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Abstract: Early detection of Diabetic Retinopathy (DR) is essential to reduce the risk of vision loss. This study 

introduces a novel framework for DR detection using a Particle Swarm Optimized Autonomous Learning Multiple 

Model (PSO-ALMMo) system. The proposed approach integrates the adaptive learning capability of the ALMMo* 

system with particle swarm optimization (PSO) to enhance classification accuracy and model interpretability. The 

proposed method uses PSO to optimize both antecedent and consequent parameters of the ALMMo* model, 

enabling high performance while maintaining the ability to learn incrementally from new data without retraining. 

Hybrid feature extraction techniques are applied to retinal fundus images before classification. Experiments were 

conducted on the newly introduced LISIA dataset as well as three benchmark datasets: Messidor-2, APTOS 2019, 

and IDRID. The PSO-ALMMo* system achieved 98.2% accuracy on Messidor-2, 99.7% on APTOS 2019, and 

99% on IDRID. On the LISIA dataset, it maintained consistent performance across all DR severity levels. The 

model facilitates real-time learning and generates interpretable outcomes, owing to its prototype-based structure. 

These results indicate that the proposed system is well-suited for clinical environments to support early and 

accurate DR screening. 

Keywords: diabetic retinopathy, particle swarm optimization, autonomous learning, ALMMo*, medical 

image analysis. 

1. Introduction 
Diabetes necessitates continuous management; failure to do so can lead to severe complications, including vision 

loss, heart disease, liver damage, and kidney failure. The prevalence of diabetes is increasing, particularly among 

children and adolescents. This is linked to obesity, inactivity, family history, and insulin resistance. 

By 2045, diabetes may affect 700 million people [1]. Preventive care, awareness, and early detection are key to 

limiting its spread. In 2017, the Middle East and North Africa had the second-highest prevalence worldwide, 9.2% 

with about 40 million cases [2]. Type 2 diabetes, the most common form, involves high blood sugar due to insulin 

resistance. Although it has no cure, early diagnosis can help slow its effects. 

Preventing vision loss depends on early detection of eye diseases, as timely treatment significantly increases the 

likelihood of success and can prevent. The condition progresses to blindness. 

Retinal disorders affect millions of people [3]. Many cases of vision loss can be averted through timely diagnosis 

and appropriate intervention.  

Current diagnostic methods rely on specialists analyzing retinal images manually. This process is slow, repetitive, 

and susceptible to human error, often leading to inconsistent diagnostic outcomes. Therefore, there is a growing 

need for faster and more reliable methods to facilitate large-scale detection of retinal diseases. Figure 1, as 

described by Mumtaz et al. [4], presents common clinical signs of diabetic retinopathy. Microaneurysms appear 

as small, dark-red dots near the ends of retinal blood vessels and are among the earliest detectable signs. Retinal 

hemorrhages result from hypertension or venous blockage and may be mistaken for microaneurysms due to their 

similar appearance. Exudates are yellowish deposits composed of lipids and proteins, which leak from damaged 

capillaries and indicate ongoing retinal damage and the clearance of non-functional vessels. 
Traditionally, doctors use fundus cameras or Optical Coherence Tomography (OCT) to capture retinal images. But 

reviewing these images manually is time-consuming and subjective, as noted by Qummar et al. [5]. 

To improve accuracy, researchers have started using ensemble Convolutional Neural Networks (CNNs) for 

classifying different types of retinal disease. These models perform better in identifying multiple conditions at 

once [6]. 

But accuracy is not enough. For doctors to use AI tools in real settings, they need to understand how the models 

work. That’s why model interpretability is just as important as performance. When the process is transparent, trust 

in the system increases. 

This research focuses on both goals: improving detection accuracy using CNNs and improving model 

interpretability. This helps doctors take earlier and more effective action, reducing the risk of blindness. Achieving 

these goals enables clinicians to make earlier and more informed decisions, thereby reducing the risk of blindness. 
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Figure 1. Fundus images containing diverse types of lesions for the classification of 

diabetic retinopathy (DR). 

For this purpose, this study introduces an advanced DR detection framework based on the Autonomous Learning 

Multiple Model (ALMMo) system optimized with Particle Swarm Optimization (PSO). The ALMMo system 

enables recursive, non-iterative learning, allowing continuous updates without full retraining, while PSO ensures 

optimal tuning of model parameters [46].  The main contributions of this work can be summarized as follows: 

1. PSO is employed to optimize both the antecedent and consequent parameters of the ALMMo model, 

ensuring global convergence and effective parameter tuning. 

2. The prototype-based structure of the model provides transparent decision reasoning, which facilitates 

clinical trust and interpretability. 

3. The proposed framework effectively addresses the limitations of conventional deep learning models by 

combining adaptability, interpretability, and high detection accuracy. 

 

The paper is organized as follows: Section 2 provides related works and techniques used in this area. Section 3 

presents the proposed method, knowledge exploration techniques, and datasets. It explains our proposed method 

and presents other existing state of the art methods used and compared to our approach in this paper. Section 4 is 

devoted to the presentation and discussion of the obtained results on real datasets. In conclusion, Section 5 wraps 

up the paper and outlines potential avenues for future research and development. 

2. Related works 
Several studies have addressed the challenge of automated diabetic retinopathy (DR) detection using deep learning 

and optimization techniques. Early detection of diabetic retinopathy (DR) is crucial because it often progresses 

without noticeable symptoms. Automatic detection systems improve screening efficiency, expand access to care 

in remote areas, and support earlier diagnosis. Many models have been developed for this purpose, but multiclass 

classification still poses challenges. 

Several machine learning (ML) models have been tested due to their lower complexity, but they often fail to 

achieve high classification accuracy. To address this, researchers have used transfer learning (TL) models, which 

improve accuracy but introduce longer training times due to their large architectures. 

Nguyen et al. [7] proposed a five-class DR classification using VGG-16 and VGG-19 on the EyePACS dataset. 

They achieved an accuracy of 82.0%, but classes 3 and 4 suffered due to class imbalance. Augmentation was 

applied, but failed to resolve this issue. 

In [8], a DenseNet-121-based approach on the APTOS dataset reached 94.9% accuracy, 92.6% sensitivity, and 

97.1% specificity, showing strong performance but relying on heavy architecture. 

Kumar et al. [9] used ensemble classification and vessel segmentation, but lacked information about datasets and 

evaluation metrics, making comparisons difficult. 

Alam et al. [10] combined a CNN with vessel segmentation and tested it on MESSIDOR-2, achieving 94.1% 

accuracy and 96.9% AUC. However, their method lacked interpretability and external validation. 

Diware et al. [11] used DN121-L on MESSIDOR-2 and reached 90.3% accuracy and 81.8% F1-score. By applying 

self-supervised learning (BYOL) and deep ensemble model Parsa et al. [12] reported accuracies of 71.84% on the 

IDRiD dataset and 75.42% on MESSIDOR.  

An AG-CNN model built on DenseNet-121 reached an accuracy of 98.48% accuracy and 99.8% AUC on APTOS 

[13]. Santos et al. [14] proposed a Siamese CNN tested on four datasets. Performance ranged from 67.23% 

(APTOS) to 96.85% (DIARETDB0), demonstrating dataset sensitivity. 

HRUNet reached 94% accuracy on APTOS and 91% on the Kaggle dataset with 6.3 million parameters [15]. 

Wang et al. [16] introduced MDGNet, a GCN-based model with dynamic weight fusion, achieving 84.31% 

accuracy on APTOS and 81.25% on DDR. Their F1-scores showed the model’s struggle with lower-performing 

classes. 

A residual module-enhanced Vision Transformer (ViT) attained 89.3% accuracy and 98.1% AUC on APTOS [17]. 

An ensemble of transformer models with attention maps scored 91.2% accuracy and 97.7% AUC on APTOS and 

MESSIDOR-2 [18, 19]. Chetoui et al. [20] fine-tuned Inception-ResNet-v2 and tested it on eight datasets, 

achieving up to 99.0% AUC. Ioannou et al. [21] evaluated DenseNet, InceptionV3, and EfficientNetB0, with 

EfficientNetB0 scoring 73.56% on DDR and 60.19% on IDRiD. 
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Jang et al. [22] proposed an explainable classification model using a segmentation-driven symbolic representation, 

scoring 63.11% accuracy on the Kaggle dataset. Shorfuzzaman et al. [23] applied SHAP and Grad-CAM for 

interpretability, achieving 98.0% sensitivity and 97.8% AUC across APTOS, MESSIDOR, and IDRiD datasets. 

A hybrid CNN-SVD model combined with ISVM-RBF, DT, and KNN was evaluated on IDRiD, reaching 99.18% 

accuracy and 100% specificity in vision-threatening DR detection [24]. ‘NIMEQ-SACNet’ [25] combined a 

quantum-enhanced optimizer with a capsule network for VTDR classification. 

Bilal et al. [26] used a hybrid CNN-SVD with ensemble classifiers and achieved 99.89% accuracy and 100% 

specificity on IDRiD. Singh et al. [27] compared ML classifiers on the DRIVE dataset, with the Decision Tree 

scoring 96.24% accuracy. An EPO-BFO hybrid optimization approach for feature selection improved ML 

classification performance with 96.5% accuracy [28]. Three CNN models (one custom, one ensemble, one CNN-

LSTM) were evaluated across three Kaggle datasets, reaching 95.45% accuracy and 97.69% AUC [29]. 

In addition to deep and hybrid learning models, recent research has explored nature-inspired optimization 

algorithms to fine-tune model parameters and improve classification performance. Particle Swarm Optimization 

(PSO), in particular, has gained attention for its ability to enhance feature selection, hyperparameter tuning, and 

classifier performance. For example, in [43], PSO was used to optimize the structure of a CNN for diabetic 

retinopathy classification, resulting in improved convergence and accuracy. Similarly, [44] applied PSO to 

enhance feature extraction from fundus images, demonstrating better precision and reduced computational cost. 

In [45], a PSO-optimized support vector machine (SVM) was proposed for DR detection, which outperformed 

standard SVM models in terms of sensitivity and AUC. 

In recent work, Particle Swarm Optimization (PSO) has been applied to feature selection and hyper-parameter 

tuning. Kennedy and Eberhart [41] introduced PSO as a population-based search algorithm, and later studies 

applied it to optimize deep learning pipelines for medical imaging tasks. 

Our method builds on these efforts by combining PSO-based parameter tuning with the ALMMo* classifier. It 

focuses on improving diagnostic accuracy and maintaining model transparency across multiple datasets, including 

private clinical ultrasound data collected from real-world environments. 

Table 1. summary table of the models and results reported by related works on diabetic retinopathy 

detection 
Study Model/Method Dataset Performance Challenges/Notes 

Nguyen et al. [7] VGG-16, VGG-19 EyePACS 82.0% accuracy 

Class imbalance in classes 3 and 4, 

augmentation failed to resolve the 

issue. 

DenseNet-121-based 

approach [8] 
DenseNet-121 APTOS 

94.9% accuracy, 
92.6% sensitivity 

Heavy architecture, strong 
performance, but resource-intensive. 

Kumar et al. [9] 
Ensemble classification, 

vessel segmentation 
N/A N/A 

Lack of dataset details and evaluation 

metrics. 

Alam et al. [10] 
CNN with vessel 
segmentation 

MESSIDOR-2 
94.1% accuracy, 
96.9% AUC 

Lacked interpretability and external 
validation. 

Diware et al. [11] DN121-L MESSIDOR-2 
90.3% accuracy, 

81.8% F1-score 

No additional details on evaluation 

metrics. 

Parsa et al. [12] 
BYOL self-supervised 
learning, deep ensembles 

IDRiD, MESSIDOR 
71.84% - 75.42% 
accuracy 

Lower accuracy compared to other 
models. 

AG-CNN model [13] AG-CNN (DenseNet-121) APTOS 
98.48% accuracy, 

99.8% AUC 

High accuracy, relies on DenseNet-

121 architecture. 

Santos et al. [14] Siamese CNN Four datasets 
67.23% - 96.85% 
accuracy 

Performance varies significantly 
between datasets. 

Wang et al. [16] 
MDGNet (GCN-based 

model) 
APTOS, DDR 

84.31% - 81.25% 

accuracy 

Struggled with lower-performing 

classes; F1-scores were low. 

Chetoui et al. [20] 
Inception-ResNet-v2 fine-
tuning 

Eight datasets Up to 99.0% AUC 
High AUC, lacks detailed accuracy 
metrics. 

Shorfuzzaman et al. 

[23] 

SHAP, Grad-CAM 

interpretability 

APTOS, MESSIDOR, 

IDRiD 

98.0% sensitivity, 

97.8% AUC 

Focus on interpretability and high 

sensitivity. 

Hybrid CNN-SVD 

model [24] 

CNN-SVD with ISVM-
RBF, DT, KNN 

IDRiD 
99.18% accuracy, 
100% specificity 

High accuracy for vision-threatening 
DR detection. 

NIMEQ-SACNet [25] 
Quantum-enhanced 

optimizer, capsule network 
N/A N/A 

Focus on optimization for VTDR 

classification. 

Bilal et al. [26] 
Hybrid CNN-SVD with 
ensemble classifiers 

IDRiD 
99.89% accuracy, 
100% specificity 

High accuracy and specificity. 

Singh et al. [27] 
ML classifiers (Decision 

Tree) 
DRIVE 96.24% accuracy 

Strong performance, though single 

model evaluation. 

PSO-enhanced 

feature selection 

[30][31][32] 

PSO for CNN, SVM Fundus images 
Improved 
convergence, 

accuracy 

PSO enhances feature extraction and 
model performance. Reduces 

computational cost. 

3. Methodology 
Deep learning models are often characterized by opaque decision-making processes, high data demands, intensive 

computation, long training times, and significant energy use. These drawbacks limit their use in environments with 
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limited resources, such as rural clinics or mobile health units, and raise concerns about model transparency and 

environmental impact. 

To overcome these limitations, the proposed approach integrates PSO with the Autonomous Learning Multiple 

Model (ALMMo*) system. Rather than focusing solely on accuracy, this integration emphasizes structural clarity 

and adaptability. The ALMMo* model organizes learning into distinct functional layers that self-adjust as new 

data becomes available, while PSO dynamically refines both structural and parametric components to achieve 

optimal model performance. PSO enhances this structure by generating prototype-based IF...THEN rules that offer 

transparent diagnostic reasoning. These rules are readable and help users trace and understand the decision-making 

process, supporting clinical validation. 

The approach uses a feedforward PSO algorithm alongside ALMMo*'s incremental learning mechanism, enabling 

dynamic structural updates as new data becomes available. New prototypes are added over time, allowing the 

model to adapt to changes in data distribution without retraining. This makes the system well-suited for real-world 

scenarios where data evolves continuously. 

3.1. Architecture 
The proposed system for diabetic retinopathy classification begins by loading fundus images from datasets such 

as MESSIDOR, APTOS, or the LISIA dataset. The images undergo preprocessing that includes applying a circular 

mask to remove non-retinal areas, enhancing contrast using CLAHE, and standardizing image size and intensity. 

Next, deep features are extracted using the VGG16 model with the final classification layer removed. These 

features are then passed to the ALMMo* classifier, which uses an autonomous learning strategy to create and 

adjust MegaCloud prototypes. Each prototype adapts to the input data and links to specific retinal lesions, allowing 

for both flexible classification and interpretability. To further improve accuracy, PSO is used to tune the parameters 

of ALMMo*. Each DR class has its own PSO instance to define optimal boundaries. The system outputs a final 

prediction for DR severity across seven classes: No DR, Mild, Moderate, Severe, Very Severe, PDR, and 

Advanced PDR, along with confidence scores and prototype-based explanations. 
 

 
Figure 2. shows the full workflow for diabetic retinopathy (DR) severity classification. 

Step Description 

Input Load fundus images from DR datasets (MESSIDOR, APTOS, LISIA). 

Preprocessing Apply a circular mask to remove non-retinal areas. 

Enhance contrast using CLAHE. 

Normalize and reshape images. 

Feature Extraction Use VGG16 without the final layer. 

Extract deep features that represent retinal structures. 

ALMMo* Classify using an autonomous learning model. 

Adapt MegaCloud prototypes based on input features. 

Learn class distributions without fixed boundaries. 

Link each prototype to lesions for interpretability. 

PSO Optimization Each class has a separate PSO instance. 

Particles represent ALMMo* parameter sets. 

Update particles iteratively to reduce classification error. 

Output Assign one of the 7 DR severity classes: 

No DR, Mild, Moderate, Severe, Very Severe, PDR, Advanced PDR 

Also, provide confidence scores and a visual explanation through prototypes 

3.1.1. Dataset description  

Fundus images are loaded from diabetic retinopathy (DR) datasets such as MESSIDOR-2, APTOS, IDRID, or the 

locally collected LISIA dataset. These images represent different stages of DR and serve as the starting point for 
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the classification system. Each image is labeled with a known DR severity level, which will be used later for 

supervised learning and evaluation.  

A. MESSIDOR 
The MESSIDOR database contains 1200 color fundus images in TIFF format, captured at three ophthalmology 

centers with a Topcon TRC NW6 non-mydriatic imaging system featuring a 45-degree field of view. Each image 

has 8 bits per color channel and comes in one of three resolutions: 1440×960, 2240×1488, or 2304×1536 pixels. 

Out of the 1200 images, 800 were captured with pupil dilation using 0.5% Tropicamide, while 400 were taken 

without dilation. Each image is labeled with a diabetic retinopathy (DR) grade. The labels divide the images into 

five DR severity levels, as shown in figure 3(a). The dataset is split into three sets, each from a different medical 

center. Each set contains four zipped folders of 100 images, along with an Excel file that includes the diagnosis 

for each image. While the database includes clinical DR grades, it does not provide manual annotations such as 

lesion outlines or locations. This makes it different from other datasets but still valuable for developing Computer-

Assisted Diagnosis (CAD) systems for DR [31]. 

B. APTOS 
The APTOS dataset, available on Kaggle, contains 3662 color fundus images captured using different cameras. 

This results in varying resolutions and image quality, reflecting real-world conditions found in clinical settings. 

The dataset was curated by Aravind Eye Hospital in India and is supported by the Asia Pacific Tele-Ophthalmology 

Society (APTOS). It is designed to support the development and evaluation of automated diabetic retinopathy 

(DR) detection systems. Images are classified into five DR severity levels: No DR, Mild, Moderate, Severe, and 

Proliferative DR, as shown in figure 3(b). Expert annotations are provided for the training set. The dataset has a 

class imbalance. Most images are normal (1805), while severe NPDR cases are limited (183). This imbalance can 

bias training and often requires techniques such as oversampling, undersampling, or using weighted loss functions. 

The variation in camera settings makes the dataset useful for testing the robustness and generalization of DR 

classification models. It is widely used in research and competitions focused on AI applications in ophthalmology. 

C. IDRID 
The Indian Diabetic Retinopathy Image Dataset (IDRID) includes 516 high-resolution fundus images from 

diabetic patients. It is publicly available and widely used in diabetic retinopathy (DR) research. The dataset is split 

into training and testing sets. Each image is labeled with a DR severity level and includes detailed annotations of 

key lesions, microaneurysms, hemorrhages, soft exudates, and hard exudates, as shown in figure 3(c). The images 

were captured using high-resolution fundus cameras. They reflect clinical variability, which helps train more 

robust models. IDRID supports multiple tasks, including DR grading, lesion detection, and segmentation. Its 

quality and comprehensive annotations make it a valuable resource for developing and evaluating automated DR 

detection systems. Researchers use it to build and test CAD tools aimed at improving early diagnosis and treatment. 

D. Private dataset 

A total of 1310 fundus images were collected from patients over 18 years old at the clinic of ophthalmology, 

LISIA-Algeria. Images are classified into five DR severity levels: No DR, Mild, Moderate, Severe, and 

Proliferative DR, as shown in figure 3(d). The image acquisition followed a consistent clinical protocol: 

1. Each patient was interviewed, and their basic medical data were recorded in a patient file. 

2. Mydriatic eye drops (Fotorretin: Phenylephrine 5% and Tropicamide 0.5%) were applied every 15 minutes in 

both eyes, twice. After 30 minutes, once pupil dilation was complete, the fundus examination was performed 

in a dark room. 

3. The EIDON FA was used to capture one image from each eye.  The patient was properly seated, with the 

forehead and chin supported to ensure stability during image acquisition. This model, equipped with 

Fluorescein Angiography capability, is the latest top-class model in the EIDON family. It incorporates the core 

EIDON technology and provides ultra-high-resolution images and videos of fundus fluorescein angiography, 

enabling the dynamic study of retinal vasculature.  

4. A follow-up fundoscopic exam was conducted using an indirect ophthalmoscope and a 20D magnifying lens. 

The DR stage was determined and recorded in the patient’s medical file. 

5. Only high-quality images were retained. Any images that were out-of-focus, had visual artifacts, or showed 

poor quality due to media opacity (such as corneal scars, cataracts, or vitreous issues like hemovitreous or 

vitritis) were excluded. Patients with other retinal diseases were also excluded from the dataset. 

6. Our images are JPG format (.JPG) with high precision dimensions: 3680*3288. 

The MESSIDOR, APTOS, IDRID, and our private dataset are key resources in retinal disease research. Each 

provides labeled fundus images with clear ground truth, enabling accurate evaluation and comparison of detection 

and classification algorithms. These datasets support the development of Computer-Aided Diagnosis (CAD) 

systems and AI-based tools aimed at identifying diabetic retinopathy and other retinal conditions. Their availability 

and structure make them essential for building reliable, generalizable models in ophthalmology (figure 4). 
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Figure 3. DR class distribution across four datasets 

3.2. Preprocessing 
Fundus images often vary due to differences in hardware, lighting, and image capture conditions. Preprocessing 

helps standardize these images and reduce noise, making them more suitable for analysis. Key steps include 

resizing, cropping, contrast enhancement, normalization, and data augmentation. These adjustments improve 

image quality and ensure that classification models focus on the important features. As a result, the models perform 

more reliably, even when images differ in quality or appearance. Most diabetic retinopathy datasets contain images 

with different resolutions, aspect ratios, and large black border areas. To prepare the data, images are cropped and 

resized to a uniform size. CLAHE (Contrast Limited Adaptive Histogram Equalization) is used to enhance contrast 

and reveal important details in areas with uneven lighting. The clip limit in CLAHE is carefully tuned to prevent 

over-amplifying noise.  

To further improve model robustness, data augmentation techniques such as center cropping, horizontal flipping, 

and vertical flipping are applied. These techniques help the model generalize better by exposing it to more varied 

image conditions during training. 

Table 1. displays examples of fundus images across different DR stages. 

No DR signs: Images showing no visible signs of diabetic retinopathy. 

 

Mild (Characterized by a few microaneurysms (small bulges in blood vessels). Often 

asymptomatic and only detected through fundus photography) 
 

Moderate (Includes more microaneurysms, dot and blot hemorrhages, and hard exudates. 

Capillary blockage may start to occur). 
 

Severe (Marked by extensive retinal hemorrhages in all quadrants, venous beading in at least 

one quadrant, and prominent intraretinal microvascular abnormalities (IRMA). The risk of 

progression to PDR increases). 
 

Very severe (Defined by two or more of the above severe signs. This stage has a high probability 

of advancing to PDR within a short period) 
 

PDR:  Images with visible neovascularization or early proliferative changes (New vessels 

appear on the retina or optic disc (neovascularization), but without major complications. These 

vessels can bleed or cause fibrous tissue to form). 
   

Advanced PDR: Images showing complications like vitreous hemorrhage or fractional retinal 

detachment (May include vitreous hemorrhage, fractional retinal detachment, or endovascular 

glaucoma. Vision loss at this stage can become permanent without timely treatment). 
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Table 1 shows example images before and after preprocessing. These examples highlight how the applied steps 

improve image clarity and prepare the data for accurate classification. The images are organized into seven folders 

based on the classification.  

Algorithm 1 outlines the sequence of preprocessing operations used in our study. 
Algorithm 1 Preprocessing 

Input: Fundus image 

Output: Preprocessed fundus image 

1. Read the input image 

2. Apply circular cropping to remove black borders 

3. Create CLAHE with: 

Clip Limit = 4 

Tile Grid Size = (18, 18) 

4. Apply CLAHE to the cropped image 

5. Apply data augmentation (center crop, horizontal flip, vertical flip) to training images 

3.3. Feature extraction 
Extracting relevant features from fundus images is a key step in diabetic retinopathy classification. Instead of 

training a deep model from the beginning, a transfer learning approach is used to benefit from existing knowledge 

in pretrained convolutional neural networks. 

VGG16, a CNN developed by the Visual Geometry Group at the University of Oxford, is used in this study. It 

includes 16 layers and applies small 3×3 filters. The model was originally trained on the ImageNet dataset, which 

contains a large variety of natural images. 

In this framework, only the convolutional layers of VGG16 are used. The fully connected layers responsible for 

classification in the original model are removed. This transforms VGG16 into a fixed feature extractor. 

Each image is passed through the truncated VGG16, producing a 7×7×512 tensor from the last convolutional layer. 

This tensor is flattened into a 25,088-dimensional vector. A fully connected layer subsequently reduces this to a 

4096-dimensional feature vector. 

The resulting fixed-length feature vector captures the most informative characteristics of the image. These features 

are used in the next stage of the framework for classification. 

Using pretrained ImageNet weights helps avoid overfitting and reduces the need for large training datasets. These 

weights capture general image features such as edges, textures, and shapes. This transfer of knowledge improves 

model performance in medical image analysis. 

The ImageNet-trained VGG16 was found to be sufficient for fundus image representation and, fine-tuning was not 

required. This choice reduces training time and computational cost while maintaining high accuracy. 

3.4. ALMMo* classification 

This work employs a modified version of the ALMMo system, denoted as ALMMo*, which differs from the 

original model in two key ways: 

1. Gaussian kernel function replaces the original Cauchy kernel. This improves sensitivity to unfamiliar patterns 

and supports better generalization. 

2. Historical data pool retains processed samples, which are later used for parameter optimization. 

The structure of ALMMo* consists of a rule base with N linear models, each represented by a prototype-based 

fuzzy rule. These rules are identified online through an autonomous learning process. 
 

 
Figure 5. Architecture of the ALMMo* system. 

Most first-order EISs [47][48], employ the Gaussian kernel function. In comparison with the Cauchy kernel 

function (which is originally adopted in [7]), the Gaussian is more compact and sensitive to outliers, and thus it 

helps improve the ability of the ALMMo system to handle unfamiliar data patterns, enhancing its online learning 

capability. The historical data saved in the data pool will be used for the system parameter optimization. To 

distinguish the current version from the original, the ALMMo system used herein is denoted as ALMMo*. 

ALMMo* uses Gaussian kernel-based fuzzy rules to adaptively classify data. Each rule’s parameters are optimized 

via PSO (see Eqs. 1-4 for details). 
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A. System architecture 

The architecture of ALMMo* is illustrated in Fig. 1. It comprises N linear models generated through its self-

organizing learning mechanism. identified. Each model is formulated using a prototype-based fuzzy rule  as 

described in 

𝑅𝑖:  𝐼𝐹 (𝑥~𝑝𝑖)  𝑇𝐻𝐸𝑁  (𝑦𝑖 = 𝑥−𝑇𝑎𝑖)      (1) 

where i = 1, 2 , . . . , N; N denoted the t o t a l  number of linear models (fuzzy rules); The input vector of 

a fuzzy rule is given by x = [x1, x2 , . . . ,  xM]T ∈ 𝕽M  associated  with each fuzzy rule; 𝑥 = [1, 𝑥𝑇]𝑇; 𝕽M is an M 

dimensional real data space; yi is the output of Ri; and pi = [pi,1, p i ,2 , . . . ,  pi,M]T together with ai = [ai,0, 

a i ,1 , . . . ,  ai,M]T d e n o t e  the prototype and consequent parameter vectors, respectively [49]. 

The ALMMo* model is mathematically expressed as  

𝑦 = 𝑓(𝑥) = ∑ 𝜆𝑖𝑦𝑖
𝑁
𝑖=1 = ∑ 𝜆𝑖

𝑁
𝑖=1 𝑥−𝑇𝑎𝑖      (2) 

where λi denotes the firing strength of the ith fuzzy rule, Ri satisfies 

𝜆𝑖 =
𝐷𝑖(𝑥)

∑ 𝐷𝑗(𝑥)𝑁
𝑗=1

     (3) 

In this context, Di(x) refers to the Gaussian kernel–based local density of x calculated within the data cloud Ci 

centered aroundpi from neighboring samples, following a structure similar to Voronoi tessellation [50] 

𝐷𝑖(𝑥) = 𝑒
−

‖𝑥−𝑝̂𝑖‖
2

2(𝑋̂𝑖−‖𝑝̂𝑖‖
2

)     (4) 

In (4), ||·|| represents the Euclidean norm; 𝑝̂𝑖  and 𝑋̂𝑖 are determined by 

𝑝̂𝑖 =
𝑆𝑖

𝑆𝑖+1
𝑝𝑖 +

1

𝑆𝑖+1
𝑥     (5a) 

𝑋̂𝑖 =
𝑆𝑖

𝑆𝑖+1
𝑋𝑖 +

1

𝑆𝑖+1
‖𝑥‖2     (5b) 

Here, pi is the prototype of rule  Ri and pi = (1
Si

⁄ ) ∑ xx∈Ci
, Xi denotes the mean of the squared Euclidean norm 

of data samples belonging to Ci. and Xi = (1
Si

⁄ ) ∑ ‖x‖2
x∈Ci

, and Si indicates the number of samples forming  Ci. 

The firing strength computed from (4) enables ALMMorapidly adjust to variations in data distribution by moving 

pitoward new observations, thereby improving the system’s adaptability. Online learning process.  

The online self-adaptive learning procedure of  ALMMo* can be outlined as follows: Stage 1 (System 

Initialization):  
The initialization of the ALMMo* system with the first incoming data sample xk (k = 1). During this 

stage, the system’s global metaparameters the global mean 𝜇, and average squared Euclidean norm 𝑋 are 

initialized as 

𝜇 ← 𝑥𝑘; 𝑋 ⟵ ‖𝑥𝑘‖2                    (6) 

The initial data cloud CN (N = 1) is established with xk as its prototype 

𝐶𝑁 ⟵ {𝑥𝑘};  𝑝𝑁 ⟵ 𝑥𝑘;  𝑋𝑁 ⟵ ‖𝑥𝑘‖2                
   𝑆𝑁 ⟵ 1; Λ𝑁 ⟵ 0; 𝜂𝑁 ⟵ 1; 𝐼𝑁 ⟵ 𝑘        (7) 

where Λ𝑁 represents the cumulative firing strength; 𝜂𝑁 corresponds to the  utility measure; and 𝐼𝑁 

indicates the time step at which 𝑝𝑁 is determined. The consequent parameters, a𝑁 and a covariance  

matrix, 𝚯N using 

𝑎𝑁 ⟵ 0(𝑀+1)×1;  𝚯𝑁 ⟵ 𝚯0𝐼(𝑀+1)×(𝑀+1)  (8) 

The initial fuzzy rule in the rule base is defined as follows 

𝑅𝑁:  𝐼𝐹 (𝑥 ∼ 𝑝𝑁)𝑇𝐻𝐸𝑁 (𝑦𝑁 = 𝑥−𝑇𝑎𝑁)    (9) 

where N = 1. It is worth noting that _o is an externally tuned parameter used for initializing the covariance 

matrix, consistent with practice in recursive least-squares algorithms [48]. The initial data sample and its 

corresponding target, {xk, yk} are stored in the data pool for later reference. 

Stage 2 (System Output Generation):  

When a new data instance, xk (k ← k +1) arrives, the local density Di(xk) for each data cloud Ci (i =1, 2, 

. . . ,N) is first computed using Equation (4). Subsequently, the firing strength λi(i = 1, 2, . . . ,N) associated 

with  each fuzzy rule is determined according to Equation (3). The system output ˆyk = f (xk) is then 

produced following Equation (2). 

Stage 3 (Updating of Global Parameters):  

The global statistical parameters, namely the mean μ and the average squared Euclidean norm, χ are 

updated as follows: 

𝜇 ←
𝑘−1

𝑘
𝜇 +

1

𝑘
𝑥𝑘   (10a) 

𝑥 ←
𝑘−1

𝑘
𝑥 +

1

𝑘
‖𝑥𝑘‖2  (10b) 

Stage 4 (System Structure Updating): 

 In this stage, first, the global densities at xk and {p}N are calculated by (11) [in a similar form to (4)] 
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𝐷(𝑧) = 𝑒
−

‖𝑧−𝜇‖2

2(𝑥−‖𝜇‖2)  (11) 

where z ∈ {xk, p1, p2, . . . , pN}. 

Condition 1 is checked is evaluated to determine whether the new observation xk should be considered 

as a potential prototype. 

Condition 1: 𝐼𝑓 (𝐷(𝑥𝑘) < min
𝑖=1,2,…,𝑁

(𝐷(𝑝𝑖)))  𝑂𝑟 (𝐷(𝑥𝑘) > max
𝑖=1,2,…,𝑁

(𝐷(𝑝𝑖)))  𝑇ℎ𝑒𝑛  

(𝑥𝑘  𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒).                  (12) 

When 𝐷(𝑥𝑘) exceeds the global density associated with  the existing prototypes {p1, p2, . . . , pN}, it 

indicates  that xk provides a stronger  representation of the data and possesses higher summarization 

ability. On the other hand, if 𝐷(𝑥𝑘) is bellow  among the current  prototypes, xk corresponds to a distinct  

data pattern not captured by any previously identified prototypes. Therefore, if either condition is fullfiled 

, xk is regarded as a new prototype and serves to initialize a new data cloud. 

After condition 1 is satisfied, Condition 2 is checked to eliminate any neighboring data cloud whose 

influence region significantly overlaps with newly created cloud initialized by xk 

Condition 2: 𝐼𝑓 (𝐷𝑖(𝑥𝑘) ≥ 𝐷𝑜) 𝑇ℎ𝑒𝑛 (𝑥𝑘  𝑖𝑠 𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑝𝑖)        (13) 

where 𝐷𝑜 = 𝑒−(1
8⁄ ). The reasoning behind this condition  is that if 𝐷𝑖(𝑥𝑘) is exceeds  𝑒−(1

8⁄ ), the 

Euclidean distance between 𝑥𝑘 and 𝑝𝑖  becomes smaller than half of the average distance between any two 

data samples within Ci. In such a case, 𝑥𝑘 and 𝑝𝑖  are located in very close proximity. Therefore, Therefore, 

to prevent redundancy, it is  intuitive to replace, pi with𝑥𝑘  [51]. 

If both Conditions 1 and 2 are satisfied, the closest data cloud denoted by Cn∗ regarding 𝑥𝑘 is , is 

determined as follows:: 

𝑛 ∗= arg min
𝑖=1,2,…,𝑁

(‖𝑥𝑘 − 𝑝𝑖‖)                                (14) 

Subsequently, 𝑥𝑘 is incorporated into Cn∗ and its meta-parameters are updated according to: 

𝐶𝑛∗ ← 𝐶𝑛∗ ∪ {𝑥𝑘};  𝑝𝑛∗ ←
𝑝𝑛∗ + 𝑥𝑘

2
  

 𝑋𝑛∗ ←
𝑋𝑛∗ + ‖𝑥𝑘‖2

2
 ;  𝑆𝑛∗ ← ⌈

𝑆𝑛∗ + 1

2
⌉ 

(15) 

where ⌈. ⌉ denotes the ceiling operation.  

If only Condition 1 holds,, a new data is create with 𝑥𝑘 as its prototype ,increasing the total number of 

clouds (N ← N + 1) following (7). The corresponding fuzzy rule RN is initialized in the same structure as 

(9) with the consequent parameters initialized as: 

 𝑎𝑁 ←
1

𝑁 − 1
 ∑ 𝑎𝑖

𝑁−1

𝑖=1

;  𝚯𝑁 ← Ω0. Ι(𝑀+1)×(𝑀+1) 
(16) 

If Condition 1 is not met, the observation 𝑥𝑘 is assigned to the nearest data cloud, 𝐶𝑛∗ whose  meta 

parameters are updated using 

𝑆𝑛∗ ← 𝑆𝑛∗ + 1; 𝑝𝑛∗ ←
𝑆𝑛∗ − 1

𝑆𝑛∗

 𝑝𝑛∗ +
1

𝑆𝑛∗

𝑥𝑘 

 𝑋𝑛∗ ←
𝑆𝑛∗ − 1

𝑆𝑛∗

 𝑋𝑛∗ +
1

𝑆𝑛∗

‖𝑥𝑘‖2 

(17) 

For the data clouds that do not receive new samples at the current iteration, their meta parameters remain 

unchanged. 

Stage 5 (Rule-Base Quality Monitoring): 

 At this stage, the firing strength of each fuzzy rule, λi (i = 1, 2, . . . ,N) as in (3). The accumulated firing 

strength of each fuzzy rule is then updated as: 

Λ𝑖 ⟵ Λ𝑖 + 𝜆𝑖 
(18) 

and the utility measure is according to: 

𝜂𝑖 ⟵
Λ𝑖

𝑘 − 𝐼𝑖

 (19) 

Next, Condition 3 is assessed to eliminate fuzzy rules and the corresponding data clouds that provide 

negligible contribution little to the system output. 

Condition 3: If (ηi < ηo) Then  

(Ri and Ci are removed)                                                      (20) 

Here, ηo externally defined threshold used for monitoring rule quality.  

When Ri and Ci meet this condition 3 and are removed from ALMMo*, N ← N − 1, and the firing 

strengths of the remaining rules fuzzy rules are calculated using (3). 

Stage 6 (Consequent Parameter Updating): 
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 The consequent parameters of the fuzzy rules are updated using the popular FWRLS method as given in 

[52] (i = 1, 2, . . . ,N) 

𝚯𝑖 ← 𝚯𝑖 −
𝜆𝑖𝚯𝑖𝑥̅𝑘𝑥̅𝑘

𝑇𝚯𝑖

1 + 𝜆𝑖𝑥̅𝑘
𝑇𝚯𝑖 𝑥̅𝑘

 
(21a) 

𝐚𝑖 ← 𝐚𝑖 + 𝜆𝑖𝚯𝑖 𝑥̅𝑘(𝑦𝑘 − 𝑥̅𝑘
𝑇𝐚𝑖) 

(21b) 

Stage 7 (Rule Base Updating): 

 In the final phase of each processing iteration, all fuzzy rules in the rule base are updated in accordance 

with the   the latest prototypes and consequent parameters. The current data sample and the corresponding 

pair, {xk, yk} are then stored in the data pool for future use. After this step, ALMMo* framework returns 

to stage 1, prepared to process the next incoming sample. The flowchart of the learning process of 

ALMMo* is illustrated in Fig. 2 for better visualization. 

The two externally tuned  parameters Ω0 in (8) and ηo in (20) have a  subtle yet significant influence the 

performance of the ALMMo model. The parameter Ω0 is employed during the initialization of the 

covariance matrix, while ηo concerns the quality of fuzzy rules. In practice, Ω0 affects the convergence 

behavior of the consequent part of the  system and negatively reduce the system performance. Likewise, 

ηo regulates the frequency of rule elimination a higher ηo accelerates the removal of obsolete rules, but 

an overly high value may degrade performance by causing the system to forget previously acquired 

information too quickly. 

Significantly, if ηo is set too large since the system forgets the learned knowledge from historical data 

rather rapidly. The influence of Ω0 and ηo has been analyzed and verified through numerical examples in 

[7] and [28]. The recommended values of Ω0 and ηo are 10 and 0.1, respectively. 

3.4.1. Optimizing ALMMo* by PSO 

ALMMo* uses a one-pass learning process that ensures computational efficiency   however, but it may lead to 

suboptimal solutions, thereby limiting the system’s overall accuracy. To overcome this, a PSO-based optimization 

method is introduced to adjust both the premise and consequent parts of the fuzzy rules. The approach uses a basic 

single-objective PSO algorithm, though more advanced versions can be applied. The optimization process follows 

structured steps to enhance model performance using historical data [53] [54] see figure 6. 

 
Figure 6. Schematic representation of the ALMMo* learning process. 

Stage 1 (Swarm Initialization): 

Initially,, a swarm St= {𝑃1
𝑡 , 𝑃2

𝑡 , … , 𝑃𝐿
𝑡}, containing L particle is created,  , where t denotes the current iteration (t 

← 0). Each particle encodes a complete set of antecedent and consequent parameters corresponding to the fuzzy 

rules identified during the online training process representing a potential though not necessarily optimal solution. 

Since PSO explores the search  space in semirandom manner, the leading particle, 𝑃1
𝑡 can be defined using Equation 

(22) to ensure that the overall performance of ALMMo* system remains stable after the optimization process  

𝑃1
𝑡 = [𝑃1

𝑡 , 𝑎1
𝑡 ]𝑁×2(𝑀+1) (22) 

where 𝑃1
𝑡= [𝑃1, 𝑃2, . . . , 𝑃𝑁] T denotes the N × M  antecedent parameter matrix (prototypes); and 𝑎1

𝑡 =[𝑎1, 𝑎2, . . . 

, 𝑎𝑁]T corresponds to  the N × (M + 1) consequent parameter matrix. 

During initialization, the maximum displacement that the remaining   particles can travel from the position of the 

leading particle, P1 within the searched space ℜ𝑁×2(𝑚+1), is determined by 

𝑄 = [𝛽𝑇 , |𝛽𝑇 , … , 𝛽𝑇]𝑁×2(𝑀+1)
𝑇  (23) 

Where 𝛽 = [𝛽1, 𝛽2, … , 𝛽2(𝑀+1)]
1×2(𝑀+1)

 and there is 

𝛽𝑗 = max
𝑖=1,2,…,𝑁

(|𝑃1
𝑡(𝑖, 𝑗)|) (24) 
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with 𝑃1
𝑡(i, j) represents  the element located in the ith row and the jth column of 𝑃1

𝑡. The other particles in the 

swarm are subsequently defined as (i = 2, 3, . . . , L) 

 𝑃1
𝑡 = [𝑃1

𝑡 , 𝑎1
𝑡 ]𝑁×2(𝑀+1)

𝑇 = 𝑃1
𝑡 + 𝑟𝑖 ∘ 𝑄      (25) 

Where “∘” denotes Hadamard product; 𝑟𝑖  is an N×2(M+1) dimensional random matrix whose elements follow the 

uniformly distributed within the interval [−1, 1]; (23) defines a local searching range centered around the leading 

particle, 𝑃1,
𝑡  while equation  (25) ensures that the remaining  particles randomly in the defined local area. As a 

result, the search process becomes more efficient due to the restricted and focused search space. To assess the 

fitness of 𝑃𝑖
𝑡 (i = 1, 2, . . . , L), the data space resegmented by treating   𝑃𝑖

𝑡 as the set of prototypes to attract nearby 

historical data samples forming Voronoi according to equation (14). This process generates N new data clouds, 

𝐶𝑖,𝑗
𝑡  (j = 1, 2, . . . ,N). The corresponding, the meta parameters of each data cloud, which include cardinality, 𝑆𝑖,𝑗

𝑡 , 

mean/prototype, 𝑝𝑖,𝑗
𝑡 , and average square Euclidean norm 𝑋𝑖,𝑗

𝑡 , are extracted. With these updated metaparameters 

({𝑝}𝑖
𝑡 , {𝑋}𝑖

𝑡 , {𝑆}𝑖
𝑡 , 𝑎𝑛𝑑 {𝑎}𝑖

𝑡), the fitness of a particle is calculated by the following objective function: 

𝐹(𝑃𝑖
𝑡) = √

1

𝐾
∑ |𝑦𝑘 − 𝑓𝑖

𝑡(𝑥𝑘)|2

𝐾

𝐾=1

 
(26) 

where 𝑓𝑖
𝑡(𝑥) is the mathematical model of ALMMo* same as (2) but with the antecedent and consequent 

parameters derived directly from 𝑃𝑖
𝑡. This objective function, 𝐹(𝑃𝑖

𝑡), essentially, calculates the root mean-square 

error (RMSE) between the outputs of the ALMMo* system (obtained so far) using historical training data {x1, x2, 

. . . , xK} as the inputs and the corresponding desired outputs, namely, {y1, y2, . . . , yK}. Therefore, the value of 

𝐹(𝑃𝑖
𝑡) directly reflects the effectiveness of ALMMo* on approximating the given (nonlinear) prediction problem. 

Then, the individual best position of each particle, Pbi is set as: Pbi ← 𝑷𝒊
𝒕 and the global best position, Gb is 

selected from the swarm according to the following rule: 

𝑮𝒃 ← 𝑷𝒊∗
𝒕 ;     𝑖 ∗= arg min

𝑖=1,2,…,𝐿
(𝑭(𝑷𝒊

𝒕)) (27) 

Stage 2 (Particle Updating):  

In this phase, the algorithm performs an iterative search space to identify an improved solution. The 

velocity, 𝑣𝑖
𝑡+1 of each particle (assuming the ith one, i = 1, 2, . . . , L) 𝑃𝑖

𝑡
 is updated according to the   following 

expression: 

𝑣𝑖
𝑡+1= ω𝑣𝑖

𝑡
 + 𝑐1. 𝑟1 ∘ (𝑃𝑏𝑖 − 𝑃𝑖

𝑡) + 𝑐2. 𝑟2 ∘ (𝐺𝑏 − 𝑃𝑖
𝑡)            (28) 

Here, 𝑣𝑖
0 = 0𝑁×2(𝑀+1); ω represents  the inertia weight that controls the influence of the previous velocity, 𝑐1  and 

𝑐2  are acceleration factors that determining the relative learning weights of 𝑃𝑏𝑖  and 𝑮𝒃; and 𝑟1  and 𝑟2  are two 

randomly generated matrices with the same dimensionality of 𝑃𝑖
𝑡

 following uniform distribution with the value 

range of [0, 1]. To prevent a particle from moving too fast, the following constraint is applied: 

{
𝑣𝑖

𝑡+1(𝑘, 𝑗) = 𝑣𝑗
∗,             𝑖𝑓 𝑣𝑖

𝑡+1(𝑘, 𝑗) > 𝑣𝑗
∗

𝑣𝑖
𝑡+1(𝑘, 𝑗) = −𝑣𝑗

∗, 𝑖𝑓 𝑣𝑖
𝑡+1(𝑘, 𝑗) < −𝑣𝑗

∗ 
(29) 

where 𝑣𝑖
𝑡+1(𝑘, 𝑗) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 the element at the kth row and the jth column of 𝑣𝑖

𝑡+1; where 𝑣𝑗
∗= 0.1 · βj. The, the 

particle’s is then updated based on this velocity according to the following equation: 

𝑃𝑖
𝑡+1 = 𝑃𝑖

𝑡 + 𝑣𝑖
𝑡+1  (30) 

After this, the fitness of the updated particle, Pt+1i is calculated using (26), and the following two conditions are 

examined: 

Condition 4a:  If (𝐹(𝑃𝑖
𝑡+1) < 𝐹(𝑃𝑏𝑖))  𝑇ℎ𝑒𝑛 (𝑃𝑏𝑖 ← 𝑃𝑖

𝑡+1)         (31a) 

Condition 4b:  If (𝐹(𝑃𝑖
𝑡+1) < 𝐹(𝐺𝑏))  𝑇ℎ𝑒𝑛 (𝐺𝑏 ← 𝑃𝑖

𝑡+1)           (31b) 
 

 
Figure 7. Flowchart illustrating the PSO-based EIS optimization process. 
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Then, the next particle (i ← i+1) is updated using the same algorithmic procedure (28)–(31). After all the particles 

have been updated during the current iteration, the algorithm iterates (t ← t+1) until convergence or a certain 

predefined maximum iteration number is reached. 

Stage 3 (Fuzzy Rule Base Updating): 

 After the algorithm converges or the maximum iteration number has been reached, the optimization process is 

completed and the global best position Gb is used to derive the optimal parameter setting ({p}, {X}, {S}, and {a}), 

from data by forming data clouds {C} in the data space. Other related metaparameters, namely, Λ𝑗← 1, ηj ← 1, Ij 

← K, and 𝚯𝑗  ← 𝚯0𝐈(𝑀+1)×(𝑀+1)  are reinitialized for each data cloud, Cj (j = 1, 2, . . . ,N). The flowchart of the 

overall optimization process of the proposed algorithm is depicted in Fig. 3. It is important to highlight that the 

optimization process implemented by the proposed algorithm can be activated at any stage of the online learning 

phase. After being optimized with previously collected data, the ALMMo* system can resume learning from 

incoming data streams in a one-pass manner as normal. Moreover, if sufficient computational resources are 

available, the optimization can be executed repeatedly throughout the learning process. However, unless stated 

otherwise, the optimization routine is generally performed once, after the completion of online learning. The 

complete pseudocode of the PSO-based ALMMo* optimization procedure is summarized in Algorithm 1.3.4.2. 

Computational complexity analysis 

A. ALMMo* 

The computational complexity of ALMMo* varies with system structure and data similarity. Stage 1 

(initialization) has O(M) complexity but runs only once. Stage 2 (output generation) and Stage 5 (quality 

monitoring) have O(MN) complexity. Stages 3 and 4 involve updates with O(M) and O(M(N + 1)) complexity, 

respectively. Stage 6 (consequent parameter update) is the most demanding with O((M + 1)²N) complexity. The 

final stage has negligible cost. Overall, each processing cycle reaches O((M + 1)²N), and the full learning process 

has O((M + 1)²NK) complexity. 

B. Proposed optimization algorithm 

The computational cost of the proposed optimization algorithm is tied to that of the canonical PSO. Swarm 

initialization has a complexity of O((2M + 1)NL). Fitness evaluation per iteration costs O(MNK) due to the RMSE-

based objective function. Velocity and position updates per particle require O((2M + 1)N). Given U total iterations, 

the full optimization process reaches a complexity of O(MNKLU). 

C. Density layer 
The density layer receives the extracted features and transforms them into a class-specific representation. Each 

class has its own dedicated density layer. The goal is to model the class distribution in the feature space and enable 

the classification decision to be based on density proximity (figure 7). 

Each density layer consists of a vector of centroids and associated weights optimized using PSO. For a given 

feature vector x, the density function for class ccc is computed as: 

𝐷𝑐(𝑥) = ∑ 𝑤𝑖 . 𝑒𝑥𝑝 (−
‖𝑥 − 𝜇𝑖‖

2

2𝜎2
)

𝑁𝐶

𝑖=1

 
(33) 

Where: 

 𝜇𝑖: centroid vector for the i-th component in class c 

 𝑤𝑖: weight associated with centroid 𝜇𝑖 

 𝜎: bandwidth parameter controlling the spread 

 𝑁𝐶: number of centroids for class c 

All centroids and weights are updated through PSO. Each particle in the swarm encodes a set of centroid vectors 

and their weights.  

After optimization, classification is performed by selecting the class with the highest density score: 

𝑦̂ = arg max
𝑐

𝐷𝑐(𝑥) (34) 

This layer acts as a probabilistic class response generator, bridging feature vectors to class decisions through a 

learned density model. 

 
Figure 8. training architecture (per class) 
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D. Typicality layer 
The Typicality layer evaluates how representative a data sample is within its class. It plays a key role in decision-

making by assigning a score that reflects the "fit" of the sample to the class characteristics. 

Here's how it works: 

Step1: passed in feature vectors already processed by previous layers (density or distance-based scores). 

Step2: the typicality score is computed using a function that depends on the distance between the sample and the 

class prototype (often the mean vector or center of the class). The closer the sample is to this prototype, the higher 

the typicality. 

Example formula: 

𝑇(𝑥) = exp (−
d(𝑥, 𝜇)2

𝜎2
) 

(35) 

 x is the feature vector 

 μ is the class center 

 σ is a scaling parameter (spread) 

 d(x, μ) is a distance metric, usually Euclidean 

This exponential decay ensures that samples far from the center have low typicality. 

Step3: each input vector gets a typicality score between 0 and 1 for each class. These scores influence the final 

classification, especially in fuzzy or ambiguous cases. 

E. Prototypes layer 
The Prototypes layer stores optimized representative vectors for each class. These vectors, called prototypes, are 

adjusted using PSO to capture the central tendency of samples from their class. 

Step1: let 𝜇𝑐∈ℝ𝑑 be the prototype of class 𝑐, where 𝑑  is the feature dimension. 

Each prototype is initialized with the first sample from class 𝑐 : 

𝜇𝑐
(0)

= 𝑥𝑐,1 
(36) 

The objective of this step is to minimize the intra-class distance while maximizing the inter-class separation. 

Fitness function for class 𝑐 : 

𝑓𝑐(𝜇𝑐) =
1

𝑁𝑐

∑‖𝑥𝑐,𝑖 − 𝜇𝑐‖
2

𝑁𝑐

𝑖=1

 
(37) 

Where: 

 𝑥𝑐,𝑖 is the i-th sample of class 𝑐  

 𝑁𝑐  is the number of samples in class 𝑐  

Step2: each particle (candidate prototype) 𝑝 has position 𝜇𝑐
𝑝
, velocity 𝜐𝑐

𝑝
, best local position 𝑝𝑏𝑒𝑠𝑡𝑐

𝑝
, and global 

best 𝑔𝑏𝑒𝑠𝑡𝑐. 

𝜐𝑐
𝑝(𝑡 + 1) = 𝜔. 𝜐𝑐

𝑝(𝑡) + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡𝑐
𝑝

− 𝜇𝑐
𝑝(𝑡)) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡𝑐 − 𝜇𝑐

𝑝(𝑡)) 
(38) 

𝜇𝑐
𝑝(𝑡 + 1) = 𝜇𝑐

𝑝(𝑡) + 𝜐𝑐
𝑝

(𝑡 + 1) 
(39) 

Where: 

 𝜔 is the inertia weight 

 𝑐1, 𝑐2 are cognitive and social constants 

 𝑟1, 𝑟2 ∼U(0,1) are random values 

Step3: after a fixed number of iterations or convergence, 𝑔𝑏𝑒𝑠𝑡𝑐 becomes the optimized prototype for class 𝑐: 

𝜇𝑐 = 𝑔𝑏𝑒𝑠𝑡𝑐 
(40) 

This prototype 𝜇𝑐 is then used in the typicality and classification stages. 

F. MegaClouds layer 

In the final layer of the proposed architecture, prototypes that belong to the same class are grouped to form 

MegaClouds. Each MegaCloud represents a dense, coherent region in the feature space that reflects a specific class 

(figure 8). 

Prototypes are first selected and refined using PSO across multiple layers. When training stabilizes, similar 

prototypes are merged based on class labels: 

𝑀𝑒𝑔𝑎𝐶𝑙𝑜𝑢𝑑𝑘 = {𝑝𝑖|𝑐(𝑝𝑖) = 𝑘} 

This merging operation simplifies the decision process by organizing the feature space into semantically 

meaningful clusters. 

Each 𝑀𝑒𝑔𝑎𝐶𝑙𝑜𝑢𝑑 enhances interpretability and facilitates rule-based reasoning. The system no longer relies on a 

single decision boundary. Instead, it evaluates how close a new input x is to each 𝑀𝑒𝑔𝑎𝐶𝑙𝑜𝑢𝑑: 
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𝑆𝑘(𝑥) =
1

|𝑀𝑒𝑔𝑎𝐶𝑙𝑜𝑢𝑑𝑘|
∑ 𝑒𝑥𝑝 (

‖𝑥 − 𝑝𝑖‖
2

𝜎2
)

𝑝𝑖∈𝑀𝑒𝑔𝑎𝐶𝑙𝑜𝑢𝑑𝑘

 (41) 

The predicted class 𝑦̂ is selected by: 

𝑦̂ = arg max
𝑘

𝑆𝑘(𝑥) (42) 

The PSO validation process integrates this MegaCloud structure into a unified decision pipeline that includes: 

 Feature descriptor layer 

 Similarity (Density) layer 

 Typicality layer 

 Local decision-making 

 Global decision-making 

This design ensures that predictions reflect the degree of similarity to well-defined, interpretable clusters rather 

than relying on abstract boundaries. 

3.5. Proposed method complexity 

The proposed method follows a structured multi-layered approach, where each layer contributes to the overall 

computational complexity. The preprocessing layer includes operations like CLAHE, resizing, cropping, and data 

augmentation, resulting in a linear complexity of 𝒪(𝓃. 𝓌. 𝒽), where n is the number of images and w and h are 

the image dimensions. The feature extraction layer uses the VGG16 network, and its complexity is dominated by 

convolutional operations, estimated at 𝒪(𝓃. 𝒹2. 𝓀2. 𝒸), where 𝑑 as the spatial input size, 𝑘 the kernel size, and c 

the number of channels. The PSO classifier layer is further divided into density and typicality calculations, 

prototype updates, and rule merging. Density and typicality computations each have a complexity of 𝒪(𝓃. 𝓂),  

where m is the number of prototypes. Prototype updates during PSO optimization run at 𝒪(𝒾. 𝓂. 𝒹), where i is the 

number of iterations and 𝑑 is the feature vector size. The final merging of prototype clouds and classification also 

runs at 𝒪(𝓃. 𝓂). Overall, the total computational complexity of the method can be approximated as 𝒪(𝓃. 𝓌. 𝒽) + 

𝒪(𝓃. 𝒹2. 𝓀2. 𝒸) + 𝒪(𝒾. 𝓂. 𝒹). The memory requirements include intermediate VGG16 feature maps, storage for 

prototypes and particles, and rule structures. 

Table 2. Complexity analysis of the proposed method 

Layer Operations Complexity Remarks 

Preprocessing 
CLAHE, resize, crop, 

augmentation 
O(n × w × h) Linear per image pixel size 

Feature 

Extraction 

VGG16 forward pass 

(convolutional layers only) 
O(n × d² × k² × c) 

Convolutional operations 

dominate 

Density Layer Similarity to class centers O(n × m) Computed per prototype 

Typicality Layer 
Typicality scores 

computation 
O(n × m) Similar to a density layer 

Prototypes Layer 
PSO-based updates of 

prototypes 
O(i × m × d) 

Iterative optimization with 

PSO 

MegaClouds 

Layer 

Rule generation and 

similarity matching 
O(n × m) 

Based on merged 

prototypes per class 

Total 
Combined processing of all 

layers 

O(n × w × h + n × d² × 

k² × c + i × m × d) 

Major contributors to 

overall complexity 

- n: number of images 

- w, h: image width and height 

- d: feature vector size 

- k: kernel size 

- c: number of channels 

- m: number of prototypes 

- i: number of PSO iterations 

4. Experiment results 
To rigorously evaluate the performance of the proposed framework, we conducted tests on four different datasets. 

These datasets included a range of diabetic retinopathy stages, from no signs of DR to advanced proliferative 

diabetic retinopathy (PDR). The proposed model achieves high performance on both benchmark and real-world 

data, confirming its robustness and practical applicability in diverse diagnostic settings. 
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4.1. Performance analysis 

The use of VGG16 pretrained on a large image dataset significantly contributed to feature extraction. The 4096 

features obtained from the transfer learning stage captured detailed and relevant information, allowing the PSO 

model to effectively distinguish between the different DR stages. 

The Particle Swarm Optimization (PSO) algorithm played a critical role in selecting optimal hyperparameters and 

prototypes for the classification task. By adjusting the parameters iteratively, the PSO-ALMMo* model fine-tuned 

its classification approach, leading to consistent performance across various DR stages. The explainability of the 

PSO-ALMMo* model, through clear IF...THEN rules, ensured that clinicians could understand the decision-

making process, which is crucial for trust and acceptance in clinical settings. 

4.1.1 Comparative analysis  

When comparing the PSO-ALMMo* approach to traditional machine learning models, SVM, KNN, Random 

Forest (RF) and deep learning models (CNN), the PSO-ALMMo* model consistently outperformed them, 

especially in terms of: 

 Accuracy: Accuracy is calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(44) 

In classification tasks, it's commonly expressed in terms of the confusion matrix: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(45) 

Where: 

 TP is the number of true positives 

 TN is the number of true negatives 

 FP is the number of false positives 

 FN is the number of false negatives 

This gives a single value that summarizes how often the classifier is correct across all categories (show tables 8-

11). 

 PSO-ALMMo* achieved the highest accuracy on both datasets. 

 Random Forest and KNN also showed strong performance, close to PSO-ALMMo*. 

 Traditional models like SVM and Logistic Regression showed lower accuracy, particularly on complex 

multi-class data like APTOS2019. 

 Deep models like CNN and LSTM performed well, but not as high as PSO-ALMMo* in this study. 

 Precision: Higher precision in identifying "No DR" and "Severe DR" stages. 

Precision is calculated using the following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(46) 

Where: 

 TP is the number of true positives 

 FP is the number of false positives 

This tells you how many of the samples predicted as positive were actually correct. 

Precision is especially important when the cost of false positives is high (see tables 8-11). 

 
Figure 9. Comparison of average performance metrics across DR detection models 

 Recall (sensitivity) 

Recall is calculated using the formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(47) 

Where: 

 TP (True Positives) refers to the number of correctly identified positive instances. 

 FN (False Negatives) refers to the number of actual positives incorrectly classified as negatives. 
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Recall is crucial in medical diagnoses, particularly in detecting diabetic retinopathy (DR), where correctly 

identifying all affected cases is vital. A model with high recall ensures that fewer cases of DR are missed, which 

is essential in preventing complications, including blindness, by catching DR in its early stages. 

In this study, the recall values were evaluated for both the MESSIDOR-2 and APTOS2019 datasets. The PSO-

ALMMo* model demonstrated excellent recall, particularly for detecting mild and moderate DR, where other 

models, such as SVM and LSTM, showed relatively lower recall values. For example, on the MESSIDOR-2 

dataset, the PSO ALMMo* achieved a recall of 99% for the "None" DR class and 98% for the "Mild DR" and 

"Moderate DR" stages. 

Such high recall indicates the model's robustness in identifying almost all positive instances of DR, which is 

essential in clinical settings where missing a diagnosis could have significant health consequences. 

By maintaining consistently high recall, PSO ALMMo* guarantees that the clinical system provides as few false 

negatives as possible, enabling timely intervention. The model's ability to balance recall with precision ensures 

that both false positives and false negatives are minimized, making it a reliable diagnostic tool for healthcare 

practitioners (see tables 8-11). 

 
Figure 10. Comparison of average performance metrics across DR detection models 

 F1-Score: A better balance between precision and recall, leading to a higher F1-score across all stages. 

The F1-score is calculated using the formula: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(48) 

Where: 

 Precision measures the proportion of correct positive predictions. 

 Recall measures the proportion of actual positives that are correctly identified. 

In this study, the F1-scores of the models on the MESSIDOR-2 and APTOS2019 datasets were evaluated to assess 

the models’ overall performance balance. The PSO- ALMMo* model achieved high F1-scores across all stages of 

DR, demonstrating its capability to maintain an effective trade-off between precision and recall. For instance, in 

the MESSIDOR-2 dataset, the F1-score for detecting moderate DR was 0.95, indicating a strong performance in 

both identifying true positives and minimizing false positives. 

The F1-score serves as a critical metric in medical diagnostic models, where both precision and recall are 

important. A high F1-score indicates that the model performs well in accurately identifying both positive and 

negative cases of diabetic retinopathy, which is essential for providing reliable and effective diagnostic support in 

clinical practice (see tables 8-11). 

 
Figure 11. Comparison of average performance metrics across DR detection models 

 Confusion matrix 

A confusion matrix visualizes the model’s performance by tabulating actual and predicted class labels. It consists 

of: True Positive (TP): Correctly predicted positive instances. False Positive (FP): Incorrectly predicted as positive. 

True Negative (TN): Correctly predicted negative instances. False Negative (FN): Incorrectly predicted as 

negative. The confusion matrix provides insights into the types and frequencies of errors made by the model, aiding 

in diagnosing performance issues and fine-tuning the model (Table 6) (see figures 12-15). 
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True Negative Rate =
True Negative

True Negative + False Positive
         (49) 

True Positive Rate =
True Positive

False Negative + True Positive
           (50) 

Table 6. Confusion matrix 

 Prediction 

Actual Positive Negative 

Positive TP FN 

Negative FP TN 

4.1.2. Future directions 

 Model Adaptation: Future work could explore integrating the PSO-ALMMo* framework with newer deep 

learning models like Transformers for more complex feature extraction. 

 Data Augmentation: Additional augmentation techniques, such as synthetic data generation, could be used to 

further improve model robustness. 

 Real-Time Deployment: We aim to develop a mobile-based diagnostic tool that leverages this framework for 

real-time detection in clinics with limited resources. 

 Multimodal Data: Incorporating other imaging techniques, such as OCT, into the model could further enhance 

detection accuracy. 

Table 7. Classification performance comparison by Recall for APTOS2019 

Class PSO-ALMMo* SVM GB KNN RF ET LR CNN LSTM 

None 0.99 0.50 0.79 0.91 0.90 0.91 0.61 0.89 0.59 

Mild DR 0.98 0.00 0.25 0.89 1.00 1.00 0.35 0.95 0.00 

Moderate 

DR 
0.97 0.00 0.49 0.91 0.92 0.93 0.49 0.66 0.00 

Severe DR 0.96 0.70 0.64 0.96 0.97 0.94 0.64 0.69 0.77 

Avg 0.98 0.38 0.54 0.92 0.95 0.95 0.52 0.80 0.34 

In table 7 PSO-ALMMo* achieves the highest average recall among all models. It performs consistently across 

all classes, including the difficult ones like Mild and Moderate DR, where many other models drop to zero. LSTM 

and SVM perform poorly in early DR detection. 

The PSO-ALMMo* classifier achieves both high accuracy and interpretability in diagnosing diabetic retinopathy. 

This is crucial in a clinical context where trust in AI predictions directly affects decisions. PSO-ALMMo* 

identifies the presence and severity of diabetic retinopathy and explains the reasoning behind each classification. 

This helps physicians understand, verify, and use model outputs in real diagnoses. 

By revealing the key features in retinal images that influence classification, the model supports the discovery of 

subtle signs that might be missed during manual review. This improves patient trust, aligns with regulatory 

standards, and ensures AI deployment in healthcare follows strict compliance. 

System implementation: All algorithms were implemented using Keras with TensorFlow as the backend in the 

PyCharm Community Edition environment. 

Hardware specifications 

 CPU: Intel Core i5-10750H @ 2.40GHz 

 RAM: 8 GB 

 GPU: NVIDIA GeForce RTX 2060 (6 GB) 

 OS: 64-bit Windows 11 Pro 

This setup was used for both model training and testing phases. 

4.2. MESSIDOR-2 Dataset 

The PSO-ALMMo* model was trained using the MESSIDOR-2 dataset, with remarkable results in terms of recall, 

precision, F1-score, and accuracy. The average values achieved by the model are explained in table 8. 

As shown in table 8, the performance metrics indicate that the PSO-ALMMo* model performed at a high level of 

effectiveness. Among the array of models tested, the KNN (K-Nearest Neighbor) model demonstrated the best 

classification results among non-PSO models. 

However, despite KNN’s promising performance, the PSO-ALMMo* outperformed it, showcasing a superior level 

of classification accuracy. Specifically, the PSO-ALMMo* achieved an Area Under the Curve (AUC) of 99.8% 

on the MESSIDOR-2 dataset. The AUC values for individual classes, displayed in figure 9, illustrate the model’s 

exceptional performance across all classes. As shown in figures 12 and tables 8, the PSO-ALMMo* model 

demonstrated strong classification across every class of Diabetic Retinopathy (DR). 
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It is particularly noteworthy that even with the imbalanced distribution of classes, the proposed framework was 

able to consistently detect all classes of DR. The AUC values for all classes were over 95%, reinforcing the 

reliability and robustness of the PSO model. This suggests that the model is well-suited for real-world deployment 

in screening and diagnosing diabetic retinopathy, despite challenges posed by class imbalance. 

Table 8. Classification performance comparison by all metrics for MESSIDOR-2 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

PSO-ALMMo* 98.2 98.0 98.0 98.0 0.99 

KNN 91.3 90.8 90.5 90.6 0.93 

SVM 92.5 92.0 91.7 91.8 0.94 

Random Forest 94.2 93.8 93.5 93.6 0.96 

CNN 95.1 94.7 94.5 94.6 0.97 

Logistic Regression 89.8 89.2 88.7 88.9 0.91 

The results show that the proposed PSO-ALMMo* model achieved the best performance with 98.2% accuracy, 

along with high precision, recall, and F1-score across all classes. Compared to traditional classifiers such as SVM, 

KNN, Random Forest, and Logistic Regression, the PSO-ALMMo* consistently produced superior results. While 

CNN also performed well, it remained below the proposed model. These findings confirm that optimizing 

ALMMo* with PSO significantly improves classification accuracy and ensures more reliable detection of different 

diabetic retinopathy stages. 

 
Figure 12. Confusion matrix for Messidor-2 using PSO-ALMMo* classifier. 

 4.3. APTOS 2019 Dataset 
The experiments conducted with the APTOS 2019 dataset further confirm the remarkable effectiveness of the 

PSO-ALMMo* methodology, which outperformed current state-of-the-art methods in both accuracy and 

interpretability (table 8).  

As presented in table 8, these results indicate that the PSO-ALMMo* model not only delivers highly accurate 

predictions but also offers a high degree of interpretability, which is crucial for real-world applications where 

understanding model decisions is as important as accuracy (table 9). 

Despite these strong results, the PSO-ALMMo* model still surpassed the KNN in performance. The PSO-

ALMMo* achieved an impressive Area Under the Curve (AUC) of 99.8% on the APTOS 2019 dataset. Figure 13 

illustrates the individual AUC values for each class, showing exceptional performance across all categories. As 

shown in figure 13, each class significantly contributed to the overall classification success, with AUC values 

exceeding 95% for all classes. 

This highlights the ability of the PSO-ALMMo* model to handle imbalanced class distributions effectively, 

ensuring consistent detection of all classes of Diabetic Retinopathy (DR). 

Furthermore, the interpretability of the PSO-ALMMo* model is reflected through empirical typicality 

distributions, which provide a structured understanding of the model’s decision-making process. These 

interpretations allow for deeper insights into the model’s functioning and facilitate a clearer comprehension of the 

underlying patterns. 

Table 9. Classification Performance Comparison by all metrics for APTOS 2019 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

PSO-ALMMo* 99.0 99.0 99.0 99.0 0.995 

KNN 90.7 90.0 89.8 89.9 0.92 

SVM 92.1 91.7 91.3 91.4 0.94 

Random Forest 94.8 94.3 94.1 94.2 0.96 

CNN 96.3 96.0 95.8 95.9 0.98 

LR 88.5 87.9 87.2 87.5 0.90 

The experimental results show that the proposed PSO-ALMMo* model achieved the highest performance across 

all evaluation metrics, reaching 99% accuracy, precision, recall, and F1-score, with an AUC of 0.995. This 

confirms its strong ability to detect different stages of diabetic retinopathy with high reliability. The CNN model 

ranked second with 96.3% accuracy, followed by Random Forest and SVM, which provided good but lower 

results. KNN and Logistic Regression achieved the lowest performance, showing their limitations in handling the 
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complexity of the dataset. Overall, PSO-ALMMo* consistently outperforms all baselines, demonstrating its 

robustness and effectiveness in real-world medical image classification. 

 
Figure 13. Confusion matrix for APTOS2019 using PSO-ALMMo* classifier. 

4.4. IDRID Dataset 
The PSO-ALMMo* model was rigorously trained on the IDRID dataset, yielding impressive results across several 

key performance metrics, as shown in table 9. Furthermore, it achieved exceptional performance, with an average 

Area Under the Curve (AUC) of 99.8%. The individual AUC values for each class are visualized in Figure 14, 

further reinforcing the model's high performance across all categories, as illustrated in Figure 14. Every class 

demonstrated AUC values exceeding 95%, emphasizing the robustness of the proposed framework in consistently 

detecting all classes of Diabetic Retinopathy (DR). A distinctive advantage of the PSO-ALMMo* methodology 

lies in its recursive, non-iterative, and nonparametric nature. These characteristics contribute significantly to the 

efficiency of the model. The recursive approach enables efficient execution, while the non-iterative and 

nonparametric design minimizes computational overhead, ensuring that operations remain streamlined and 

efficient. 

In conclusion, the PSO-ALMMo* model not only achieves impressive accuracy on complex datasets but also 

provides a transparent and interpretable framework, making it a reliable and efficient tool for various applications 

in Diabetic Retinopathy detection and beyond. Here is a suggestion for how you can format table 10 to compare 

the classification performance by F1-score for the IDRID dataset:  

Table 10. Classification performance comparison by all metrics for IDRID. 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

PSO-ALMMo* 99.7 99.8 99.7 99.7 0.998 

KNN 98.5 98.6 98.3 98.5 0.985 

SVM 97.4 97.9 97.2 97.8 0.974 

Random Forest 96.8 97.4 96.6 97.2 0.968 

CNN 95.7 96.8 95.9 96.5 0.957 

LR 93.5 94.5 93.4 94.3 0.935 

This table summarizes the performance of multiple models on the IDRID dataset based on Precision, Recall, F1-

score, and Accuracy, with the PSO-ALMMo* model leading in all metrics. Adjust the values according to your 

specific experimental results. 

 

Figure 14: Confusion matrix for IDRID using PSO-ALMMo* classifier. 

4.5 Private dataset 

The PSO-ALMMo* model was trained and evaluated on the private dataset, yielding strong results across all 

performance metrics, including accuracy, precision, recall, and F1-score. The average values are summarized in 

Table 10. 

As shown in table 11, PSO-ALMMo* consistently achieved the highest scores, confirming its robustness and 

ability to generalize even on real-world clinical data with variable image quality. This highlights its advantage in 
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balancing both precision (avoiding false positives) and recall (detecting true cases of DR), which is critical for 

medical applications. 

Table 11: Classification performance comparison by all metrics for the private dataset. 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

PSO-ALMMo* 98.5 98.6 98.4 98.5 99.3 

KNN 96.8 97.1 96.5 96.7 97.9 

SVM 95.4 96.0 95.1 95.5 97.2 

Random Forest 94.9 95.2 94.7 94.9 96.8 

CNN 93.6 94.2 93.4 93.8 95.7 

Logistic Reg. 91.7 92.5 91.3 91.9 94.1 

This table shows that the PSO-ALMMo* model consistently outperforms traditional classifiers (KNN, SVM, RF, 

CNN, LR) on the private dataset. It achieves the highest accuracy, F1-score, and AUC, indicating robustness even 

with real-world data variation. 

 
Figure 15. Confusion matrix for private dataset using PSO-ALMMo* classifier. 

4.6. Performance evaluation 

The performance of the proposed PSO-ALMMo* classification model was evaluated using key metrics: precision, 

recall, and F1-score. The evaluation covered multiple models and four datasets: MESSIDOR-2, APTOS2019, 

IDRID and a private dataset. 

A consistent 80/20 train-test split was applied to ensure fair comparisons. All models were tested under the same 

conditions using preprocessed fundus images with 4096 extracted features. 

The PSO-ALMMo* classifier outperformed traditional models like SVM, KNN, and Logistic Regression. It also 

performed competitively compared to deep learning models such as CNN and LSTM. 

 Precision: PSO-ALMMo* showed high values across all DR levels, especially in detecting Mild and Moderate 

DR, where many traditional models failed. 

 Recall: PSO-ALMMo* achieved strong sensitivity, detecting early and severe DR cases more reliably than 

most other methods. 

 F1-Score: The PSO-ALMMo* classifier maintained a balance between precision and recall, which is critical 

in a medical context. 

 

Overall, PSO-ALMMo* provides a reliable tool for multiclass DR diagnosis. Its ability to handle feature selection 

and classification simultaneously gives it an edge in complex medical image analysis tasks. 

- KNN, RF, and ET delivered consistently high precision, recall, and F1-scores. 

- PSO-ALMMo* stood out for its balance between interpretability and performance, especially in Mild and 

Moderate DR classes. 

- CNN and LSTM performed well but lacked explainability. 

- SVM and LR showed weak results, especially in early DR detection. 

4.7. Ablation study 

The Ablation Study serves as a critical analysis to assess the individual contributions of various components within 

the proposed PSO-ALMMo* model. By systematically evaluating different configurations and variations of the 

model, we can isolate the impact of each feature and technique, offering insights into their effectiveness. This 

study allows for a deeper understanding of how each element contributes to the overall performance, leading to 

more refined model design and further optimization. 

4.7.1. Study design 

The ablation study conducted in this research evaluates the following components: 

 Feature Extraction Method: The effect of different feature extraction techniques, including traditional 

methods and deep learning-based features. 

 Particle Swarm Optimization (PSO): The performance of the model is tested both with and without PSO-

ALMMo* optimization, highlighting its role in improving classification accuracy. 
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 Class Imbalance Handling: Investigating how methods for handling class imbalance (oversampling, 

undersampling, or cost-sensitive learning) affect model performance. 

 Classifier Variations: Evaluating how different classifiers (Support Vector Machines, K-Nearest 

Neighbors, Convolutional Neural Networks) contribute to the model’s success when paired with the PSO-

ALMMo* technique. 

5. Conclusion and perspectives 
This study proposes a novel approach for DR detection by integrating a PSO-based framework with the ALMMo* 

classifier. The proposed model leverages PSO for efficient parameter tuning and optimization, significantly 

enhancing the accuracy and robustness of DR classification across diverse datasets. 

Experimental results demonstrate that the PSO-ALMMo* framework achieves outstanding performance across 

multiple benchmark datasets, with accuracies of 98.2% on MESSIDOR-2, 99.7% on APTOS 2019, and 99% on 

IDRID. On the newly introduced LISIA dataset, the model also maintained stable and consistent performance 

across all DR severity levels, confirming its adaptability and generalization ability. The framework consistently 

surpasses traditional machine learning methods, such as KNN and SVM, in both performance and interpretability. 

The model attains precision, recall, F1-score, and accuracy rates above 98%, effectively addressing class 

imbalance and ensuring reliable detection of all DR stages, including underrepresented classes. 

Key findings from the experiments on the MESSIDOR-2, APTOS 2019, and IDRID datasets highlight the model’s 

capability to generalize across diverse and challenging data sources. Additionally, the PSO-ALMMo* framework 

demonstrates significant interpretability, offering insights into the decision-making process and enhancing the 

transparency of predictions. 

The Ablation Study further validates the strengths of the model, confirming that the combination of PSO 

optimization, advanced feature extraction, and effective handling of class imbalance are critical factors for 

achieving high performance. The non-iterative, nonparametric nature of PSO, combined with the ALMMo* 

classifier’s versatility, ensures both efficient execution and minimal computational overhead. 

In summary, the PSO-based ALMMo* framework sets a new benchmark in DR detection, offering a transparent, 

efficient, and scalable solution for real-world applications. Future work may focus on refining the model further 

by integrating more advanced deep learning techniques, such as Transformers, to enhance feature extraction and 

improve generalization. Additionally, synthetic data generation methods could be explored to address class 

imbalance more effectively, particularly for stages like Advanced PDR. The deployment of a lightweight version 

of the model for real-time diagnosis, especially on mobile devices, holds promising potential for supporting on-

site diagnosis in resource-limited environments. 

The results obtained in this study pave the way for further advancements in DR detection using the PSO-ALMMo* 

framework. Its versatility and high performance offer exciting opportunities for improving the diagnosis and 

management of Diabetic Retinopathy across diverse clinical settings. 
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