'Y qui est définie par les conditions suivantes
(i) X est un sous-espace vectoriel de'Y
(ii) L’identité J : X —Y, telle que J (x) = x, pour tout x € X est continue

En étant linéaire la continuité de 1’opérateur identité est équivalente a I’existence d’une

constante C' > 0 telle que
Iflly <Clfllx , pour tout fe€X, 3.1

- Si (3.1) est vérifiée alors on dit que X s’injecte dans Y, et on dit que I’espace X est

plongé dans Y, s’il existe un opérateur continu, U : X—Y tel que

HU(f)HY < CHfHX ) pour tout f € X,
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Définition 3.2 [74)]
Soient Ag et Ay deux espaces quasi-Banach compatibles plongés dans un espace localement

convexe de Haussdroff, on pose A = (Ay, A1), telles que

DA = Ao+ A alya, = inf (llaolly, + llaally,)

a=ap+ai

et

A(A) = Agn Ay, HaHAomAl = 1max (HaHAoaHaHAl)’

acApgNAq

et on définit pour chaque t > 0, les fonctionnelles de Peetre

K(ta) = it (laolla, +tlarlly,), pourae " (4)

et

J(ta) = max(lall,, . tllall,) . poura€ A(A).

La fonction t — K (t,a) est positive, croissante et concave,

pour chaque 0 < 6 < 1, 0 < p < oo, on définit I’espace d’interpolation (A) des

0,p°

espaces Ay et Ay, par

(A, = (Ao, Ay, ={a€d (A ¢ all,, < .

et on définit sa quasi-norme par

1
< de\» .
i, = ([ K00y E) sty <o

et

HGH(A)G’ = sup t°K (t,a).

o 0<t<oco

La quasi-norme de (A), »» peut étre remplacée par la norme

folgen ([ 0 C0) )

39
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Théoreme 3.3 [[/4]
Soient (Ag, A1) et (By, By) deux couples compatibles d’espaces de Banach, ou I'opérateur
linéaire borné T plonge A; dans B; (i =0,1), telles que

T lpy < Mo 7Ly -t 175, < My L,
alors pour tout 0 < 6 < 1, 0 < p < 400, lopérateur I' plonge [’espace d’interpolation
(Ao, A1)y, dans Uespace d’interpolation (Bo, B1),, , telles que

HTfH(BO,Bl)gW < My ||f||(A0,A1)97p , et My < My~ My,

Preuve
De ce principal Théoreme dérive tous les classiques théoremes tels que ceux des
interpolations de Riesz-Thorin ou Marcinkiewicz, et les inégalités classiques telles que celles de
Young et de Bernstein et pour la preuve voir [12] , ainsi que la monographiede Peetre [[14] Chap

1

3.1 Probleme de Composition dans des espaces de Besov
homogenes 57 (R")

Dans ce paragraphe on étudie le calcul fonctionnel dans les espaces de Besov ho-
mogenes et on introduit les espaces qu (R™) définis grace a I’ensemble des distribu-
tions tendant vers 0 2 I’infini Cj (R™), ce qui facilite énormément le calcul fonctionnel

en permettant la troncature des polynomes.

3.1.1 Propriétés des espaces de Besov homogenes

Soit 7/ une fonction indéfiniment différentiable, paire et positive, dont le support soit

un compact de R™\{0}, et telle que

D 4 (2¢) =1, pour tout £ #0. (3.2)

JEZ.
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L opérateur ), : S’ (R") — S’ (R™) est défini par I’identité

—

Q;if () =v (278 f (&), (jez)

Définition 3.4
Soient s € R, p,q € [1,+00], alors 'espace de Besov homogéne é;’q (R™) est I’ensemble des

classes de distributions f € 8" (R") /P (R") tel que

1/q
Byimn) — (Z <2js ||ij|’p)q> < 400. (3.3)

JET

/]

La norme (3.3), rend B;’q (R™) un espace de Banach homogene, vérifiant les pro-

prietes d’homogeniété, telles que pour tout A > 0, et pour tout a € R™, on ait

7o f[ -5 = |[f[] .o ) (3.4)
B, (R") B, (R")
c . < \/p)—s XD s <ec s , 3.5
gy < PO, <@l 3.
s s / .,
On peut remplacer la norme ||—|| g+.0 (s , par une norme équivalente ||—||", qui vérifie

(3.4) et améliore (3.5) , en remplacant la partition discrete (3.2)) par une partition con-

tinue telle que

A F DI = A pour tout A 0.

Définition 3.5

Soient p,q € [1,+00], si s € |0,1] alors on dénote par qu (R™) I’ensemble des distributions
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tempérées [ de L) = (R™) telle que || f|

Loc

a(h) dh\7
1l 5o @y ~ (/Rncjh—fsq)w) , si sF
1 » 1/p a dh /g
~ (AR<W<RH\f($+h)—f(w)! ) )W) ,

1 2\ dn\*
et 1/l ggomny ~ (/ (W( [V 7= =27 @ do) ) W) ,

avec des modifications éventuelles pour p = +00 ou q = 400,

BoI(Rr) < +00, avec

oiw (h) = ||f (x+h) — f(x)]|, dénote le module de continuité -
Sise |1,2], alors on dénote par B;’q (R™) I’ensemble des distributions tempérées f de L}, . (R")

Loc

telle que 0; f € B;‘Lq (R™) pourtout j =1,....n et on définit sa semi-norme par

1.f1

Bz_l’q(]R") .

By ~ ) 1071
j=1

On distingue entre 1’espace de Besov homogene é;’q (R™) inclus dans &’ (R") /Pu(R™)

de la Définition [3.4|et I’espace B;’q (R™) de la Définition [3.5|inclus dans L}

Loc

(R™) .

Lemme 3.6 /2]

Soient f € L (R"™), a € R", A > 0, alors 'espace B;’q (R™) vérifie les propriétés d’homogénéité

Loc

suivantes

1 (- = a)l

BY(Rm) = )\(n/p)is Hf ()‘ ())’ By (Rn) = Hf’ B9 (Rn) 0

de plus || f|[gzo@ny = 0, si et seulement si [ € Py (R")

Preuve

— Pour s € ]0,1] onprendxz —a =y, donc on a dz = dy,

d’ou 1/ (- = a)]

ByU(Rn) — 1f] By Y(Rn)
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—Pours € ]1,2]on a

I (- —a)

San)—ZHaf HBSIQ]R") Z”afHle‘IRn = £l

S, Q(Rn

et ainsi par récurrence, pour tout s> 0

— Posons A\.x =y et A.h=t, alors
dy =A".dz, dt =\". dh, [t| =|N" . |h|,

en appliquant la Définition [3.5] on obtient
q 1/q
1 / . YP\T A de
35,4 (pny = I ——— A" fly+t —fypdy> n o n
B (/ (w i (Loreso-so Nl

= e

(Ve QN

BI(R™) 0
- Si HfHB;"Z(Rn) = 0, alors
flae+h)+ f(z—h)=2f(z) =
d’ott w? (h, f) =0, etdonc f est un polynéme du premier degré.

- Si ||f||B;7q(Rn) = 0, alors

10; 1

B;fl‘q(R") = 07 (] = 17 TL) s

d’ol par récurrence 0;f est un polyndme de degré [s — 1] = [s] — 1, et donc f est un

polynéme de degré [s]

Proposition 3.7 /2]
Soient s € R, p,q € [1,+00| alors I'espace quotient B;”q (R”)/P[S] (R™) peut étre identifié a
I’espace de Besov homogene qu’on peut dénoter par qu (R™) et peut étre pris comme 1’ensemble

des classes des distributions tempérées modulo les polynomes f € S’ (R") /Py (R") tel que
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0;f € B;_Lq (R™) pourtout j = 1,,..n, de plus I’expression suivante est une norme équivalente
pour By (R™)

/]

fragn D 193]

J=1

By (R

Preuve

Pour la preuve voir [4]
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3.1.2 Réalisations des espaces de Besov homogeénes

Définition 3.8

Soit o : B;’q (R") — S’ (R™)/ Py (R™) une application linéaire continue telle que o (f) = [f]
est la classe d’équivalence de f modulo P,, (R"™) , alors pour tout f € B;’q (R™), on dit que o
est une réalisation modulo P,, (R") de B;’q (R™), c’est un isomorphisme linéaire de B;’q (R™)

sur son image, tel que ’espace o (B{j’q (R”)) muni de la norme,

lo (NI = 111

By 1(R™)
devient un espace de Banach .

SifeS(R")/ P (R") etsilasérie Y Q;f converge dans S’ (R")/ P, (R™), alors on a

JEL

om (f) =2 Qif € S'(R")/ P (R").

JEZ
Définition 3.9

On dit qu’une distribution tempérée f € S’ (R™) tend vers 0 a ’infini si on a
: T\ / n
}\li%f()\) =0, dans S’ (R").
L’ensemble de telles distributions est noté C (R™) .

Si C' (R) dénote I’ensemble des fonctions réelles continues a valeurs réelles et Cj, (R)
I’espace de Banach des fonctions bornées de C' (R) muni de la norme sup et Cj (R) le
sous-espace de Banach des fonctions de Cj, (R) avec une limite a valeur nulle a I’infini
alors les distributions suivantes tendent vers 0 a I’infini.

— Les fonctions appartenant a Cj (R™) oua LP(R"), 1 < p < +oc.

— Les mesures boréliennes bornées.

— Les dérivées des fonctions continues bornées.

— Les dérivées des distributions appartenant a Cj (R").
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Proposition 3.10 /4]
Soit 1 < p < o0, telles que
1 1
0<s<l4+- e 1<qg<+4+0) ou (s=1+- e qg=1).
p p
Si on dénote par qu (R™), I’ensemble des distributions tempérées [ telles que

[f] € B;’q (R™) et 0;f € Co,pourj =1,...n,

alors tout élément de B;’q (R™) admet un représentant dans B:’q (R™) unique a I’addition prés

d’une constante et ’espace B3 (R™) , ainsi défini peut étre muni de la semi-norme de || —|| 55.4pn
p By (R™)

3.1.3 Enoncé des résultats

- iffé 54 B84 ny BS54 BS54
Dans ce sous-paragraphe on compare entre les différents espaces B, %, B B>, B,
concernant le calcul fonctionnel pour résoudre le probleme de Composition en précisant les

conditions li és a chacuns d’eux et en présentant deux Théoremes comparatifs [3.12] et [3.13]

Définition 3.11 /4)]
Soient p € [1,400[ et J un intervalle de R, alors nous dénotons par U, (J) , I’ensemble des

fonctions mesurables f : R—R | telle que

sup |f (z + h) — f (x)| soit mesurable sur J , pour toutt >0,
|h|<t

muni de la norme

LFIE, ) = supt™ / sup | (4 ) — f (@) d < +oo.
t >0 J|h|<t

On dit qu’une fonction continue f appartient a Uz} (R) , s’il existe une fonction

borélienne bornée h € U, (R) , telle que

f(z)—f(0)= /03? h(t) dt,  pour tout x € R,
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et pour toute fonction & bornée borélienne mesurable de classe U4, (R) , on munit U (R) de la

semi-norme

11y = int {sup 8]+ Ul b= 1 )| ~1£ @1+ 16 o+ 17 oo

et juste comme nous avons défini BV,(R) a partir de V, (R) (cf. Définition|1.19), nous
définissons aussi U, (R) a partir de ¢/, (R), en prenant les fonctions qui sont presque partout

égales au moins a un élément de U, (R), et nous dotons U, (R) avec la semi-norme

1l = inf { ol s 9€U®), g=F (p)}

Théoreme 3.12 /2]
Soient

1
p €1, 4+o0[, s E]O,1+5[, g€ (l,4], feU, (R)
(i) Si f(0)=0,alors Ty (B,*/PM1(R™)) C ByY/P (R,
et ||f o gll gream e gay < ¢l fluy@ 191l greasm gny » pour tout g € Byt (R

(ii) Si f(0) =0, alors Ty (B3¢ (R")) C B3 (R"),

et [1f 0 gll o < Il 9l gy - pour tout g € Byt (B

1

.14l L1+l oo
(iii) Sige By " (R) , alors foge B, T (R),

etlf ol it o < W lug (ll g o+ 120D (6> 0)

(R) (R

14l oo
(iv) Sige BV} (R),alors foge B;Jr”’ (R),
et [|fo 9|‘B;+%,oo(R) <6 HfHUg(R) ||9/HBVP(R) , (p>0)

Preuve
. PR 44 : s, n 1
Pour la preuve voir [2], le Théoreme peut se généraliser aux espaces 557 (R") , mais on ne

connait pas une généralisation au cas n-dimensionnel pour les espaces BI/;}
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Théoreme 3.13 [4)]
Soient

1
1§p<oo,q€[1,+oo],0<s<1+—ethU;(]R)
p
4l
(i) Sige B;Jr”’l (R™) , alors on a

fogl € BT (RY), 9 (fog) € Co (RY), (j=1,....1),

et o 1 < c 1 , (>0
17 00l pogo g < Mgl g (>0

(i) Si g € B;’q (R™), alors on a

foge Byt (RY), et ||fogllgsany < cllflluy 9l spany, — (¢>0)

Preuve

Pour la preuve voir [4] , page 13

3.2 Théoreme de Peetre

Lemme 3.14 [8]

Soit ¢ : la,b] — R, une fonction absolument continue alors

(6 [0h) = / ¢ (2)] de

N

oil vi (f.I) = sup > [f(t) = f (tees)|
{ti}C[ k=1

Théoreme 3.15 [14]

Soient 1<py,pp <0 , O0<q,qu<o0, 0<fO<l1

1 1- 6 1 1—60 6
= +—, == + —, alors
p Do P11 q do0 41

OQO ]Rn) 7 B;i’ql (Rn))

(i) Si s=(1—0)sy+0sy,

Bs ,min(q,p) (Rn SN Bs ;max(q,p) (Rn>

97
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(i) Si s=(1—-0)sg+0s;,0<0<1,reR, alors

(B (B7) By (R"),, = By (R")

1 1—-60 6
(iii) Si - = + —, alors
q do Q1
(B;(MZO (R") , B;l,rn (Rn))eq = B;q (R")
Preuve

Pour la preuve voir la monographie de Peetre, [14] Chap 5, P107. Le Théoreme reste vrai

pour les espaces de Besov homogenes .

Proposition 3.16 /2|

1
==l . .
(i) Soitp €]1,+00[, si g est un élément de By (R), alors g est une fonction continue et la

limite L, = lim g (z) existe dans R.
T—00
1

.11 .
En particulier, chaque élément de B (R) est congruent modulo Py a exactement un
élément de Cy(R) .

1

(ii) Soitp € [1,400[ alors I’espace B,?’l (R) N Co(R) doté de la restriction de la semi-norme

Il ,%,1( X est un espace de Banach isométrique a B;/p’l (R).
BY (R
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Théoreme 3.17 [2/]

Soit p €]1,+00[, alors on a les inclusions continues suivantes qui sont vérifiées

BYP(R) = (17 (R), BV (R),,, = (BVx(R), BVi(R))

1/pp 1/p,p

< BV, (R) = U, (R) = BY™ > (R)
Preuve
(1) Si on applique le Théoreme (i) en prenant
0=s=1/p,pp=00, s50=0,s1=q=qg=p =1, alors
By (R) = (BY (R), BY (R)pp = B (R).
et d’apres la Proposition[3.16], (ii) on a
BYP (R)NCy(R) ~ BYP(R) et BY(R)NC,(R)~ BY (R),

d'on BYP (R) N Cy(R) (Bg;} (R) N Cy (R), B (R) N Cy (R))

1/p,p

— Prouvons les injections

B (R) — W (R) — BV; (R)

—Si f € B} (R), alors en utilisant I’inégalité de Bernstein on obtient

> Qf

JEZ

1, < cR|fll,=cR

1

< R 2Qifll, = Clfllg

JEZ

~h>

ou supp(f) < {£eR": (] < R}
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T flinie < Clf s etdone  BY(R) < W (R)

—Si f € Wh! (R), alors f est absolument continue, et selon le Lemme on a

11| 7 w) (f >+sup)f } <21 (f,R) <2

zeR

P (@)] do <21 e

dod WU (R) < BV (R), etdonc BI'(R) = BV; (R).

— On prouve aussi que f)’gél (R) < L*° (R), carona

> Qif

JEZ

1l =

<D NQiflle = £l 00,
— en appliquant le Théoréme [3.3|d’interpolation on obtient
(B (R), By (R))jpp — (L (R),BVi(R))

1/pp>

d’od BYPL(R) < (L®(R),BV; (R))

1/p,p

(2) Si E est la fermeture de BV} (R) par rapporta L (R) , alors

(L>(R), BV1 (R)),,,,, = (£, BVi(R))y .5
et puisque F — BV, (R) alors
(E, B‘/l (R))l/p,p — (BVOO (R)7‘B‘/1 (R))l/p,pa
d’ou (LOO (R) ) B‘/l (R))l/p,p — (BVOO (R) 7B‘/1 (R))l/p,p

(3) On définit les normes de ’espace [ des suites finies {t:}, <i<n C R, par

o — 1Py N — .
Ity = (1P et it = sup e
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Considérons to <ty <..<ty , etsoitlafonction continue U définie par

U: BVi(R) — IT(R)

fo—= v =(F 0 -7 ) ,

1<k<N

nous avons alors

10Nl = sup | F () = (6 0) f (t)

1<i<N

< s (
1<i<N

IN

2 sup ‘f‘ =2 HfHBVoo(R) ’

o

=N

et 1Ay = Fte) = F (te )

k=1

ona (L*(X), L'(X))

3=

on obtient par le Théoreme [3.3|d’interpolation

U (f)“zjg’ <¢p HfH(BVOO(R),Bvl(R))

Y

5P

et puisque || f{| gy, (r) = i%f {a >0: HU(f)

<a, ,alors
v

1 5v, ) < e 1l By ), v )

Y

1,

ce quidonne (BV (R),BVi (R)). , — BV, (R)

1
P

4)

_|_

(m+1)t
Ona/Rsup\f(:c—l—h)—f(x)]pdx = Z/ sup |f (z +h) — f (x)" dz

[h|<t |h|<t

mez Y ™

f

< () < I fllsvie

(ti —1)

»= LP(X) , etsion prend comme cas particulier les espaces ! N

_ /0 S° sup | (y+mt+h) — f (y+mt)[P dy.

mEeZ |h|§t
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Pour chaque m € Z , y € R, il existe h,,(y) € [—t,t], tel que

F (o mt o B () = f (g )" 2 sup|f (y +mt +h) = f (y +ma)|” —27iml

Puisque la famille d’intervalles  {|y + kt,y + kt + h (y)[} est disjointe alors

/0ZSup|f(y+mt—l—h)_f(y+mt)|p dyS/O Z{If(y+mt+hm(y))—f(y+mt)|p+22—lml} dy

mez IM<t mez

t
< [0 +e) dy=t(@g(n+2)
0
Puisque > 0 est arbitraire, nous obtenons 'inégalité¢ || ||, &) < 2VP || f v, &) » ce

qui donne V, (R) = U, (R), et’on déduit que BV, (R) — U, (R)
(5) Ona pourtout g=f, (p.p)

_1 1
I gymmy = S0 [h Pt = s W} ,

< [sup t‘l/ (Sup Ig(w+h)—g(:v)|p> dw] = 9l ) »
t >0 R\ |r|<t

d’oi 1l gy < inf { Mol s 9 €U ®) . g=F @2)} =l
donc ||f||§;/p,oo(R) < [y,
ce qui donne U, R) — é;/ P> (R)
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Chapitre 4

Composition des opérateurs dans les

espaces BV (1)

Dans ce chapitre on donne les définitions des espaces V;' (1), BV, (I), des fonctions définies
sur les intervalles I de R a p-variation bornées d’ordre o et I’espace de leurs classes
d’équivalence par rapport a I’égalité presque partout, ensuite on étudie les cas particuliers
a=1- %, (p > 1) qui donnent les espaces W' (I) et on donne une généralisation du
Théorémede Peetre aux espaces BV, (1), 0 < a <1, 1 <p < oo,enfin on présente

quelques exemples sur des opé rateurs de compositions définis dans certains espaces fonctionnels .

4.1 Notions de base

Dans ce paragraphe on présente quelques notions de base sur les espaces V' () des fonctions a
p-variation bornées d’ordre « telles que p > 1, a > 0, ainsi que ’espace de ses primitives

BV (I) , pour généraliser certains résultats des chapitres précédents.

4.1.1 Les espaces V' (I)

Définition 4.1

Soitp € [1,+00] on définit la norme de ’espace I , des suites réelles finies {t;}, .y , par

i=N 1/p
It = (z W) C sipteo

HtinNw = sup || St p =00
L 1<i<N
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Définition 4.2
Soient p € [1, + 00 [, a > 0, alors une fonction f : I —R est dite a p-variation bornées

d’ordre o« ou brievement d p-v. b d’ordre o, si pour toutes les suites réelles, strictes et finies

to <t1 < ...... < tn,de I il existe c > 0, telle que
f@
Hf HUS) . (4.1)
(te — te—1)™ |2
N
N
te) — f (te—1) "
ou bien si le nombre sup S (t) = 1 ka ) est fini ,
ehickan, <6, | =1 (tk B tk_l)
I’ensemble de ces fonctions est noté Vi (I), (V; si ] = ]R) , et le minimum de telles constantes

cestnoté v5 (f, I), (v si I =R)

N
v (f, I):inf{c > O:Z
k=1

Remarque 4.3

fte) = f(teer)|”
(te — te-1)”

<P, pour tout {tk}lfkgnﬂtk71<tk C I}

— Nous convenons de prendre V) (I) =V, (I)

— La condition est équivalante au fait que pour toute famille d’intervalles disjoints

N P
lak,bk] , ar #bydelona Z S (ax) — f (br)

o (e =b)°

<c< oo, (¢ > 0)

— VY (I) ou simplement V* (1) est appel é I’espace des fonctions a variation bornées d’ordre

asurl, et V& (I) est un espace de Banach pour la norme

Ifllvemy = veo (f; I) = sup f (@)

zel {0}

’

etl’ona VS

(I) = Lipa(I), pour0 <a <1

Proposition 4.4
Soient v, y €1, p € [1, + oo, et 0 < a < 1, alors chaque élément de V' (I) est
une fonction Lipchitzienne d’ordre o, et V) (I) devient un espace de Banach s’il est doté de la

norme suivante

1f ey = Slé§’|f($>| + vy (f, 1) (4.2)
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Preuve

Si f € Vg (I)alors f est v-Lipchitzienne d’ordre o car

|f($) — f(y)
(z —y)"

et la norme (4.2) vérifie toutes les conditions rendant Vi (1) un espace de Banach.

| < vy (f, 1) pour tout x,y € I.

Proposition 4.5
L’espace Vy (I) est une algebre de Banach pour la multiplication ponctuelle des fonctions,
tel que ||f~9||vg(1) < ||f||v;(1) ||9||vg(1) pour tout f,g €V, (I)
Preuve

Soit 7y < z1 < ... < x,, une suite finie dans [ et f,g € V, (/) .Puisque p > 1 et en utilisant

I’inégalité de Minkowski on obtient

- (Sl (2i=2)) (e (P25 ) Up

j=1

=
N——
S

N 1 N 1

g9(x;) =gz ) |"\” flay) = flai) ")

< suwlfl. (; (a:;—xj,lj)a ) +supgl. (; (acj-—xj,lga )
< sgp|f!-v;§‘(g,f)+St}p|g|.V§‘(fJ), d’ou

vi(f.g,I) = sup (Z

p\ P
) < sup|f].v2(0.1) + suplg|. /(7. 1) . et done
I 1

1 -gllvery = vy (f-g.1) +sup|f| . sup|g]
1 I

IN

Sl;plfl ‘Vﬁ(g,f)JrSl;plgl .Vg(f,f)+81;p|f| .Sgplgl

IN

sgplf\-l/ﬁ‘(g,f) +Sl}p\g\ vy (f, 1) +Sl;p!f\- St}p\g\ +\[V§(9J)-V§(ﬁ f)l

>0

= (supls14 5500 ) (suplal+9506.0) = Wby lalhgen
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4.1.2 Les espaces BV;(I)

Dans ce paragraphe on généralise 1’espace des classes BV),(I) a I’espace des classes
BV (1) telle que 0 < v < 1, puis on dé finit I’espace des distributions BV*, telles

que « > 1 de leurs primitives.

Définition 4.6
Soientp € [1, + o0 |, 0 < a < 1, alors nous dénotons par BV, (I) , I’ensemble des

fonctions f : R—R, telle qu’il existe une fonction g € Vy (I) qui coincide avec f

presque partout.

BV?(I):{f:I—ﬂR : dg €V, tel que f:g(p.p)},
et on pose

en(f)=if{vg (9) ;  geVy telque g =f (pp)},

et nous dénotons par BV} (I) I’ensemble quotient par rapport a la relation d’équivalence,

"égalité dans BV, (I) presque partout”, telles que

f=A{geBVe) ;© g=f (pp)},

ot BVA(I) = { f . femw (1)}:51}; () Jepp .

Sih € BV (I), nous dénotons par €, (h) , le nombre &5 (f), pour n’importe

quels des représentants f de h.

Nous convenons de prendre BV (I) = BV}, (I)
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Proposition 4.7
Soientp € [1,400],0 < a < 1,sif € BVpa(]R) alors f a un représentatif normal

unique | € V', et nous avons

Nous considérerons donc BVp‘“(R) ,comme un espace de Banach des distributions

doté de la norme suivante

v = &5 () +]

Il faut noter que pour p = oo, on obtient

f ()

xa

”fHBVO%(I) ~ sup
zel /{0}

Définition 4.8
Soient p € [ 1, + oo |, a > 1, alors nous disons qu’une fonction f : I —R

appartient a BV;* (I), s’ils existent c,tq € R, et g € BV;‘*1 (I) tel que

flz)=c+ /xg (t) dt pour tout x € 1. (4.3)

o

Si (4.3) est vérifiée, alors f est une fonction de Lipchitz continue, et nous dotons

BV (I) avec la norme

1 lsugin = 1 @)l + 17 Lparar -

pour laquelle BV, () devient un espace de Banach, et a chaque point x, de I, nous

obtenons une norme équivalente .
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4.2 Les espaces W7 (Q), Q un ouvert de R"

Dans ce paragraphe on étudie espace W17 (Q) , ou 2 est un ouvert de R", qui s’avere tres
intéréssant compte tenu de sa régularité par rapport aux opérateurs de compositions. Voir les

travaux de H.Brezis [6]]

4.2.1 Propriétés des espaces W17 ()
Définition 4.9 [[/5]]

* Soient Q0 un ouvertde R", et 1 < p < oo, alors on définit l'espace W? (Q) par

WP (Q) = {u e LP(Q) ! (au sens des distributions) € LP (), i =1, n} :

0
’ al’z

* Onpose H'(Q) = W12 (Q) qui est muni du produit scalaire

Ju Ov
<U>"U>H1( Q) = (u,v) L2(Q) +Z <a$l 8x2> )>

1
2
LQ@)) .

et lanorme associée est ||ul| 1 () = (

&Ez
x L'espace W'? (Q) est muni de la norme
Hu”Wl P(Q) = :
illr@)
x* Si 1 <p<+4oo, alors
1/
au ’
||UHW1,p(Q) ~
Zill Loe)

* Si on note par g; = , alors u € WP (Q) si et seulement si

O,

VoeD(Q),Vi=1,.n ; 3g0 /gZ«p ,
axl Q
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Définition 4.10 /75

x Soient Q) unouvertde R", 1 <p<oo ,m>2,

alors on définit I’espace de Sobolev WP (R™), par

ou
8$7;

WmP(Q) = {u c Wt (Q) ; c Wb (Q), pour tout i =1, N} :

* Onpose H™ (Q) = W™2(Q) qui devient un espace de Hilbert,

s’il est muni du produit scalaire

(V) iy = Y (DU, D) 2 -

0<|a|<m

x L’espace WP () est muni de la norme

lellyms =Y 1Dl -

0<]al<m

Dlel

——————, alors on a pour tout u € L” (2)
Oxi*....0xom

x Si on note par g, = D%u =
u€ W™P(Q), sietseulement si VaeN' |af<m, 3Fg,€LP(Q), telque

/uDago = (—1)|a|/gag0, pour tout ¢ € D () .
Q Q

* Si Wol’p () dénote I’adhérence de D (R™) dans W'* (Q) |

alors on a inégalité suivante dite de Poincaré

Vu e WPQ) /wpsamf’/nwnp, ((@)>0, p=1.
Q Q
ou ou ou ou
N ou )
Ou Vu (axl,...,axk,....axn) , o er(Q), k=1,..n
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Proposition 4.11 /8]
Soit I = |a,b] tel que a,b € R,

et considérons une fonction f : [— R, et une partition P C I telle que
P ={x0,21,%2, ... 25}, ola =19 < X1 < Ty < ..... <z, =Db,
si on définit les sommes S (f,P), s(f,P),V (f,P) par

S(fP) = D swp{f(z) ; mp <w<ap} . (wp— o)

n

s(f,P) = Zinf{f(x) i o xp <z <z} . (mp— 1p1)

k=1

VI({,P) = | (k) = f ()| et v (f,]a,0]) =sup{V (f,P) ; P Clabl},

k=1

b
alors/f(m)da::inf{S(f,P) ;. P Cla, b} =sup{s(f,P) ; PClab]},

b
et si [ est absolument continue alors v (f,[a,b]) = / |f' (z)| da

Proposition 4.12 [6/]
Soient 1 <p<oo,seN,0<o<s, Q2 CR" alors on peut trouver des normes équivalentes

a lespace W*P (Q)) définies par

[T
1l = IF oy + sup — 2"
hER™ | h#0 ||

Lemme 4.13 /8]

Soit 1 < p < 00, alors pour tout intervalle I de R , on a

1—

W (1) =V 7 (1)
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Preuve

1

- Sife V;i” ([a, b)) , alors pour toute partition P = {a < xp_1 < xp < ...b},

1/p

o (ka_xk1"<|f<xk>—f<xk_1>|)p> .

T — Tpe
- [ — 71|
fixons la différence |xy — xx_1| = h, et considérons la fonction g, , définie

par g, (z) = (|f (x + h) — f (z)|)" , alors selon la Proposition ona

b
/ gn (x) do = Plcr[lfb] {ngp {on(x) 5w <o <z} (o, — wk—l)} , d’ot

/ (Uf e+ h) = F @) <3 e — mua] (1F () — £ ()l

k>0

en divisant par |z, — x,_1|", les deux cOtés on obtient

D=

(1 (2 1) = F ()] da T
/a |h|p Z|xk _1| ’f( lc) f( kfl)’)p < ||f||vl—

k>0 |2 = Tp

1
7!

et donc V;ig (I) cWwhr(I).

— Considérons une suite d’intervalles disjoints [ag, b] de I, on peut toujours choisir une sous suite

d’intervalles telle que [a},, b,] C [ak, bi] , |0, — ai| = |h| # 0

Si f € W (1), alors on a selon la Proposition 4.12]

1/p
Z(If(bk)—f(ak)l)p] O (1 (an+h) = £ (ar)))?

k>0 k>0
bk —ax| 7 [h] 7
b
x+h) — f(2)])P do)/?
_(fWern—s@ e,
) nl LA

1

1
avec 0<o=1—-<1,car p>1, dou Wl’p(I)CV;”(I)
p
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4.2.2 Composition dans les espaces W7 ()

Corollaire 4.14 [15]
Soient G € C*'(R) , G(0)=0, 1<p<oo, ue W' (I), alors

Goue W (I) et (Gou) = (G ou)u

Preuve
Par le théoreme des accroissements finis on a

|G (s) = G(0)]

|S—0| < 1SUPPG(S)'HG/“00 :

Si G (s) =0, le résultat est immédiat, sinon 1., ¢ (s) = 1, et puisque G € C* (R) alors

|G’ < c<oo,etenprenant M = ||ul|;~ ,donc pour tout A/ >0, ona
Vse[-M+M], |G(s)| <cls| <cllullp
or lullpe < lullyry , ¢ >0,d0b
|G oul < cllull oo < ¢ lullyr, < oo,
et puisque u € LP (I), v € LP (I), alors
Goue LP(I),(Gou')u € LP(I),

et du fait que 1 < p < oo, alors il existe une suite u,, de D (R) telle que u,, — u dans W' (1)

et dans L™ (I), et donc

Gou, — GoueL>®(I)

et (G'ouy)u, — (G ouw)u' € LP(I),

orona VoeD(I), /(Goun)gp’:—/(G'oun)u;gp,

1 1

d’ou le résultat, car il suffit de prendre p(t)y=e'teD()
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Lemme 4.15 [15)]

Soient Q un ouvert de R", 1 < p < oo, G € C' (R), telles que

G0)=0,et |G'(s)| <M, (M >0) pour tout s € R,

O (Gou)= (G ou 2"

. whe(Q l G whe (Q t
ona si u€ (Q2), alors ou € Q) e o, Ox;

Preuve

Les mémes étapes de la preuve du Corollaire nous donnent le Lemme

Proposition 4.16 [6/]

Soient Q un ouvertde R", s >1, 1 <p<oo, sp=n, k=1[s]+ 1, telles que
GeC*R),G0)=0 et D'GeL®(R), pour tout j <k,
ona, si uwe W5 (Q) alors Goue W (Q) .
Cette Proposition [4.16], est une généralisation du Lemme [{.15] mais elle n’est pas
vérifiée pour p = 1, voir [6]

Théoreme 4.17 [5]

Soit f : R— R, une fonction de Borel mesurable telle que f (0) =0

(i) Sil <p<oo, alors Ty opere sur WP (R) si et seulement si f est une fonction continue

et localement Lipchitzienne.
(i) Sil<p<ooetm>2, alors

Ty opére sur WP (R) si et seulement si f € W,"" (R) .

Loc

Il resulte que si I’opérateur de composition 7'y opere sur un espace de Sobolev alors

il doit étre borné, ce Théoreme est dii a Marcus et Mizel, [9].
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4.3 Théoreme de Peetre dans les espaces BV (/)

Théoréme 4.18

Soient p €|1,+00[, 0 < a < 1, alors on a les injections continues suivantes qui sont vérifiées

BYPH(R) < (L™ (R),BVY (R),,, = (BV2 (R), BV (R))

1/p,p 1/p,p

< BV (R) = U, (R) < BY/» = (R)
Preuve
1) Comme on a vu dans la preuve du Théoreme on a
By (B) N Oy (B) = (BY R)N G (B), B R) NGy (B))

— Prouvons les injections By < W — BV |

# Linjection  By"' < WU est vérifiée ( Théoreme [3.17).
| f (ts) — f (th
s Puisque vy (f,R) = sup ) = I ( s ) , alors
{to<t1<..ty...<t,}CRneN |17 [te — i1
e @] g
||fHBV1a(R) = " <f>+ Sup | < 2n (f),car0§a<l
zeR/{0} | T
f ()
< 2f a2 g
R/{0}
d’ou Wwht < BV, etdonc 311,1 — BV,
+ On prouve aussi que é&l — L, ( Théoreme|3.17).

— En appliquant alors le le Théoreme [3.3]d’interpolationon obtient
1,1

(B By Dijpp = By/™ = (L=, BVY)

1/pp
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(2) Si E, estla fermeture de BV™ (R), par rapport a L*> (R), alors

(L= (R), BV (R))yp,, = (Ea, BV (R))

1/pp — 1/pp

et puisque E, — BVZ (R), alors

(Ea , BV (R)) = (BVI(R) ,BV" (R))

1/p.p 1/pp>

d’ot (L= (R), BV (R)) = (BVI(R) ,BV" (R))

1/p,p 1/p,p

(3) On définit les normes de I’espace [, des suites {t;},_,.y , par

i=N 1/p
t; = tip et tilljco = SU til .
Il (D \) Il = sup It

Fixons une suite réelle finie et stricte {t;},...y tel que ¢y < t; < ... < ty, et associons

pour tout 0 < « < 1, une fonction U, , définie par,

Uy : BVER) — I

o f () —f(tz‘a—l) ’
|ti B ti*1| 1<i<N

donc ||U, (f)]] =  sup f (t) = f (txs) < sup f () [ (1)
" W tre{t:} ’tk - tkfl‘a N tre{t:} ’tk - tkfl‘a ‘tk — tk,lya
/@
< 2 sup for =2 HfHBVO%(R) )
teR/{0}
d’Oﬁ ||U04 (f)”l?vo S 2||f||BVO%(R) 5

et donc BVZ(R) — Y.

66



D’autre part on a

1Ua (£)ll, =§j

tk: 1)
|tk — tp_|”

<t (F) 45w 7| = 1 llpp

dor  [[Ua(Nlly, < Mfllsrpe -

et donc BV (R) < ly.

Ona (L*(X),L'(X)): , = LP(X), et par le Théoréme [3.3|d’interpolation on obtient

p

D=

|Ua (f )Hlp < G HfH(Bva(R) BVY(R)) » Cpa > 0.

s P

Sl

Puisque Hf”vaa(R) = ir;f {a >0:||Uy (f)Hl]g < a} , alors

HfHvaa(R) < Ga HfH(BVO%(R),BVf(R)) ; Cpa >0,

, P

Bl=

ce qui donne (BVZ (R), BV*(R)) — BV (R)

1
;vp

(4) Selon la preuve du Théoréme @], et puisque 0 < a < 1, alorson a

1/p 1/p
Hf”up(R) <2 Hvap(R) <2 ”fHV;?(R) ’

d’ou Vi(R) —= V,(R) =U,(R),

p

et I’on déduit que BV*(R) — BV, (R) <= U,(R),

ce qui donne BV — U,
(5) L’inclusion continue U, — B RL/poo , aété prouvée dans la preuve du Théoreme (3.17.
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4.4 Exemples

Les suivants exemples sont pris des travaux de [2], [3]], [11], [16] [S], [7] , [L1O], [1], [4].
On dénote par &, la fermeture de BV, (R) N C' > (R) dans BV, (R) et par &, la fer-

meture de BV, (R) N C' > (R) dans BV, (R)

4.4.1 Exemplel: [11], [S], [16]

[11] Soient 1 < p < o0, 1 < s <1+4+1/p, 1 < ¢q < o, et soit F' une fonction de la

variable réelle, Lipchitzienne, F (0) = 0, F € By™"/?»* (R), alors on a

F (B3 (R")) C B3 (R")

e 3C (n,s,p,q)>0: ||F(f)

sy < € max (17 I Flggecsm ) - 1]

ByI(R)

[11] Soit I’opérateur non linéaire F), : f — |f|", u >0,

. 1 o
-Sipg>11<p<oo,1<qg<oo 0<s < pu+ —, alors il existe une constante
p

C (s,p,q,n,u) >0, telle que

* [ ()]

s < C I

By (Rn) Hngo_l Ve By (R")NL>*(R")

= et gl gyrame g < C HgHgg‘ﬂl/m,w w79 € B+ (R)

(

- Siug>1,1<p<oo, m<n/p,alors on a une équivalence entre

s {1 feW™ Y C WP et

* < +1 o
m -
P mp—1+

— <1< pp,
P

le résultat reste vrai si on remplace F), : f— |f|", par

E,: fr—f|fI""", oubienpar F,: fr—s (max (f,0))"

e SimeN, 1<p<oo, m<n/p, k€N, k> 2 alors on a une équivalence entre
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- {fFfewm™cwmr et

nk
m(k—1)+

n
p

<t<pk.

L’ opérateur f —f |f|" joue un role essentiel dans I’étude du probleme de cauchy a

valeurs initiales pour I’equation aux dérivées partielles non linéaires de Schrodinger.

4.4.2 Exemple?2: [2], [3]

 Soitp > 1, et considérons 1’opérateur de la valeur absolue T, = Tj, tel que

Tr (9) = Fi (9) =9,

alors |-| appartient a BV,! (R) \ &} ,,,. , et il vérifie

Loc )

T, opere sur BV,' (I), tel que

|||9|||va1(1) <c ||9||va1(1) ,(¢>0)

T} envoie By*V/PH (R™) a B)*/P> (R™) tel que
H ’g’ ”B;Jfl/pvoo(Rn) <c HgHB;+1/P11(Rn) ) (C > O)

L opérateur T},; n’est pas continu de By /7> (R™) a By "/P* (R™)).

Si0<s<1+(1/p),1<q<o0,iloperesur B (R"), tel que

gl Byimn) = C 9] BYY(R") 1 (c>0)

Si0 < s < oo, 1< q< o0, il opere continfiment sur By (R™)
* Soit la famille des fonctions
ua(x) = |I+Oé| - |Oé| )y Ly & €R7

alors
[ta (g)HBVpl(lR) = [llg +af - ’aH‘val(R) < 6 HgHBVpl(R) )
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4.4.3 Exemple3: [3]

* Soitp > 1, etl’opérateur T, : g — 1) o g , telles que

- peD(R), suppp C[-1/2,1/2], p(t) =1 dans [—1/e, 1/¢],

P

- R—R, et t)=1|t

sit#0,4(0)=0,
alors les assertions suivantes sont vérifiées

a) La fonction ¢ appar tient a 5;
b) 73, opre sur BV (1) tel que [0 gl < clgllpsgy (e 0)
¢) T, envoie By /P! (R")a By™'/"™ (R") tel que

140 gll ooy < € llglgevni « (€ > 0)
d) Ty est continu de B,"'/P' (R") a BIt1/po (R™),

e) Si0<s<1+(1/p),1<q< o0,alors Ty opere sur B34 (R") , telle que

|40 g]

ByY(R") <c gl ByU(Rn) (c>0).

f) Siq € [1,00], alors I’opé rateur en (e) est continu. Les propriétés ci-dessus ne changent

pas si log |¢| est remplac € par des logarithmes r éitérés comme log |log |¢|| ou log |log [log |¢|||

4.4.4 Exempled4: [3]

* Puisque les espaces BV;D1 (R) décroissent par rapport a p alors on cherche les fonctions qui
appartiennent a 3 V;}O (R) telles que p > po , et en considérant donc la famille des fonctions

Ya,p - R—R, définies par

Yast) = [t p (1) sin([t]7) sit £ 0, et Po5(0) =0,0< 8 <a,

Alors on obtient une équivalence entre les suivantes assertions (a), (b), (c) telles que
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1 o
a) —<—-—1
p B
b) La fonction t), 5 appartient 2 BV, (R)
¢) Lopérateur T, , envoie BV (R) a BV, (R) ,

1« , e iz ..
etsi— < ——1,alors 'opérateur T}, ,, satisfait les proprié€tés (c)-(f) du trosiéme

p B

exemple si on remplace 1) par 1, 3

4.4.5 Exemple5: [7], [10]

* Pour le probleme de composition des opérateurs on a

i) Un théoréme classique di a B.E.J.Dahlberg (cf [7]) pour I’espace de Sobolev W™ (R")

enoncant que

. 1 n ) n
Sil+—-<m< —,p#0,oubienl <p<oo, 2<m < —, alors
p p p

Te (W™ (R") = {G(f) 5  feW™ R")}CcW™ (R"),

implique G(t) = c.t,ceR

ii) Un résultat classique dii a S . Igari ( [10]) pour I’espace de Besov B, (R") , qui énonce que,
Sil<p<oo, 1<g<o0, 0<s<1/p alors

Te (By?) € By, sietseulementsi G est Lipchitzienne et G (0) = 0

4.4.6 Exemple6: [2], [1]

* Les opérateurs li€s aux fonctions continues de Lipchitz satisfont la propriété d’inégalité des
normes sur W1 (R™) mais non pas sur W?2? (R™), cette restriction est dlie au résultat

suivant
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Proposition 4.19 [6/]
Soient 1 < p < +00, s > 1+ (1/p) et N une norme sur D (R") .
Si E est un espace normé tel que D (R") ¢ E C W,2! (R")

Loc
/Rn

pourtout g € E | eti=1,...,n, ets’il existe une fonction différentiable continue

dg dg
O (x + h)‘ ~ o, (x)

. D 1/p
sup || ( dx) < Allgll, » (A>0)

h#£0

f : R—R, et une constante B > 0, telle que Ty injecte D (R™) dans E | et telle que

I’inégalité suivante soit vérifiée, alors f doit étre une fonction affine.

[fogllyg < B(N(g)+1) pour tout g € D(R"),

* Les opérateurs de superposition liés a des fonctions affines satisfont trivialement les pro-
priétés des d’inégalités des normes par rapport composition des fonctions pour tout espace

fonctionnel normé.

* Pour I’espace de Sobolev W™? (R™), m € N, 1 < p < oo, les opérateurs non triviaux

de superposition qui satisfont la propriété d’inégalité des normes existent si et seulement si
(m =0) ou (m=1) ou (m =2 et p =1),
e Pourtout it > 1, m < p + %, fewmr(R")NL>®(R")ona
1E () lymnny < €l lgmaeny [P (e 0),
="

La propriété d’inégalité des normes pour I’opérateur F), , n’est pas entierement vérifiée

sur WP (R™) mais partiellement sur WP (R™) N L*> (R")
e [1]- Soientp > 1, m > max (n/p,1), m € N, alors

I’opérateur de composition 7y opere sur W™ (R"), siet seulementsi f € W' (R")

Loc
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4.4.7 Exemple 7 : [4]

* On obtient une solution pour le P.S.O, avec une propriété supplémentaire d’inégalité des
normes dans les espaces de Sobolev W*? (R™) par le Théoréme [4.20], en introduisant

I’espace des fonctions a variation bornée BV (R™) muni de la semi-norme suivante :

- 1
1l gy @ny ~ v (f) = E 10; fll,; ~ sup A |[f (x+h)— f(2)| dv < 400,
=1 heR™\{0} ’ ’ R™

ot ||g||,, désigne la variation totale de la mesure g, et ’espace BH (R) des distributions

dont la dérivée appartient a BV (R), muni de la semi-norme

1l g =v () + 11

Théoreme 4.20 [4)]
Soient 1 < p < 00, 0 < s < 1+ (1/p), alors toute fonction f € BH (R) , f(0) = 0,

opere sur WP (R"™) , de plus il existe c(s,p,n) >0, telle que

| fo 9||Ws,p(Rn) <c(s,p,n) | fllpu Hg”WSvP(]R”) . pour tout g € WP (R")

4.4.8 Exemple 8: [1]

* Tout opérateur de composition tel que 7y (g) = fog et f: R—R, défini sur
B3> (R") = C*(R"), s> 0,1’espace de Holder-Zygmund vérifie

Ty (€ (R") C C* (R")
si et seulement si on a les conditions suivantes
i) f est continue et localement Lipchitzienne, pour 0 < s < 1
ii) f appartient localement a C* (R™) , pour s > 1

iii) f est continue et localement Lipchitzienne et satisfaisant la condition

f<x+t>+f<x—t>—2f<x>=0(

, avec t—07",
|log t|

uniformément en chaque sous-ensemble compact de R, pour s = 1.
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Résumé

Dans cette thése on étudie trois problemes, le premier est la composition des opérateurs et leurs
propriétés telles que 1’abornement , 1a continuité , la régularité et les inégalités des normes des
fonctions composées dans certains espaces fonctionnels, le deuxieme est de généraliser certains
résultats concernant la composition de plus de deux fonctions et le troisieme est généraliser le

théoréme de Peetre .

Abstract

In this thesis we study three problems, the first is the superposition of the operators and their
proprities, such as boundedness , continuity , regularity and the inequalities of the norms of the
composition of functions in some functional spaces, the second is to generalize some results of
the composition of more than two functions, and the third is to give a generalization of Peetre’s

theorem.
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