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Résumé

Dans cette thèse on étudie trois problèmes, le premier est la composition des opérateurs

(bornés en particulier) et leurs propriétés telles que la continuité, la différentiabilité,

la multiplication, la régularité, le deuxième est de généraliser certains résultats con-

cernant la composition de plus de deux fonctions et le troisième est de généraliser le

Théorème de Peetre.
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• Opérateurs, Composition.

• Espaces de Besov homogènes, Espaces des fonctions à p-variation bornées.

• Continuité, Différentiabilité, Opérateurs bornés, Régularité.

Abstract

In this thesis we study three problems, the first is the superposition of the operators and

their proprieties such as those of boundedness, continuity, multiplication, regularity,

smoothness, the second is to generalize some results of the composition of more than

two functions, and the third is to give a generalization of Peetre’s theorem

Key words
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• Homogeneous spaces of Besov, Spaces of bounded p- variation functions.

• Continuity, Smoothness and Differentiability, Boundedness, Regularity .
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h . . . . . . . . . . . . . . . . . . . . . 7

1.3 Les normes dans les espaces de Besov . . . . . . . . . . . . . . . . . . . . . . . 9
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Notations

• Pour tout α = (α1, α2, ..., αn) ∈ Nn, x = (x1, x2, ...xn) ∈ Rn , on a

Dαf =
∂|α|f

∂xα1
1 .....∂x

αn
n

, tel que |α| = α1 + α2 + ...+ αn ,

• C = C (Rn) : Dénote l’espace des fonctions continues.

C (Rn) = {u : Rn−→R ; ∀x0 ∈ Rn,∀ε > 0,∃δ > 0,∀x ∈ Rn, ‖x− x0‖ < δ ⇒ |u (x)− u (x0)| < ε}

∗ Cr (Rn) = {f ∈ C (Rn) ; Dαf ∈ C (Rn) , pour tout |α| ≤ r}

∗ E (Rn) = C∞ (Rn) = {f ∈ C (Rn) ; Dαf ∈ C (Rn) , pour tout α ∈ Nn} ,

∗ supp (f) = Adhérence ({x ∈ Rn ; f (x) 6= 0}) : Support de la fonction f

∗ D (Rn) = C∞0 (Rn) = {f ∈ C∞ (Rn) ; supp (f) est un support compact} ,

∗ S (Rn) : est l’ espace de Schwartz et S ′ (Rn) est l’espace des distributions tempérées

S (Rn) =

{
ϕ ∈ C∞ (Rn) ; ‖ϕ‖S(Rn) ∼ pk,m (ϕ) = sup

x∈Rn

(
sup

α∈Nn,|α|≤m

(
sup

β∈Nn,|β|≤k

∣∣xβ∂αϕ (x)
∣∣)) <∞

}

S ′ (Rn) = {T : S −→R ,∃k ∈ N ,∃m ∈ N ,∃Ck,m > 0,∀ϕ ∈ S (Rn) ; |〈T , ϕ〉| < Ck,mpk,m (ϕ)}

• On définit la norme de l’espace de Lebesgue Lp (Rn) par

‖f‖Lp(Rn) = (

∫
Rn
|f (x)|p dx)

1
p , si p ≥ 1

‖f‖L∞(Rn) = inf {c > 0 ; |f (x)| ≤ c, (p.p)} = ess sup
x∈Rn
|f (x)| ,

• Pour tout f, g ∈ S (Rn) , la convolution f ∗ g vérifie f ∗ g ∈ S (Rn) , tel que

∀ξ ∈ Rn ; f∗g (ξ) =

∫
Rn
τtf (ξ) .g (t) dt =

∫
Rn
f (u) .τu g (ξ) du , où τu g (ξ) = g(ξ−u)

• Si f ∈ S (Rn) , on définit la transformée de Fourier et son inverse par

Ff (ξ) = f̂ (ξ) v
∫
Rn
e−i〈x,ξ〉f (x) dx , pour tout ξ ∈ Rn

F−1f (ξ) = f̌ (ξ) v (2π)−n
∫
Rn
ei〈x,ξ〉f (x) dx , pour tout ξ ∈ Rn

(FT ) (f) = T̂ (f) = T
(
f̂
)
,
(
F−1T

)
(f) = Ť (f) = T

(
f̌
)
, pour tout T ∈ S ′ (Rn)
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• [s] : Dénote la partie entière de s ∈ R

• p′ : Dénote l’exposant conjugué de p ≥ 1 , défini par
1

p
+

1

p′
= 1

• Pm (Rn) : est l’ensemble des polynômes de degré au plus m , m ∈ N, telle que

Pm (Rn) =

P ∈ S ′ (Rn) ; P (x) =
∑
|α|≤m

aαx
α, x ∈ Rn

 , P−1 (Rn) = {0}

∗ P (Rn) = P∞ (Rn) : Le sous espace de S ′ (Rn) des polynômes ou multinômes.

∗ [f ] : La classe d’équivalence d’une distribution f ∈ S ′ (Rn) modulo P∞ (Rn)

∗ On convient de prendre xα = xα1
1 .x

α2
2 ... x

αn
n , α! = α1!.α2!...αn!

tαx = (tα1x1, t
α2x2....t

αnxn) , (t ≥ 0) , et 〈x, y〉 = x1y1 + x2y2 + ....xnyn,

∗ On introduit l’espace S0 (Rn) défini par les fonctions de S (Rn) à moment nul

S0 (Rn) =

{
f ∈ S (Rn) ; ∂αF f (0) =

∫
Rn
xαf (x) dx = 0, pour tout α ∈ Nn

}
Ŝ0 (Rn) =

{
f̂ ; f ∈ S0 (Rn)

}
= {f ∈ S (Rn) ; ∂α f (0) = 0, pour tout α ∈ Nn} .

S ′0 (Rn) = S ′ (Rn) /S⊥0 (Rn) = S ′ (Rn) /P (Rn)

• Pour chaque s ∈ R+\N, on définit l’espace de Hölder par

Cs (Rn) =

{
f ∈ L∞ ; ‖f‖Cs(Rn) = ‖f‖∞ + sup

x,y∈Rn, x 6=y

|f (x)− f (y)|
|x− y|s

<∞
}
, si 0 < s < 1

Cs (Rn) =

f ∈ C[s] (Rn) ; ‖f‖Cs(Rn) =
∑
|β|≤[s]

∥∥Dβf
∥∥
Cα(Rn)

<∞

 , si s = [s] + α, 0 < α < 1

∗ Pour chaque s ∈ N, on définit l’espace de Zygmund par

C1 (Rn) =

{
f ∈ C0 (Rn) ; ‖f‖C1(Rn) = sup

h6=0, x ∈ Rn

|u (x+ h) + u (x− h)− 2u (x)|
|h|

<∞
}
,

Cs (Rn) =
{
f ∈ C1 (Rn) ; Dαf ∈ C1, pour tout |α| ≤ s− 1

}
, si s 6= 1

• A . B : Signifie que pour deux expressions paramétriques A et B ,

il existe une constante indépendante c > 0, tel que A ≤ cB

∗ A v B : Si A . B et B . A, alors ils existent c1, c2 > 0, tels que c1B ≤ A ≤ c2B
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Introduction

Les principaux résultats de cette thèse sont liés à trois problèmes

1. Le premier problème a été étudié par plusieurs auteurs , G.Bourdaud , [1] , [2] , [3] ,

W.Sickel [16] , D.Kateb [11] , S.Igari [10] , et qui consiste à résoudre le problème de

superposition des opérateurs en trouvant une condition nécessaire et suffisante pour qu’un

opérateur de composition , TG : E−→E , telle que TG (f) = G ◦ f , où G est une fonc-

tion réelle à valeurs réelles , réalise la condition TG (E) ⊂ E . Plusieurs chercheurs ont

essayé de trouver des opérateurs non triviaux (Associés à des fonctions non affines) vérifiant

la condition TG (E) ⊂ E , pour un espace fonctionnel donné E .

2. Le deuxième problème consiste à donner une formule générale de la dérivée de la com-

position de plusieurs fonctions , d’utiliser une inégalité de base introduite dans [2] pour

généraliser certains résultats , d’étudier les propriétés des opérateurs de composition (bornés

en particulier) , telles que la différentiabilité et de vérifier les inégalités des normes pour la

composition de plus de deux fonctions .

3. Le troisième problème consiste à donner une extension au célèbre théorème de Peetre , en

se basant sur les travaux introduits dans [2] , et [14] .

Notre travail est organisé en quatre chapitres :

• Dans le premier chapitre on présente les espaces fonctionnels connus , tels que les espaces

de Besov ainsi que leurs propriétés . On définit les espaces BVp (R) , BV 1
p (R) à partir des

espaces des fonctions à p- variation bornées pour p ≥ 1 et leurs normes .

• Dans le deuxième chapitre on étudie le problème de composition des opérateurs dans les

espaces BV 1
p (R) , 1 ≤ p < ∞ , en se basant sur les travaux introduits dans [2] , [3] ,

iii



ainsi que certaines propriétés de multiplication , de continuité , et on va étendre certains

résultats concernant une inégalité de base pour la composition de plusieurs fonctions . Ainsi

on obtient un algorithme de base donnant la dérivée de la composition de plusieurs fonctions .

• Dans le troisième chapitre on étudie le calcul fonctionnel dans les espaces de Besov ho-

mogènes Ḃs,q
p (Rn) , en présentant les conditions nécessaires et suffisantes pour la compo-

sition des opérateurs .

• Dans le quatrième chapitre on présente un nouveau espace fonctionnelBV α
p (R) défini grâce

à l’espace Vαp (R) , introduit dans [14] et on généralise le Théorème (3.17) de Peetre aux

espaces BV α
p (R) , p ∈]1,+∞[ , 0 ≤ α < 1 , ainsi que des exemples d’application pour

affirmer les résultas énoncés .
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Chapitre 1

Quelques résultats préliminaires

Dans ce chapitre on va rappeler les notions essentielles à savoir les séries de Littelwood-

Paley ainsi que les différences finies qui vont nous permettre de construire des normes

équivalentes pour les espaces de Besov , enfin on donnera un aperçu sur les fonctions à

p-variations bornées , ainsi que leurs propriétés qui nous seront très utiles par la suite .

1.1 Séries de Littlewood-Paley

Dans ce paragraphe on donne une définition de la partition de l’unité dans C∞0 (Rn) ,

suivi d’un exemple , et pour plus de détails voir [18] .

1.1.1 Partition de l’unité

Soit la suite des réels A = {Aj}j ∈ N ⊂ R+ , tels qu’ils existent 0 < λ0 ≤ λ1 avec

λ0Aj ≤ Aj+1 ≤ λ1Aj , j ∈ N .

Il existe alors `0 ∈ N tel que

2Aj ≤ Ak , pour tout j , k et j + `0 ≤ k .

On définit ΩA = {Ωj,A}j∈N , un recouvrement de Rn , associé à A , tel que

Ωj,A =


{ξ ∈ Rn ; |ξ| ≤ Aj+`0} , si j = 0, 1, ...`0 − 1

{ξ ∈ Rn ; Aj−`0 ≤ |ξ| ≤ Aj+`0} , si j ≥ `0

1



Définition 1.1

On dit que la suite des fonctions ϕA = {ϕj,A}j∈N ⊂ C∞0 (Rn) est une partition de l’unité par

rapport à ΩA , si les conditions suivantes sont vérifiées :

(i) ϕj,A (ξ) ≥ 0 , ξ ∈ Rn , j ∈ N

(ii) supp (ϕj,A) ⊂ Ωj,A , j ∈ N

(iii) Pour tout α ∈ Nn , il existe une constante cα > 0 , telle que

|Dαϕj,A (ξ)| ≤ cα
(
1 + |ξ|2

)−|α|/2
, ξ ∈ Rn, j ∈ N

(iv) Il existe une constante cϕ > 0 , telle que

0 <
∞∑
j=0

ϕj,A (ξ) = cϕ <∞ , ξ ∈ Rn .

Pour Aj = 2j , `0 = 1 , cϕ = 1 , on a une partition dyadique de l’unité .

La partition ϕA = {ϕj,A}j∈N , est dite inhomogène qui peut être remplacée par la partition

{ϕj,A}j∈Z , dite homogène .

Exemple 1.2

Soit K > 1 , considérons le recouvrement {Cp}+∞
−1 , défini par

Cp = {ξ ∈ Rn ; K−12p ≤ |ξ| ≤ K2p+1}

C−1 = B̄ (0, K) = {ξ ∈ Rn ; |ξ| ≤ K}

{Cp}+∞
−1 , est un recouvrement uniformément fini pour Rn, c à d

{q ∈ N ; Cq ∩ Cp 6= ∅} est un ensemble fini .

On peut construire {φ0, ψν} , ν ∈ N, une décomposition de Littlewood-Paley inhomogène de

l’unité telles que

ψν (ξ) = φν (ξ)− φν−1 (ξ) , et φν (ξ) = φ0

(
2−νξ

)
,

où φ0 ∈ C∞0 (Rn) est réelle, et φ0 ≡ 1 sur la boule fermée B̄ (0, 1) , supp (φ0) ⊂ B̄ (0, K) ,

tel que

(
φ0 +

∑
ν∈N

ψν

)
u = u, u ∈ S ′ (Rn) .

En effet une telle décomposition existe car on a le lemme suivant .
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Lemme 1.3

Ils existent ϕ, ψ ∈ C∞0 (Rn) , avec supp (ψ) ⊂ C−1 , supp (ϕ) ⊂ C0 , tel que

ψ (ξ) +
∞∑
p=0

ϕ
(
2−pξ

)
= 1 ,

et

ψ (ξ) +
N∑
p=0

ϕ
(
2−pξ

)
= ψ

(
2−(N+1)ξ

)
.

Preuve

Soit θ ∈ C∞0 (Rn) , avec , 0 ≤ θ ≤ 1 , supp ( θ) ⊂ C0 , θ (ξ) = 1 , pour 1 ≤ |ξ| ≤ 2.

On pose s (ξ) =
∞∑

p=−∞
θ (2−pξ) , ξ ∈ Rn\ {0} .

Puisque {Cp}+∞
−1 , est un recouvrement uniformément fini pour Rn alors , s ∈ C∞ (Rn\ {0}) .

On définit donc ϕ ∈ C∞0 (Rn) par ϕ (ξ) =
θ (ξ)

s (ξ)
, tel que

s
(
2−pξ

)
=
∑∞

q=−∞
θ
(
2−(q+p)ξ

)
=
∑∞

p1=−∞
θ
(
2−p1ξ

)
= s (ξ) .

Soient |ξ| ≥ K , p ≤ −1 , alors nous avons

2−p |ξ| = 2|p| |ξ| ≥ 2|p|K ≥ 2K , et 2−pξ /∈ C0 ,

d’où θ (2−pξ) = 0 , et donc si |ξ| ≥ K , ξ ∈ Rn\C−1 , alors

∞∑
p=0

ϕ
(
2−pξ

)
=

∞∑
p=−∞

ϕ
(
2−pξ

)
=

∞∑
p=−∞

θ (2−pξ)

s (2−pξ)
=

∑∞
p=−∞ θ (2−pξ)∑∞
p=−∞ θ (2−pξ)

= 1 .

Si on prend ψ (ξ) = 1−
∑∞

p=0
ϕ
(
2−pξ

)
, alors ψ ∈ C∞0 (Rn) , tel que supp (ψ) ⊂ C−1 .

En prenant pour tout j ∈ Z , ψj (ξ) = ϕ (2−j |ξ|) et ψ0 (ξ) = 1−
∞∑
k=1

ψk (ξ) alors on

a les propriétés suivantes

ψj est paire telle que supp (ψj) ⊂ C̄j , pour tout j ∈ N
∞∑
j=0

ψj (ξ) = 1, pour tout ξ ∈ Rn

Cm ∩ supp (ψj) = ∅ , si |m− j| > 1

ψj−1 (ξ) + ψj (ξ) + ψj+1 (ξ) = 1 , pour tout ξ ∈ supp (ψj) , j ∈ N .

3



Et pour construire une partition homogène sur Z , on introduit la suite Φj ∈ S (Rn) , telles que

Φ̂j (ξ) =
ψj (ξ)∑

k∈Z
ψk (ξ)

Φj (ξ) = 2jnΦ0

(
2jξ
)
, pour tout ξ ∈ Rn ,∫

Rn
xkΦj (x) dx = Φ̂

(k)
j (0) = 0 , (k ∈ Nn) .

On a donc
∑
j∈Z

Φ̂j (ξ) =
∑
j∈Z

 ψj (ξ)∑
k∈Z

ψk (ξ)

 =

∑
j∈Z

ψj (ξ)∑
k∈Z

ψk (ξ)
= 1 , (ξ ∈ Rn\ {0}) .

Puisque 1−
∞∑
j=1

Φ̂j est indéfiniment différentiable et à support compact , alors on peut choisir

comme fonction Ψ ∈ S (Rn) , telle que

Ψ̂ = 1−
∞∑
j=1

Φ̂j , où Ψ̂ 6= 0 sur |ξ| ≤ 1 et donc Ψ̂ +
∞∑
j=1

Φ̂j = 1.

Posons ψ (ξ) = Ψ̂ (ξ) et ϕ (2−jξ) = Φ̂j (ξ) , alors on a

ψ (ξ) +
∑∞

j=1
ϕ
(
2−jξ

)
= 1, (ξ ∈ Rn) . (1.1)

On a ψ
(
2−Nξ

)
+
∞∑
p=0

ϕ
(
2−p−Nξ

)
= ψ (ξ) +

N−1∑
p=0

ϕ (2−pξ) +
∞∑
p=N

ϕ (2−pξ) = 1,

d’où
∞∑
p=0

ϕ
(
2−p−Nξ

)
=

∞∑
p=N

ϕ
(
2−pξ

)
,

et donc ψ
(
2−Nξ

)
= ψ (ξ) +

N−1∑
p=0

ϕ
(
2−pξ

)
.

On prouve par récurrence si ϕ
(
2−Nξ

)
= ψ

(
2−(N+1)ξ

)
− ψ

(
2−Nξ

)
,

et puisque ψ
(
2−(N+1)ξ

)
= ψ (ξ) +

N∑
p=0

ϕ
(
2−pξ

)
,

alors on a ψ
(
2−(N+2)ξ

)
= ψ (ξ) +

N+1∑
p=0

ϕ
(
2−pξ

)
= ψ

(
2−(N+1)ξ

)
+ ϕ

(
2−(N+1)ξ

)
,

d’où ϕ
(
2−(N+1)ξ

)
= ψ

(
2−(N+2)ξ

)
− ψ

(
2−(N+1)ξ

)
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1.1.2 Décomposition d’une fonction f ∈ S ′ (Rn)

Puisque Φj est réelle, paire alors Φ̂j est réelle, paire et son support est Cj ,

d’où Φj ∈ S0 (Rn) et donc Φj ∗ f est défini pour tout f ∈ S ′0 (Rn) .

Si on multiplie les deux côtés de l’égalité (1.1) par u ∈ S (Rn) on obtient avec la

transformée inverse de Fourier

u = Ψ ∗ u+
∞∑
j∈N

Φj ∗ u, pour tout u ∈ S (Rn) ,

et l’on déduit sa relation duale

f = Ψ ∗ f +
∑
j∈N

Φj ∗ f, pour tout f ∈ S ′ (Rn) ,

d’où u =
∑
j∈Z

Φj ∗ u , pour tout u ∈ S0 (Rn) ,

et donc f =
∑
j∈Z

Φj ∗ f , pour tout f ∈ S ′0 (Rn) .

Pour tout j, k ∈ Z, on définit les opérateurs continus ∆k, Qj , par

∆k : S ′ (Rn) −→S ′ (Rn) et Qj : S ′ (Rn) −→S ′ (Rn) , telles que

Qjf =
(
ψ
(
2−j·

))∨ ∗ f = 2jn
∨
ψ
(
2j·
)
∗ f pour (j = 0, 1, 2, ...) ,

et

∆kf =
(
ϕ
(
2−k·

))∨ ∗ f = 2kn
∨
ϕ
(
2k·
)
∗ f pour (k = 1, 2, ...) .

On a donc ∆̂kf (ξ) = Φ̂k (ξ) .f̂ (ξ) , d’où ∆kf (ξ) = Φk (ξ) ∗ f (ξ) ,

et on pose Q0f (ξ) = F (ξ) .

Pour tout f ∈ S ′ (Rn) et k ∈ N , (Convergence dans S ′ (Rn)) , on a

Qkf =
∑

j∈Z, j≤k

∆jf ,

et f =
∑
j∈Z

∆jf = F +
∞∑
j=1

∆jf, pour tout f ∈ S ′0 (Rn) ,
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telle que ∆̂jf 6= 0 , sur Aj et F̂ (ξ) 6= 0 , pour |ξ| ≤ 1 .

Si ξ = 0 , alors l’expression
∑
j∈Z

Φ̂j (0) = 0 , implique (1.1) , car si

φ(k) = 0 , pour tout k ∈ Nn ,

alors (1.1) est vérifiée pour tout φ ∈ Ŝ0 (Rn) .

1.1.3 Décomposition de ∆k (f . g)

Calculons

∆k (f . g) = ∆k

(∑
j∈N

∑
`∈N

∆jf .∆`g

)

=
∑
j∈N

∑
`∈N

∆k (∆jf . ∆`g)

=
∑

j∈N, `∈N

∆k ( ∆jf . ∆`g)

=
(∏

k,1
+
∏

k,2
+
∏

k,3

)
(f, g) ,

où
∏

k,1
(f, g) = ∆k(1) (f . g) = ∆k

(
∆̃kf.Qk+1g

)

∏
k,2

(f, g) = ∆k(2) (f . g) =
(
Qk+1f.∆̃kg

)
=
∏

k,2
(g, f)

∏
k,3

(f, g) = ∆k(3) (f . g) =
∑∞

j=k
∆k

(
∆jf.∆jg

)
,

avec ∆̃k =
∑k+4

j=k−2
∆j , et

∆k =
∑k+1

j=k−1
∆j , (Calcul des supports)

6



1.2 Les opérateurs des différences finies ∆m
h

Définition 1.4

Soient x, h ∈ Rn, m ∈ N et f une fonction quelconque, introduisons l’opérateur de différence

finie ∆h telle que

∆hf = τ−hf − f , où τhf (x) = f (x− h) ,

et on pose ∆1
hf (x) = ∆hf (x) = f (x+ h)− f (x) .

Les opérateurs ∆m
h f sont définis par la relation de récurrence

∆m
h f (x) = ∆h

(
∆m−1
h f (x)

)
, m ≥ 2, (1.2)

On déduit donc que

∆2
hf (x) = ∆h

(
∆1
hf (x)

)
= f (x+ 2h)− 2f (x+ h) + f (x)

Lemme 1.5

Soient x, h ∈ Rn, m ∈ N et f une fonction quelconque définie dans une partie de Rn, alors le

terme général de ∆m
h f (x) peut s’écrire sous la forme

∆m
h f (x) =

m∑
`=0

(
m

`

)
(−1)`±m τ−`hf (x) =

m∑
`=0

(
m

`

)
(−1)` τ(`−m)hf (x)

Preuve

(i) Puisqu’on a (
m

`− 1

)
+

(
m

`

)
=

(
m+ 1

`

)
,

et

(−1)m−` = (−1)m+` = − (−1)m+`−1 = − (−1)m+`+1 ,
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on déduit donc par récurrence que si ∆m
h f (x) =

m∑
`=0

(
m

`

)
(−1)m+` τ−`hf (x) , alors selon (1.2)

∆m+1
h f (x) = ∆h (∆m

h f (x)) = ∆m
h f (x+ h)−∆m

h f (x)

=
m∑
k=0

(
m

k

)
(−1)m+k f (x+ (k + 1)h)−

m∑
k=0

(
m

k

)
(−1)m+k f (x+ kh)

=
m+1∑
`=1

(
m

`− 1

)
(−1)m+`−1 f (x+ `h)−

m∑
k=0

(
m

k

)
(−1)m+k f (x+ kh)

= f (x+ (m+ 1)h)− (−1)m f (x) +
m∑
`=1

((
m

`− 1

)
(−1)m+`−1 −

(
m

`

)
(−1)m+`

)
f (x+ `h)

= f (x+ (m+ 1)h)− (−1)m f (x) +
m∑
`=1

((
m+ 1

`

)
(−1)m+`+1

)
f (x+ `h)

=
m+1∑
`=0

((
m+ 1

`

)
(−1)m+1+`

)
f (x+ `h)

(ii)

De (i) et puisque
(
m

`

)
=

(
m

m− `

)
, alors on a

∆m
h f (x) =

m∑
`=0

(
m

m− `

)
(−1)m+` f (x+ `h) .

Puisque (−1)m−` = (−1)m+` , et pour 0 ≤ ` ≤ m, on a 0 ≤ m−` ≤ m , donc pour m−` = k on a

∆m
h f (x) =

m∑
`=0

(
m

m− `

)
(−1)m−` f (x+ `h) =

m∑
k=0

(
m

k

)
(−1)k f (x+ (m− k)h) ,

on convient donc de poser

∆m
h f (x) =

m∑
k=0

(
m

k

)
(−1)k f (x+ (m− k)h) =

m∑
`=0

(
m

`

)
(−1)m∓` τ−`hf (x)
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Définition 1.6

Soient h ∈ Rn , m ∈ N , t > 0 , et f ∈ Lp (Rn) , on définit

ωmp (t, f) = sup
|h|≤t , h∈Rn

‖∆m
h f‖Lp(Rn) , (1.3)

comme le méme ordre du module de continuité de f dans Lp (Rn) .

Ce module de continuité est utilisé pour trouver des normes équivalentes

Remarque 1.7

a) La continuité d’une fonction f en x est définie par

lim
h−→ 0

∣∣∆1
hf (x)

∣∣ = lim
h−→ 0

|f (x+ h)− f (x)| −→ 0

b) La différentiabilité d’une fonction f en x est décrite par

lim
h−→ 0

|∆1
hf (x)|
|h|

≤ c <∞ , (c > 0)

c) Les modules de continuité définis en (1.3) convergent pour la norme Lp , et sont monotones

pour l’opérateur sup , et m−différentiables (Régularité d’ordre m) .

d) ωrp (t, f) = 0 si et seulement si f est un polynôme de degré ≤ r − 1 .

e) Pour tout s > 0, on a une norme équivalente pour l’espace Cs (Rn) de Hölder-Zygmund

‖f‖Cs(Rn) ∼ sup
x∈Rn
|f (x)|+ sup

x∈Rn , 0<|h|≤1

|h|−s
∣∣∆k

hf (x)
∣∣ , pour tout k ∈ N , k > s

1.3 Les normes dans les espaces de Besov

On donne dans ce paragraphe les définitions des normes des espaces de Besov, en

utilisant la théorie de Littlewood-Paley et les différences finies
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1.3.1 Par la théorie de Littlewood-Paley

Définition 1.8

Soient s ∈ R, p, q ∈ [1,+∞] , alors on dit que la fonction , f appartient à Ḃs,q
p (Rn) , l’espace

de Besov homogène si et seulement si f ∈ S ′ (Rn) /P (Rn) et f =
∑
j∈Z

∆jf telles que

‖f‖Ḃs,qp (Rn) =



(∑
j∈Z

(
2sj ‖Φj ∗ f‖p

)q)1/q

<∞ , pour 1 ≤ q <∞

sup
j∈Z

(
2sj ‖Φj ∗ f‖p

)
<∞ , pour q =∞

Proposition 1.9 [18]

Pour tout f ∈ Ḃs,q
p (Rn) et tout λ > 0 , ils existent deux constantes 0 < c1 ≤ c2 , telles que

c1 ‖f‖Ḃs,qp (Rn) ≤ λn/p−s ‖f (λ(·))‖Ḃs,qp (Rn) ≤ c2 ‖f‖Ḃs,qp (Rn) (1.4)

Preuve

• Soient g (x) = f (λx) , γ = s− n/p , λ = 2N , u = 2Nx , d’où du = 2nN dx , alors on a

Φj ∗ g (x) =

∫
Rn

Φj (t) g (x− t) dt =

∫
Rn

2jΦ0

(
2jt
)
f
(
2N (x− t)

)
dt

=

∫
Rn

2j−NΦ0

(
2j−Nu

)
f
(
2Nx− u

)
du =

∫
Rn

Φj−N (u) f
(
2Nx− u

)
du

= Φj−N ∗ f
(
2Nx

)
, d’où

‖g‖Ḃs,qp (Rn) =

(∑
j∈Z

(2js
(∫

Rn

∣∣Φj−N ∗ f
(
2Nx

)∣∣p dx)
1
p

)q) 1
q

=

(∑
j∈Z

(
2js−nN/p2sN−sN

(∫
Rn
|Φj−N ∗ f (u)|p du

) 1
p

)q) 1
q

, car dx = 2−nN du

=
(
2N
)s−n/p( ∑

k=j−N∈Z

(
2ks ‖Φk ∗ f (·)‖p

)q) 1
q

= λγ ‖f‖Ḃs,qp (Rn)
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• Considérons , λ > 0 , tel que 2N−1 < λ ≤ 2N , (N ∈ Z) , pour prouver (1.4) on prouve

l’une de ses inégalités car si ‖f (λ·)‖Ḃs,qp (Rn) ≤ c ‖f‖Ḃs,qp (Rn) , alors

‖f‖Ḃs,qp (Rn) =
∥∥f (λ−1 (λ (·))

)∥∥
Ḃs,qp (Rn)

≤ c′ ‖f (λ (·))‖Ḃs,qp (Rn) .

On a f =
∑
j∈Z

∆jf , donc ∆kf = Φk ∗ f =
∑
j∈Z

Φk ∗∆jf ,

or supp (∆kf ) ⊂
[
2k−1, 2k+1

]
,

d’où ∆kf =
∑
j∈Z

Φk ∗∆jf = Φk ∗∆k−1f + Φk ∗∆k+1f + Φk ∗∆kf .

Par récurrence si ∆kf , ∆k−1f ,Φ0 sont décroissantes alors Φk, Φk ∗ ∆k−1f , Φk ∗ ∆kf

sont décroissantes et donc Φk ∗∆k+1f , est décroissante ainsi que ∆k+1f , d’ où

∆kf (λ (x− t)) = Φk ∗∆k−1f + Φk ∗∆k+1f + Φk ∗∆kf (λ (x− t))

≤ Φk ∗∆k−1f + Φk ∗∆k+1f + Φk ∗∆kf ( 2N−1 (x− t))

= ∆kf
(
2N−1 (x− t)

)
,

et f (λ (x− t)) =
∑
j∈Z

∆jf (λ (x− t)) ≤
∑
j∈Z

∆jf (2N−1 (x− t)) = f(2N−1 (x− t)) .

on déduit donc que f
(
2N (x− t)

)
≤ f (λ (x− t)) ≤ f

(
2N−1 (x− t)

)
,

et Φj ∗ f
(
2N−1 (·)

)
≤ Φj ∗ f (λ (·)) ≤ Φj ∗ f

(
2N (·)

)
,

alors on a |Φj ∗ f (λ (·))| ≤ max
(∣∣Φj ∗ f

(
2N (·)

)∣∣ , ∣∣Φj ∗ f
(
2N−1 (·)

)∣∣) ,
et donc ‖Φj ∗ f (λ (·))‖p ≤ max(

∥∥Φj ∗ f
(
2N (·)

)∥∥
p
,
∥∥Φj ∗ f

(
2N−1 (·)

)∥∥
p
),

d’où ‖g‖Ḃs,qp (Rn) ≤ max(
∥∥f (2N (·)

)∥∥
Ḃs,qp (Rn)

,
∥∥f (2N−1 (·)

)∥∥
Ḃs,qp (Rn)

)

≤ 2γ
(
2N−1

)γ ‖f‖Ḃs,qp (Rn) ≤ Cλγ ‖f‖Ḃs,qp (Rn) , et C = 2γ,

on peut donc écrire ‖·‖Ḃs,qp (Rn) ∼ λn/p−s ‖(λ·)‖Ḃs,qp (Rn) .

Si λ = 2m alors ‖f (2m·)‖Ḃs,qp (Rn) = (2m)s−n/p ‖f‖Ḃs,qp (Rn) .

Si q = 2 alors ‖f (λ·)‖Ḃs,2p (Rn) = ‖f (λ·)‖Ḣs,p(Rn) = λs−n/p ‖f‖Ḣs,p(Rn) = λs−n/p ‖f‖Ḃs,2p (Rn) .

On a aussi ‖f (λ·)‖Lp(Rn) = λ−n/p ‖f‖Lp(Rn)
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Définition 1.10

Soient s ∈ R , p , q ∈ [1,+∞] , alors on dit que la fonction f appartient à Bs,q
p (Rn) , l’espace

de Besov non homogène , si et seulement si

f ∈ S ′ (Rn) et f = Q0f +
∑
j≥1

∆jf , telles que

‖f‖Bs,qp (Rn) =


‖Ψ ∗ f‖p +

(∑
j∈N

(
2sj ‖Φj ∗ f‖p

)q)1/q

<∞ , pour 1 ≤ q <∞

‖Ψ ∗ f‖p + sup
j∈N

(
2sj ‖Φj ∗ f‖p

)
<∞ , pour q =∞

1.3.2 Par les différences finies

Lemme 1.11 [18]

Pour tout 0 < s < 1 , on a

∑
j∈Z

2js |Φj (x)| ≤ cx−(1+s) , pour tout x > 0 , (c > 0)

Preuve

• Si x = 2−N , alors Φ0 ∈ S , implique |Φ0 (x)| ≤ cx−2, d’où

∞∑
j=N+1

2js |Φj (x)| =
∞∑

j=N+1

2j(s+1)
∣∣Φ0

(
2jx
)∣∣ ≤ ∞∑

n=N+1

2n(α−1)x−2 =
1

1− 2(1−α)︸ ︷︷ ︸
c > 0

. 2N(α−1)x−2︸ ︷︷ ︸
x−(1+s)

= c.x−(1+s) .

Puisque Φ0 , est bornée alors

N∑
j=−∞

2js |Φj (x)| ≤ c .

N∑
j=−∞

2j(1+s) = c.2N(1+s) = c . x−(1+s)

• Si 2−N < x ≤ 2−N+1 , N ∈ Z , et de la décroissance de Φj , on a

∑
j∈Z

2js |Φj (x)| ≤
∑
j∈Z

2js
∣∣Φj

(
2−N

)∣∣

≤ c . 2N(1+s) =
(
21+sc

)
2(N−1)(1+s) ≤ c′ . x−(1+s)
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Lemme 1.12 [18]

Soient 1 ≤ p ≤ ∞ , k ∈ N , f ∈ S (Rn) , alors

(i) ‖τ−hf − f‖p ≤ |h| ‖f ′‖p

(ii)
∥∥∆k

hf
∥∥
p
≤ |h|k

∥∥f (k)
∥∥
p
, (k ≥ 2)

Preuve

(i) En utilisant l’inégalité suivante

|f (x)− f (y)| ≤ |x− y|1−1/p ‖f ′‖p ,

et puisque p ≥ 1 , donne 0 ≤ 1− 1/p ≤ 1 , et en prenant , h = x− y , on obtient

‖τ−hf − f‖p ≤ |h|
1−1/p ‖f ′‖p ≤ |h| ‖f

′‖p ,

(ii) On obtient par récurrence∥∥∆k+1
h f

∥∥
p

=
∥∥∆h

(
∆k
hf
)∥∥

p
≤ |h|

∥∥∥(∆k
hf
)′∥∥∥

p
= |h|

∥∥∆k
hf
′∥∥
p

≤ |h| |h|k
∥∥∥(f

′
)(k)
∥∥∥
p
≤ |h|k+1

∥∥f (k+1)
∥∥
p

Proposition 1.13 [18]

Soient h ∈ Rn , 0 < s < 1 , 1 ≤ p ≤ ∞ , 1 ≤ q < ∞ , alors f ∈ Bs,q
p (Rn) si et seulement si

f ∈ Lp (Rn) , telle que ∫
Rn

(|h|−s ‖τ−hf − f‖p)
q dh

|h|n
<∞ , (1.5)

et f ∈ Ḃs,q
p (Rn) , si et seulement si f ∈ S ′ (Rn) /P (Rn) , telle que (1.5) soit vérifiée

Preuve

D’abord prenons le cas le plus simple q = n = 1 , car le cas q =∞ , ainsi que le cas général de

Rn, peuvent facilement en être déduits en utilisant le théorème de l’interpolation de deux espaces

de Besov qui donne un autre espace de Besov ainsi que le théorème de Marcinkiewicz .
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(1) Soit f = F+
∑
j∈N

∆jf ∈ Bs,1
p (R) , alors f ∈ Lp , tel que

∑
j∈N
‖∆jf‖p <∞ ,

et donc par le Lemme 1.12 on a∫ 2−j

0

|h|−s
∥∥∆1

h (∆jf)
∥∥
p

dh

|h|
≤

∫ 2−j

0

|h|1−s
∥∥(∆jf)′

∥∥
p

dh

|h|

≤ c.2j
∥∥(∆jf)′

∥∥
p

∫ 2−j

0

|h|−s dh = c.2js
∥∥(∆jf)′

∥∥
p
,

et
∫ ∞

2−j
|h|−s

∥∥∆1
h (∆jf)

∥∥
p

dh

|h|
≤ 2

∥∥(∆jf)′
∥∥
p

∫ ∞
2−j
|h|−s dh

|h|
≤ c2js

∥∥(∆jf)′
∥∥
p
,

d’où
∫ ∞

0

|h|−s
∥∥∆1

h (f)
∥∥
p

dh

|h|
=

∫ ∞
0

|h|−s
∥∥∥∥∥∆1

h

(∑
j∈N

∆jf

)∥∥∥∥∥
p

dh

|h|
≤ c

∑
j∈N

2js
∥∥(∆jf)′

∥∥
p
<∞

(2) Soit f ∈ Lp , et
∫ ∞

0

|h|−s
∥∥∆1

h (f)
∥∥
p

dh

|h|
<∞ , alors f ∗Ψ ∈ Lp .

On a Φj ∗ f (x) =

∫
R

Φj (y) (f (x− y)− f (x)) dy , d’où par l’inégalité de Minkowski

‖Φj ∗ f‖p =

∥∥∥∥∫ 0

−∞
Φj (y) (f (x− y)− f (x)) dy +

∫ ∞
0

Φj (y) (f (x− y)− f (x)) dy

∥∥∥∥
p

≤ 2

∫ ∞
0

|Φj (y)| ‖∆−yf‖p dy .

En utilisant le Lemme 1.11 , on obtient f ∈ Bs,1
p (R) , car∑

j∈N

2js ‖Φj ∗ f‖p ≤ 2

∫ ∞
0

∑
j∈N

2js |Φj (y)| ‖τ−yf − f‖p dy

≤ c

∫ ∞
0

|y|−(1+s) ‖τ−yf − f‖p dy = c

∫ ∞
0

|h|−s
∥∥∆1

h (f)
∥∥
p

dh

|h|
<∞ ,

on note que (1.5) est équivalente à
∫
|h|≤1

(
|h|−s ‖τ−hf − f‖p

)q dh

|h|n
, car

∫
Rn

(|h|−s ‖τ−hf − f‖p)
q dh

|h|n
=

∫
|h|<1

(...) dh+

∫
|h|≥1

(...) dh ,

et l’intégrale
∫
|h|≥1

(|h|−s ‖τ−hf − f‖p)
q dh

|h|n
, se transforme par un changement de variable

convenant en ,
∫
|h|≤1

(|h|−s ‖τ−hf − f‖p)
q dh

|h|n
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Théorème 1.14 [16]

Soient h ∈ Rn , s > 0 , 1 ≤ q ≤ ∞ , 1 ≤ p <∞ , M ∈ N , M ≤ s < M + 1 , alors

f ∈ Ḃs,q
p (Rn) si et seulement si , f ∈ S ′ (Rn) /P (Rn) , et telle que

‖f‖Ḃs,qp (Rn) ∼
(∫

Rn
|h|−sq

∥∥∆M+1
h f

∥∥q
p

dh

|h|n
) 1

q

<∞ .

Le terme (

∫
Rn
... dh) , peut être remplacé par (

∫
|h|<ε

... dh) , pour n’importe quel

ε > 0 , et en général on prend pour ε = 1 , le terme (
∫
|h|<1

... dh) dans le sens des

semi-normes équivalentes .

Preuve

– Comme dans la preuve de la Proposition , 1.13 supposons f ∈ Bs,1
p (R) , 0 < s < 1

donc f ∈ Lp et
∫ ∞

0

|h|−s
∥∥∆1

hf
∥∥
p

dh

|h|
<∞.

Puisque Ψ ∗ f ∈ Lp , alors pour tout j ∈ N , on a

‖Φj ∗ f‖p ≤ c
∥∥∆1

hf
∥∥
p
.

Par le Lemme 1.12 , et pour 2−(j+1) ≤ h ≤ 2−j , on obtient∫ 2−j

2−(j+1)

|h|−s
∥∥∆1

hf
∥∥
p

dh

|h|
≥ c ‖Φj ∗ f‖p

∫ 2−j

2−(j+1)

|h|−s dh

|h|
= c2js ‖Φj ∗ f‖p ,

d’où
∞∑
j=0

2js ‖Φj ∗ f‖p ≤ c

∞∑
j=0

∫ 2−j

2−(j+1)

|h|−s
∥∥∆1

hf
∥∥
p

dh

|h|

≤ c

∫ 1

0

|h|−s
∥∥∆1

hf
∥∥
p

dh

|h|
<∞

– Si s ≥ 1 , alors M ≤ s < M + 1, d’où 0 ≤ s−M < 1, et donc

‖f‖Ḃs,qp (R) ∼
∫ ∞

0

|h|−(s−M)
∥∥∆1

hf
∥∥
p

dh

|h|

∼
∫ ∞

0

|h|−s
∥∥∆M+1

h f
∥∥
p

dh

|h|
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Théorème 1.15 [16]

Soient h ∈ Rn , 0 < q ≤ ∞ , 0 < p <∞ , M ∈ N , et notons σp , par

σp = max

(
0 ,

n

p
− n

)

(i) Supposons que σp < s < M , alors

‖f‖Ḃs,qp (Rn) ∼
(∫

Rn
|h|−sq

∥∥∆M
h f
∥∥q
p

dh

|h|n
) 1

q

(ii) Si 0 < q ≤ ∞ , 0 < p <∞ , s > σp , M ≤ s < M + 1 , alors

‖f‖Ḃs,qp (Rn) ∼
(∫

Rn
|h|−sq

∥∥∆M+1
h f

∥∥q
p

dh

|h|n
) 1

q

Preuve

Pour la preuve , voir par exemple [17] , paragraphe.3.5.3

1.4 Les fonctions à p-variations bornées

Dans tout ce paragraphe I désigne un intervalle de R.

1.4.1 Notions générales

Dans ce sous paragraphe on donne les définitions des fonctions à p-variations bornées

Vp (I) et les espaces BVp (I) , BVp (I) , de leurs classes d’équivalence avec la re-

lation d ’équivalence l’égalité presque partout ainsi que l’espace de leurs primitives

BV 1
p (I) , et leurs propriétés qu’on utilisera par la suite
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Définition 1.16

Soit p ∈ [ 1, + ∞ [ , alors la fonction f : I −→R, est dite à p-variations

bornées ou brièvement à p-v b, si pour toutes les suites réelles, finies et strictes

t0 < t1 < ...... < tN , de I, il existe c > 0, telle que

N∑
k=1

|f (tk)− f (tk−1)|p ≤ cp , ou bien si

sup
{tk}⊂I

[
N∑
k=1

|f (tk)− f (tk−1)|p
]

< ∞

– On dénote l’ensemble de ces fonctions par Vp (I) , (Vp si I = R) , et le minimum

de telles constantes c par rapport à f par νp (f, I), ( νp (f) si I = R)

νp (f, I) = inf
c

{
c > 0 :

N∑
k=1

|f (tk)− f (tk−1)|p ≤ cp, {ti}1≤i≤n ⊂ I

}
.

La Définition 1.16 est équivalente au fait que pour toute famille d’intervalles disjoints

Ik = [ak, bk] ⊂ I, on a

(
∑
Ik

|f (ak)− f (bk)|p)
1
p ≤ c <∞, (c > 0) .

L’espace V1 (I) ou simplement V (I) est appelé l’espace des fonctions à variation born

ées sur I et V∞ (I) est un espace de Banach pour la norme

‖f‖V∞(I) = ν∞ (f, I) = sup
x∈I
|f (x)|

Définition 1.17
Une fonction f : A−→Rn, A ⊂ Rn, est dite γ-Lipchitzienne, γ ≥ 0 , d’ordre α, 0 < α ≤ 1, si

et seulement si

|f (x)− f (y)| 5 γ |x− y|α , pour tout x, y ∈ A.
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L’ensemble de ces fonctions est noté Lipα (A) , (Lipα si A = Rn), on dit aussi qu’une

fonction est Lipchitzienne si elle est γ -Lipchitzienne, pour un certain γ ≥ 0, et on

munit Lipα (A) de la norme suivante

‖f‖Lipα(A) = sup
x,y∈A, x 6=y

|f (x)− f (y)|
|x− y|α

.

Une fonction f : A−→Rn est dite localement γ−Lipchitzienne si à tout point en A

il existe un voisinage où f est γ-Lipchitzienne. Il faut remarquer que

Bs,∞
∞ (R) = Cs (R) = Lips (R) , si 0 < s < 1

Proposition 1.18 [2]

Pour tout x, y ∈ I et p ∈ [ 1, +∞[ , chaque élément de Vp (I) est une fonction bornée,

de plus Vp (I) devient un espace de Banach s’il est doté de la norme suivante

‖f‖Vp(I) = sup
x∈I
|f (x)|+ νp (f, I) (1.6)

Preuve

Par une suite avec seulement deux termes, nous obtenons

|f (tk)− f (tk−1)|p ≤ (νp (f, I))p , pour tout tk, tk−1 ∈ I .

Si on prend tk−1 = 0 , et tk = x, alors |f (tk)− f (0)| ≤ νp (f, I),

d’où |f (x)| = |f (tk)− f (0) + f (0)|

≤ |f (tk)− f (0)|+ |f (0)|

≤ νp (f, I) + |f (0)| = C <∞,

et donc chaque fonction de Vp (I) est bornée, et la norme (1.6) vérifie toutes les con-

ditions rendant Vp (I) un espace de Banach.
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1.4.2 Les fonctions à p-v.b comme distributions

Définition 1.19 [2]

Soit p ∈ [1, + ∞ ], nous dénotons par BVp (I) , l’ensemble des fonctions f : R−→R

telle qu’il existe une fonction g ∈ Vp (I) qui coı̈ncide avec f presque partout,

BVp (I) = {f : I −→R ; ∃g ∈ Vp (I) , tel que f = g (p.p)} ,

et on pose εp (f, I) = inf {νp (g, I) ; g ∈ Vp (I) , tel que g = f (p.p)} ,

– Nous dénotons par BVp (I) , l’ensemble quotient par rapport à la relation d’équivalence

” égalité dans BVp (I) presque partout ”, telles que

ḟ = {g ∈ BVp (I) , tel que g = f (p.p)} ,

et BVp (I) =
{
ḟ tel que f ∈ BVp (I)

}
= BVp (I) /e.p.p

– Si h ∈ BVp (I) , nous dénotons par εp (h, I) , le nombre εp (f, I) , pour n’importe quels des

représentants f de h .

Définition 1.20

Soit f : I −→ R, une fonction ayant des discontinuités seulement du premier type, alors on dit

que f est normalisée si

f(x) =
1

2
(f(x+) + f(x− )), pour tout x ∈

◦
I,

et f (x) = lim
y→x, y∈

◦
I

f (y) , pour tout y ∈ I ∩ ∂I,

où ∂I = Ī\I̊ est la frontiere de I , Ī est l’Adhérence, et I̊ est l’Intérieur , tel que

f(x+) = lim
h>0 , h→0

f (x+ h) , et f(x−) = lim
h>0 , h→0

f (x− h)
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Proposition 1.21 [2]

Si f est une fonction dans Vp (I) , alors la fonction f̃ définie par

f̃(x) =
1

2
(f(x+) + f(x−)) pour tout x ∈

◦
I , et

f̃(x) = lim
y−→x, y∈

◦
I

f(y) pour tout x ∈ I ∩ ∂I,

est normalisée , et appartient à Vp (I) , et satisfait les inégalités suivantes

νp(f̃ , I) ≤ νp(f, I), et sup
I
|f̃ | ≤ sup

I
|f |.

Preuve

Pour la preuve voir [2], [3]

Proposition 1.22 [2]

Soient p ∈ [1,+∞] , et f ∈ BVp(R), alors f a un représentatif normal unique f̃ ∈ Vp ,

tel que εp (f) = νp(f̃).

On considère donc l’espace BVp(R) comme un espace de Banach des distributions ,

doté de la norme suivante ‖f‖BVp(R) = εp (f) + ‖f‖∞ = νp(f̃) + sup
x∈R

∣∣∣f̃ (x)
∣∣∣ , si p <∞,

et ‖f‖BV∞(R) = ‖f‖∞ = sup
x∈R

∣∣∣f̃ (x)
∣∣∣

Définition 1.23

Soit p ∈ [ 1, +∞ ], alors toute fonction f : I −→R , appartient à BV 1
p (I) , s’ils existent

α, x0 ∈ R et g ∈ BVp (I) , tel que pour tout x ∈ I , on ait

f(x) = α +

∫ x

x0

g (t) dt (1.7)

Si (1.7) est vérifiée, alors f est une fonction de Lipchitz continue et nous dotons

BV 1
p (I) avec la norme ‖f‖BV 1

p (I) = |f(x0)|+ ‖f ′‖BVp(I) , pour laquelle BV 1
p (I)

devient un espace de Banach, et à chaque point x0 ∈ I , nous lui obtenons une norme

équivalente .

20



Proposition 1.24 [3]

Pour tout intervalle I de R l’espace Vp (I) , p ≥ 1 est un espace d’algèbre de Banach pour la

multiplication ponctuelle des fonctions , tel que

‖f.g‖Vp(I) ≤ ‖f‖Vp(I) . ‖g‖Vp(I) , pour tout f, g ∈ Vp (I) .

Preuve

Soit x0 < x1 < ... < xn , une suite finie dans I et f, g ∈ Vp (I) .

Puisque p ≥ 1 , et en utilisant l’inégalité de Minkowski on obtient

(
N∑
j=1

|f.g(xj)− f.g(xj−1)|p
) 1

p

≤(
N∑
j=1

|f(xj)(g (xj)− g(xj−1))|p
) 1

p

+

(
N∑
j=1

|g(xj−1)(f(xj)− f(xj−1))|p
) 1

p

≤ sup
I
|f | . (

N∑
j=1

|(g (xj)− g(xj−1))|p)
1
p + sup

I
|g| . (

N∑
j=1

|(f (xj)− f(xj−1))|p)
1
p

≤ sup
I
|f | . νp(g, I) + sup

I
|g| . νp(f, I) , d’où

νp(f. g, I) = sup
I

(
N∑
j=1

|f. g(xj)− f.g(xj−1)|p
) 1

p

≤ sup
I
|f | . νp(g, I) + sup

I
|g| . νp(f, I) , et donc

‖f. g‖Vp(I) = νp(f. g, I) + sup
I
|f | . sup

I
|g| ≤ sup

I
|f | . νp(g, I) + sup

I
|g| . νp(f, I) + sup

I
|f | . sup

I
|g|

≤ sup
I
|f | . νp(g, I) + sup

I
|g| . νp(f, I) + sup

I
|f | . sup

I
|g|+ [νp(g, I). νp(f, I)]︸ ︷︷ ︸

≥0

=

(
sup
I
|f |+ νp(f, I)

)
.

(
sup
I
|g|+ νp(g, I)

)
= ‖f‖Vp(I) · ‖g‖Vp(I) ,

et on déduit donc que

‖f.g‖Vp(I) ≤ ‖f‖Vp(I) . ‖g‖Vp(I) , pour tout f, g ∈ Vp (I) .
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Chapitre 2

Composition des opérateurs dans les

espaces BV 1
p (I)

Dans ce chapitre on donne un rappel de quelques notions de base concernant les opérateurs de

composition , ensuite on présente les propriétés des espaces BV 1
p (I) , où I est un intervalle de

R , puis on présente quelques résultats fondamentaux du calcul fonctionnel sur ces espaces ,

ensuite on présente deux Théorèmes fondamentaux 2.9 et 2.13 , dûs aux travaux de [2] .

Enfin on donne notre contribution à savoir , le Théorème 2.15 qui est une généralisation d’une

inégalité fondamentale , (Théorème 2.9) , en se basant sur le Lemme 2.14 qui est un algorithme

donnant la dérivée de la composition de n fonctions.

2.1 Rappel

Définition 2.1

Soit E un espace fonctionnel et soit φ une fonction réelle à valeurs réelles , on définit l’opérateur

de composition Tφ , associé à φ par

Tφ (f) = φ ◦ f , pour tout f ∈ E .

En général , Tφ est non-linéaire , et le Problème de composition (Superposition) des

Opérateurs ( P.S.O) pour E consiste en trouvant l’ensemble S(E) des fonctions φ réelles à

valeurs réelles telle que Tφ (E) ⊆ E

S(E) = {φ : R−→R ; Tφ (E) ⊆ E} .

Si Tφ (E) ⊆ E , alors on dit que l’opérateur de composition Tφ : E −→E opère sur l’espace

fonctionnel E.
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Remarque 2.2 [2]

On convient de dire qu’ un opérateur de superposition , Tf : E−→E satisfait la propriété

d’inégalité des normes de composition pour un espace normé E s’il vérifie

‖Tf (g)‖E ≤ cf (1 + ‖g‖E) , , (cf > 0) pour tout g ∈ E .

Il faut remarquer que si un opérateur de composition satisfait la propriété d’inégalité des normes

dans l’espace normé E, ceci implique qu’il opère sur E.

2.2 Propriétés des espaces BV 1
p (I)

Dans tout ce qui suit I désigne un intervalle de R .

Tous les résultats de ce paragraphe sont dûs à [2] et [3]

Proposition 2.3 [3]

Si f ∈ BV 1
p (I) , alors f peut être prolongé d’une manière unique à une fonction dans BV 1

p

(
Ī
)

avec la même norme de f dans BV 1
p (I) .

Preuve

Pour la preuve voir [3] .

Par la Proposition ci-dessus , et l’exploitation des transformations affines, l’étude des espaces

BV 1
p (I) peut être réduite aux trois cas suivants :

I = R , I = [0 , +∞[ , I = [0, 1].

Proposition 2.4

La propriété d’homogénéité

∥∥f (λ (.))′
∥∥
BVp

= λ ‖f ′‖BVp , pour tout λ > 0

est vérifiée pour chaque fonction f dans BV 1
p (R) ou BV 1

p ([0,+∞[) .
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Ainsi les espaces BV 1
p (R) et BV 1

p ([0,+∞[) peuvent être vus comme analogues à l’espace

homogène de Sobolev

Ẇ 1,p (R) = {f : f ′ ∈ Lp (R} ,

doté de la semi-norme ‖f ′‖p , et quant à l’espace habituel de Sobolev W 1,p (R) qui est non

homogène W 1,p (R) = Ẇ 1,p (R) ∩ Lp (R) ,

Proposition 2.5 [3]

(i) BV 1
p (I) ∩ Lp (I) = BV 1

p (I) si et seulement si I est borné

(ii) BV 1
p (I) ∩ Lp (I) s’injecte continûment dans BVp(I).

Preuve

Pour la preuve voir [3]

Théorème 2.6 [3]

BV 1
p (I) ∩ Lp (I) est un espace d’algèbre de Banach.

Preuve

Pour la preuve voir [2] et [3]

Proposition 2.7 [3]

Soit I un intervalle compact de R , alors on a les suivantes propriétés de multiplication

Si f, g ∈ BV 1
p (R) , et supp (g) ⊆ I, alors f.g ∈ BV 1

p (R) ,

en outre il existe c > 0 , tel que pour tout f, g ∈ BV 1
p (R) , supp (g) ⊆ I , on ait

‖f.g‖BV 1
p (R) ≤ c ‖f‖BV 1

p (R) ‖g‖BV 1
p (R)

Preuve

Pour la preuve voir [2] et [3]
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2.3 Solution du S.O.P dans les espaces BV 1
p (I)

Les Théorèmes 2.9 et 2.13 sont dûs à [2] .

Lemme 2.8 [8]

Soient a , b , c ∈ R , a < b < c , et soit h une fonction mesurable définie dans [a , c] à valeurs

réelles telles que ∫ b

a

h (x) dx ≥ 0 , et

∫ c

b

h (x) dx < 0 ,

alors ils existent u , v ∈ ]a , c[ , tel que

h (u) .h (v) ≤ 0

Preuve

En appliquant le théorème de Bonnet (second théorème de la moyenne pour les intégrales) à la

fonction h sur l’intervalle [a, b] alors il existe une valeur moyenne 〈h〉[a,b] = u ∈ ]a, b[ , tel que∫ b

a

h (x) dx = h (u)

∫ b

a

1 dx

= h (u) (b− a) ,

et puisque
∫ b

a

h (x) dx ≥ 0 , et b− a ≥ 0, alors h (u) ≥ 0, de même pour l’intervalle [b, c], il

existe une valeur moyenne 〈h〉[b,c] = v ∈ ]b, c[ ,

tel que
∫ c

b

h (x) dx = h (v) (c− b) ,

et puisque
∫ c

b

h (x) dx ≤ 0, et c− b ≥ 0, alors h (v) ≤ 0, d’où l’existence de u, v dans ]a, c[ ,

tel que h (u)h (v) ≤ 0
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Théorème 2.9 [2] (Inégalité de Base)

Si p ∈ [1,+∞[ , t0 ∈ I , α ∈ R , h ∈ Vp (I) , tel que

g (t) = α +

∫ t

t0

h (x) dx, f ∈ Vp (g (I)) , alors

νp ((f ◦ g) . h, I) ≤ νp (f, g (I)) .(sup
I
|h|+ 21/p.νp (h, I)) + νp (h, I) . sup

g(I)

|f | , (2.1)

‖(f ◦ g) . h‖Vp(I) ≤ 21/p ‖f‖Vp(g(I)) . ‖h‖Vp(I) . (2.2)

Preuve

1) On a
N∑
j=1

|(f ◦ g) . h (tj)− (f ◦ g) . h (tj−1)| =
k=N−1∑
k=0

|(f ◦ g) . h (tk+1)− (f ◦ g) . h (tk)|

=
k=N−1∑
k=0

|[f ◦ g (tk+1)− (f ◦ g) (tk)] .h (tk) + f ◦ g (tk+1) . (h (tk+1)− h (tk))| ,

d’où par l’Inégalité de Minkowski(
N∑
j=1

|(f ◦ g) . h (tj)− (f ◦ g) . h (tj−1)|p
) 1

p

≤ A
1
p

1 +B
1
p

1 ,

telles que A1 =
k=N−1∑
k=0

|[f ◦ g (tk+1)− (f ◦ g) (tk)] .h (tk)|p ,

et B1 =
k=N−1∑
k=0

|f ◦ g (tk+1) . [h (tk+1)− h (tk)]|p .

Puisque |f ◦ g (tk+1)| ≤ sup
g(I)

|f | , pour tout k ∈ N , alors

B
1
p

1 ≤ (sup
g(I)

|f |).(
k=N−1∑
k=0

|h (tk+1)− h (tk)|p)
1
p ≤ (sup

g(I)

|f |).νp (h, I) .

Il existe une suite 0 = n0 < n1 < ... < nJ = N , telle que pour tous les indices j = 1, ..., J on a
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(i) La restriction sj de (g (tk))0≤k≤N à {k}nj−1≤k≤nj ,k∈N , est monotone.

(ii) La restriction de (g (tk))0≤k≤N à {k}nj−1≤k≤nj+1 , n’est pas monotone.

D’où [0, N ] = [n0, n1 − 1] ∪ [n1, n2 − 1] .. [nj−1, nj − 1] .. [nJ−2, nJ−1 − 1] ∪ [nJ−1, nJ − 1] .

Posons A1 = A2 +B2 , telles que

A2 =
J−1∑
j=1

nj−1∑
k=nj−1

|f (g (tk+1))− f (g (tk))|p . |h (tk)|p ,

et B2 =

nJ−1∑
k=nJ−1

|f (g (tk+1))− f (g (tk))|p . |h (tk)|p

- Si J 6= 1 , alors B2 ≤ νpp (f, g (I)) . sup
I
|h|p

et

A2 ≤ νpp (f, g (I)) .
J−1∑
j=1

∣∣h(tkj)
∣∣p .

Il existe toujours un certain aj ∈
]
tkj , tnj+1

[
, tel que h (aj) .h(tkj) ≤ 0. Si h(tkj) = 0 ou si h

change de signe à l’intervalle
]
tkj , tnj+1

[
le résultat est direct sinon on peut considérer une

fonction ĥ définie à partir des fonctions de la forme , ±h telles que∫ b

kj

ĥ (x) dx ≥ 0 et
∫ tnj+1

b

ĥ (x) dx < 0, où b ∈
]
tkj , tnj+1

[
,

alors selon le Lemme 2.8, ils existent a′j, a
′′
j ∈

]
tkj , tnj+1

[
, tel que

ĥ(a′j).ĥ(a′′j ) < 0,

d’où ∀ j = 1, ..., J − 1, ∃ aj ∈
]
tkj , tnj+1

[
: ĥ (aj) .ĥ(tkj) ≤ 0 ,

telles que
J−1∑
j=1

∣∣h(tkj)
∣∣p =

J−1∑
j=1

∣∣∣ĥ(tkj)
∣∣∣p et νpp (h, I) = νpp(ĥ, I).

Soit M = max {m ∈ N : 2m+ 1 ≤ J} , alors
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J−1∑
j=1

∣∣h(tkj)
∣∣p =



2M∑
j=1

∣∣h(tkj)
∣∣p , si J − 1 est pair ,

2M∑
j=1

∣∣h(tkj)
∣∣p +

∣∣h (tkJ−1

)∣∣p , si J − 1 est impair ,

d’où
2M∑
j=1

∣∣h(tkj)
∣∣p ≤ M∑

l=1

|h (tk2l)− h (a2l)|p +
M∑
l=1

∣∣h (tk2l−1

)
− h (a2l−1)

∣∣p ,
et on a

∣∣h (tkJ−1

)∣∣p ≤ ∣∣h (tkJ−1

)
− h (aJ−1)

∣∣p .
Par les inégalités tnj−1

≤ tkj < tnj , et tkj < aj < tnj+1 , pour tout j = 1, ..., J − 1 , on

déduit que aj < tnj+1 ≤ tnj+1
≤ tkj+2

.

– Si J ≥ 4 et j = 1, ..., J − 3 , alors les intervalles [tk2l , a2l] sont disjoints , deux à deux pour

l = 1, ...,M. , et les intervalles
[
tk2l−1

, a2l−1

]
sont disjoints deux à deux si J est impair , tel que

l = 1, ...,M + 1 .

– Si J est pair , alors
J−1∑
j=1

∣∣∣ĥ(tkj)
∣∣∣p ≤ M∑

l=1

∣∣∣ĥ (tk2l)− ĥ
(
tk2l+2

)∣∣∣p +
M∑
l=1

∣∣∣ĥ (tk2l−1

)
− ĥ

(
tk2l+1

)∣∣∣p

≤ 2νpp(ĥ, I) ,

d’où
J−1∑
j=1

∣∣h(tkj)
∣∣p ≤ 2νpp (h, I) .

Puisque (sJ) est monotone et p ≥ 1 , et vu les inégalités ci-dessus on a

νp ((f ◦ g) .h, I) ≤ νp (f, g (I)) .

(
2νpp (h, I) + sup

I
|h|p
)1/p

+ νp (h, I) . sup
g(I)

|f | ,

et
(

2νpp (h, I) + sup
I
|h|p
)1/p

≤ (21/p.νp (h, I) + sup
I
|h|) ,

d’où νp ((f ◦ g) .h, I) ≤ νp (f, g (I)) .

(
21/pνp (h, I) + sup

I
|h|
)

+ νp (h, I) . sup
g(I)

|f | .

2) L’inégalité (2.2) , découle directement de l’inégalité (2.1) .
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Théorème 2.10 [13]

Soient deux fonctions f1(x) et f2(x) définies, continues et dérivables sur un ensemble compact de

[a, b] , telle que f ′1(x) = f ′2(x) , (p.p) alors f1(x)− f2(x) est une constante

Preuve

Ce théorème est dû à De la Vallée-Poussin, et pour la preuve voir [13]

Théorème 2.11 [9]

Soit Ω ⊂ Rn un ouvert , et soit f : Ω−→Rn, une fonction Lipchitzienne , alors f est différentiable

presque partout sur Ω , de plus les assertions suivantes sont vérifiées

(i) f est différentiable presque partout sur l’ensemble L (f) tel que

L (f) = {x ∈ Ω : Lip f (x) <∞} ,

où Lip f (x) = lim
y−→x

sup
y∈Ω

|f (x)− f (y)|
|x− y|

.

(ii) Toute fonction f ∈ W 1,p (Ω) , p ∈ [1,+∞] est différentiable (p.p)

Preuve

Ce théorème de Rademacher est une généralisation du théorème de Lebesgue au cas

n = m = 1, Ω = ]a, b[ , aux fonctions à variation bornée, et pour la preuve voir [9] ,

l’assertion (i) est dûe à un théorème de Stepanov et (ii) à un théorème de Calderon.

Proposition 2.12 [9]

Soit f : [a, b]−→R , une fonction de Lipchitz , alors

f (b)− f (a) =

∫ b

a

f ′ (t) dt ,

de plus f : [a, b]−→R est absolument continue si et seulement s’il existe une fonction

g ∈ L1 [a, b] telle que , f (x) = f (a) +

∫ x

a

g (t) dt, x ∈ [a, b] , et dans ce cas la dérivée
df

dx

existe pour presque partout x ∈ [a, b] telle que
df

dx
= g ∈ L1 [a, b]
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Théorème 2.13 [2]

Soit 1 ≤ p <∞ , alors les assertions suivantes sont vérifiées :

(i) Si f, g ∈ BV 1
p (R) , alors f ◦ g ∈ BV 1

p (R) , et

‖f ◦ g‖BV 1
p (R) ≤ ‖f‖BV 1

p (R)

(
1 + 21/p ‖g‖BV 1

p (R)

)
(ii) Soit f : R−→ R , une fonction mesurable de Borel , alors l’opérateur Tf opère sur

BV 1
p (R) si et seulement si f ∈ BV 1

p (R) .

Ce Théorème 2.13 est fondamental car il résout le problème de composition des opérateurs

tel que S(BV 1
p (R)) = BV 1

p (R) =
{
φ : R−→R ; Tφ

(
BV 1

p (R)
)
⊆ BV 1

p (R)
}

Preuve

(i) Puisque f , g ∈ BV 1
p (R) alors f , g sont continues et Lipchitziennes et par le théorème de

Rademacher elles sont différentiables presque partout et on a donc

(f ◦ g)′ (x) = (f ′ ◦ g).g′ (x) .

Par le Théorème 2.10 de De La Vallee Poussin la quantité (f ◦ g) (x)−
∫ x

0

f ′ (g (t)) g′ (t) dt

est une constante et en appliquant la Proposition 2.12 , on obtient

(f ◦ g) (x) = (f ◦ g) (0) +

∫ x

0

f ′ (g (t)) g′ (t) dt .

Puisque f ′, g′ ∈ Vp (R) , alors nous pouvons appliquer le Théorème 2.9 , et nous concluons

que (f ′ ◦ g)g′ ∈ Vp (R) , tel que

‖(f ′ ◦ g)g′‖ Vp(R) ≤ 21/p ‖f ′‖
Vp(R)
‖g′‖

Vp(R)
<∞ .

On a ‖f ◦ g‖BV 1
p (R) ≈ |f ◦ g (x0)|+

∣∣∣(f̃ ◦ g)′
∣∣∣
Vp(R)

. |f ◦ g (x0)|+ 21/p
∥∥∥(f̃)′

∥∥∥
Vp(R)

∥∥(g̃)′
∥∥
Vp(R)

.
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Posons g (x0) = y0 , on a alors

‖f ◦ g‖BV 1
p (R) .

∣∣∣f̃ (y0)
∣∣∣+ 2

1
p

∥∥∥f̃ ′∥∥∥
Vp(R)

. ‖g̃′‖Vp(R)

.
∣∣∣f̃ (y0)

∣∣∣+∥∥∥f̃ ′∥∥∥
Vp(R)

+2
1
p .
∥∥∥f̃ ′∥∥∥

Vp(R)
.
(
‖g̃′‖Vp(R) + |g (y0)|

)
+2

1
p .
(
|g (y0)|+ ‖g̃′‖Vp(R)

)
. |f (y0)|

.

(
|f (y0)|+

∥∥∥f̃ ′∥∥∥
Vp(R)

)
.
[
1 + 2

1
p

(
|g (y0)|+ ‖g̃′‖Vp(R)

)]
≈ ‖f‖BV 1

p (R) .
(

1 + 2
1
p . ‖g‖BV 1

p (R)

)
,

d’où

‖f ◦ g‖BV 1
p (R) . ‖f‖BV 1

p (R)

(
1 + 21/p ‖g‖BV 1

p (R)

)
(ii)

– Si f ∈ BV 1
p (R) , alors selon (i)

‖f ◦ g‖BV 1
p (R) . ‖f‖BV 1

p (R)

(
1 + 21/p ‖g‖BV 1

p (R)

)
<∞, pour tout g ∈ BV 1

p (R) ,

d’où f ◦ g ∈ BV 1
p (R) , pour tout g ∈ BV 1

p (R)

et donc f opère sur BV 1
p (R)

– Si f opère sur BV 1
p (R) alors Tf

(
BV 1

p (R)
)
⊆ BV 1

p (R) .

On a idR (x) = x

= x0 +

∫ x

x0

dt

= x0 +

∫ x

x0

1 dt , tel que 1 ∈ BVp (R) ,
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de plus , ‖idR‖BV 1
p (R) ≈ |f(x0)|+

∥∥(idR)′
∥∥
BVp(R)

≈ |x0|+ ‖1‖BVp(R)

≈ |x0|+ νp(1) + sup
x∈R
|1|

= |x0|+ 0 + 1 <∞,

d’où idR ∈ BV 1
p (R) ,

et donc f = f ◦ idR = Tf (idR) ∈ BV 1
p (R)

2.4 Enoncé des résultats

Dans ce paragraphe , nous présentons le Théorème 2.15 , qui représente notre contri-

bution , à savoir une généralisation de l’inégalité de base introduite dans le Théorème

2.9 ( [2]) par le Lemme 2.14 , donnant la dérivée de n fonctions , suivi de l’exemple

2.16 pour affirmer les résultats obtenus et on convient de prendre

i=m◦
i=n

gi =


gn ◦ gn+1 ◦ · · · ◦ gk ◦ · · · ◦ gm , si m ≥ n

id , si m < n

et

i=m∏
i=n

Ai =


An × An+1 · · · ×Am , si m ≥ n

1 , si m < n
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Lemme 2.14 (Algorithme de base)

Soit (Ik)2≤k≤n une suite d’intervalles de R et soit (gk)1≤k≤n , une suite de fonctions dérivables

telles que gk : Ik−→Ik−1 , alors

∀ n ≥ 2 :
[
i=n◦
i=1

gi

]′
= g′n ×

n−1∏
i=1

[
g′i ◦

(
j=n
◦

j=i+1
gj

)]
=

n∏
i=1

[
g′i ◦

(
j=n
◦

j=i+1
gj

)]
Preuve

Pour n = 3 , on a (g1 ◦ g2 ◦ g3)′ = (g1 ◦ (g2 ◦ g3))′ = (g2 ◦ g3)′ × (g′1 ◦ (g2 ◦ g3))

= g′3 × (g′2 ◦ g3)× (g′1 ◦ (g2 ◦ g3)) = g′3 × (g′1 ◦ g2 ◦ g3)× (g′2 ◦ g3) .

Par récurrence , supposons qu’on a pour n termes

(g1 ◦ g2 ◦ ... ◦ gn)′ = g′n × (g′1 ◦ g2 ◦ ... ◦ gn)× ...× (g′k ◦ gk+1.. ◦ gn)× ...× g′n−1 ◦ gn .

On déduit que pour n+ 1 termes , en prenant comme nème terme (gn ◦ gn+1)

(g1 ◦ ... ◦ (gn ◦ gn+1))′ = (gn ◦ gn+1)′ × (g′1 ◦ ... ◦ (gn ◦ gn+1))× ...× g′n−1 ◦ (gn ◦ gn+1) .

Puisque (gn ◦ gn+1)′ = g′n+1 × (g′n ◦ gn+1) , alors

(g1 ◦ g2 ◦ ... ◦ (gn ◦ gn+1))′ = g′n+1 × (g′1 ◦ .. ◦ gn ◦ gn+1)× ...× g′n−1 ◦ (gn ◦ gn+1)× (g′n ◦ gn+1) ,

d’où[
i=n+1◦
i=1

gi

]′
=
[
i=n◦
i=1

gi ◦ gn+1

]′
= g′n+1 ×

[
i=n◦
i=1

gi

]′
◦ gn+1

= g′n+1 ×

[
g′n ×

n−1∏
i=1

g′i ◦
(

j=n
◦

j=i+1
gj

)]
◦ gn+1

= g′n+1 × (g′n ◦ gn+1)×

[
n−1∏
i=1

g′i ◦
(

j=n
◦

j=i+1
gj

)
◦ gn+1

]

= g′n+1 ×

[
g′n ◦ gn+1 ×

n−1∏
i=1

g′i ◦
(
j=n+1
◦

j=i+1
gj

)]

= g′n+1 ×

[
n∏
i=1

g′i ◦
(
j=n+1
◦

j=i+1
gj

)]
.
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Théorème 2.15

Soient p ∈ [1,+∞[ , n ≥ 2 , h ∈ Vp (I) , telles que pour tout t ∈ I , t0 ∈ I, α ∈ R ,

i=n◦
i=1
gi(t) = α +

∫ t

t0

h (x) dx et f ∈ Vp
(
i=n◦
i=1
gi (I)

)
, alors

(i)
∥∥∥∥[i=n◦i=1

gi

]′∥∥∥∥
Vp(I)

=

∥∥∥∥∥g′n ×
n−1∏
i=1

[
g′i ◦

(
j=n
◦

j=i+1
gj

)]∥∥∥∥∥
Vp(I)

≤ 2
n−1
p ‖g′n‖Vp(I)×

n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(I)

)

(ii)
∥∥∥f ◦ (i=n◦

i=1
gi

)
× h
∥∥∥
Vp(I)

≤ 2
n
p ‖f‖

Vp
(
i=n◦
i=1

gi(I)

) × ‖g′n‖Vp(I) ×
n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(I)

)

Preuve

(i) On a selon le Lemme 2.14 ,
∥∥∥∥[i=n◦i=1

gi

]′∥∥∥∥
Vp(I)

=

∥∥∥∥∥
[
n−1∏
i=1

g′i ◦
(

j=n
◦

j=i+1
gj

)]
× g′n

∥∥∥∥∥
Vp(I)

,

d’où
∥∥∥∥[i=n◦i=1

gi

]′∥∥∥∥
Vp(I)

=

∥∥∥∥∥
[(

n−1∏
i=1

g′i ◦
(
j=n−1
◦

j=i+1
gj

))
◦ gn

]
× g′n

∥∥∥∥∥
Vp(I)

≤ 2
1
p

∥∥∥∥∥
n−1∏
i=1

g′i ◦
(
j=n−1
◦

j=i+1
gj

)∥∥∥∥∥
Vp(gn(I))

× ‖g′n‖Vp(I) , voir (2.2) .

Et

∥∥∥∥∥
n−1∏
i=1

g′i ◦
(
j=n−1
◦

j=i+1
gj

)∥∥∥∥∥
Vp(gn(I))

=

∥∥∥∥∥
[
n−2∏
i=1

g′i ◦
(
j=n−1
◦

j=i+1
gj

)]
× g′n−1 ◦

(
j=n−1
◦
j=n

gj

)∥∥∥∥∥
Vp(gn(I))

=

∥∥∥∥∥
[(

n−2∏
i=1

g′i ◦
(
j=n−2
◦

j=i+1
gj

))
◦ gn−1

]
× g′n−1

∥∥∥∥∥
Vp(gn(I))

, car
j=n−1
◦
j=n

gj = id , (m = n− 1 < n)

≤ 2
1
p

∥∥∥∥∥
n−2∏
i=1

g′i ◦
(
j=n−2
◦

j=i+1
gj

)∥∥∥∥∥
Vp(gn−1(gn(I)))

×
∥∥g′n−1

∥∥
Vp(gn(I))

, et

∥∥∥∥∥
n−2∏
i=1

g′i ◦
(
j=n−2
◦

j=i+1
gj

)∥∥∥∥∥
Vp(gn−1(gn(I)))

≤ 2
1
p

∥∥∥∥∥
n−3∏
i=1

g′i ◦
(
j=n−3
◦

j=i+1
gj

)∥∥∥∥∥
Vp(gn−2((gn−1(gn(I)))))

×
∥∥g′n−2

∥∥
Vp(gn−1(gn(I)))

35



De proche en proche on obtient∥∥∥∥[i=n◦i=1
gi

]′∥∥∥∥
Vp(I)

=

∥∥∥∥∥g′n ×
n−1∏
i=1

[
g′i ◦

(
j=n
◦

j=i+1
gj

)]∥∥∥∥∥
Vp(I)

, selon le Lemme 2.14

≤ 2
n−1
p ‖g′n‖Vp(I) ×

n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(I)

)

D’autre part on a par récurrence∥∥∥∥[i=n+1◦
i=1

gi

]′∥∥∥∥
Vp(I)

=

∥∥∥∥[(i=n◦i=1
gi

)
◦ gn+1

]′∥∥∥∥
Vp(I)

=

∥∥∥∥[(i=n◦i=1
gi

)′
◦ gn+1

]
× g′n+1

∥∥∥∥
Vp(I)

≤ 2
1
p

∥∥∥∥(i=n◦i=1
gi

)′∥∥∥∥
Vp(gn+1(I))

×
∥∥g′n+1

∥∥
Vp(I)

, selon (2.2) du Théorème 2.9

≤ 2
n−1
p 2

1
p ‖g′n‖Vp(gn+1(I)) ×

n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(gn+1(I))

) × ∥∥g′n+1

∥∥
Vp(I)

= 2
n
p

∥∥g′n+1

∥∥
Vp(I)
×

[
n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(gn+1(I))

) × ‖g′n‖Vp(gn+1(I))

]

= 2
n
p

∥∥g′n+1

∥∥
Vp(I)
×

n∏
k=1

‖g′k‖Vp
(

n+1◦
`=k+1

g`(I)

)

(ii) Puisque h (t) =
(
i=n◦
i=1
gi (t)

)′
, et selon (2.2) on a

∥∥∥[f ◦ (i=n◦
i=1

gi

)]
× h
∥∥∥
Vp(I)

≤ 21/p ‖f‖
Vp

(
i=n◦
i=1

gi(I)

) ×
∥∥∥∥(i=n◦i=1

gi

)′∥∥∥∥
Vp(I)

,

≤

[
21/p ‖f‖

Vp
(
i=n◦
i=1

gi(I)

)
]
×

[
2
n−1
p ‖g′n‖Vp(I) ×

n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(I)

)
]

= 2
n
p ‖f‖

Vp
(
i=n◦
i=1

gi(I)

) × ‖g′n‖Vp(I) ×
n−1∏
k=1

‖g′k‖Vp
(

n◦
`=k+1

g`(I)

)
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Exemple 2.16

• Pour n = 2 , soit g1 ◦ g2 = h , alors on a

(i)
∥∥(g1 ◦ g2)′

∥∥
Vp(I)

= ‖g′2 × (g′1 ◦ g2)‖Vp(I) = ‖(g′1 ◦ g2)× g′2‖Vp(I) ≤ 2
1
p ‖g′1‖Vp(g2(I)) ‖g′2‖Vp(I)

(ii) ‖f ◦ (g1 ◦ g2)× h‖Vp(I) ≤ 2
1
p ‖f‖Vp(g1◦g2(I)) ‖h‖Vp(I) = 2

1
p ‖f‖Vp(g1◦g2(I))

∥∥(g1 ◦ g2)′
∥∥
Vp(I)

≤
[
2

1
p ‖f‖Vp(g1◦g2(I))

]
.
[
2

1
p ‖g′1‖Vp(g2(I)) ‖g

′
2‖Vp(I)

]
≤ 2

2
p ‖f‖Vp(g1◦g2(I)) ‖g

′
1‖Vp(g2(I)) ‖g

′
2‖Vp(I) ,

et on a 2
2
p ‖f‖

Vp
(
i=2◦
i=1

gi(I)

) ‖g′2‖Vp(I)

1∏
k=1

‖g′k‖Vp
(

2◦
`=k+1

g`(I)

) = 2
2
p ‖f‖Vp(g1◦g2(I)) ‖g

′
2‖Vp(I) ‖g

′
1‖Vp(g2(I))

• Pour n = 3 , soit g1 ◦ g2 ◦ g3 = h , alors on a

(i)∥∥(g1 ◦ g2 ◦ g3)′
∥∥
Vp(I)

=
∥∥((g1 ◦ g2) ◦ g3)′

∥∥
Vp(I)

=
∥∥g′3 × (g1 ◦ g2)′ ◦ g3

∥∥
Vp(I)

=
∥∥[(g1 ◦ g2)′ ◦ g3

]
× g′3

∥∥
Vp(I)

≤ 2
1
p

∥∥(g1 ◦ g2)′
∥∥
Vp(g3(I))

‖g′3‖Vp(I)

≤ 2
1
p

[
2

1
p ‖g′1‖Vp(g2(g3(I))) ‖g

′
2‖Vp(g3(I))

]
‖g′3‖Vp(I)

= 2
2
p ‖g′1‖Vp(g2(g3(I))) ‖g

′
2‖Vp(g3(I)) ‖g

′
3‖Vp(I) .

et on a 2
3−1
p ‖g′3‖Vp(I)

3−1∏
k=1

‖g′k‖Vp
(

3◦
`=k+1

g`(I)

) = 2
2
p ‖g′3‖Vp(I)

2∏
k=1

‖g′k‖Vp
(

3◦
`=k+1

g`(I)

)
= 2

2
p ‖g′3‖Vp(I) ‖g′1‖Vp

(
3◦
`=2

g`(I)

) ‖g′2‖Vp( 3◦
`=3

g`(I)

) = 2
2
p ‖g′3‖Vp(I) ‖g′1‖Vp(g2◦g3(I)) ‖g′2‖Vp(g3(I))

(ii) ‖f ◦ (g1 ◦ g2 ◦ g3)× h‖Vp(I) ≤ 2
1
p ‖f‖Vp(g1◦g2◦g3(I)) ‖h‖Vp(I)

= 2
1
p ‖f‖Vp(g1◦g2◦g3(I))

∥∥(g1 ◦ g2 ◦ g3)′
∥∥
Vp(I)

≤
[
2

1
p ‖f‖Vp(g1◦g2◦g3(I))

] [
2

2
p ‖g′3‖Vp(I) ‖g

′
1‖Vp(g2◦g3(I)) ‖g

′
2‖Vp(g3(I))

]
≤ 2

3
p ‖f‖Vp(g1◦g2◦g3(I)) ‖g

′
3‖Vp(I) ‖g

′
1‖Vp(g2◦g3(I)) ‖g

′
2‖Vp(g3(I)) .

D’autre part puisque
2∏

k=1

‖g′k‖Vp
(

3◦
`=k+1

g`(I)

) = ‖g′1‖Vp
(

3◦
`=1+1

g`(I)

) ‖g′2‖Vp( 3◦
`=2+1

g`(I)

) ,

alors 2
3
p ‖f‖

Vp
(
i=3◦
i=1

gi(I)

) ‖g′3‖Vp(I)

2∏
k=1

‖g′k‖Vp
(

3◦
`=k+1

g`(I)

) = 2
3
p ‖f‖Vp(g1◦g2◦g3(I)) ‖g′3‖Vp(I) ‖g′1‖Vp(g2◦g3(I)) ‖g′2‖Vp(g3(I))
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Chapitre 3

Composition des opérateurs dans les

espaces de Besov homogènes Ḃs,qp (Rn)

Dans ce chapitre on présente d’abord un rappel de quelques notions de base, puis on

définit les normes des espaces de Besov homogènes, et leurs réalisations ainsi que le

calcul fonctionnel en présentant deux Théorèmes fondamentaux ( 3.12) et (3.13) , en-

fin on donne une extension du Théorème de Peetre ( 3.17) , ainsi que sa démonstration

en introduisant certains espaces fonctionnels en se basant sur les travaux de [2] , [3] .

Définition 3.1

Soient (X, ‖.‖X) , (Y, ‖.‖Y ) , deux espaces vectoriels normés, on dénote par X ↪→ Y l’injection

de X dans Y qui est définie par les conditions suivantes

(i) X est un sous-espace vectoriel de Y

(ii) L’identité J : X−→Y, telle que J (x) = x, pour tout x ∈ X est continue

En étant linéaire la continuité de l’opérateur identité est équivalente à l’existence d’une

constante C > 0 telle que

‖f‖Y ≤ C ‖f‖X , pour tout f ∈ X, (3.1)

- Si (3.1) est vérifiée alors on dit que X s’injecte dans Y, et on dit que l’espace X est

plongé dans Y, s’il existe un opérateur continu , U : X−→Y tel que

‖U (f)‖Y ≤ C ‖f‖X , pour tout f ∈ X,
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Définition 3.2 [14]

Soient A0 et A1 deux espaces quasi-Banach compatibles plongés dans un espace localement

convexe de Haussdroff, on pose A = (A0, A1) , telles que

∑
(A) = A0 + A1 , ‖a‖A0+A1

= inf
a=a0+a1

(
‖a0‖A0

+ ‖a1‖A1

)
et

∆ (A) = A0 ∩ A1, ‖a‖A0∩A1
= max

a∈A0∩A1

(
‖a‖A0

, ‖a‖A1

)
,

et on définit pour chaque t > 0 , les fonctionnelles de Peetre

K (t, a) = inf
a=a0+a1

(
‖a0‖A0

+ t ‖a1‖A1

)
, pour a ∈

∑
(A)

et

J (t, a) = max
(
‖a‖A0

, t ‖a‖A1

)
, pour a ∈ ∆ (A) .

La fonction t 7→ K (t, a) est positive, croissante et concave,

pour chaque 0 < θ < 1, 0 < p ≤ ∞, on définit l’espace d’interpolation (A)θ,p , des

espaces A0 et A1 , par

(A)θ,p = (A0 , A1)θ,p =
{
a ∈

∑
(A) : ‖a‖(A)θ,p

<∞
}
,

et on définit sa quasi-norme par

‖a‖(A)θ,p
=

(∫ ∞
0

(
t−θK (t, a)

)p dt

t

) 1
p

, si 1 ≤ p < +∞

et

‖a‖(A)θ,∞
= sup

0<t<∞
t−θK (t, a) .

La quasi-norme de (A)θ,p , peut être remplacée par la norme

‖a‖A0+A1
+

(∫ ∞
0

(
t−θK (t, a)

)p dt

t

) 1
p
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Théorème 3.3 [14]

Soient (A0, A1) et (B0, B1) deux couples compatibles d’espaces de Banach, où l’opérateur

linéaire borné T plonge Ai dans Bi (i = 0, 1) , telles que

‖Tf‖B0
≤M0 ‖f‖A0

, et ‖Tf‖B1
≤M1 ‖f‖A1

,

alors pour tout 0 < θ < 1, 0 < p ≤ +∞ , l’opérateur T plonge l’espace d’interpolation

(A0, A1)θ,p dans l’espace d’interpolation (B0, B1)θ,p , telles que

‖Tf‖(B0,B1)θ,p
≤Mθ ‖f‖(A0,A1)θ,p

, et Mθ ≤M1−θ
0 M θ

1 .

Preuve

De ce principal Théorème 3.3 dérive tous les classiques théorèmes tels que ceux des

interpolations de Riesz-Thorin ou Marcinkiewicz, et les inégalités classiques telles que celles de

Young et de Bernstein et pour la preuve voir [12] , ainsi que la monographiede Peetre [14] Chap

1

3.1 Problème de Composition dans des espaces de Besov
homogènes Ḃs,q

p (Rn)

Dans ce paragraphe on étudie le calcul fonctionnel dans les espaces de Besov ho-

mogènes et on introduit les espaces Ḃs,qp (Rn) définis grâce à l’ensemble des distribu-

tions tendant vers 0 à l’infini C̃0 (Rn) , ce qui facilite énormément le calcul fonctionnel

en permettant la troncature des polynômes.

3.1.1 Propriétés des espaces de Besov homogènes

Soit ψ une fonction indéfiniment différentiable, paire et positive, dont le support soit

un compact de Rn\{0}, et telle que

∑
j∈Z

ψ
(
2jξ
)

= 1, pour tout ξ 6= 0 . (3.2)
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L’opérateur Qj : S ′ (Rn)−→S ′ (Rn) est défini par l’identité

Q̂jf (ξ) = ψ
(
2−jξ

)
f̂ (ξ) , (j ∈ Z)

Définition 3.4

Soient s ∈ R, p, q ∈ [1,+∞], alors l’espace de Besov homogène ˙̃Bs,q
p (Rn) est l’ensemble des

classes de distributions f ∈ S ′ (Rn) /P∞(Rn) tel que

‖f‖ ˙̃Bs,qp (Rn)
=

(∑
j∈Z

(
2js ‖Qjf‖p

)q)1/q

< +∞ . (3.3)

La norme (3.3) , rend ˙̃Bs,q
p (Rn) un espace de Banach homogène, vérifiant les pro-

priètès d’homogeniété , telles que pour tout λ > 0 , et pour tout a ∈ Rn , on ait

‖τaf‖ ·
B̃

s,q

p (Rn)
= ‖f‖ ·

B̃

s,q

p (Rn)
, (3.4)

c1 ‖f‖ ˙̃Bs,qp (Rn)
≤ λ(n/p)−s ‖f (λ (·))‖ ·

B̃

s,q

p (Rn)
≤ c2 ‖f‖ ·

B̃

s,q

p (Rn)
, (3.5)

On peut remplacer la norme ‖−‖Ḃs,qp (Rn) , par une norme équivalente ‖−‖′ , qui vérifie

(3.4) et améliore (3.5) , en remplaçant la partition discrète (3.2) par une partition con-

tinue telle que

λ(n/p)−s ‖f (λ (·))‖′ = ‖f‖′ , pour tout λ > 0.

Définition 3.5

Soient p, q ∈ [1,+∞] , si s ∈ ]0, 1] alors on dénote par Ḃs,q
p (Rn) l’ensemble des distributions
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tempérées f de Lp`oc (Rn) telle que ‖f‖Ḃs,qp (Rn) < +∞ , avec

‖f‖Ḃs,qp (Rn) ∼
(∫

Rn

ωq (h)

|h|sq
dh

|h|n
) 1

q

, si s 6= 1

∼

(∫
Rn

(
1

|h|s
(∫

Rn
|f (x+ h)− f (x)|p dx

)1/p
)q

dh

|h|n

)1/q

,

et ‖f‖Ḃ1,q
p (Rn) ∼

(∫
Rn

(
1

|h|

(∫
Rn
|f (x+ h) + f (x− h)− 2f (x)|p dx

) 1
p

)q

dh

|h|n

) 1
q

,

avec des modifications éventuelles pour p = +∞ ou q = +∞ ,

où ω (h) = ‖f (x+ h)− f (x)‖p dénote le module de continuité ˙

Si s∈ ]1, 2] , alors on dénote par Ḃs,q
p (Rn) l’ensemble des distributions tempérées f de Lp`oc (Rn)

telle que ∂jf ∈ Ḃs−1,q
p (Rn) pour tout j = 1, ...., n et on définit sa semi-norme par

‖f‖Ḃs,qp (Rn) ∼
n∑
j=1

‖∂jf‖Ḃs−1,q
p (Rn) .

On distingue entre l’espace de Besov homogène ˙̃Bs,q
p (Rn) inclus dans S ′ (Rn) /P∞(Rn)

de la Définition 3.4 et l’espace Ḃs,q
p (Rn) de la Définition 3.5 inclus dans Lp`oc (Rn) .

Lemme 3.6 [2]

Soient f ∈ Lp`oc (Rn) , a ∈ Rn, λ > 0, alors l’espace Ḃs,q
p (Rn) vérifie les propriétés d’homogénéité

suivantes

‖f (· − a)‖Ḃs,qp (Rn) = λ(n/p)−s ‖f (λ (·))‖Ḃs,qp (Rn) = ‖f‖Ḃs,qp (Rn) ,

de plus ‖f‖Ḃs,qp (Rn) = 0, si et seulement si f ∈ P[s] (Rn)

Preuve

− Pour s ∈ ]0, 1] on prend x− a = y , donc on a dx = dy,

d’oú ‖f (· − a)‖Ḃs,qp (Rn) = ‖f‖Ḃs,qp (Rn)
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− Pour s ∈ ]1, 2] on a

‖f (· − a)‖Ḃs,qp (Rn) =
n∑
j=1

‖∂jf (· − a)‖Ḃs−1,q
p (Rn) =

n∑
j=1

‖∂jf‖Ḃs−1,q
p (Rn) = ‖f‖Ḃs,qp (Rn) ,

et ainsi par récurrence, pour tout s > 0

− Posons λ . x = y et λ . h = t , alors

dy = λn . dx , dt = λn . dh , |t| = |λ|n . |h| ,

en appliquant la Définition 3.5 on obtient

‖f (λ (·))‖Ḃs,qp (Rn) =

(∫
Rn

(
1

|λ|−s |t|s
(∫

Rn
λ−n |f (y + t)− f (y)|p dy

)1/p
)q

λ−n dt

|λ|−n |t|n

)1/q

= λ−(n/p)+s ‖f‖Ḃs,qp (Rn) ,

- Si ‖f‖Ḃ1,q
p (Rn) = 0, alors

f (x+ h) + f (x− h)− 2f (x) = 0,

d’où ω2
p (h, f) = 0 , et donc f est un polynôme du premier degré.

- Si ‖f‖Ḃs,qp (Rn) = 0, alors

‖∂jf‖Ḃs−1,q
p (Rn) = 0, (j = 1, ..n) ,

d’où par récurrence ∂jf est un polynôme de degré [s− 1] = [s] − 1 , et donc f est un

polynôme de degré [s]

Proposition 3.7 [2]

Soient s ∈ R, p, q ∈ [1,+∞] alors l’espace quotient Ḃs,q
p (Rn)

/
P[s] (Rn) peut être identifié à

l’espace de Besov homogène qu’on peut dénoter par ˙̃Bs,q
p (Rn) et peut être pris comme l’ensemble

des classes des distributions tempérées modulo les polynômes f ∈ S ′ (Rn) /P∞ (Rn) tel que
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∂jf ∈ ˙̃Bs−1,q
p (Rn) pour tout j = 1, , ..n, de plus l’expression suivante est une norme équivalente

pour ˙̃Bs,q
p (Rn)

‖f‖ ˙̃Bs,qp (Rn)
≈

n∑
j=1

‖∂jf‖ ˙̃Bs−1,q
p (Rn)

Preuve

Pour la preuve voir [4]
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3.1.2 Réalisations des espaces de Besov homogènes

Définition 3.8

Soit σ : Ḃs,q
p (Rn)−→ S ′ (Rn)/Pm (Rn) une application linéaire continue telle que σ (f) = [f ]

est la classe d’équivalence de f modulo Pm (Rn) , alors pour tout f ∈ Ḃs,q
p (Rn) , on dit que σ

est une réalisation modulo Pm (Rn) de Ḃs,q
p (Rn) , c’est un isomorphisme linéaire de Ḃs,q

p (Rn)

sur son image, tel que l’espace σ
(
Ḃs,q
p (Rn)

)
muni de la norme,

‖σ (f)‖ = ‖f‖Ḃs,qp (Rn)

devient un espace de Banach .

Si f ∈ S ′ (Rn)/P∞ (Rn) et si la série
∑
j∈Z

Qjf converge dans S ′ (Rn)/Pm (Rn), alors on a

σm (f) =
∑
j∈Z

Qjf ∈ S ′ (Rn)/Pm (Rn) .

Définition 3.9

On dit qu’une distribution tempérée f ∈ S ′ (Rn) tend vers 0 à l’infini si on a

lim
λ→0

f
( ·
λ

)
= 0, dans S ′ (Rn) .

L’ensemble de telles distributions est noté C̃0 (Rn) .

Si C (R) dénote l’ensemble des fonctions réelles continues à valeurs réelles et Cb (R)

l’espace de Banach des fonctions bornées de C (R) muni de la norme sup et C0 (R) le

sous-espace de Banach des fonctions de Cb (R) avec une limite à valeur nulle à l’infini

alors les distributions suivantes tendent vers 0 à l’infini.

– Les fonctions appartenant à C0 (Rn) ou à Lp(Rn), 1 ≤ p < +∞.

– Les mesures boréliennes bornées.

– Les dérivées des fonctions continues bornées.

– Les dérivées des distributions appartenant à C̃0 (Rn).
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Proposition 3.10 [4]

Soit 1 ≤ p <∞ , telles que

(0 < s < 1 +
1

p
et 1 ≤ q ≤ +∞) ou (s = 1 +

1

p
et q = 1).

Si on dénote par Ḃs,qp (Rn) , l’ensemble des distributions tempérées f telles que

[f ] ∈ Ḃs,q
p (Rn) et ∂jf ∈ C̃0, pourj = 1, ....n,

alors tout élément de Ḃs,q
p (Rn) admet un représentant dans Ḃs,qp (Rn) unique à l’addition près

d’une constante et l’espace Ḃs,qp (Rn) , ainsi défini peut être muni de la semi-norme de ‖−‖Ḃs,qp (Rn)

3.1.3 Enoncé des résultats

Dans ce sous-paragraphe on compare entre les différents espaces Bs,q
p , ˙̃Bs,q

p ≈ Ḃs,q
p , Ḃs,qp ,

concernant le calcul fonctionnel pour résoudre le problème de Composition en précisant les

conditions li és à chacuns d’eux et en présentant deux Théorèmes comparatifs 3.12 et 3.13

Définition 3.11 [4]

Soient p ∈ [1,+∞[ et J un intervalle de R , alors nous dénotons par Up (J) , l’ensemble des

fonctions mesurables f : R−→R , telle que

sup
|h|≤t

|f (x+ h)− f (x)| soit mesurable sur J , pour tout t > 0 ,

muni de la norme

‖f‖pUp(J) = sup
t >0

t−1

∫
J

sup
|h|≤t
|f (x+ h)− f (x)|p dx < +∞.

On dit qu’une fonction continue f appartient à U1
p (R) , s’il existe une fonction

borélienne bornée h ∈ Up (R) , telle que

f (x)− f (0) =

∫ x

0

h (t) dt, pour tout x ∈ R,
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et pour toute fonction h bornée borélienne mesurable de classe Up (R) , on munit U1
p (R) de la

semi-norme

‖f‖U1
p

= inf

{
sup
R
|h|+ ‖h‖Up , h = f ′ (p.p)

}
∼ |f (0)|+ ‖f ′‖∞ + ‖f ′‖Up(R)

et juste comme nous avons défini BVp(R) à partir de Vp (R) (cf. Définition 1.19), nous

définissons aussi Up (R) à partir de Up (R), en prenant les fonctions qui sont presque partout

égales au moins à un élément de Up (R), et nous dotons Up (R) avec la semi-norme

‖f‖Up(R) = inf
{
‖g‖Up(R) ; g ∈ Up (R) , g = f (p.p )

}
Théorème 3.12 [2]

Soient

p ∈]1,+∞[ , s ∈]0, 1 +
1

p
[ , q ∈ [1,+∞] , f ∈ U1

p (R)

(i) Si f(0) = 0 , alors Tf
(
B1+(1/p),1
p (Rn)

)
⊆ B1+(1/p),∞

p (Rn) ,

et ‖f ◦ g‖
B

1+(1/p),∞
p (Rn)

≤ c ‖f‖U1
p (R) ‖g‖B1+(1/p),1

p (Rn)
, pour tout g ∈ B1+(1/p),1

p (Rn)

(ii) Si f(0) = 0 , alors Tf
(
Bs,q
p (Rn)

)
⊆ Bs,q

p (Rn) ,

et ‖f ◦ g‖Bs,qp (Rn) ≤ c ‖f‖U1
p (R) ‖g‖Bs,qp (Rn) , pour tout g ∈ Bs,q

p (Rn)

(iii) Si g ∈ Ḃ
1+ 1

p
,1

p (R) , alors f ◦ g ∈ Ḃ
1+ 1

p
,∞

p (R) ,

et ‖f ◦ g‖
Ḃ

1+ 1
p ,∞

p (R)
≤ cp ‖f‖U1

p (R) (‖g‖
Ḃ

1+ 1
p ,1

p (R)
+ |Lg′ |), (cp > 0) .

(iv) Si g ∈ BV 1
p (R) , alors f ◦ g ∈ Ḃ

1+ 1
p
,∞

p (R) ,

et ‖f ◦ g‖
Ḃ

1+ 1
p ,∞

p (R)
≤ cp ‖f‖U1

p (R) ‖g
′‖BVp(R) , (cp > 0)

Preuve

Pour la preuve voir [2] , le Théorème 3.12 peut se généraliser aux espaces Bs,q
p (Rn) , mais on ne

connait pas une généralisation au cas n-dimensionnel pour les espaces BV 1
p
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Théorème 3.13 [4]

Soient

1 ≤ p <∞, q ∈ [1,+∞] , 0 < s < 1 +
1

p
et f ∈ U1

p (R)

(i) Si g ∈ Ḃ
1+ 1

p
,1

p (Rn) , alors on a

[f◦g] ∈ Ḃ
1+ 1

p
,∞

p (Rn) , ∂j (f◦g) ∈ C̃0 (Rn) , (j = 1, ..., n) ,

et ‖f ◦g‖
Ḃ

1+ 1
p ,∞

p (Rn)
≤ c ‖f‖U1

p
‖g‖

Ḃ
1+ 1

p ,1

p (Rn)
, (c > 0)

(ii) Si g ∈ Ḃs,qp (Rn) , alors on a

f ◦ g ∈ Ḃs,qp (Rn) , et ‖f ◦g‖Ḃs,qp (Rn) ≤ c ‖f‖U1
p
‖g‖Ḃs,qp (Rn) , (c > 0)

Preuve

Pour la preuve voir [4] , page 13

3.2 Théorème de Peetre

Lemme 3.14 [8]

Soit φ : [a, b]−→R, une fonction absolument continue alors

ν1 (φ, [a, b]) =

∫ b

a

|φ′ (x)| dx ,

où ν1 (f, I) = sup
{ti}⊂I

N∑
k=1

|f (tk)− f (tk−1)|

Théorème 3.15 [14]

Soient 1 ≤ p0 , p1 ≤ ∞ , 0 < q0 , q1 ≤ ∞ , 0 < θ < 1

(i) Si s = (1− θ) s0 + θs1 ,
1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

, alors

Bs,min(q,p)
p (Rn) ↪→

(
Bs0,q0
p0

(Rn) , Bs1,q1
p1

(Rn)
)
θ,p
↪→ Bs,max(q,p)

p (Rn)
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(ii) Si s = (1− θ) s0 + θs1 , 0 < θ < 1 , r ∈ R , alors

(
Bs0,q0
p (Rn) , Bs1,q1

p (Rn)
)
θ,r

= Bs,r
p (Rn)

(iii) Si
1

q
=

1− θ
q0

+
θ

q1

, alors

(
Bs0,q0
p (Rn) , Bs1,q1

p (Rn)
)
θ,q

= Bs,q
p (Rn)

Preuve

Pour la preuve voir la monographie de Peetre , [14] Chap 5, P107. Le Théorème 3.15 reste vrai

pour les espaces de Besov homogènes .

Proposition 3.16 [2]

(i) Soit p ∈]1,+∞[ , si g est un élément de Ḃ
1
p
,1

p (R) , alors g est une fonction continue et la

limite Lg = lim
x→∞

g (x) existe dans R .

En particulier, chaque élément de Ḃ
1
p
,1

p (R) est congruent modulo P0 à exactement un

élément de C0(R) .

(ii) Soit p ∈ [1,+∞[ alors l’espace Ḃ
1
p
,1

p (R)∩C0(R) doté de la restriction de la semi-norme

‖·‖
Ḃ

1
p ,1

p (R)
, est un espace de Banach isométrique à ˙̃B

1/p,1
p (R) .
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Théorème 3.17 [2]

Soit p ∈]1,+∞[ , alors on a les inclusions continues suivantes qui sont vérifiées

˙̃B1/p,1
p (R) ↪→ (L∞ (R) , BV1 (R))1/p,p = (BV∞ (R) , BV1 (R))1/p,p

↪→ BVp (R) ↪→ Up (R) ↪→ ˙̃B1/p, ∞
p (R)

Preuve

(1) Si on applique le Théorème 3.15, (i) en prenant

θ = s = 1/p, p0 =∞, s0 = 0, s1 = q0 = q1 = p1 = 1 , alors

˙̃B1/p,1
p (R) ↪→ ( ˙̃B0,1

∞ (R) , ˙̃B1,1
1 (R))1/p,p ↪→ ˙̃B1/p,p

p (R) ,

et d’après la Proposition 3.16 , (ii) on a

Ḃ1/p,1
p (R) ∩ C0 (R) ≈ ˙̃B1/p,1

p (R) et Ḃ0,1
∞ (R) ∩ Cb (R) ≈ ˙̃B0,1

∞ (R) ,

d’où Ḃ1/p,1
p (R) ∩ C0 (R) ↪→

(
Ḃ0,1
∞ (R) ∩ Cb (R) , Ḃ1,1

1 (R) ∩ C0 (R)
)

1/p,p

– Prouvons les injections

˙̃B1,1
1 (R) ↪→ Ẇ 1,1 (R) ↪→ BV1 (R)

– Si f ∈ ˙̃B1,1
1 (R), alors en utilisant l’inégalité de Bernstein on obtient

‖f ′‖1 ≤ cR ‖f‖1 = cR

∥∥∥∥∥∑
j∈Z

Qjf

∥∥∥∥∥
1

≤ cR
∑
j∈Z

2j ‖Qjf‖1 = C ‖f‖ ˙̃B1,1
1

,

où supp(f̂) ⊂ {ξ ∈ Rn : |ξ| ≤ R}
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d’où ‖f‖Ẇ 1,1(R) ≤ C ‖f‖ ˙̃B1,1
1 (R)

, et donc ˙̃B1,1
1 (R) ↪→ Ẇ 1,1 (R) .

– Si f ∈ Ẇ 1,1 (R), alors f est absolument continue, et selon le Lemme 3.14 on a

‖f‖BV1(R) = ν1

(
f̃ , (R)

)
+sup
x∈R

∣∣∣f̃ (x)
∣∣∣ ≤ 2ν1

(
f̃ ,R

)
≤ 2

∫
R

∣∣∣f̃ ′ (x)
∣∣∣ dx ≤ 2 ‖f‖Ẇ 1,1(R) ,

d’où Ẇ 1,1 (R) ↪→ BV1 (R) , et donc ˙̃B1,1
1 (R) ↪→ BV1 (R) .

– On prouve aussi que ˙̃B0,1
∞ (R) ↪→ L∞ (R), car on a

‖f‖∞ =

∥∥∥∥∥∑
j∈Z

Qjf

∥∥∥∥∥
∞

≤
∑
j∈Z

‖Qjf‖∞ = ‖f‖ ·
B̃

0,1

∞ (R)

,

– en appliquant le Théorème 3.3 d’interpolation on obtient

( ˙̃B0,1
∞ (R) , ˙̃B1,1

1 (R))1/p,p ↪→ (L∞ (R) , BV1 (R))1/p,p ,

d’où ˙̃B1/p,1
p (R) ↪→ (L∞ (R) , BV1 (R))1/p,p

(2) Si E est la fermeture de BV1 (R) par rapport à L∞ (R) , alors

(L∞ (R) , BV1 (R))1/p,p = (E ,BV1 (R))1/p,p ,

et puisque E ↪→ BV∞ (R) alors

(E,BV1 (R))1/p,p ↪→ (BV∞ (R) , BV1 (R))1/p,p ,

d’où (L∞ (R) , BV1 (R))1/p,p ↪→ (BV∞ (R) , BV1 (R))1/p,p

(3) On définit les normes de l’espace l pN des suites finies {ti}1≤i≤N ⊂ R, par

‖ti‖l pN = (
i=N∑
i=1

|ti|p)
1
p et ‖ti‖l∞N = sup

1≤i≤N
|ti|
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Considérons t0 < t1 < ... < tN , et soit la fonction continue U définie par

U : BV∞ (R) −→ l ∞N (R)

f 7−→ U (f) =
(
f̃ (tk)− f̃ (tk −1)

)
1 ≤ k ≤ N

,

nous avons alors

‖U (f)‖l ∞N = sup
1≤i≤N

∣∣∣ f̃ (ti)− f̃ (ti −1)
∣∣∣ ≤ sup

1≤i≤N

(∣∣∣f̃ (ti)
∣∣∣+
∣∣∣f̃ (ti −1)

∣∣∣)

≤ 2 sup
∣∣∣f̃ ∣∣∣ = 2 ‖f‖BV∞(R) ,

et ‖U (f)‖l 1
N

=
k=N∑
k=1

∣∣∣ f̃ (tk)− f̃ (tk −1)
∣∣∣ ≤ ν1

(
f̃
)
≤ ‖f‖BV1(R) ,

on a (L∞(X), L1(X)) 1
p
, p = Lp(X) , et si on prend comme cas particulier les espaces l pN

on obtient par le Théorème 3.3 d’interpolation

‖U (f)‖l pN ≤cp ‖f‖(BV∞(R),BV1(R)) 1
p , p

,

et puisque ‖f‖BVp(R) = inf
a

{
a > 0 :

∥∥∥U(f̃)
∥∥∥
l pN

≤ a

}
, alors

‖f‖BVp(R) ≤ cp ‖f‖(BV∞(R),BV1(R)) 1
p , p

,

ce qui donne (BV∞ (R) , BV1 (R)) 1
p
, p ↪→ BVp (R)

(4)

On a
∫
R

sup
|h|≤t
|f (x+ h)− f (x)|p dx =

∑
m∈Z

∫ (m+1)t

mt

sup
|h|≤t
|f (x+ h)− f (x)|p dx

=

∫ t

0

∑
m∈Z

sup
|h|≤t
|f (y +mt+ h)− f (y +mt)|p dy .
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Pour chaque m ∈ Z , y ∈ R , il existe hm(y) ∈ [−t, t] , tel que

|f (y +mt+ hm (y)− f (y +mt))|p ≥ sup
|h|≤t
|f (y +mt+ h)− f (y +mt)|p − ε

4
2−|m| .

Puisque la famille d’intervalles {]y + kt, y + kt+ h (y)[} est disjointe alors∫ t

0

∑
m∈Z

sup
|h|≤t
|f (y +mt+ h)− f (y +mt)|p dy ≤

∫ t

0

∑
m∈Z

{
|f (y +mt+ hm (y))− f (y +mt)|p +

ε

4
2−|m|

}
dy

≤
∫ t

0

(
2νpp (f) + ε

)
dy = t

((
2νpp (f) + ε

))
.

Puisque ε > 0 est arbitraire , nous obtenons l’inégalité ‖f‖Up(R) ≤ 21/p ‖f‖Vp(R) , ce

qui donne Vp (R) ↪→ Up (R) , et l’on déduit que BVp (R) ↪→ Up (R)

(5) On a pour tout g = f , (p . p)

‖f‖ ˙̃B
1/p,∞
p (R)

= sup
|h| ≥1

[
h−

1
p ‖τ−hf − f‖Lp

1

|h|

]
,

≤

[
sup
t >0

t−1

∫
R

(
sup
|h|≤t

|g (x+ h)− g (x)|p
)

dx

] 1
p

= ‖g‖Up(R) ,

d’où ‖f‖ ˙̃B
1/p,∞
p (R)

≤ inf
{
‖g‖Up(R) ; g ∈ Up (R) , g = f (p.p )

}
= ‖f‖Up(R) ,

donc ‖f‖ ˙̃B
1/p,∞
p (R)

≤ ‖f‖Up(R) ,

ce qui donne Up (R) ↪→ ˙̃B1/p,∞
p (R)
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Chapitre 4

Composition des opérateurs dans les

espaces BV αp (I)

Dans ce chapitre on donne les définitions des espaces Vαp (I) , BV α
p (I) , des fonctions définies

sur les intervalles I de R à p-variation bornées d’ordre α et l’espace de leurs classes

d’équivalence par rapport à l’égalité presque partout, ensuite on étudie les cas particuliers

α = 1− 1

p
, (p ≥ 1) qui donnent les espaces W 1,p (I) et on donne une généralisation du

Théorème 3.17 de Peetre aux espaces BV α
p (I) , 0 ≤ α < 1 , 1 < p <∞ , enfin on présente

quelques exemples sur des opé rateurs de compositions définis dans certains espaces fonctionnels .

4.1 Notions de base

Dans ce paragraphe on présente quelques notions de base sur les espaces Vαp (I) des fonctions à

p-variation bornées d’ordre α telles que p ≥ 1, α ≥ 0, ainsi que l’espace de ses primitives

BV α
p (I) , pour généraliser certains résultats des chapitres précédents.

4.1.1 Les espaces Vαp (I)

Définition 4.1

Soit p ∈ [1,+∞] on définit la norme de l’espace l pN , des suites réelles finies {ti}1≤i≤N , par
‖ti‖l pN =

(
i=N∑
i=1

|ti|p
)1/p

, si p 6=∞

‖ti‖l ∞N = sup
1≤i≤N

|ti| , si p =∞
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Définition 4.2

Soient p ∈ [1, +∞ [ , α ≥ 0, alors une fonction f : I −→R est dite à p-variation bornées

d’ordre α ou brièvement á p-v . b d’ordre α , si pour toutes les suites réelles, strictes et finies

t0 < t1 < ...... < tN , de I il existe c > 0, telle que∥∥∥∥f (tk)− f (tk−1)

(tk − tk−1)α

∥∥∥∥
l pN

≤ c <∞ (4.1)

ou bien si le nombre sup
{tk}1≤k≤n,tk−1<tk

⊂I

[
N∑
k=1

∣∣∣∣f (tk)− f (tk−1)

(tk − tk−1)α

∣∣∣∣p
]

est fini ,

l’ensemble de ces fonctions est noté Vαp (I) ,
(
Vαp si I = R

)
, et le minimum de telles constantes

c est noté ναp (f, I),
(
ναp si I = R

)
ναp (f, I) = inf

c

{
c > 0 :

N∑
k=1

∣∣∣∣f (tk)− f (tk−1)

(tk − tk−1)α

∣∣∣∣p ≤ cp, pour tout {tk}1≤k≤n,tk−1<tk
⊂ I

}

Remarque 4.3

– Nous convenons de prendre V0
p (I) = Vp (I)

– La condition (4.1) est équivalante au fait que pour toute famille d’intervalles disjoints

[ak, bk] , ak 6= bk de I on a
N∑
k=1

∣∣∣∣f (ak)− f (bk)

(ak − bk)α
∣∣∣∣p ≤ c <∞, (c > 0)

– Vα1 (I) ou simplement Vα (I) est appel é l’espace des fonctions à variation bornées d’ordre

α sur I , et Vα∞ (I) est un espace de Banach pour la norme

‖f‖Vα∞(I) = να∞ (f, I) = sup
x∈I /{0}

∣∣∣∣f (x)

xα

∣∣∣∣ ,
et l’on a Vα∞ (I) = Lipα (I) , pour 0 ≤ α < 1

Proposition 4.4

Soient x , y ∈ I , p ∈ [ 1 , + ∞ [ , et 0 ≤ α < 1, alors chaque élément de Vαp (I) est

une fonction Lipchitzienne d’ordre α , et Vαp (I) devient un espace de Banach s’il est doté de la

norme suivante ,

‖f‖Vαp (I) = sup
x∈I
|f (x)|+ ναp (f, I) . (4.2)
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Preuve

Si f ∈ Vαp (I) alors f est ναp -Lipchitzienne d’ordre α car

|f(x)− f(y)

(x− y)α
| ≤ ναp (f, I) pour tout x, y ∈ I.

et la norme (4.2) vérifie toutes les conditions rendant Vαp (I) un espace de Banach.

Proposition 4.5

L’espace Vαp (I) est une algèbre de Banach pour la multiplication ponctuelle des fonctions ,

tel que ‖f.g‖Vαp (I) ≤ ‖f‖Vαp (I) ‖g‖Vαp (I) pour tout f, g ∈ Vαp (I)

Preuve

Soit x0 < x1 < ... < xn une suite finie dans I et f, g ∈ Vp (I) .Puisque p ≥ 1 et en utilisant

l’inégalité de Minkowski on obtient(
N∑
j=1

∣∣∣∣fg(xj)− fg(xj−1)

(xj − xj−1)α

∣∣∣∣p
) 1

p

≤

(
N∑
j=1

∣∣∣∣f(xj)

(
g (xj)− g(xj−1)

(xj − xj−1)α

)∣∣∣∣p
)1/p

+

(
N∑
j=1

∣∣∣∣g(xj−1)

(
f(xj)− f(xj−1)

(xj − xj−1)α

)∣∣∣∣p
)1/p

≤ sup
I
|f | .

(
N∑
j=1

∣∣∣∣g (xj)− g(xj−1)

(xj − xj−1)α

∣∣∣∣p
) 1

p

+ sup
I
|g| .

(
N∑
j=1

∣∣∣∣f (xj)− f(xj−1)

(xj − xj−1)α

∣∣∣∣p
) 1

p

≤ sup
I
|f | . ναp (g, I) + sup

I
|g| . ναp (f, I) , d’où

ναp (f .g, I) = sup
I

(
N∑
j=1

∣∣∣∣fg(xj)− fg(xj−1)

(xj − xj−1)α

∣∣∣∣p
) 1

p

≤ sup
I
|f | . ναp (g, I) + sup

I
|g| . ναp (f, I) , et donc

‖f . g‖Vαp (I) = ναp (f. g, I) + sup
I
|f | . sup

I
|g|

≤ sup
I
|f | . ναp (g, I) + sup

I
|g| . ναp (f, I) + sup

I
|f | . sup

I
|g|

≤ sup
I
|f | . ναp (g, I) + sup

I
|g| . ναp (f, I) + sup

I
|f | . sup

I
|g|+

[
ναp (g, I). ναp (f, I)

]︸ ︷︷ ︸
≥0

=

(
sup
I
|f |+ ναp (f, I)

)
.

(
sup
I
|g|+ ναp (g, I)

)
= ‖f‖Vαp (I) · ‖g‖Vαp (I) ,
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4.1.2 Les espaces BV α
p (I)

Dans ce paragraphe on généralise l’espace des classes BVp(I) à l’espace des classes

BV α
p (I) telle que 0 ≤ α < 1, puis on dé finit l’espace des distributions BV α

p , telles

que α ≥ 1 de leurs primitives.

Définition 4.6

Soient p ∈ [1, +∞ ], 0 ≤ α < 1, alors nous dénotons par BVαp (I) , l’ensemble des

fonctions f : R−→R, telle qu’il existe une fonction g ∈ Vαp (I) qui coı̈ncide avec f

presque partout.

BVαp (I) =
{
f : I −→R ; ∃g ∈ Vαp , tel que f = g (p.p)

}
,

et on pose

εαp (f) = inf
{
ναp (g) ; g ∈ Vαp , tel que g = f (p.p)

}
,

et nous dénotons parBV α
p (I) l’ensemble quotient par rapport à la relation d’équivalence ,

”égalité dans BVαp (I) presque partout” , telles que

ḟ =
{
g ∈ BVαp (I) ; g = f (p.p)

}
,

et BV α
p (I) =

{
ḟ ; f ∈ BVαp (I)

}
= BVαp (I) /e.p.p .

Si h ∈ BV α
p (I) , nous dénotons par εαp (h) , le nombre εαp (f) , pour n’importe

quels des représentants f de h .

Nous convenons de prendre BV 0
p (I) = BVp (I)
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Proposition 4.7

Soient p ∈ [1,+∞], 0 ≤ α < 1, si f ∈ BV α
p (R) alors f a un représentatif normal

unique f̃ ∈ Vαp , et nous avons

εαp (f) = ναp (f̃) .

Nous considérerons donc BV α
p (R) , comme un espace de Banach des distributions

doté de la norme suivante

‖f‖BV αp (R) = εαp (f) +

∥∥∥∥f (x)

xα

∥∥∥∥
∞

= ναp (f̃) + sup
x∈R/{0}

∣∣∣∣∣ f̃ (x)

xα

∣∣∣∣∣ .

Il faut noter que pour p =∞ , on obtient

‖f‖BV α∞(I) ∼ sup
x∈I /{0}

∣∣∣∣∣ f̃ (x)

xα

∣∣∣∣∣
Définition 4.8

Soient p ∈ [ 1, + ∞ ], α ≥ 1, alors nous disons qu’une fonction f : I −→R

appartient à BV α
p (I) , s’ils existent c, x0 ∈ R, et g ∈ BV α−1

p (I) tel que

f(x) = c+

∫ x

x0

g (t) dt pour tout x ∈ I . (4.3)

Si (4.3) est vérifiée, alors f est une fonction de Lipchitz continue, et nous dotons

BV α
p (I) avec la norme

‖f‖BV αp (I) = |f(x0)|+ ‖f ′‖BV α−1
p (I) ,

pour laquelle BV α
p (I) devient un espace de Banach, et à chaque point x0 de I , nous

obtenons une norme équivalente .
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4.2 Les espaces W 1,p (Ω) , Ω un ouvert de Rn

Dans ce paragraphe on étudie l’espace W 1,p (Ω) , où Ω est un ouvert de Rn, qui s’avère très

intéréssant compte tenu de sa régularité par rapport aux opérateurs de compositions. Voir les

travaux de H.Brezis [6]

4.2.1 Propriétés des espaces W 1,p (Ω)

Définition 4.9 [15]

∗ Soient Ω un ouvert de Rn , et 1 ≤ p ≤ ∞ , alors on définit l’espace W 1,p (Ω) par

W 1,p (Ω) =

{
u ∈ Lp (Ω) ,

∂u

∂xi
(au sens des distributions) ∈ Lp (Ω) , i = 1, ..n

}
.

∗ On pose H1 (Ω) = W 1,2 (Ω) qui est muni du produit scalaire

〈u, v〉H1(Ω) = 〈u, v〉L2(Ω) +
n∑
i=1

〈
∂u

∂xi
,
∂v

∂xi

〉
L2(Ω)

,

et la norme associée est ‖u‖H1(Ω) =

(
‖u‖2

L2(Ω) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω)

) 1
2

.

∗ L’espace W 1,p (Ω) est muni de la norme

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)

.

∗ Si 1 < p < +∞ , alors

‖u‖W 1,p(Ω) ∼

[
‖u‖pLp(Ω) +

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

]1/p

∗ Si on note par gi =
∂u

∂xi
, alors u ∈ W 1,p (Ω) si et seulement si

∀ϕ ∈ D (Ω) , ∀i = 1, ...n ;

∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

giϕ ,
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Définition 4.10 [15]

∗ Soient Ω un ouvert de Rn , 1 ≤ p ≤ ∞ , m ≥ 2 ,

alors on définit l’espace de Sobolev Wm,p (Rn) , par

Wm,p (Ω) =

{
u ∈ Wm−1,p (Ω) ;

∂u

∂xi
∈ Wm−1,p (Ω) , pour tout i = 1, ...N

}
.

∗ On pose Hm (Ω) = Wm,2 (Ω) qui devient un espace de Hilbert ,

s’il est muni du produit scalaire

〈u, v〉Hm(Ω) =
∑

0≤|α|≤m

〈Dαu,Dαv〉L2(Ω) .

∗ L’espace Wm,p (Ω) est muni de la norme

‖u‖Wm,p =
∑

0≤|α|≤m

‖Dαu‖Lp .

∗ Si on note par gα = Dαu =
D|α|

∂xα1
1 ....∂x

αn
n

, alors on a pour tout u ∈ Lp (Ω)

u ∈ Wm,p (Ω) , si et seulement si ∀ α ∈ Nn , |α| ≤ m, ∃gα ∈ Lp (Ω) , tel que∫
Ω

uDαϕ = (−1)|α|
∫

Ω

gαϕ , pour tout ϕ ∈ D (Ω) .

∗ Si W 1,p
0 (Ω) dénote l’adhérence de D (Rn) dans W 1,p (Ω) ,

alors on a l’inégalité suivante dite de Poincaré

∀ u ∈ W 1,p
0 (Ω) ;

∫
Ω

|u|p ≤ c (Ω)p
∫
Ω

‖∇u‖p , c (Ω) > 0 , p ≥ 1 .

Où ∇u =

(
∂u

∂x1

, ...,
∂u

∂xk
, ....

∂u

∂xn

)
,

∂u

∂xk
∈ Lp (Ω) , k = 1, ....n
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Proposition 4.11 [8]

Soit I = [a, b] tel que a, b ∈ R,

et considérons une fonction f : I−→R , et une partition P ⊂ I telle que

P = {x0, x1, x2, .....xn} , où a = x0 < x1 < x2 < ..... < xn = b,

si on définit les sommes S (f,P) , s (f,P) , V (f,P) par

S (f,P) =
n∑
k=1

sup {f (x) ; xk−1 ≤ x ≤ xk} . (xk − xk−1)

s (f,P) =
n∑
k=1

inf {f (x) ; xk−1 ≤ x ≤ xk} . (xk − xk−1)

V (f,P) =
n∑
k=1

|f (xk)− f (xk−1)| et ν (f, [a, b]) = sup {V (f,P) ; P ⊂ [a, b]} ,

alors

∫ b

a

f (x) dx = inf {S (f,P) ; P ⊂ [a, b]} = sup {s (f,P) ; P ⊂ [a, b]} ,

et si f est absolument continue alors ν (f, [a, b]) =

∫ b

a

|f ′ (x)| dx

Proposition 4.12 [6]

Soient 1 < p <∞ , s ∈ N , 0 < σ ≤ s , Ω ⊂ Rn, alors on peut trouver des normes équivalentes

à l’espace W s,p (Ω) définies par

‖f‖W s,p(Ω) = ‖f‖Lp(Ω) + sup
h∈Rn , h 6=0

‖∆s
hf‖Lp(Ω)

|h|σ

Lemme 4.13 [8]

Soit 1 < p <∞ , alors pour tout intervalle I de R , on a

W 1,p (I) = V
1− 1

p
p (I)
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Preuve

– Si f ∈ V
1− 1

p
p ([a, b]) , alors pour toute partition P = {a ≤ xk−1 < xk ≤ ...b} ,

on a

(∑
k≥0

|xk − xk−1| .
(
|f (xk)− f (xk−1)|
|xk − xk−1|

)p)1/p

≤ c <∞ ,

fixons la différence |xk − xk−1| = h , et considérons la fonction gh , définie

par gh (x) = (|f (x+ h)− f (x)|)p , alors selon la Proposition 4.11 on a∫ b

a

gh (x) dx = inf
P⊂[a,b]

{
n∑
k=1

sup
x
{gh (x) ; xk−1 ≤ x ≤ xk} . (xk − xk−1)

}
, d’où

∫ b

a

(|f (x+ h)− f (x)|)p ≤
∑
k≥0

|xk − xk−1| (|f (xk)− f (xk−1)|)p ,

en divisant par |xk − xk−1|p , les deux côtés on obtient
∫ b

a

(|f (x+ h)− f (x)|)p dx

|h|p


1
p

≤

[∑
k≥0

|xk − xk−1| (
|f (xk)− f (xk−1)|
|xk − xk−1|

)p

] 1
p

≤ ‖f‖
V
1− 1

p
p

,

et donc V
1− 1

p
p (I) ⊂ W 1,p (I) .

– Considérons une suite d’intervalles disjoints [ak, bk] de I, on peut toujours choisir une sous suite

d’intervalles telle que [a′k, b
′
k] ⊂ [ak, bk] , |b′k − a′k| = |h| 6= 0

Si f ∈ W 1,p (I) , alors on a selon la Proposition 4.12[∑
k≥0

(|f (bk)− f (ak)|)p
]1/p

|bk − ak|
1− 1

p
=

(
∑
k≥0

(|f (ak + h)− f (ak)|)p)1/p

|h| 1− 1
p

≤
(

∫ b

a

(|f (x+ h)− f (x)|)p dx)1/p

|h| 1− 1
p

=
‖∆1

hf‖Lp
|h| σ

≤ c <∞ ,

avec 0 < σ = 1− 1

p
< 1 , car p > 1 , d’où W 1,p (I) ⊂ V

1− 1
p

p (I)
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4.2.2 Composition dans les espaces W 1,p (Ω)

Corollaire 4.14 [15]

Soient G ∈ C1 (R) , G (0) = 0 , 1 ≤ p <∞ , u ∈ W 1,p (I) , alors

G ◦ u ∈ W 1,p (I) et (G ◦ u)′ = (G′ ◦ u)u′

Preuve
Par le théorème des accroissements finis on a

|G (s)−G (0)|
|s− 0|

≤ 1supp G (s) . ‖G′‖∞ .

Si G (s) = 0 , le résultat est immédiat , sinon 1supp G (s) = 1, et puisque G ∈ C1 (R) alors

‖G′‖∞ ≤ c <∞ , et en prenant M = ‖u‖L∞ , donc pour tout M > 0 , on a

∀ s ∈ [−M,+M ] , |G (s)| ≤ c |s| ≤ c ‖u‖L∞ ,

or ‖u‖L∞ ≤ c′ ‖u‖W 1,p , c′ > 0 , d’où

|G ◦ u| ≤ c ‖u‖L∞ ≤ c′′ ‖u‖W 1,p <∞,

et puisque u ∈ Lp (I), u′ ∈ Lp (I) , alors

G ◦ u ∈ Lp (I) , (G ◦ u′)u′ ∈ Lp (I) ,

et du fait que 1 ≤ p <∞, alors il existe une suite un de D (R) telle que un −→ u dans W 1,p(I)

et dans L∞ (I), et donc

G ◦ un −→ G ◦ u ∈ L∞ (I)

et (G′ ◦ un)u′n −→ (G′ ◦ u)u′ ∈ Lp (I) ,

or on a ∀ ϕ ∈ D (I) ,

∫
I

(G ◦ un)ϕ′ = −
∫
I

(G′ ◦ un)u′nϕ ,

d’où le résultat, car il suffit de prendre ϕ (t) = e−t ∈ D (I)
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Lemme 4.15 [15]

Soient Ω un ouvert de Rn, 1 ≤ p <∞, G ∈ C1 (R) , telles que

G (0) = 0 , et |G′ (s)| ≤M , (M > 0) pour tout s ∈ R ,

on a si u ∈ W 1,p (Ω) , alors G ◦ u ∈ W 1,p (Ω) et
∂

∂xi
(G ◦ u) = (G′ ◦ u)

∂u

∂xi

Preuve

Les mêmes étapes de la preuve du Corollaire 4.14 nous donnent le Lemme 4.15.

Proposition 4.16 [6]

Soient Ω un ouvert de Rn , s > 1, 1 < p <∞ , sp = n, k = [s] + 1 , telles que

G ∈ Ck (R) , G(0) = 0 et DjG ∈ L∞ (R) , pour tout j ≤ k ,

on a , si u ∈ W s,p (Ω) alors G◦u ∈ W s,p (Ω) . .

Cette Proposition 4.16 , est une généralisation du Lemme 4.15 mais elle n’est pas

vérifiée pour p = 1 , voir [6]

Théorème 4.17 [5]

Soit f : R−→R , une fonction de Borel mesurable telle que f (0) = 0

(i) Si 1 ≤ p ≤ ∞, alors Tf opère sur W 1,p (R) si et seulement si f est une fonction continue

et localement Lipchitzienne.

(ii) Si 1 ≤ p ≤ ∞ et m ≥ 2 , alors

Tf opère sur Wm,p (R) si et seulement si f ∈ Wm,p
`oc (R) .

Il resulte que si l’opérateur de composition Tf opère sur un espace de Sobolev alors

il doit être borné, ce Théorème 4.17 est dû à Marcus et Mizel , [5] .
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4.3 Théorème de Peetre dans les espaces BV α
p (I)

Théorème 4.18

Soient p ∈]1,+∞[ , 0 ≤ α < 1 , alors on a les injections continues suivantes qui sont vérifiées

˙̃B1/p,1
p (R) ↪→ (L∞ (R) , BV α

1 (R))1/p,p = (BV α
∞ (R) , BV α

1 (R))1/p,p

↪→ BV α
p (R) ↪→ Up (R) ↪→ ˙̃B1/p, ∞

p (R)

Preuve

1) Comme on a vu dans la preuve du Théorème 3.17 on a

Ḃ1/p,1
p (R) ∩ C0 (R) ↪→

(
Ḃ0,1
∞ (R) ∩ Cb (R) , Ḃ1,1

1 (R) ∩ C0 (R)
)

1/p,p

– Prouvons les injections ˙̃B1,1
1 ↪→ Ẇ 1,1 ↪→ BV α

1 ,

* L’injection ˙̃B1,1
1 ↪→ Ẇ 1,1 est vérifiée ( Théorème 3.17).

* Puisque να1 (f,R) = sup
{t0<t1<...tk...<tn}⊂R,n∈N

[
n∑
k=1

|f (tk)− f (tk−1)|
|tk − tk−1|α

]
, alors

‖f‖BV α1 (R) = να1

(
f̃
)

+ sup
x∈R/{0}

∣∣∣∣∣ f̃ ′ (x)

xα

∣∣∣∣∣ ≤ 2να1

(
f̃
)
, car 0 ≤ α < 1

≤ 2

∫
R/{0}

∣∣∣∣∣ f̃ ′ (x)

xα

∣∣∣∣∣ dx ∼ 2 ‖f‖Ẇ 1,1(R) ,

d’où Ẇ 1,1 ↪→ BV α
1 , et donc ˙̃B1,1

1 ↪→ BV α
1 .

* On prouve aussi que ˙̃B0,1
∞ ↪→ L∞ , ( Théorème 3.17).

– En appliquant alors le le Théorème 3.3 d’interpolationon obtient

( ˙̃B0,1
∞ ,

·
B̃

1,1

1 )1/p,p = ˙̃B1/p,1
p ↪→ (L∞, BV α

1 )1/p,p
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(2) Si Eα est la fermeture de BV α
1 (R) , par rapport à L∞ (R) , alors

(L∞ (R) , BV α
1 (R))1/p,p = (Eα , BV

α
1 (R))1/p,p

et puisque Eα ↪→ BV α
∞ (R) , alors

(Eα , BV
α

1 (R))1/p,p ↪→ (BV α
∞ (R) , BV α

1 (R))1/p,p ,

d’où (L∞ (R) , BV α
1 (R))1/p,p ↪→ (BV α

∞ (R) , BV α
1 (R))1/p,p

(3) On définit les normes de l’espace l pN des suites {ti}1≤i≤N , par

‖ti‖l pN =

(
i=N∑
i=1

|ti|p
)1/p

et ‖ti‖l∞N = sup
1≤i≤N

|ti| .

Fixons une suite réelle finie et stricte {ti}0≤i≤N tel que t0 < t1 < ... < tN , et associons

pour tout 0 ≤ α < 1, une fonction Uα , définie par ,

Uα : BV α
∞ (R) −→ l∞N

f 7−→

(
f̃ (ti)− f̃ (ti −1)

|ti − ti−1|α

)
1≤i≤N

,

donc ‖Uα (f)‖l∞N = sup
tk∈{ti}

∣∣∣∣∣ f̃ (tk)− f̃ (tk−1)

|tk − tk−1|α

∣∣∣∣∣ ≤ sup
tk∈{ti}

( ∣∣∣∣∣ f̃ (tk)

|tk − tk−1|α

∣∣∣∣∣+

∣∣∣∣∣ f̃ (tk−1)

|tk − tk−1|α

∣∣∣∣∣
)

≤ 2 sup
t∈R/{0}

∣∣∣∣∣ f̃ (t)

tα

∣∣∣∣∣ = 2 ‖f‖BV α∞(R) ,

d’où ‖Uα (f)‖l∞N ≤ 2 ‖f‖BV α∞(R) ,

et donc BV α
∞ (R) ↪→ l∞N .
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D’autre part on a

‖Uα (f)‖l1N =
N∑
k=1

∣∣∣∣∣ f̃ (tk)− f̃ (tk−1)

|tk − tk−1|α

∣∣∣∣∣ ≤ να1 (f̃) + sup
∣∣∣f̃ ∣∣∣ = ‖f‖BV α1 (R) ,

d’où ‖Uα (f)‖l1N ≤ ‖f‖BV α1 (R) ,

et donc BV α
1 (R) ↪→ l1N .

On a (L∞(X), L1(X)) 1
p
, p = Lp(X) , et par le Théorème 3.3 d’interpolation on obtient

‖Uα (f)‖l pN ≤ cp,α ‖f‖(BV α∞(R),BV α1 (R)) 1
p , p

, cp,α > 0 .

Puisque ‖f‖BV αp (R) = inf
a

{
a > 0 : ‖Uα (f)‖l pN ≤ a

}
, alors

‖f‖BV αp (R) ≤ cp,α ‖f‖(BV α∞(R),BV α1 (R)) 1
p , p

, cp,α > 0,

ce qui donne (BV α
∞ (R) , BV α

1 (R)) 1
p
, p ↪→ BV α

p (R)

(4) Selon la preuve du Théorème 3.17 , et puisque 0 ≤ α < 1 , alors on a

‖f‖Up(R) ≤ 21/p ‖f‖Vp(R) ≤ 21/p ‖f‖Vαp (R) ,

d’où Vαp (R) ↪→ Vp (R) ↪→ Up (R) ,

et l’on déduit que BV α
p (R) ↪→ BVp (R) ↪→ Up (R) ,

ce qui donne BV α
p ↪→ Up

(5) L’inclusion continue Up ↪→ ˙̃B
1/p,∞
p , a été prouvée dans la preuve du Théorème 3.17 .
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4.4 Exemples

Les suivants exemples sont pris des travaux de [2] , [3] , [11] , [16] [5] , [7] , [10] , [1] , [4] .

On dénote par Ep la fermeture de BVp (R)∩ C ∞ (R) dans BVp (R) et par E1
p la fer-

meture de BV 1
p (R)∩ C ∞ (R) dans BV 1

p (R)

4.4.1 Exemple 1 : [11] , [5] , [16]

• [11] Soient 1 < p < ∞, 1 < s < 1 + 1/p, 1 ≤ q ≤ ∞ , et soit F une fonction de la

variable réelle, Lipchitzienne, F (0) = 0, F ∈ Ḃ1+(1/p),∞
p (R), alors on a

• F
(
Bs,q
p (Rn)

)
⊂ Bs,q

p (Rn)

• ∃C (n, s, p, q) > 0 : ‖F (f)‖Bs,qp (Rn) ≤ C max
(
‖F ′‖∞ , ‖F‖Ḃ1+(1/p),∞

p

)
. ‖f‖Bs,qp (Rn)

• [11] Soit l’opérateur non linéaire Fµ : f 7−→ |f |µ , µ > 0,

– Si µ > 1, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 0 < s < µ +
1

p
, alors il existe une constante

C (s, p, q, n, µ) > 0 , telle que

* ‖Fµ (f)‖Bs,qp (Rn) ≤ C ‖f‖Bs,qp (Rn) ‖f‖
µ−1
∞ ,∀f ∈ Bs,q

p (Rn) ∩ L∞ (Rn)

* et ‖|g|µ‖
B
µ+(1/p),∞
p (R)

≤ C ‖g‖µ
B
µ+(1/p),∞
p (R)

, ∀g ∈ Bµ+(1/p),∞
p (R)

– Si µ > 1, 1 < p <∞, m < n/p , alors on a une équivalence entre

*
{
|f |µ : f ∈ Wm,t

}
⊂ Wm,p , et

* m < µ+
1

p
,

nµ

m (µ− 1) + n
p

≤ t ≤ pµ,

le résultat reste vrai si on remplace Fµ : f 7−→ |f |µ , par

F̃µ : f 7−→f |f |µ−1 , ou bien par F̄µ : f 7−→ (max (f, 0))µ

• Si m ∈ N, 1 < p <∞, m < n/p , k ∈ N, k ≥ 2, alors on a une équivalence entre
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–
{
fk : f ∈ Wm,t

}
⊂ Wm,p , et

–
nk

m (k − 1) + n
p

≤ t ≤ pk .

L’opérateur f 7−→f |f |µ joue un rôle essentiel dans l’étude du problème de cauchy à

valeurs initiales pour l’equation aux dérivées partielles non linéaires de Schrödinger.

4.4.2 Exemple 2 : [2] , [3]

• Soit p ≥ 1 , et considérons l’opérateur de la valeur absolue TF1 = T|·| tel que

TF1 (g) = F1 (g) = |g| ,

alors |·| appartient à BV 1
p (R) \ E1

p,`oc , et il vérifie

– T|·| opère sur BV 1
p (I) , tel que

‖|g|‖BV 1
p (I) ≤ c ‖g‖BV 1

p (I) , (c > 0)

– T|·| envoie B1+1/p,1
p (Rn) à B1+1/p,∞

p (Rn) tel que

‖|g|‖
B

1+1/p,∞
p (Rn)

≤ c ‖g‖
B

1+1/p,1
p (Rn)

, (c > 0)

– L’opérateur T|·| n’est pas continu de B1+1/p,∞
p (Rn) à B1+1/p,∞

p (Rn)).

– Si 0 < s < 1 + (1/p), 1 ≤ q ≤ ∞, il opère sur Bs,q
p (Rn) , tel que

‖|g|‖Bs,qp (Rn) ≤ c ‖g‖Bs,qp (Rn) , (c > 0)

– Si 0 < s <∞, 1 ≤ q <∞, il opère continûment sur Bs,q
p (Rn)

• Soit la famille des fonctions

uα(x) = |x+ α| − |α| , x, α ∈ R ,

alors

‖uα (g)‖BV 1
p (R) = ‖|g + α| − |α|‖BV 1

p (R) ≤ cp ‖g‖BV 1
p (R) ,
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4.4.3 Exemple 3 : [3]

• Soit p ≥ 1, et l’opérateur Tψ : g 7−→ ψ ◦ g , telles que

– ρ ∈ D (R) , supp ρ ⊆ [−1/2, 1/2], ρ (t) = 1 dans [−1/e, 1/e],

– ψ : R−→R, et ψ (t) = |t| ρ (t)

log |t|
, si t 6= 0, ψ (0) = 0 ,

alors les assertions suivantes sont vérifiées

a) La fonction ψ appar tient à E1
p

b) Tψ opère sur BV 1
p (I) tel que ‖ψ ◦ g‖BV 1

p (I) ≤ c ‖g‖BV 1
p (I) , (c > 0)

c) Tψ envoie B1+1/p,1
p (Rn) à B

1+1/p,∞
p (Rn) tel que

‖ψ ◦ g‖
B

1+1/p,∞
p (Rn)

≤ c ‖g‖
B

1+1/p,1
p (Rn)

, (c > 0)

d) Tψ est continu de B1+1/p,1
p ( Rn) à B1+1/p,∞

p (Rn).

e) Si 0 < s < 1 + (1/p), 1 ≤ q ≤ ∞, alors Tψ opère sur Bs,q
p (Rn) , telle que

‖ψ ◦ g‖Bs,qp (Rn) ≤ c ‖g‖Bs,qp (Rn) , (c > 0) .

f) Si q ∈ [1,∞[, alors l’opé rateur en (e) est continu. Les propriétés ci-dessus ne changent

pas si log |t| est remplac é par des logarithmes r éitérés comme log |log |t|| ou log |log |log |t|||

4.4.4 Exemple 4 : [3]

• Puisque les espaces BV 1
p (R) décroissent par rapport à p alors on cherche les fonctions qui

appartiennent à BV 1
p0

(R) telles que p > p0 , et en considérant donc la famille des fonctions

ψα,β : R−→R, définies par

ψα,β(t) = |t|α+1ρ (t) sin(|t|−β) si t 6= 0, et ψα,β (0) = 0, 0 < β < α,

Alors on obtient une équivalence entre les suivantes assertions (a), (b), (c) telles que
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a)
1

p
<
α

β
− 1

b) La fonction ψα,β appartient à BV 1
p (R)

c) L’opérateur Tψα,β envoie BV 1
p (R) à BV 1

p (R) ,

et si
1

p
<
α

β
−1 , alors l’opérateur Tψα,β , satisfait les propriétés (c)-(f) du trosiéme

exemple si on remplace ψ par ψα,β

4.4.5 Exemple 5 : [7] , [10]

• Pour le problème de composition des opérateurs on a

i) Un théorème classique dû à B.E.J.Dahlberg (cf [7]) pour l’espace de Sobolev Wm,p (Rn)

enonçant que

Si 1 +
1

p
< m <

n

p
, p 6= 0, ou bien 1 < p <∞ , 2 ≤ m <

n

p
, alors

TG (Wm,p (Rn)) = {G (f) ; f ∈ Wm,p (Rn)} ⊂ Wm,p (Rn) ,

implique G (t) = c . t , c ∈ R

ii) Un résultat classique dû à S . Igari ( [10]) pour l’espace de Besov Bs,q
p (Rn) , qui énonce que ,

Si 1 ≤ p <∞ , 1 ≤ q ≤ ∞ , 0 < s < 1/p alors

TG
(
Bs,q
p

)
⊂ Bs,q

p , si et seulement si G est Lipchitzienne et G (0) = 0

4.4.6 Exemple 6 : [2] , [1]

• Les opérateurs liés aux fonctions continues de Lipchitz satisfont la propriété d’inégalité des

normes sur W 1,p (Rn) mais non pas sur W 2,p (Rn), cette restriction est dûe au résultat

suivant
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Proposition 4.19 [6]

Soient 1 < p ≤ +∞, s > 1 + (1/p) et N une norme sur D (Rn) .

Si E est un espace normé tel que D (Rn) ⊂ E ⊂ W 1,1
`oc (Rn)

sup
h6=0
|h|1−s

(∣∣∣∣∫
Rn

∣∣∣∣ ∂g∂xi (x+ h)

∣∣∣∣− ∂g

∂xi
(x)

∣∣∣∣p dx

)1/p

≤ A ‖g‖E , (A > 0)

pour tout g ∈ E , et i = 1, ..., n, et s’il existe une fonction différentiable continue

f : R−→R , et une constante B > 0 , telle que Tf injecte D (Rn) dans E , et telle que

l’inégalité suivante soit vérifiée, alors f doit être une fonction affine.

‖f ◦ g‖E ≤ B (N (g) + 1) pour tout g ∈ D (Rn) ,

• Les opérateurs de superposition liés à des fonctions affines satisfont trivialement les pro-

priétés des d’inégalités des normes par rapport composition des fonctions pour tout espace

fonctionnel normé.

• Pour l’espace de Sobolev Wm,p (Rn) , m ∈ N, 1 ≤ p ≤ ∞, les opérateurs non triviaux

de superposition qui satisfont la propriété d’inégalité des normes existent si et seulement si

(m = 0) ou (m = 1) ou (m = 2 et p = 1),

• Pour tout µ > 1, m < µ+ 1
p
, f ∈ Wm,p (Rn) ∩ L∞ (Rn) on a

‖Fµ (f)‖Wm,p(Rn) ≤ c ‖f‖Wm,p(Rn) ‖f‖
µ−1
∞ , (c > 0) ,

La propriété d’inégalité des normes pour l’opérateur Fµ = |·|µ , n’est pas entièrement vérifiée

sur Wm,p (Rn) mais partiellement sur Wm,p (Rn) ∩ L∞ (Rn)

• [1] - Soient p ≥ 1, m > max (n/p, 1) , m ∈ N, alors

l’opérateur de composition Tf opère sur Wm,p (Rn) , si et seulement si f ∈ Wm,p
`oc (Rn)
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4.4.7 Exemple 7 : [4]

• On obtient une solution pour le P.S.O , avec une propriété supplémentaire d’inégalité des

normes dans les espaces de Sobolev W s,p (Rn) par le Théorème 4.20 , en introduisant

l’espace des fonctions à variation bornée BV (Rn) muni de la semi-norme suivante :

‖f‖BV (Rn) ∼ ν (f) =
n∑
j=1

‖∂jf‖M ∼ sup
h∈Rn\{0}

1

|h|

∫
Rn
|f (x+ h)− f (x)| dx < +∞ ,

où ‖g‖M désigne la variation totale de la mesure g , et l’espace BH (R) des distributions

dont la dérivée appartient à BV (R) , muni de la semi-norme

‖f‖BH = ν (f ′) + ‖f ′‖∞ ,

Théorème 4.20 [4]

Soient 1 ≤ p ≤ ∞, 0 < s < 1 + (1/p) , alors toute fonction f ∈ BH (R) , f (0) = 0,

opère sur W s,p (Rn) , de plus il existe c (s, p, n) > 0 , telle que

‖f ◦ g‖W s,p(Rn) ≤ c (s, p, n) ‖f‖BH ‖g‖W s,p(Rn) , pour tout g ∈ W s,p (Rn)

4.4.8 Exemple 8 : [1]

• Tout opérateur de composition tel que Tf (g) = f ◦ g et f : R−→R , défini sur

Bs,∞
∞ (Rn) = Cs (Rn) , s > 0 , l’espace de Hölder-Zygmund vérifie

Tf (Cs (Rn)) ⊂ Cs (Rn)

si et seulement si on a les conditions suivantes

i) f est continue et localement Lipchitzienne, pour 0 < s < 1

ii) f appartient localement à Cs (Rn) , pour s > 1

iii) f est continue et localement Lipchitzienne et satisfaisant la condition

f (x+ t) + f (x− t)− 2f (x) = O

(
t

|log t|

)
, avec t−→0+ ,

uniformément en chaque sous-ensemble compact de R , pour s = 1.
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Résumé

Dans cette thèse on étudie trois problèmes , le premier est la composition des opérateurs et leurs

propriétés telles que l’abornement , la continuité , la régularité et les inégalités des normes des

fonctions composées dans certains espaces fonctionnels , le deuxième est de généraliser certains

résultats concernant la composition de plus de deux fonctions et le troisième est généraliser le

théorème de Peetre .

Abstract

In this thesis we study three problems , the first is the superposition of the operators and their

proprities , such as boundedness , continuity , regularity and the inequalities of the norms of the

composition of functions in some functional spaces , the second is to generalize some results of

the composition of more than two functions , and the third is to give a generalization of Peetre’s

theorem.
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