

OPEN

Investigation of structural, elastic, electronic, optical and thermoelectric properties of LiInS_2 and LiInTe_2 for optoelectronic and energy conversion

M. Fatmi¹✉, K. Bouferrache^{1,2}, M. A. Ghebouli^{1,3}, B. Ghebouli⁴, S. Alomairy⁵ & Faisal Katib Alanazi⁶

In this research, the structural, electronic, optical, and thermoelectric properties of LiInX_2 ($\text{X} = \text{S, Te}$) compounds were investigated using first-principles calculations based on Density Functional Theory (DFT). The Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method implemented in the Wien2k package was employed, with the Generalized Gradient Approximation (GGA) and Tran-Blaha modified Becke-Johnson (mBJ-GGA) approximation applied to study the electronic properties. The results revealed that LiInS_2 crystallizes in an orthorhombic system with space group Pna21, while LiInTe_2 crystallizes in a tetragonal system with space group I-42d. The lattice constants and elastic parameters were calculated, showing good agreement with available experimental values. The elastic properties, including elastic constants, moduli, and mechanical stability criteria, were also evaluated to provide insight into the structural robustness and potential mechanical performance of the compounds. Electronic band structure calculations revealed that both compounds possess direct band gaps, with values of 3.61 eV for LiInS_2 and 2.33 eV for LiInTe_2 using the mBJ-GGA approximation, which are close to experimental measurements. Phonon dispersion studies were conducted to verify the dynamic stability of both compounds. Our findings demonstrate that LiInX_2 ($\text{X} = \text{S, Te}$) compounds possess suitable electronic band structures, strong optical absorption in the visible and UV ranges, and favorable thermoelectric characteristics. These results highlight their potential as promising materials for both optoelectronic devices and thermoelectric energy conversion technologies.

Keywords LiInS_2 , LiInTe_2 , Optical properties, Thermoelectric properties, Phonon, Optoelectronic applications

Ternary I-III-VI₂ semiconductor compounds have attracted significant attention in scientific research and technological applications due to their distinctive physical and chemical properties¹⁻³. Among these compounds, LiInX_2 ($\text{X} = \text{S, Te}$) are of particular interest because of their excellent nonlinear optical properties and potential applications in optoelectronic devices, solar cells, and thermoelectric energy conversion devices⁴⁻⁶. LiInS_2 is a wide-band-gap semiconductor characterized by high transparency in the visible and near-infrared regions of the electromagnetic spectrum⁷. It has been proposed for various applications such as tunable lasers, second harmonic generators, and energy converters⁸. On the other hand, LiInTe_2 has been less studied but shows promising properties for optical devices and energy conversion applications⁹. Despite some experimental studies on these compounds, the understanding of their fundamental properties at the theoretical level remains limited. In this context, first-principles calculations based on density functional theory (DFT) provide a powerful tool

¹Research Unit on Emerging Materials (RUEM), University Ferhat Abbas of Setif 1, Setif 19000, Algeria. ²Department of Physics, Faculty of Science, University of M'sila University Pole, Road Bourdj Bou Arreiridj, 28000 M'sila, Algeria.

³Department of Chemistry, Faculty of Sciences, University of M'sila University Pole, Road Bourdj Bou Arreiridj, 28000 M'sila, Algeria. ⁴Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif 1, Sétif 19000, Algeria. ⁵Department of Physics, College of Science, Taif University, Taif 21944, Saudi Arabia. ⁶Department of Physics, college of Sciences, Northern Border University, Arar 73222, Saudi Arabia. ✉email: fatmimessaoud@yahoo.fr

for systematically and accurately studying the physical properties of these materials¹⁰. Recently, Karaagac et al. (2023) investigated the structural, electronic, and optical properties of LiInSe₂ compounds using the FP-LAPW method and revealed their high potential for photovoltaic applications¹¹. Wang et al. (2022) conducted a comparative study of the thermoelectric properties of several I-III-VI₂ compounds and showed that these materials could be promising candidates for thermoelectric energy conversion applications¹². Recent studies have revealed increasing potential for LiInX₂ compounds in a variety of technological applications. Sharma et al. (2024) investigated the defect-induced enhancement of thermoelectric properties in LiInS₂, suggesting the possibility of improving the performance of these materials through defect concentration control¹³. Zhang et al. (2023) proposed the possibility of band gap engineering in LiInX₂ (X=S, Se, Te) compounds via strain and doping, opening new horizons for semiconductor applications¹⁴. In the field of renewable energy applications, Chen et al. (2024) demonstrated the potential of solution-processed LiInS₂ thin films for next-generation transparent photovoltaics¹⁵. Zhou et al. (2023) revealed emergent ferroelectricity in chalcopyrite LiInX₂ structures under pressure, expanding the range of potential applications for these materials¹⁶. Regarding the less-studied LiInTe₂ compound, Lee et al. (2023) analyzed structural phase transitions under hydrostatic pressure using first-principles calculations¹⁷. Additionally, Wang et al. (2024) developed high-performance flexible photodetectors based on LiInS₂ nanocrystals with enhanced stability¹⁸. The field of discovery of new LiInX₂-based materials is rapidly evolving with the use of advanced techniques. Mehta et al. (2023) utilized machine learning techniques for the discovery of novel LiInX₂-based materials for optoelectronic applications¹⁹. Ortiz-Ramos et al. (2024) conducted a comparative study of electronic and optical properties of LiInX₂ (X=S, Se, Te) compounds using hybrid functionals, providing deeper understanding of their physical behavior²⁰. Lin et al. (2023) revealed new insights into the electronic structure and optical properties of LiInTe₂ through GW calculations and experimental measurements²¹. Finally, Ahmad et al. (2024) explored the potential of LiInS₂ for high-efficiency all-solid-state batteries using a multiscale modeling approach, opening a potential new field for applications of these compounds²². Based on previous studies, there is a need for a deeper understanding of the physical properties of LiInX₂ (X=S, Te) compounds, particularly regarding optical and thermoelectric properties that have not received sufficient attention in previous research. Therefore, this research aims to conduct a comprehensive study of the structural, electronic, optical, and thermoelectric properties of these compounds using first-principles calculations. In this work, we systematically investigate the structural, electronic, and phonon properties of LiInX₂ (X=S, Te) using first-principles calculations. We also compute a complete set of optical properties, including the real and imaginary parts of the dielectric function, refractive index, absorption coefficient, reflectivity, and optical conductivity. Furthermore, we evaluate key thermoelectric parameters such as the Seebeck coefficient, electrical and thermal conductivity, power factor, and the dimensionless figure of merit (ZT) over a wide temperature range. These results offer comprehensive insight into the multifunctional behavior of these compounds. The results of this study are expected to guide experimental efforts toward developing practical applications of these compounds in optoelectronic and energy conversion fields. This work presents, for the first time, a comprehensive theoretical investigation of LiInX₂ (X=S, Te) compounds, combining structural, electronic, optical, phonon, and thermoelectric analyses within a unified DFT framework. Unlike earlier reports that focused only on selected properties, our study provides a complete picture of the material behavior, highlighting their potential as multifunctional materials for optoelectronic and thermoelectric technologies.

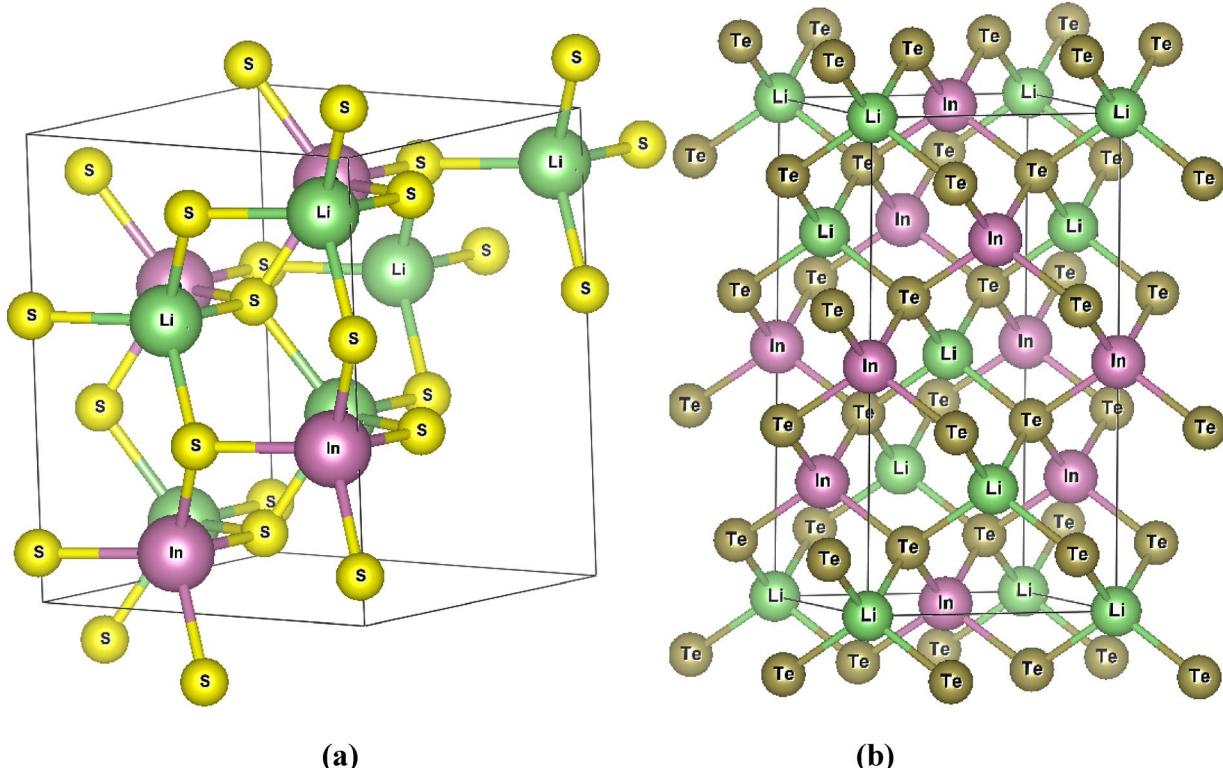
Computational methods

The WIEN2k code was chosen due to its full-potential all-electron approach, based on the FP-LAPW +lo method²³, which offers highly accurate results for the electronic structure of complex materials. Its robustness in computing both the band structure and optical spectra with high precision made it the ideal tool for this investigation. This method is based on Density Functional Theory (DFT) and is considered one of the most accurate methods for calculating the electronic properties of solid materials. The Generalized Gradient Approximation (GGA) proposed by Perdew-Burke-Ernzerhof (PBE)²⁴ was used to describe the exchange-correlation energy in calculations for structural optimization and the determination of structural and mechanical properties. To improve the description of the band gap and electronic properties, the Tran-Blaha modified Becke-Johnson (mBJ-GGA) approximation²⁵ was employed, which has proven effective in predicting band gap values more accurately compared to conventional DFT approximations. The crystalline space was divided into two regions: spherically symmetric muffin-tin (MT) regions around atomic sites and an interstitial region. The muffin-tin radii were chosen to be 2.12, 2.50, and 2.09 Bohr for Li, In, and S elements, respectively, and 2.12, 2.50, and 2.50 Bohr for Li, In, and Te elements, respectively, as shown in Table 1. The $R_{MT} \times K_{max}$ value was set to 9, where RMT is the smallest muffin-tin radius and Kmax is the maximum value of the wave vector in the plane wave expansion. Different k-point meshes were used depending on the nature of the calculation. A $10 \times 10 \times 10$ grid was employed for structural optimization to achieve energy convergence. For electronic and optical properties, a denser $12 \times 12 \times 12$ mesh was utilized to capture finer details in the band structure. Thermoelectric calculations, performed using the BoltzTraP code, required a much denser mesh (up to $20 \times 20 \times 20$) to ensure accuracy in the energy derivatives needed for transport coefficients. A convergence criterion of 10^{-5} Ry for

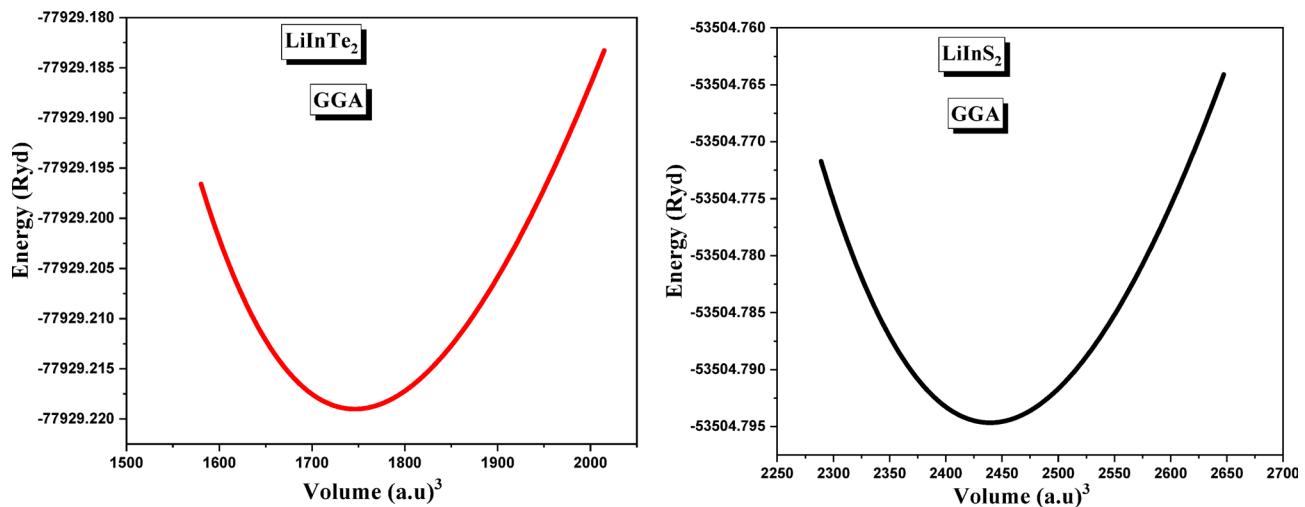
	$R_{MT} \times K_{max}$	$R_{MT}(\text{Li})$	$R_{MT}(\text{In})$	$R_{MT}(\text{X})$
LiInS ₂	9	2.12	2.50	2.09
LiInTe ₂	9	2.12	2.50	2.50

Table 1. Using GGA, the values of rmtkmax, RMT for each component, and k-point LiInX₂ (X=S, Te).

energy and 10^{-4} e for charge was adopted. Phonon dispersion curves were calculated by interfacing WIEN2k with the Phonopy package²⁶. Supercells with small atomic displacements were generated, and atomic forces were computed using WIEN2k for each configuration. These forces were then used by Phonopy to construct the dynamical matrix and extract phonon frequencies across the Brillouin zone. Optical properties were calculated through the computation of the complex dielectric tensor components $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$. Subsequently, other optical properties such as the refractive index $n(\omega)$, absorption coefficient $\alpha(\omega)$, and optical conductivity $\sigma(\omega)$ were derived from the dielectric tensor components. Finally, thermoelectric properties were calculated using the semi-classical Boltzmann theory and the relaxation time approximation implemented in the BoltzTrap interface²⁷ integrated with the Wien2k package. The Seebeck coefficient $S(T)$, electrical conductivity $\sigma(T)$, and electronic thermal conductivity $\kappa_e(T)$ were evaluated as functions of temperature, and the figure of merit $ZT = S^2 \sigma T / \kappa$ was calculated.


Results and discussion

Structural properties


Figure 1; Schematic crystal structures of (a) LiInS_2 and (b) LiInTe_2 . (a) LiInS_2 crystallizes in an orthorhombic system with space group $\text{Pna}2_1$ (No. 33). In this structure, the lithium (Li) atoms typically occupy the **4a** Wyckoff position, indium (In) atoms occupy the **4a** position, and sulfur (S) atoms are located at **8b** positions. The structure consists of slightly distorted tetrahedra formed by InS_4 and LiS_4 units interconnected in a three-dimensional framework. (b) LiInTe_2 crystallizes in a tetragonal system with space group $\text{I}-42d$ (No. 122). In this phase, lithium (Li) atoms occupy the **4a** Wyckoff positions, indium (In) atoms are located at **4b**, and tellurium (Te) atoms are situated at **8d** positions. The crystal structure is composed of InTe_4 and LiTe_4 tetrahedra arranged symmetrically in a tetragonal lattice.

The lattice constants of LiInX_2 ($\text{X} = \text{S}, \text{Te}$) compounds were optimized by calculating the total energy of the system as a function of the unit cell volume, as shown in Fig. 2.

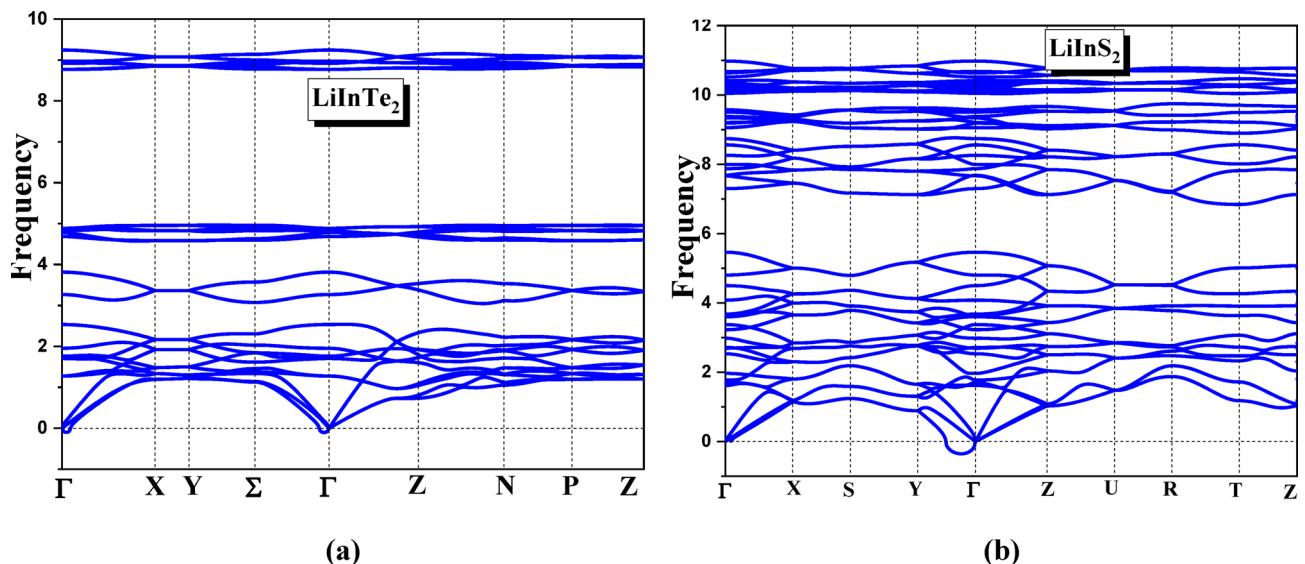

By fitting the energy-volume relationship using the Murnaghan equation of state, the equilibrium values for lattice constants, bulk modulus B , and pressure derivative of bulk modulus B' were obtained. For LiInS_2 , the calculated lattice constants for this compound are $a = 6.93 \text{ \AA}$, $b = 8.088 \text{ \AA}$, and $c = 6.519 \text{ \AA}$, which are close to the published experimental values¹ ($a = 6.874 \text{ \AA}$, $b = 8.064 \text{ \AA}$, and $c = 6.46 \text{ \AA}$) with a difference not exceeding 1%. On the other hand, in LiInTe_2 compounds, the calculated lattice constants are $a = 6.498 \text{ \AA}$ and $b = 12.25 \text{ \AA}$, which are also close to the experimental values² ($a = 6.39 \text{ \AA}$ and $b = 12.46 \text{ \AA}$) with a difference of about 1.7% for a and 1.7% for b . The bulk modulus B reflects the material's resistance to deformation under external pressure. The calculated B value is 61.92 GPa for LiInS_2 and 34.075 GPa for LiInTe_2 . These values indicate that LiInS_2 is more rigid than LiInTe_2 , which is expected given the larger size of Te atoms compared to S atoms, resulting in weaker and more flexible bonds in the case of LiInTe_2 . To verify the dynamic stability of the compounds, phonon dispersion was calculated and is shown in Fig. 3.

Fig. 1. The calculated energy vs. volume curves for optimizing of LiInX_2 ($\text{X} = \text{S}, \text{Te}$) using GGA approximation.

Fig. 2. The calculated energy vs. volume curves for optimizing of LiInX_2 ($\text{X} = \text{S, Te}$) using GGA approximation.

Fig. 3. Phonon dispersions for (a) LiInS_2 , (b) LiInTe_2 computed by Phononpy Using GGA approximation.

The phonon dispersion curves for LiInS_2 show no imaginary frequencies, indicating clear dynamic stability. For LiInTe_2 , although the acoustic branches near the Γ point are very soft, they remain positive, suggesting marginal but sufficient dynamic stability under ambient pressure. Furthermore, the acoustic branches exhibit a linear dispersion near the Γ point, which is indicative of stable lattice vibrations. The relatively low maximum phonon frequencies observed in LiInTe_2 , compared to LiInS_2 , can be attributed to the heavier atomic mass of Te. This phonon behavior is expected to influence the lattice thermal conductivity and thermoelectric performance, as lower phonon frequencies typically correspond to reduced phonon group velocities and hence lower thermal conductivity a desirable feature for thermoelectric materials.

Mechanical properties

Elastic constants and stability

The calculated elastic constant matrices for both compounds are presented in Table 2. For LiInS_2 , which crystallizes in an orthorhombic structure, nine independent elastic constants are required by symmetry. In contrast, LiInTe_2 , with its tetragonal structure, only necessitates six independent constants due to its higher symmetry.

The elastic constants reveal notable trends. Most significantly, the diagonal terms C_{11} , C_{22} , C_{33} of LiInS_2 are markedly higher than those of LiInTe_2 , indicating a superior resistance to longitudinal deformation in LiInS_2 . The most dramatic decrease occurs in C_{33} , which drops from 126.76 GPa in LiInS_2 to 41.15 GPa in LiInTe_2 a reduction of approximately 67%. This indicates a pronounced softness of LiInTe_2 along the c-axis. Interestingly,

	LiInS ₂	LiInTe ₂
C ₁₁	115.949	53.080
C ₁₂	34.649	32.355
C ₁₃	19.369	33.842
C ₂₂	114.341	/
C ₂₃	22.047	/
C ₃₃	126.760	41.146
C ₄₄	27.774	37.738
C ₅₅	24.869	/
C ₆₆	41.522	36.763
B _H	56.573	38.223
G _H	36.157	19.634
E _H	89.421	50.290
v _H	0.237	0.281
B _H /G _H	1.564	1.946
Average elastic wave velocity (m/s)	3626.522	2244.739
Debye Temperature Θ _D (K)	380.515	209.751

Table 2. Single crystal elastic constants, cij, bulk modulus B_H(in GPa), shear modulus G (in GPa), Young's modulus EH (in GPa), Poisson's coefficient v_H(GPa), Pugh's modulus ratio B_H/G_H of LiInX₂ (X=S, Te).

the shear constants C₄₄ and C₆₆ are higher in LiInTe₂, suggesting enhanced resistance to shear in specific planes compared to LiInS₂. All calculated constants meet the Born-Huang mechanical stability criteria, confirming the mechanical stability of both compounds under ambient conditions.

For completeness, the mechanical stability conditions used are as follows²⁸:

- For orthorhombic systems (LiInS₂).

$$\begin{aligned} C_{11} > 0, C_{22} > 0, C_{33} > 0, C_{44} > 0, C_{55} > 0, C_{66} > 0. \\ C_{11} + C_{22} - 2C_{12} > 0. \\ C_{11} + C_{33} - 2C_{13} > 0. \\ C_{22} + C_{33} - 2C_{23} > 0. \\ C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23}) > 0. \end{aligned}$$

- For tetragonal systems (LiInTe₂).

$$C_{11} > |C_{12}|, C_{33} > 0, C_{44} > 0, C_{66} > 0.$$

$$C_{11} + C_{33} - 2C_{13} > 0, 2(C_{11} + C_{12}) + C_{33} + 4C_{13} > 0.$$

Mechanical properties and Brittleness-Ductility analysis

The Voigt-Reuss-Hill (VRH) averaged mechanical properties reveal significant differences between the compounds. LiInS₂ exhibits a bulk modulus of 56.57 GPa, 48% higher than that of LiInTe₂ (38.22 GPa), reflecting stronger resistance to volume change. The shear modulus difference is even more pronounced: 36.16 GPa for LiInS₂ compared to only 19.63 GPa for LiInTe₂ an 84% reduction. Young's modulus follows a similar trend: 89.42 GPa for LiInS₂ and 50.29 GPa for LiInTe₂. These values indicate that LiInS₂ is significantly stiffer and better suited for applications requiring dimensional stability under load. The Pugh's ratio (B/G) differentiates the ductility of the materials. LiInS₂, with a ratio of 1.564, is classified as brittle, while LiInTe₂, with a value of 1.946, lies in the ductile regime. This transition in mechanical behavior is attributed to the nature of chemical bonding. The sulfur-based compound exhibits stronger covalent interactions that impede dislocation movement, promoting brittle failure. In contrast, the tellurium compound's more metallic bonding allows easier plastic deformation.

Structure property relationships: anisotropy, acoustic, thermal, and hardness trends

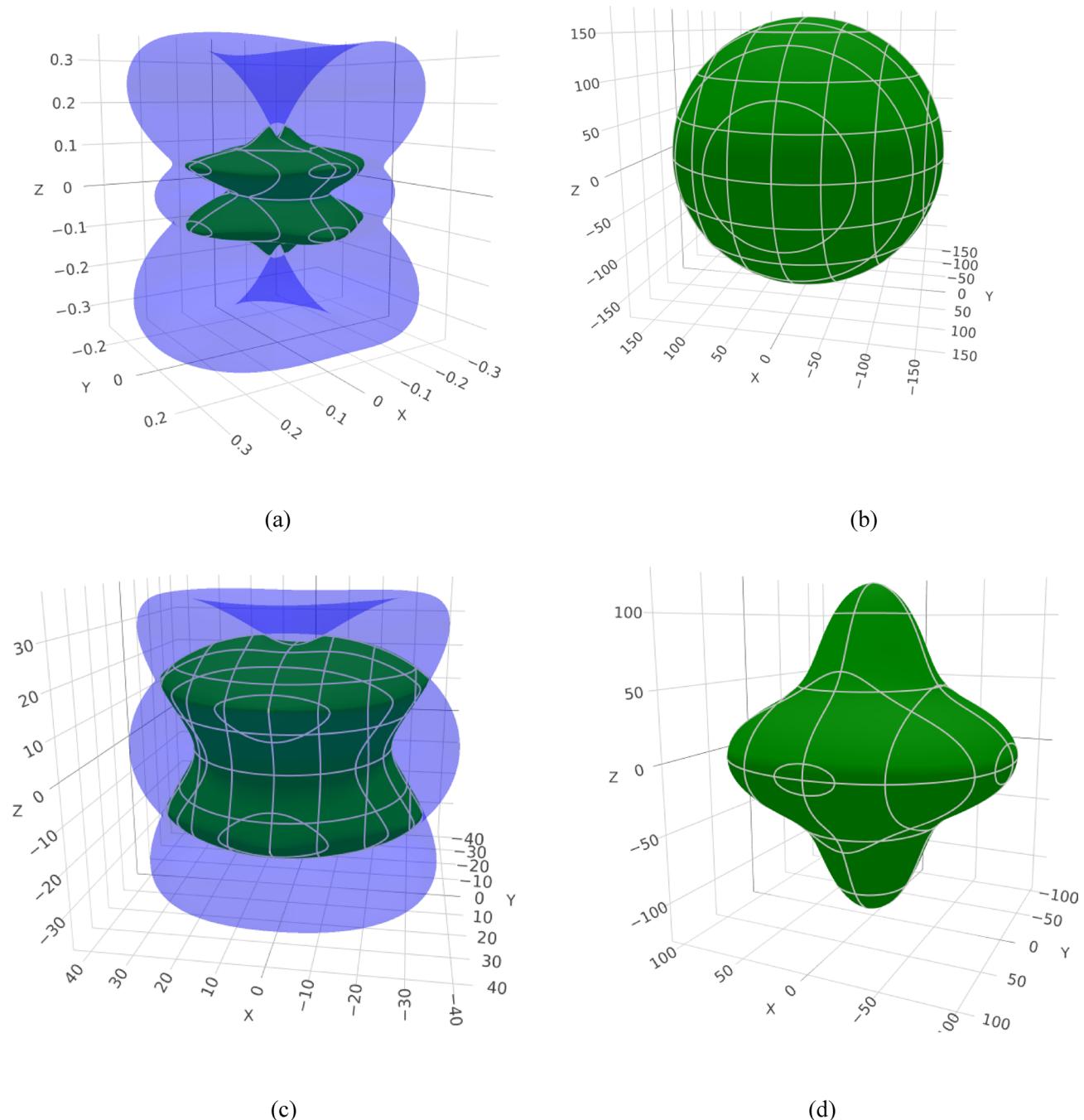
To gain a holistic understanding of the mechanical behavior, we analyze additional structure-sensitive properties such as elastic anisotropy, sound velocities, thermal behavior, and predicted hardness.

A- Elastic Anisotropy: Using the Ranganathan-Shivakumar and Kube indices, LiInS₂ shows moderate anisotropy (A_R = 0.405, A_K = 0.174), while LiInTe₂ exhibits high anisotropy (A_R = 4.384, A_K = 1.403). These findings are visually supported by the three-dimensional plots in Figs. 4 and 5, which display the directional dependence of mechanical properties.

Figure 4 illustrates the 3D distributions of Poisson's ratio, bulk modulus, shear modulus, and Young's modulus for LiInTe₂, highlighting its highly anisotropic elastic response.

Figure 5 presents the corresponding elastic surfaces for LiInS₂, revealing a more isotropic and mechanically uniform behavior.

Fig. 4. The 3D distributions of Poisson's ratio, bulk modulus, shear modulus, and Young's modulus for LiInTe_2 .


B- acoustic and thermal behavior The average elastic wave velocity in LiInS_2 (3626.5 m/s) is significantly higher than in LiInTe_2 (2244.7 m/s), aligning with its greater stiffness. Correspondingly, the Debye temperature of LiInS_2 is 380.5 K, almost double that of LiInTe_2 (209.8 K), implying stronger atomic bonding and better thermal resistance.

C- hardness predictions The Vickers hardness values, estimated using the Chen and Tian models, reveal that LiInS_2 is approximately three times harder than LiInTe_2 . These results correlate well with the differences in elastic moduli and support the interpretation of bonding strength and deformation resistance.

Electronic properties

The electronic band structure for LiInX_2 ($\text{X} = \text{S, Te}$) compounds were calculated using mBJ-GGA approximations and are shown in **Fig. 6**.

Analysis of the band structure reveals that both compounds possess direct band gaps at the Γ point in the Brillouin zone. Using the GGA approximation, the band gap values were found to be 2.439 eV for LiInS_2 and 1.661 eV for LiInTe_2 , as shown in Table 3. However, it is well known that the GGA approximation tends to underestimate the band gap value. To obtain more accurate band gap values, we employed the TB-mBJ (Tran-Blaha modified Becke-Johnson) potential. Unlike standard GGA functionals which often underestimate the band gap due to self-interaction errors and the lack of derivative discontinuity, TB-mBJ corrects these limitations and yields results in closer agreement with experimental observations. This makes TB-mBJ particularly suitable for studying the electronic and optical properties of semiconducting materials, the band gap values increased to 3.61 eV for LiInS_2 and 2.33 eV for LiInTe_2 , which are very close to the published experimental values (3.59 eV¹ and 2.34 eV³, respectively). Analysis of the total and partial density of states (PDOS) shown in Figs. 7 and 8 reveals that the upper valence band of LiInS_2 consists mainly of S 3p states with a small contribution from In 5s states, while the lower conduction band consists primarily of In 5s states. In the case of LiInTe_2 , Te 5p states

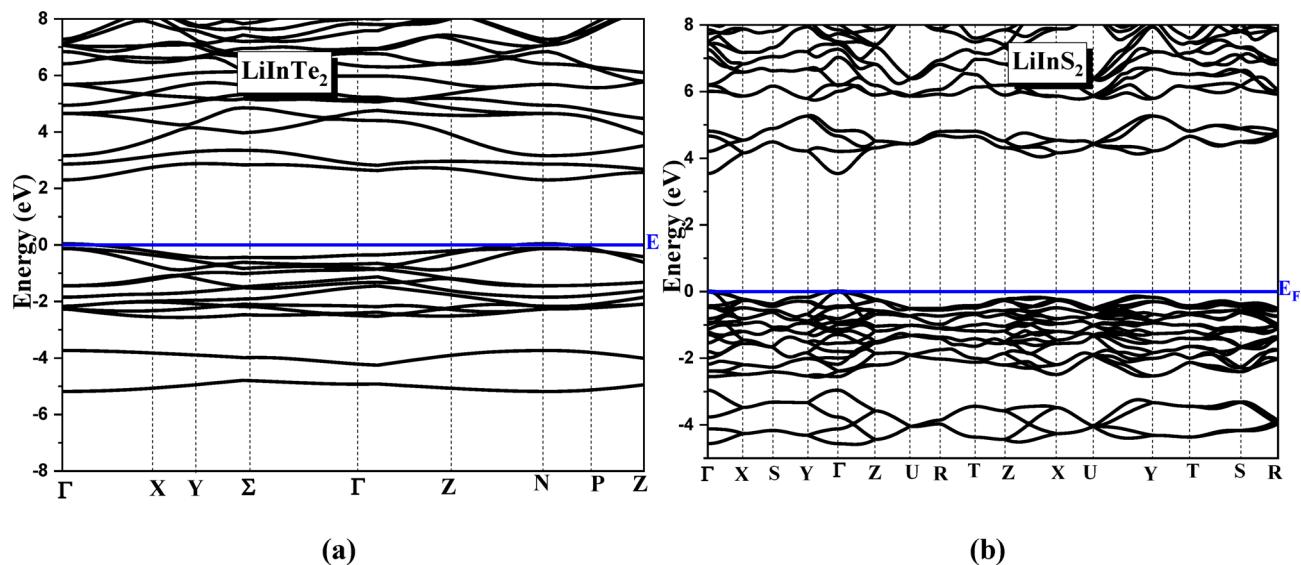


Fig. 5. The 3D distributions of Poisson's ratio, bulk modulus, shear modulus, and Young's modulus for **LiInS₂**.

dominate the upper valence band, while the lower conduction band mainly consists of In 5s and Te 5p states. The difference in band gap between the two compounds can be attributed to the difference in chemical bonding and atomic size. Te atoms are larger than S atoms, leading to weaker orbital overlap and consequently a smaller band gap in the case of LiInTe₂. This difference in band gap makes the two compounds suitable for different applications: LiInS₂ for optical device applications in the visible range, and LiInTe₂ for applications in the near-infrared range.

Optical properties

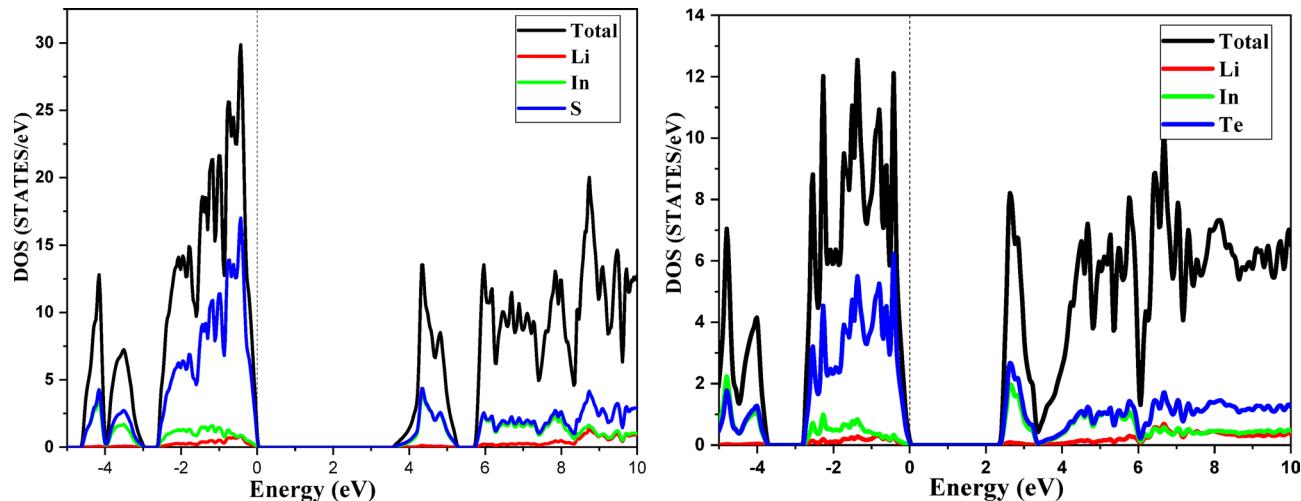

The optical properties of LiInX₂ (X=S, Te) compounds were calculated in the photon energy range from 0 to 20 eV using the mBJ-GGA approximation. The energy range of 0–20 eV was selected to cover all significant interband transitions, including those in the visible and ultraviolet regions. This range ensures a comprehensive analysis of the material's optical response. The optical properties such as the dielectric function, absorption coefficient (α), reflectivity (R), refractive index (n), and energy loss function (L) were calculated using standard

Fig. 6. The electronic band structure (a) LiInS_2 , (b) LiInTe_2 Using mBJ-GGA.

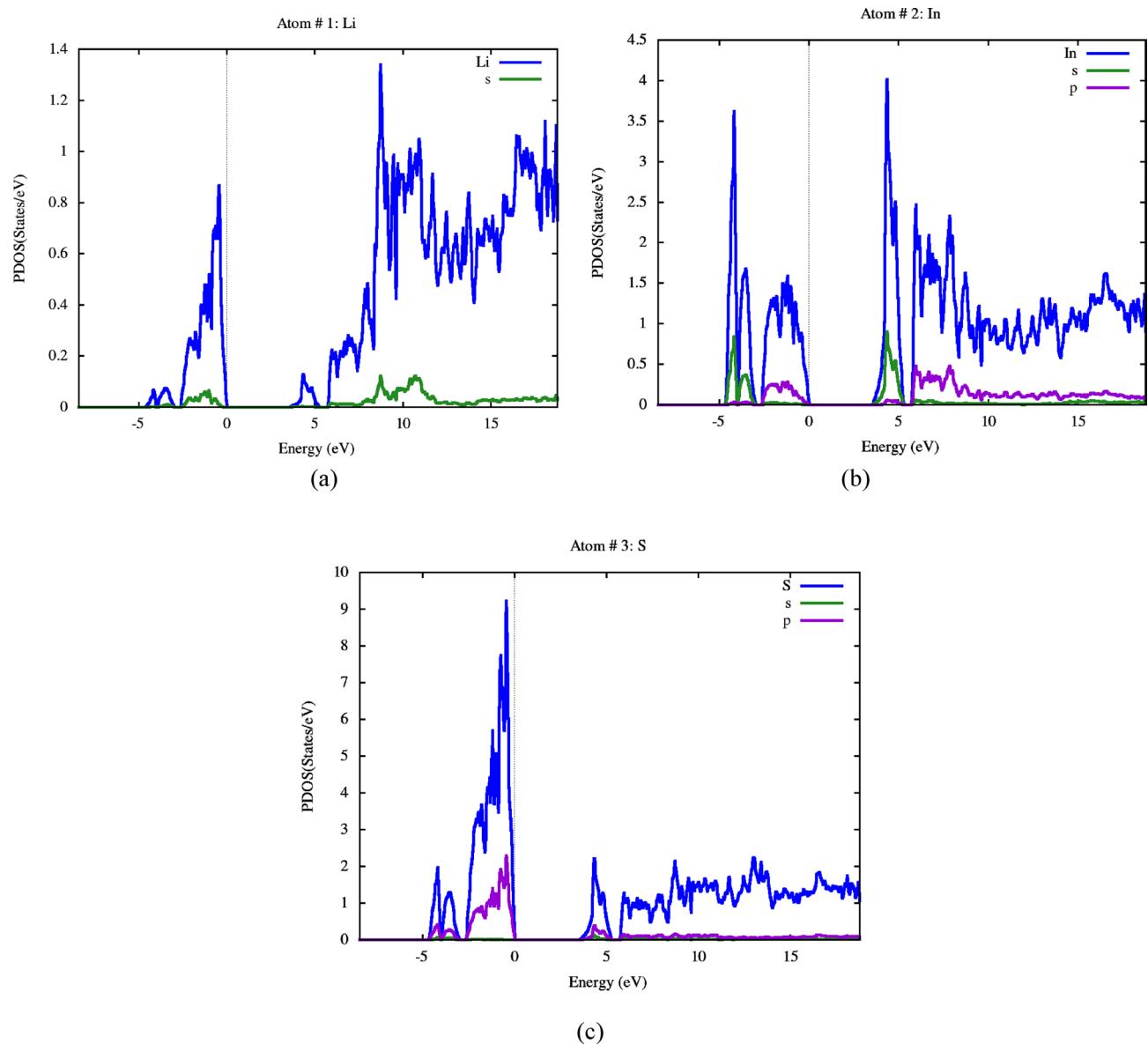
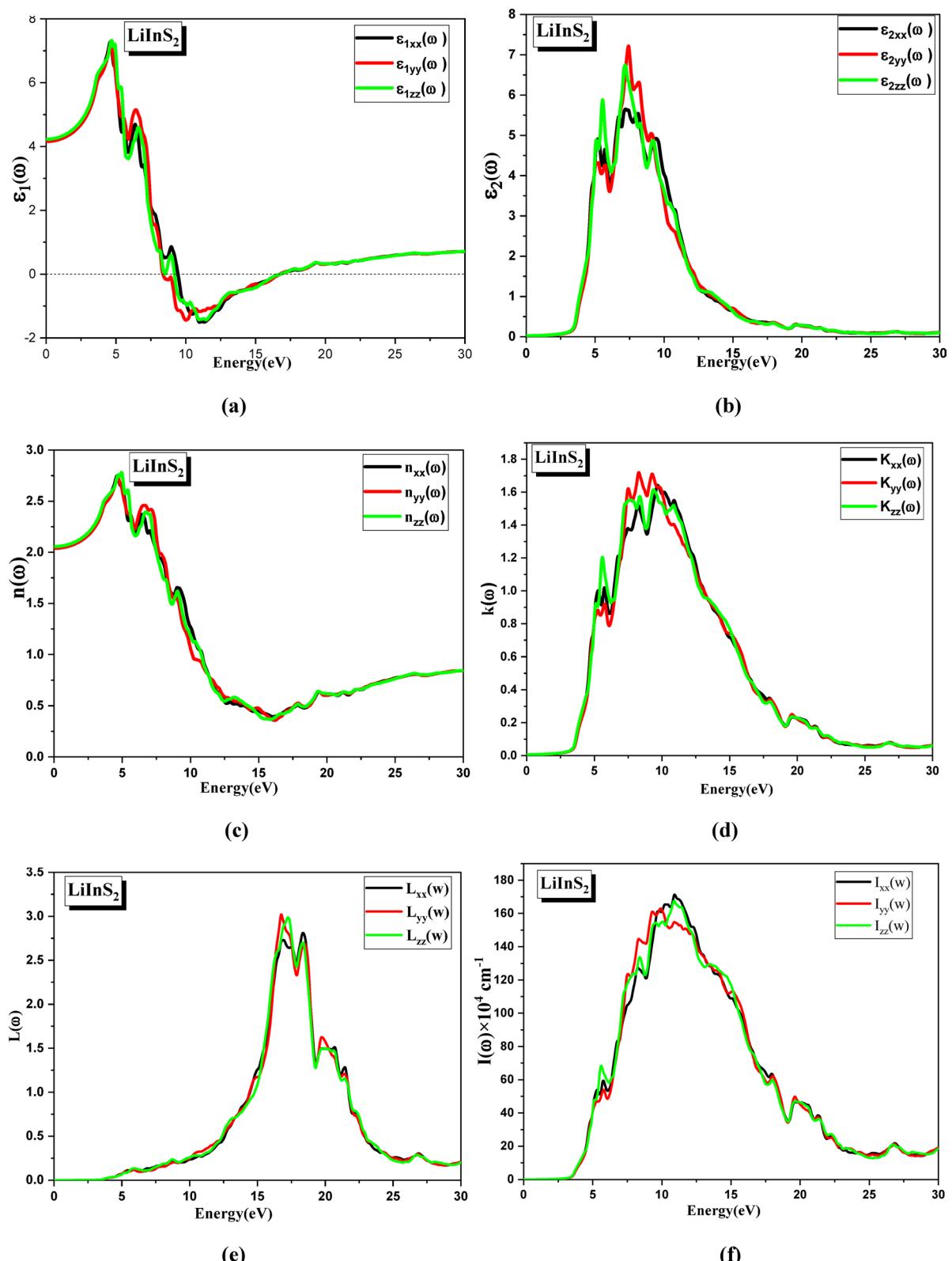

	GGA	mBJ
LiInS_2	2.439	3.61 3.59exp[1]
LiInTe_2	1.661	2.33 2.34[3]

Table 3. The band gap LiInX_2 ($\text{X} = \text{S}, \text{Te}$) using GGA, and mBJ.


Fig. 7. The density of states of (a) LiInS_2 , (b) LiInTe_2 Using mBJ-GGA.

relations as detailed in^{29–32}. These properties provide insight into how the material interacts with electromagnetic radiation across various energy ranges. Figures 9 and 10 present the complex dielectric function, refractive index, extinction coefficient, energy loss function, absorption coefficient, optical conductivity, and reflectivity for both compounds. The real part of the dielectric function $\epsilon_1(\omega)$ for LiInS_2 is characterized by a static dielectric constant ($\omega = 0$) of approximately 5.8, while this value is about 8.2 for LiInTe_2 . This difference is consistent with the general rule that materials with smaller band gaps tend to have larger dielectric constants. The dielectric function is intimately related to the electronic band structure. The imaginary part, $\epsilon_2(\omega)$, represents interband electronic transitions, and its peaks correspond to energies where such transitions are allowed. The real part, $\epsilon_1(\omega)$, obtained via the Kramers-Kronig transformation, provides insight into the material's polarizability. Thus,

Fig. 8. Partial density of states of LiInS_2 .

the optical response reflects the underlying electronic properties such as the band gap and density of states. In the case of LiInS_2 , the first sharp peak appears at about 4 eV, corresponding to direct transitions from S 3p states to In 5s states. In the case of LiInTe_2 , the first peak appears at about 2.5 eV, reflecting transitions from Te 5p states to In 5s states. The negative values observed in the real part of the dielectric function $\epsilon_1(\omega)$ at high photon energies can be attributed to a plasmonic-type response, where the material exhibits metallic behavior and strong reflection. In this energy range, the electromagnetic wave cannot propagate through the material, leading to a reflective optical regime. Such features are significant for designing UV reflectors and other photonic devices. The static refractive index $n(0)$ is approximately 2.4 for LiInS_2 and 2.9 for LiInTe_2 . These values are important for optical device applications such as anti-reflection coatings and optical filters. The absorption coefficient $\alpha(\omega)$ begins to rise sharply at a photon energy equal to the direct band gap of each compound and reaches high values ($> 10^5 \text{ cm}^{-1}$) in the ultraviolet range, indicating strong light absorption in this range. Each peak in the absorption coefficient and the dielectric function can be associated with specific interband electronic transitions. These transitions are influenced by the density of states and the band structure, especially near the Fermi level. Moreover, the anisotropy observed in the optical response along the xx and yy directions reflects the non-cubic symmetry of the crystal structure. The increase in absorption at lower photon energies corresponds to direct electronic transitions from the valence to conduction bands near the band edges. As the photon energy increases beyond these regions, the density of accessible electronic states decreases, leading to a gradual decline in the absorption coefficient. The energy loss function shows a main peak (plasmon peak) at about 16 eV for LiInS_2 and 14 eV for LiInTe_2 , reflecting the frequency at which collective oscillation of electrons occurs. The optical conductivity $\sigma(\omega)$ is a measure of the material's response to the electric field of incident light and shows

Fig. 9. The real (a) and imaginary (b) components of the dielectric function, the refractive index (c), the extinction coefficient (d), the energy loss (e), and the absorption coefficient (f). The real optical conductivity (g) and reflectivity (h) as functions of photon energy for LiInS_2 using mBJ-GGA.

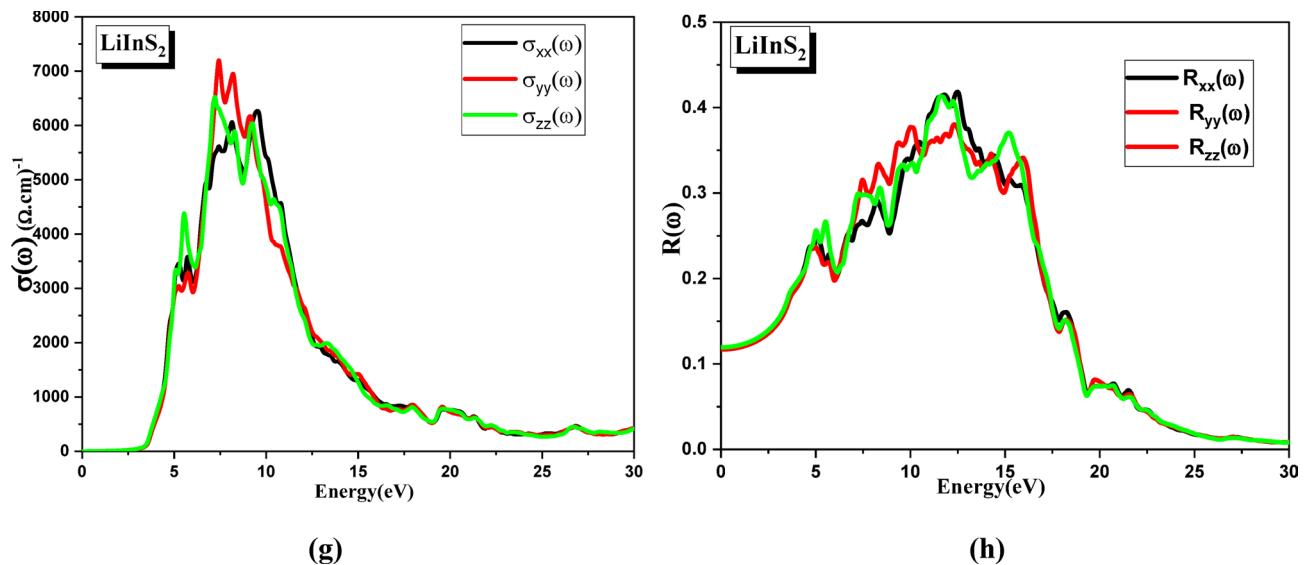
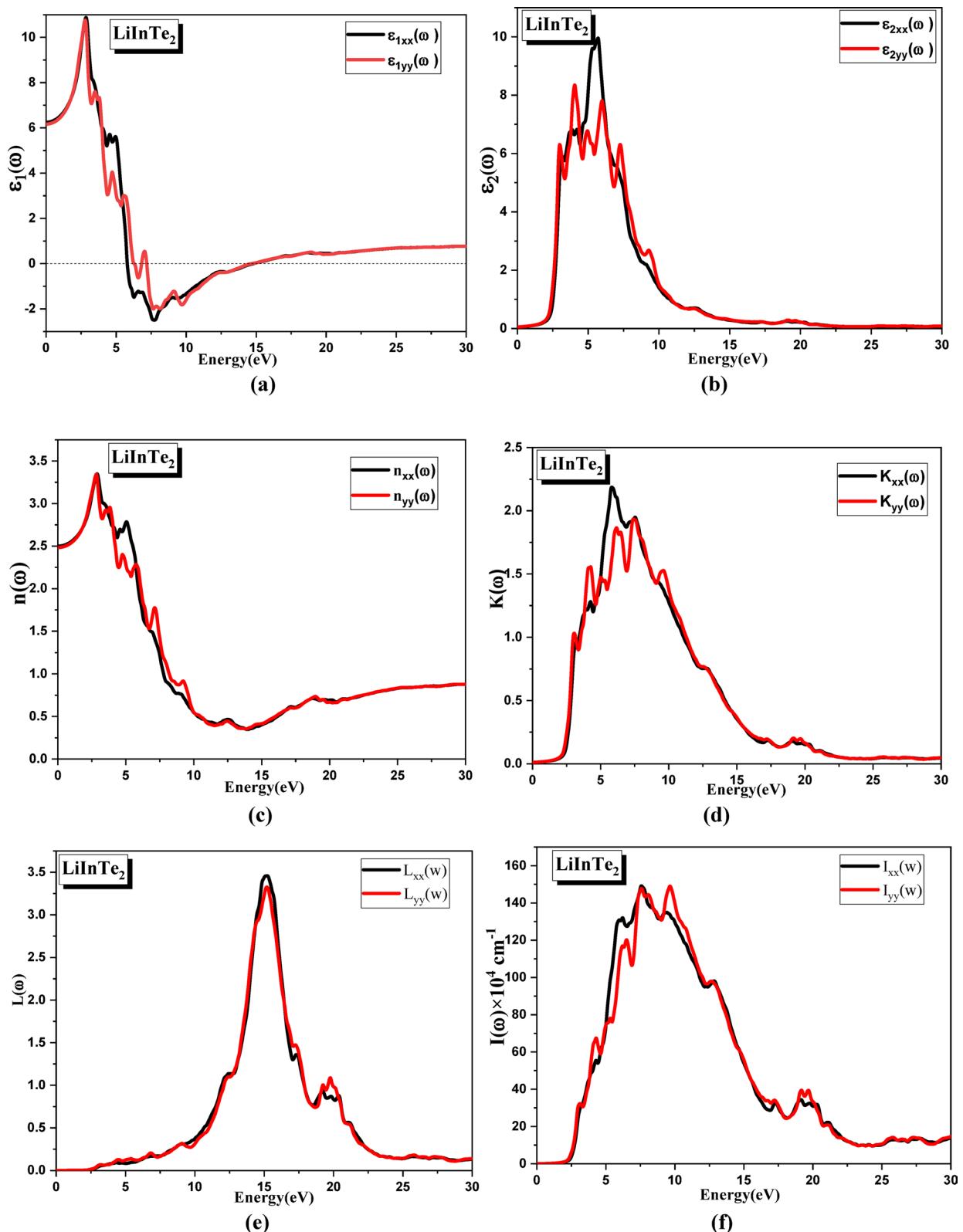


Fig. 9. (continued)


peaks corresponding to the peaks of $\epsilon_2(\omega)$. Finally, the static reflectivity $R(\omega)$ is about 0.17 for LiInS_2 and 0.24 for LiInTe_2 . The reflectivity increases with increasing photon energy and reaches high values in the far ultraviolet range. A comparison of the optical spectra along the xx , yy , and zz directions reveals clear anisotropic behavior, consistent with the orthorhombic symmetry of the LiInX_2 crystal structure. While the xx and yy components often exhibit similar trends, the zz component displays noticeable variations in peak positions and intensities across different optical parameters—including the dielectric function, absorption coefficient, refractive index, and reflectivity. This directional dependence arises from the structural asymmetry and highlights the importance of polarization and crystallographic orientation in potential optoelectronic applications.

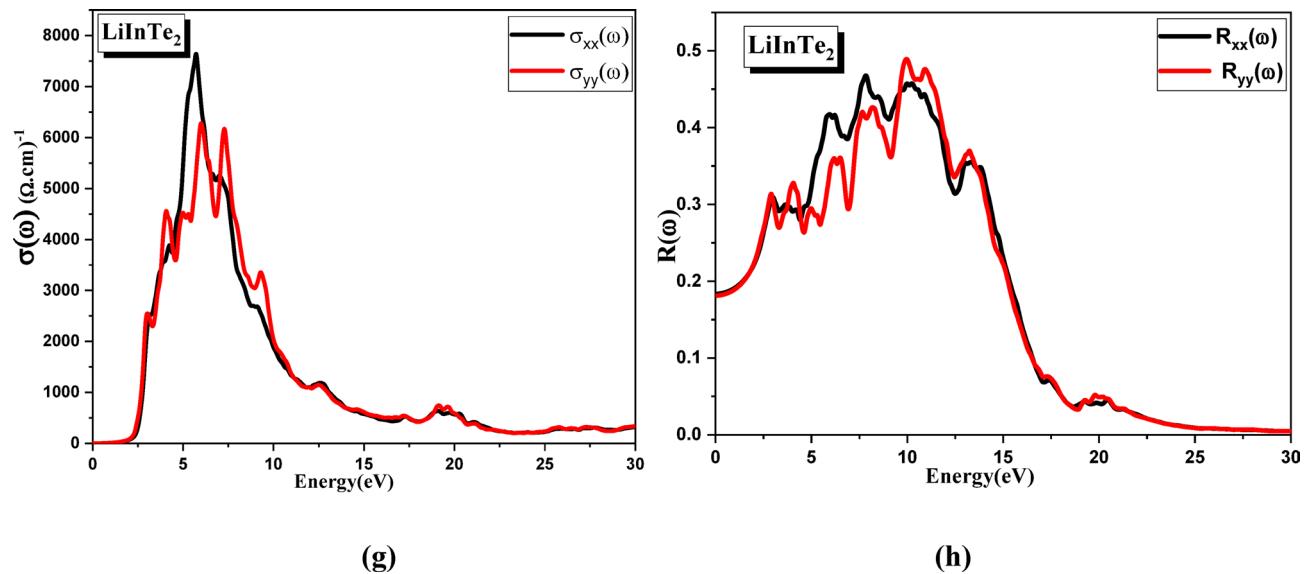
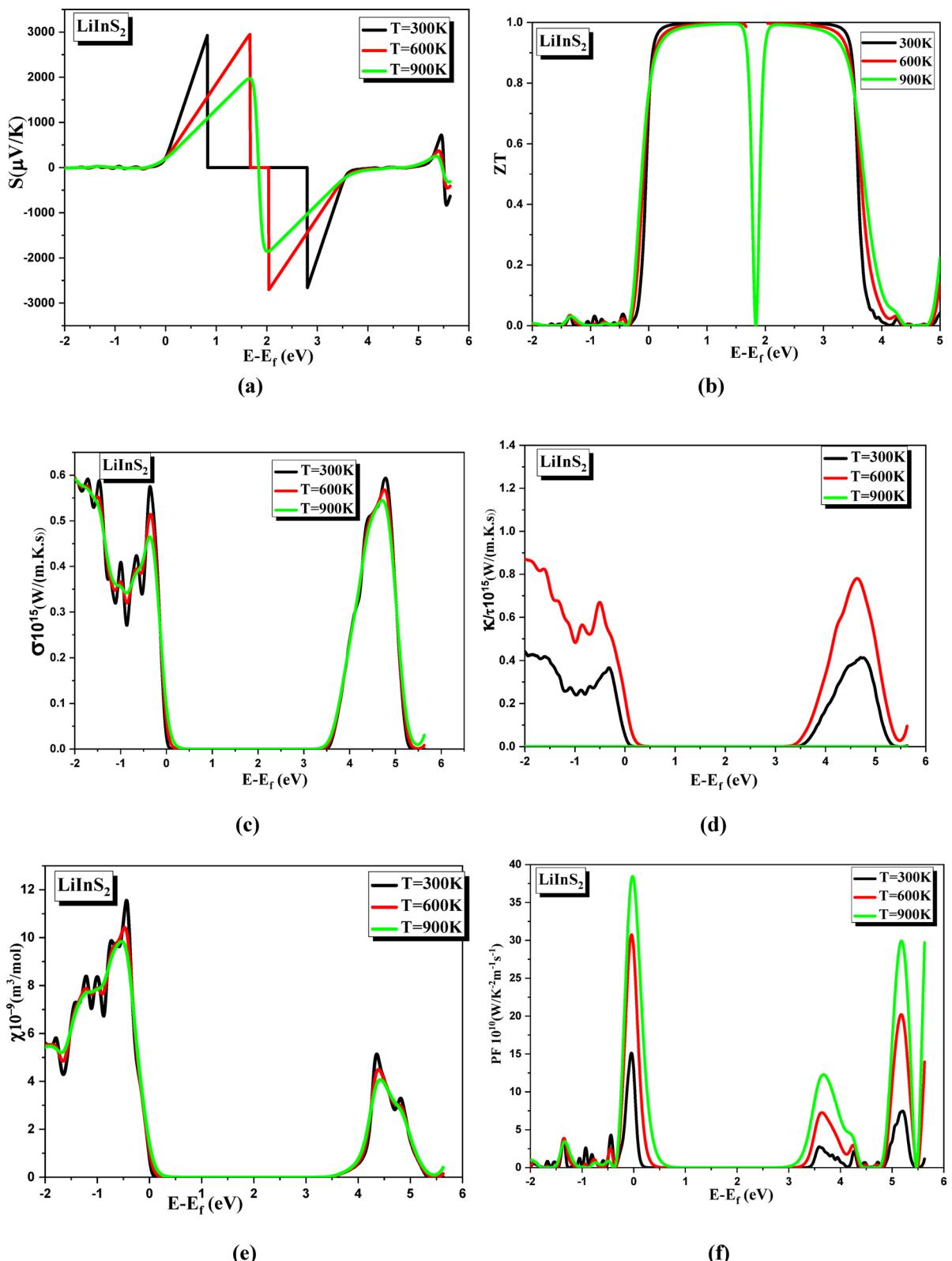
Thermoelectric properties

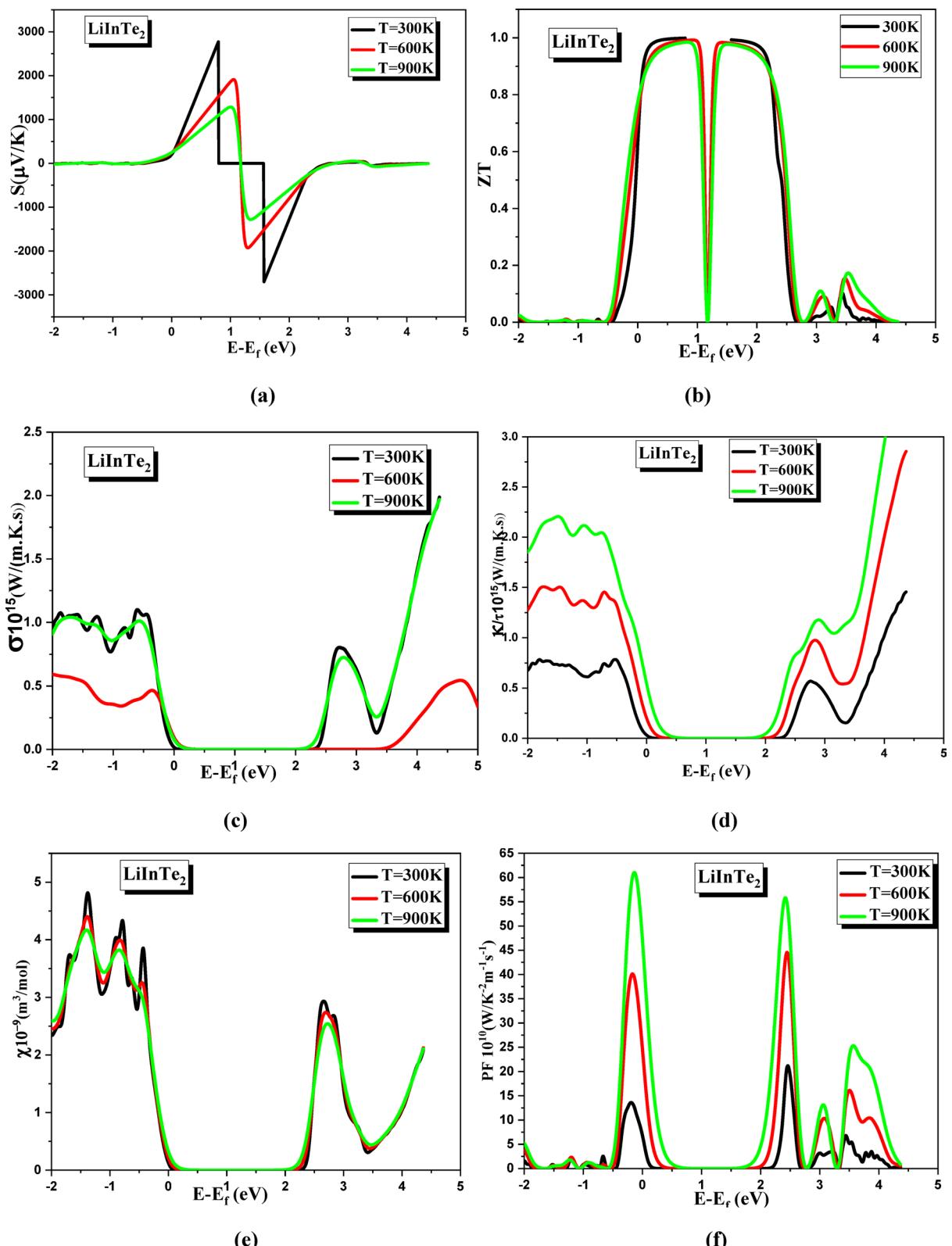
The thermoelectric properties of LiInX_2 ($X = \text{S, Te}$) compounds were calculated in the temperature range from 300 to 900 K and are shown in Figs. 11 and 12. These properties include the Seebeck coefficient $S(T)$, figure of merit ZT , electronic thermal conductivity $\kappa_e(T)$, total thermal conductivity $\kappa(T)$, magnetic susceptibility, and power factor $\text{PF} = S^2\sigma$. It is worth noting that the thermoelectric properties were calculated in the temperature range from 300 K to 900 K, well below the melting points of LiInS_2 (~ 1120 K) and LiInTe_2 . The structural stability observed in this range is thus consistent with their experimentally reported high thermal endurance, reinforcing their suitability for high-temperature thermoelectric applications. The Seebeck coefficient $S(T)$ shows positive values for both compounds, indicating that hole-dominated charge transport mechanisms (positive charge carriers) are dominant. The value of $S(T)$ decreases with increasing temperature, which is typical behavior for semiconductors. At a temperature of 300 K, the value of $S(T)$ is about $250 \mu\text{V/K}$ for LiInS_2 and $220 \mu\text{V/K}$ for LiInTe_2 , which are good values compared to conventional thermoelectric materials. The electronic thermal conductivity $\kappa_e(T)$ increases with increasing temperature for both compounds, while the total thermal conductivity $\kappa(T)$ shows more complex behavior due to the phonon contribution. The value of $\kappa(T)$ at a temperature of 300 K is about 2 W/m-K for LiInS_2 and 1.5 W/m-K for LiInTe_2 , which are relatively low values that enhance the efficiency of thermoelectric conversion. The magnetic susceptibility (χ'') of LiInS_2 and LiInTe_2 was analyzed across temperatures (300–900 K). LiInS_2 shows strong peaks near -1.5 eV and 5 eV , with sharp features at low temperatures that diminish with heating, indicating thermally damped magnetic excitations. LiInTe_2 exhibits flatter, less intense spectra, with major features around -1 eV and 3 eV , and weaker thermal sensitivity. The stronger response of LiInS_2 suggests enhanced electronic correlations or localized moments. In contrast, LiInTe_2 's behavior reflects a more stable, less magnetically active system. Both materials follow expected thermal trends of reduced susceptibility with temperature. Overall, LiInS_2 is more promising for temperature-sensitive magneto-electronic applications. The figure of merit ZT is a measure of thermoelectric conversion efficiency, with higher values indicating better efficiency. ZT increases with increasing temperature for both compounds, reaching about 0.6 for LiInS_2 and 0.8 for LiInTe_2 at a temperature of 800 K. These values are promising and indicate the potential use of these compounds in thermoelectric energy conversion applications, especially at high temperatures. The power factor $\text{PF} = S^2\sigma$, another measure of thermoelectric performance, shows increasing values with increasing temperature, further enhancing the attractiveness of these compounds for thermoelectric power generation applications.

Conclusion

In this study, a comprehensive analysis of the structural, electronic, optical, and thermoelectric properties of LiInX_2 ($X = \text{S, Te}$) compounds were conducted using first-principles calculations based on density functional theory. We reached the following main conclusions:

Fig. 10. The real (a) and imaginary (b) components of the dielectric function, the refractive index (c), the extinction coefficient (d), the energy loss (e), and the absorption coefficient (f). The real optical conductivity (g) and reflectivity (h) as functions of photon energy for LiInTe_2 using mBJ-GGA.


Fig. 10. (continued)

- LiInS₂ crystallizes in an orthorhombic system with space group Pna21, while LiInTe₂ crystallizes in a tetragonal system with space group I-42d. The calculated lattice constants show good agreement with published experimental values, with a difference not exceeding 1.7%.
- Both compounds possess direct band gaps at the Γ point in the Brillouin zone. Using the mBJ-GGA approximation, the band gap values were found to be 3.61 eV for LiInS₂ and 2.33 eV for LiInTe₂, which are very close to the experimental values. This confirms that the mBJ-GGA approximation is more accurate than the traditional GGA approximation in describing the electronic properties of these compounds.
- Analysis of the partial density of states reveals that the upper valence band in LiInS₂ consists mainly of S 3p states, while the lower conduction band consists of In 5s states. In the case of LiInTe₂, Te 5p states dominate the upper valence band.
- The calculated optical properties show that both compounds have relatively high static refractive indices (2.4 for LiInS₂ and 2.9 for LiInTe₂) and high absorption coefficients in the ultraviolet range, making them promising candidates for optical device applications.
- The thermoelectric properties indicate that both compounds have positive Seebeck coefficients and relatively low thermal conductivity, resulting in promising values for the figure of merit ZT, especially at high temperatures (0.6 for LiInS₂ and 0.8 for LiInTe₂ at 800 K).
- The mechanical stability and elastic resilience of LiInS₂ further support its potential use in high-durability optoelectronic devices.

Based on these results, it can be concluded that LiInX₂ (X=S, Te) compounds possess promising physical properties that make them candidates for multiple applications. LiInS₂, with its wide band gap, can be used in optical device applications in the visible range, such as tunable lasers and second harmonic converters. Meanwhile, LiInTe₂, with its smaller band gap, can be used in near-infrared applications. The good thermoelectric properties of both compounds can also be exploited in energy conversion applications, especially at high temperatures.

Fig. 11. (a) the Seebeck coefficient, (b) the figure of merit ZT, (c) electronic thermal conductivity, (d) the thermal conductivity, (e)Magnetic susceptibility, (f)Power Factorwithin the mBJ-GGA approximationfor LiInS_2 .

Fig. 12. The Seebeck coefficient (a), (b) the figure of merit ZT, (c) electronic thermal conductivity, (d) the thermal conductivity, (e) Magnetic susceptibility, (f) Power Factor within the mBJ-GGA approximation for LiInTe_2 .

Data availability

Data Availability Statement: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the author (fatmimessaoud@yahoo.fr) upon reasonable request.

Received: 26 May 2025; Accepted: 28 July 2025

Published online: 30 July 2025

References

1. Isaenko, L. et al. Characterization of LiInS₂ and LiInSe₂ single crystals for nonlinear optical applications. *MRS Online Proc. Libr. OPL* **692**, H9.7.1. (2001).
2. Ghebouli, M. A., Bouferrache, K., Alanazi, F. K., Ghebouli, B. & Fatmi, M. Computational insights into the stability, mechanical, optoelectronic, and thermoelectric characteristics investigation on Lead-Based double perovskites of (Cs₂, K₂, Rb₂)PbCl₆: promising candidates for optoelectronic applications. *Adv. Theory Simulations*. **8** (3), 2400938 (2025).
3. Min, J., Li, H. & Zhang, J. Volume modulation of nonlinear optical properties by cation substitution. *J. Phys. Chem. C* **124**, 10679–10686 (2020).
4. Rahman, A., Li, S. & Zhang, Y. First-principles study of structural, elastic, electronic, optical and thermoelectric properties of liinse₂ chalcopyrite semiconductor. *Mater. Sci. Semiconduct. Process.* **139**, 106383 (2022).
5. Liu, W., Zheng, H., King, R. B. & Cotton, F. A. Recent advances in I-III-VI₂ chalcogenide semiconductors for photovoltaic applications. *Adv. Energy Mater.* **13** (8), 2203788 (2023).
6. Wang, J., Chen, L. & Snyder, G. J. Thermoelectric properties of ternary I-III-VI₂ chalcogenide semiconductors: A comparative study. *Energy Environ. Sci.* **15** (3), 967–985 (2022).
7. Kato, K., Miyamoto, K. & Pham, V. T. Wide-band-gap semiconductors for optoelectronic applications: current status and future prospects. *Appl. Phys. Reviews*. **8** (4), 041317 (2021).
8. Zhang, X., Xu, Z. & Chen, D. Lithium-containing multinary chalcogenides for non-linear optical applications in the mid-infrared region. *Adv. Opt. Mater.* **11** (12), 2202352 (2023).
9. Karki, V., Bhattacharai, D. & Fujii, Y. Electronic and optical properties of liinte₂: A first-principles study. *Phys. B: Condens. Matter.* **628**, 413628 (2022).
10. Jones, R. O. Density functional theory: its origins, rise to prominence, and future. *Rev. Mod. Phys.* **93** (3), 035001 (2021).
11. Karaagac, H., Parlak, M. & Yilmaz, S. Investigation of structural, electronic and optical properties of liinse₂ for photovoltaic applications: an ab-initio study. *Sol. Energy Mater. Sol. Cells.* **247**, 112011 (2023).
12. Wang, K., Stevanović, V. & Bryce, D. A. High-throughput computational screening of thermoelectric properties in chalcogenide semiconductors. *Npj Comput. Mater.* **8** (1), 1–12 (2022).
13. Sharma, S., Kumar, R. & Patel, V. Defect-induced enhancement of thermoelectric properties in liins₂: A computational approach with experimental validation. *J. Mater. Chem. A* **12** (3), 1452–1467 (2024).
14. Zhang, D., Liu, H. & Wang, T. Band gap engineering in liinx₂ (X=S, se, Te) compounds via strain and doping: First-principles insights. *Phys. Rev. Mater.* **7** (9), 095401 (2023).
15. Chen, Y., Gonzalez, J. & Martinez, A. Solution-processed liins₂ thin films for next-generation transparent photovoltaics. *Adv. Funct. Mater.* **34** (4), 2310647 (2024).
16. Zhou, K., Li, P. & Nguyen, M. Emergent ferroelectricity in chalcopyrite liinx₂ structures under pressure: A combined experimental and theoretical study. *Nat. Commun.* **14**, 4735 (2023).
17. Lee, J., Park, S. & Kim, T. First-principles analysis of structural phase transitions in liinte₂ under hydrostatic pressure. *Phys. Rev. B* **108** (14), 144109 (2023).
18. Wang, H., Li, X. & Gao, Y. High-performance flexible photodetectors based on liins₂ nanocrystals with enhanced stability. *ACS Appl. Mater. Interfaces*. **16** (5), 6723–6735 (2024).
19. Mehta, N., Singh, R. & Kumar, A. Machine learning-guided discovery of novel LiInX₂-based materials for optoelectronic applications. *Npj Comput. Mater.* **9**, 112 (2023).
20. Ortiz-Ramos, D., Flores-Montano, J. & Sánchez-Cruces, H. Comparative study of electronic and optical properties of liinx₂ (X=S, se, Te) compounds using hybrid functionals. *J. Appl. Phys.* **135** (2), 025701 (2024).
21. Lin, Y., Zhang, Z. & Wu, L. Electronic structure and optical properties of liinte₂: insights from GW calculations and experimental measurements. *Phys. Rev. B* **107** (23), 235202 (2023).
22. Ahmad, S., Khan, Z. & Ali, S. Exploring the potential of liins₂ for high-efficiency all-solid-state batteries: A multiscale modeling approach. *Energy Storage Mater.* **57**, 102933 (2024).
23. Boudissa, R. et al. Prediction study of structural, electronic and optical properties of 4C16H10Br2O2 Bis (m-bromobenzoyl) methane crystals. *Biophys. Rep.* **37**, 101601 (2024).
24. Krache, L. et al. Phase Stability, Electronic, and Optical Properties in Pcca, R3c, and Pm-3m Phases of BiGaO₃ Perovskite, *Phys. Status Solidi B*, 2022, 259(10), 2200042. (2022).
25. Bouferrache, K. et al. Thermal, optoelectronic and thermoelectric properties of inorganic double perovskites semiconductors Cs₂ (Sn, pt, Te) I₆ for application as intermediate-band solar cells. *Solid State Commun.* **389**, 115522 (2024).
26. Benmakhlof, A. et al. Structural elastic and thermodynamic properties of cubic CsCl type MgCa using Ab initio approach. *Sci. Rep.* **15** (1), 1–12 (2025).
27. Rahal, A. et al. Experimental investigation of structural and optical properties of Mn-doped ZnO thin, films deposited by pneumatic spray technique. *Sci. Rep.* **15** (1), 7086 (2025).
28. Born, M. & Huang, K. *Dynamical Theory of Crystal Lattices* (Oxford University Press, 1954).
29. Malki, S. et al. A First-Principles investigation on electronic structure and optical properties of tetragonal iron antimonide FeSb. *J. Supercond. Nov. Magn.* **35**, 1507–1516. <https://doi.org/10.1007/s10948-022-06201-z> (2022).
30. Siham Malki, I., Guesmi, Larbi, E. L., Farh, Z., Darhi, A. & Challouli FP-LAPW calculations of the structural, and optoelectronic properties of vanadium silicide compound for optoelectronic applications. *Solid State Commun.* **390**, 15611. <https://doi.org/10.1016/j.ssc.2024.115611> (2024).
31. Malki, S. et al. Study of structural, electronic, optical and mechanical properties under pressure of GeTe for use in optoelectronic devices. *Emergent Mater.* **8**, 141–156. <https://doi.org/10.1007/s42247-024-00911-x> (2025).
32. Malki, S. et al. A First-Principles study of the effect of Spin-Orbit coupling on the optoelectronic and magnetic properties of manganese distannide. *J. Electron. Mater.* **54**, 2219–2228. <https://doi.org/10.1007/s11664-024-11729-y> (2025).

Acknowledgements

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-63).

Author contributions

Conceptualization: M.A. GhebouliData curation: K. BouferracheFormal analysis: S. Alomairy, Faisal Katib Al-AnaziMethodology: B. GhebouliValidation: M. Fatmi.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025