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1 Introduction

The domain of stochastic optimal control problems is commonly traversed through two
primary avenues: the maximum principle introduced by Pontryagin and the method of
dynamic programming. Each of these methodologies necessitates distinct mathematical
treatments. Dynamic programming, for instance, aims to derive a second-order partial
differential equation, commonly known as the Hamilton-Jacobi-Bellman (HJB) equation,
serving as a characterization of the value function.

However, a significant drawback arises when employing this approach-classical solu-
tions to the HJB equation are only guaranteed for sufficiently smooth value functions, a
condition often unmet in practical scenarios. Crandall and Lions [9] addressed this limita-
tion by introducing viscosity solutions, wherein (set-valued) sub-derivatives replace con-
ventional derivatives. This innovation empowers dynamic programming with enhanced
applicability in real-world situations.

While the maximum principle is extensively employed for solving optimal control prob-
lems in deterministic systems, translating theoretical results into practical solutions en-
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counters numerous obstacles. The inherent difficulty lies in explicitly solving the resultant
adjoint systems. Some scholars (e.g. [12, 13]) have proposed numerical methods to address
such challenges, expanding the applicability of Pontryagin’s maximum principle into fields
like mathematical finance and economics. Several attempts have been made to loosen the
constraints on coeflicients, facilitating the extension of the stochastic maximum principle
to irregular cases.

Mezerdi [7] pioneered this direction by deriving a maximum principle for a controlled
stochastic differential equation (SDE) that accounts for a non-smooth drift, leveraging
Clarke’s generalized gradients, and stable convergence of probability measures. Building
on this, Bahlali et al. [5] extended the principle to SDEs characterized by Lipschitz conti-
nuity and a non-degenerate diffusion matrix, employing Krylov’s inequality with uniform
ellipticity. In a broader context, Bahlali et al. [2] developed a stochastic maximum prin-
ciple for optimizing control over a broad category of diffusion processes that exhibit de-
generacy, assuming only Lipschitz continuity in state equation coefficient and continuous
differentiability in cost functional coefficients. Chighoub et al. [8] further expanded these
results to cases where both state equation and cost functional coefficients lack differen-
tiability.

Recent advancements include Xu and Wu’s [17] work, where they established the well-
posedness of mild solutions for a class of mean-field BSDEs within Hilbert spaces with
less restrictive conditions than Lipschitz continuity. They then demonstrated a maximum
principle for optimal control problems involving mean-field type backward stochastic par-
tial differential equations. Additionally, Orrieri [14] introduced a version of the maximum
principle for optimal control in SDEs influenced by multidimensional Brownian processes.
Dokuchaev and Zhou [10] derived conditions that are both required and sufficient for op-
timality in cases where the control domain lacks convexity.

Consider T > 0 and let (2, F, (F)o<t<7,P) be a probability space with completeness,
equipped with a filtration that satisfies the usual conditions. Given this probability space,
we introduce a one-dimensional Brownian motion W = (W})o<;<7. We make the assump-
tion that IF = (F;)o<;<r represents the P-augmentation of the natural filtration associated
with (W};)o<;<7. For our subsequent analysis, we define the following spaces for p > 1:

« 87 ([0, T1,R): the space of continuous, F-adapted stochastic processes {Y; : £ € [0, T},

such that

E[ sup |Y¢|”] < oo.
0<t<T

« M2 ([0, T],R): the space of F-predictable, R-valued processes {Z; : t € [0, T},
satisfying

T
/ E[|Z,|*1dr < 0.
0

. ]L‘Z)C (R;,R): the set of F-adapted processes taking values in R, denoted by {X; : t > 0},

such that

T
/ |X;|P dr < oo P-a.s for every T.
0
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We examine the following controlled backward stochastic differential equation (BSDE):
d}/t = f(t, Y[, Zt! Vt)dt + Z[dW[;

(1)
Yr = ¢.

Here, f is a function defined on f : [0, T] x R x R x & — R. The terminal condition ¢ isa
random variable adapted to Fr. The control variable (v;);>¢ is represented by the process
v;, considered as an [F-adapted process that takes values within a non-empty subset U
within R. The collection of all admissible controls is represented by i4,,.

Given a mapping g from R to R, we describe the cost functional associated with the
stochastic control issue as:

Jw)=E[g¥)]. )

The aim is to minimize the cost functional (2) among all admissible controls. The control
problem can now be stated as follows:

Problem (A) Given the cost functional (2) and the constraint (1), the objective is to iden-
tify an optimal control, denoted as u from the set U, that minimizes the specified cost
functional.

There exists an extensive body of literature addressing stochastic optimal control issues
related to BSDEs and Forward-BSDEs within the global Lipschitz framework. Azizi and
Khelfallah [1] were the first to investigate a stochastic control problem involving BSDEs
with local Lipschitz continuity in ¥ and global Lipschitz continuity in z under the initial
assumption. In their study, they demonstrated that the generator satisfies specific condi-
tions, which include:

« There exist three constants, My, M; >0, k € (0,1) and a non-negative function 4

defined on R,. For all y and z,

(.f (6,3, 2,v)) < Mo(1+ |y|* + |y] 12]) a.e.t [0, T],
V(t,y,z,v)| < M(1 +h(|y‘) +|2[°) a.e.t€[0,T].

Moreover, they present results under another assumption where the generator exhibits
local Lipschitz continuity in both (y, z), along with linear growth. They establish necessary
and sufficient optimality conditions for non-convex control domains, characterized by a
linear SDE with local Lipschitz continuity and a maximum condition on the Hamiltonian.

In our context, we loosen the standard Lipschitz condition on the generator of the BS-
DEs, imposing a logarithmic growth condition with respect to y and linear growth with
respect to z in the first assumption. In the second assumption, we require the generator
to satisfy the logarithmic growth condition for both y and z, and we employ the Malliavin
approach.

For ease of notation, we denote /iy = % for a given function /4 and parameter 6. The
primary challenge we face is with the coefficients in the resulting local Lipschitz linear
adjoint equation,

_dxt = ﬁ(t’ Ytyztr ut)xtdt +fl(tr Yt:Zt, ut)xtth;

3
x0 = gy(Yo), )
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which are only locally bounded. Consequently, they are locally Lipschitz on x but do not
satisfy the linear growth condition.

Given the existing results in the literature, confirmation regarding whether the adjoint
Equation (3) admits a unique solution remains elusive.

The organization of the paper is as follows: Sect. 2 introduces the foundational concepts
of our study, including the existence and uniqueness of both BSDE (1) and SDE (3), as
well as the control problem framework and preliminary lemmas. Section 3 establishes the
necessary and sufficient conditions for optimality (maximum principle). Finally, Sect. 4
relaxes the linear condition on z by extending the logarithmic growth condition to both

(9, 2), with the analysis grounded in Malliavin differentiability.

2 Foundational concepts and existence findings
In this section, we will state some basic results related to BSDEs theory and prove the exis-

tence and uniqueness results for one kind of linear SDEs with local Lipschitz coefficients.

Assumption 1
(A.1.1) f and g are continuously differentiable with respect to (y,z) and there exists a
positive constant L such that: [g(y)| < L(1 + |y|).
(A.1.2) We posit the existence of a positive constant A, large enough where the
expected value of |¢|1*"" s finite.
(A.1.3) (i) f is continuous in (y,2).
(i) There exist constants 7, co, ¢: forany £ >0, y, z,u € U:

f&y,z,w)| <n+colyllInly|| + c1lzl], a.e.

(A.1.4) There exist a real-valued sequence (Ay)n>1 and constants M, € R,, r > 0 such
that:
(i) VN>1,1<Ay <N'.
(i) limy_ 00 An = 00.
(iii) Forevery N e N, u € U and everyy, ¥, z, Z’ such that |y|, |y/|, |z|, |Z'| <N,
we have:

-7 &y.zw)-f@,y,7,u0)
<My(ly-y I In(Ax) + ly =y |lz— 2|V In(A)).
Remark 1 Iff satisfies (A.1.1), then it satisfies a local Lipschitz condition, i.e., forall N € N,

there exist two constants Ly, Loy > 0 such that for any 4 € U and for those ¥,9,z,72 € R

with max{|y|, [y'], |z],12'|} < N, the following condition holds:

[f(t,y,z, M) —f(t:y/,Z, bl)| =< Ll,N'y_y/L

f &y, z,u)—f(t,y,2,u)| < Lynlz—7Z|.

Remark 2 Assume that f satisfies (A.1.1) and (A.1.4). Consequently, L; y = M, In(Ax),
LZ,N = Mz«/ ln(AN)
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Remark 3 If f satisfies (A.1.3), then for every ¢, y, zand u € U:

[f @y, 2w <7+ colyllIn|yl| + c1lzly/ [ In(lz])],

where 77 = 1 + ce.

The following lemmas establish estimates, guaranteeing the boundedness of both the
generator and the solutions. The first two lemmas are thoroughly detailed and proven in
[4], with further details provided in [6].

Lemma 1 Assuming that conditions (A.1.2) and (A.1.3) hold, there exists a positive con-
stant C(T,a, n, co, c1) such that,

T T
/ E[|f(s, Y5 Zs,ug)|*] ds < C(T, e, 1, co, 1) (1 +/ E[ Y, + |Zs|2]ds) ,
0 0

wherel<a < 2.

Lemma 2 Let (Y}, Z,),- represent the unique solutions to Equation (1). Then, there are
constants Cr,, and C(T, cy, ¢1), both positive, such that, under Assumption 1, the following
hold:

]E[ sup |Yt|“e”] < CT,,,E[l + |;|e”“].

0<t<T

T
f E[|Z[21ds < C(T,n, o, c)B[1+1¢ 2+ sup %",
0

0<t<T

Lemma 3 If the assumption of the previous Lemma 2 holds and if ¢ is bounded, we can
find constants Cy 1, Co,7 and Cs , which depend on n, such that:

(i) supgerr Yel*" < Ciz, fy EIIZ,1ds < Cor.

(i) fy EIIf(s, Y5 Zsu)*1ds < Car.

Proof We derive the following insight based on the work of Bahlali ez al. [4].
AT AT T AS
1Y, |1 < 5(77)<1+ || —/ @ +D]Y [ Sgn(Ys)stWs>,
t

and

T T
f ZJ2 ds < ) <1+|¢|2+ sup |Ys|“6”+/ Y2, dm),
t

t s€[0,T]

where £(n) is a universal positive constant. We get the assertion (i) by taking the condi-
tional expectation for Y and the expectation for the rest.
By (A.1.3) and assertion (i), and since |Y;| <1+ |Yt|1*e” <1+ Cyr, we get:

T T
. / E[V(s,n,zs,us)ﬁ]dssan)(1+ / E[1Y“* +1Z] ds) <Gr. 0O
0 0
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Theorem 4 Let Assumptions (A.1.2)—(A.1.4) hold, then the BSDE (1) admits a unique so-
lution (Y, Z) in S™*¢"" ([0, T1,R) x M2 ([0, T}, R).

Under Assumptions (A.1.2)—(A.1.4), the conditions in [4] that guarantee the existence
and uniqueness of the BSDE solution are satisfied. Therefore, the preceding theorem is
applicable.

It is important to observe that, for every v € U4, the functions f,(t, -, -, v;) and £ (¢, -, -, V)
are generally unbounded.

In the subsequent theorem, we establish the existence and uniqueness outcomes for the

SDE given by (3) up to a potential explosion time.

Theorem 5 Assuming that Assumption 1 is satisfied, we can assert that for any v € Uy,

the SDE (3) possesses a unique solution.

Remark 4 The previous theorem cannot guarantee the existence of a global solution but

rather only up to an ‘explosion time’ denoted as
o =inf{t € [0, T1; |fy(t, 3,2, w)| A |f2(t,y,2,u)| > N}.

We require the following additional assumptions to ensure the existence of a global solu-
tion.

. Hloc:fy (S] Ll

loc

(R,,R), f; € L,

loc

(R, R).
o Hj;;: There exists a positive constant L > 0, such that V (y,z,u) e R x R x U:

&,y 2wl < LA +|y) + eln(lzl + 1), ae.t € [0, T],
[fo(t,y,z,u)| < L1+ |y]) + €y/In(|z| + 1) a.e. £ € [0, T1,

where € is a positive constant that is small enough.

Remark 5 The assumption Hy,. ensures that for any (Y;,Z;);>0 F-adapted stochastic
processes, the SDE (3) has a global solution, while the assumption Hj;,, guarantees the
global solution under square-integrable F-adapted stochastic processes (i.e., (Yz, Z;)i>0 €
L} (R,,R)).
2.1 Control problem framework
This paper aims to address the control problem outlined in Equation (1) and the associated
cost functional (2). Our objective is to determine both necessary and sufficient conditions
for optimality. It is important to note that due to the unbounded nature of the derivatives
of f, standard duality methods are not directly applicable to this context.

For any p > 1 and v € U,4, we introduce a family of semi-norms (,o]‘(,,p(f ))nen defined as

follows:

1
T v
px{,p(f) = (E/ Sup V(r:y; z, Vr) |p dr) .
0

lyllzl=N
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Lemma 6 Let f be a function that satisfies Assumption 1 and Hy,. or Hy,. Then, there
exists a sequence of functions " such that:
(i) Foreachn,f" is globally Lipschitz in (y,z) -a.e. t € [0, T].
(ii) Foreach n, f" satisfies Assumption 1.
(iii) For every n, pzyp(f” —f)—>0asn— oo.
(iv) Foreverym, [f)'I < lfyl + S If L Il < |1+ - |f and ngrpoog" (resp. g) — g (resp. gy).

The following paragraphs are dedicated to transforming the original Problem (4) into
a sequence of control issues characterized by globally Lipschitz continuous functions. To
achieve this, take any specific # € N* and a control v € U,,;. Let ()_’t”,Zf)tZo represent the
solution of the corresponding controlled BSDE:

dy? = ft, Y, Z!, v)dt + ZrdW,

_ (4)
Y; =¢.
Furthermore, define
J"v)=E[g"(¥))]. (5)

The subsequent lemma provides estimates that will be employed to establish a relation-
ship between the control problem (4), (5) and Problem (A).

Lemma 7 Let (Y;)s>0 and (Y[‘),Zo be the solutions of BSDE (1) and (4), respectively, corre-
sponding to the control v € Uuq. Then, for any o € (1,2), q € (0,2) and any p € (1,3 — %),
the following hold:

(i) sup,eo,r ELYY = YilP1 < Ky, and ELfy 127 = Z,|9dr] < Ky

(ii) |[T") =T W) < Ceun,
where K, and €, n approach 0 as n goes to +00 and N approaches +0o subsequently, here
N denotes the radius of the ball B(0,N).

The proof of assertion (i) follows a similar methodology to that of Theorem 2.1 in [4],
while assertion (ii) is derived using the approach outlined in [1].
Consider an optimal control u defined as the solution to:

J(u) = vi?:ﬁd JW),

under to the constraint (1). It is crucial to observe that # might not remain optimal for the
modified control problem. By Lemma 7, there is a positive sequence (§,) approaching to
0 where:

J"wu) < inf J"(v.)+8un,
vel,y

where §, x = 2Cé¢, . To facilitate the application of Ekeland’s lemma, we need to introduce

a metric d on U,,. For any two controls u, v € U,,, the metric d is given by:

du,v)=Pdt{(w,t)e 2 x[0,T]: u(w,t) # w,t)},
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here, P® d¢ denotes the product measure combining IP and the Lebesgue measure over the
interval [0, T']. Utilizing Ekeland’s lemma on 7"(u.) allows us to find u” € U,; satisfying:

(1) < (Gux)?
and
T < T"0) VU,
given that
T"W) = T"W) + Gun) (v, u).
From the preceding arguments, we can deduce~that u" solves the optimal control prob-
lem given by Equations (4) and (5), but with J”. For every n € N*, consider the pair

(Y}, Z})=0, representing the distinctive solution to the subsequent BSDE under the in-

fluence of u:

dY” = (e, Y1, Z0,ul)dt + Z1d W,

(6)
Y; =¢.
Associated with this control problem is the following cost function:
J"w) = E[g"(Y)]. )

Now, we pose the subsequent optimization task, denoted as Problem (B): For any integer
n, find u" € U, that minimizes (7) subject to (6).
In concluding this subsection, we introduce a set of adjoint equations. For every integer
n, examine the SDE given by:
=dx} = [ @Y Z) upxyde + (@ Y ZY up ) d W,
5 _ oneyn (8)
xy = & (Xg).

Given that /" is a globally Lipschitz, implying boundedness of /" and f;". Consequently,
the coefficients of Equation (8) satisfy a global Lipschitz condition and exhibit linear
growth behavior. This implies that for any integer 1, Equation (8) possesses a unique so-
lution.

Furthermore, we introduce a collection of Hamiltonian functions H"” : [0, T] x R x R x
R x U — R as follows:

H" (¢, y,z,%x,u) = xf"(t,y,z,u) for each n € N.

2.2 Preliminary lemmas

In the following part of this subsection, we aim to consolidate and establish several help-
ful lemmas. These lemmas are instrumental in achieving our primary findings within the
subsequent section.
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Lemma 8 Define (f") as the sequence of functions linked to f according to Lemma 6. Let
(Y}, Z7)e>0 stand for the solution of Equation (6). Consequently, there exist constants K,
Ky and K satisfying:
(i) sup, Elsupo,<r Y171 < Ki.
(i) sup, ELf, |22[2ds] < K.
(iii) sup, ELfy [f"(s, Y, Z2, ul)|*ds] < K,
where a € (1,2).

The demonstration of the following Lemma is outlined in [4].

Lemma 9 Under Assumption 1, we have:

lim E[ sup |Y" - yt|f’] -0. )
n—>00 tel0,T]

T
lim E/ |z} - z,|"de =0. (10
n—0o0 0

Lemma 10 Under Assumption 1 and Hy;,, the following estimates hold:

T _
lim E | |f"(r, YL Zul) —f(r, Yy, Zeuy)| dr = 0. (11)
n—0Q 0

T q
lim E f ‘fy”(r, Y™, Z0 ")~ (1, Yy Zy )| dr =0, (12)
n—0oQ 0

T
lim E / [, Y0, Z0 W) — £, Yo, Zy )| dr = 0, (13)
n—0oQ 0

where q € (0,2) and & € (1, ).
Remark 6 To demonstrate the convergence of a sequence X,, of random variables in L7,
where p > 1, it suffices to establish convergence in probability and ensure that {|X,,|?, n €

N*} is uniformly integrable.

Proof Assuming Assumption 1 and Hy;, hold. Drawing from our knowledge and the pre-

ceding remark, it is essential to demonstrate the convergence in ILL.
T
E f P Y, Z0 ) = 0, Yo Zyo )|
0
T
< E/ ' YLZu) —f(r, Y, Zy, uy)|dr
0
T
+E/ " Y Z wy) — [, Y ZY ue) | Ty gy, dr.
0
Considering the previous derivation in [4], we have:

T
lim E f V" (r, Y, 2" ) = f(r, Yy, Zy, ty)|dr = .
0

n—00
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Holder’s inequality yields to:

T
E/ Ifn(rr Y:l,Zf,Mf) _fn(rv Y:l;Z:l)Mr)l]l{uf#ur}dr
0

1-1

o

T & T
< (E/ ", Y Z0ul) - f(r, Y, Z), u,)|"‘dr> <IE/ ll{ug#ur,dr)
0 0
1 1-1
< (4K3)« (d(u!,u)) @ .
d(u”,u.) approaches 0 as n tends to infinity, thus (11) is satisfied.
We give the proof of (12). The proof of (13) can be performed similarly. Since |y|| In|y|| <

e”! +|y|> and for any n € N*, t € [0, T], we have | Y|, |Z/| < n. Thus by (A.1.3), we have
for any v € Uy, that,

1 C
S YL ZL P < S+ 1Y 1207
n’ )
n
SCA+ 5+ 5 + YD)
By (i) of Lemma 8, we get:

T
1
supE/ ﬁ[f”(r, Y, Z!vp)Pdr < C, (14)
n 0

where C is a universal constant. Using assertion (iv) of Lemma 6, along with H;;,, and (14),

we obtain:
T
supE / W Y ZE v P + [ Y] Z0 v )dr < K. (15)
n 0
Let N > 1, we put AN := {(r,a)), [Y" + |21 >N} and AN = Q\AY, then we have:

dr

T
B [ o v 20 40X, Zor)
0

T
S E/ M/n(r) Yyn)Zf; uf) _f;/n(r) an)Z::l, ur) n{uﬁ#ur]dr
0

T
+E /o W(r, Y, Z8 ) — £, Y, 20 uy) | dr

T
+E/ lfj/(rx an; Z:Iy ur) _fj/(r) Yr» Zr: I/lr)| dr'
0
By Schwarz’s inequality and Hy;,,, we have:
T
E/ [fy”(r, YZ!u)) —fy”(r, YL, Z w) | Wy gy, dr
0
T
< 2]E/ (LA + 1Y) +€In(1Z)] + 1)) Dy, dr
0

T
< 2L]E/ 2+ 1Y +1Z) Wy, dr
0

Page 10 of 24
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1

T 3 T 3
<2l (8T+4E/ (Y"* + |Z;’|2)dr) (IE/ Il{uwu,}dr>
0 0

<AL QT + TK; +Ky)? (d(u”,u))? .

[

Therefore,

T
lim E/ [fy”(r, Y, Zul) —fy”(r, Y, 7 u)| Wy, ,dr = 0.
0

n—00

Due to the fact that 1 4n < ‘Yr‘Nﬁ 1 4~, and by using Schwarz’s inequality, we obtain:

dr

T
E f 7 =) 7,27 )
0

UTK, + Ky)?

< pnalfy =5+ N

1
2 2
dr) .

(2(T1<1 + )
N

T
(]E | e sy 2z
0

By (15), we can assert the presence of a constant £ > 0 for which:

T
E/ ‘(fy B Y ZE )| dr < pl (7~ f) + € (1<4)%>,
0

Taking the limit initially with respect to # followed by N, we obtain,

T
lim E / ‘(fy” (Y ZE uy) | dr = 0.
0

n—00

Assumption Hj;, and Lemma 8 enable the use of the Lebesgue Dominated Convergence
Theorem, which facilitates the demonstration that:

T
lim E / U, Y 20 u) — f(r, Yy, Zyy wy) | dr = 0.
0

n—00
Hence, (12) is established. O

Assumption 2 The validity of Assumption 1 in conjunction with Hy;,, along with the con-
straint that ¢ is bounded.

Lemma 11 Assume that Assumption 2 holds. Let (Y, Z;)i>o (resp. (Y}, Z}')>0) denote the
unique solutions of the BSDE (1) (resp. (6)). Then, for any v € U4 and p > 2 there exists a
universal constant C, for which:

T
B [ WP+ 5+ 100, Y 2 dr <
0
T
supIE/ (f"1* + [fynlp + O Y Z) vodr < C.
n 0

Proof By assertion (i) of Lemma 3, we have Y is bounded. Moreover,

2 2
In(jz[+1) = g In(jz] +1)7 < §(|z| +1)7.
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Thus (In(|z| + 1)) < C(|z|*> + 1). By Hy;,, and Lemma 3 we get:

T
E / U2 + AP + 1) Yo Zo v )dr < C.
0

For any n € N* and ¢ € [0, T], we have |Y}'] < Cy,r. Since |Z}| < n, Assumption (A.1.3)
yields,

1
— 'YL ZE vl < Cand |f"(r, Y, Z8Nv)l2 < C(A+1Z1P).
17!

Thus, by assertion (iv) of Lemma 6, assertion (ii) of Lemma 8, and the previous result, we

have:

T
supIE/ ([f”|2 + [fynlp + 0 Y Z)Y vodr < C. O
n 0

Remark 7 If Assumption 2 holds, then for any « € (1,2) and p > 2, Lemma 10 and

Lemma 11 guarantee the following convergence:

T
lim E / [f"(r, Y7, Z0ul) = f(r, Yy, Zyyuy)|* dr = 0. (16)
0

n—00

Par=o. (17)

n—00

T
lim E/(; ‘fyn(r; Y:ly Z:l; u:’) —]S/(V, Yr: Zry ur)
T

im E [ | Y2 u)) — f(r, Y Zyyuy) | dr = 0. (18)

Lemma 12 Under the fulfillment of Assumptions 2, the solutions x and x" to Equations (3)
and (8), respectively, are bounded in the space S? ([0, T],R) for all p > 2. More specifically,

two positive constants L and Cr can be found, ensuring that:

E|: sup |xt|p:| <{r,

0<t<T

]E|: sup |x;’|p] <{r, VnelN.

0<t<T

Proof Let p > 2. By applying Itd’s formula, we obtain (sgn(x;)x; = |x¢|):

p-1
2

T
e l” < |gy(Y0)|P+p/ los P (1] + f2I?) (s, Ye, Zs, u5)ds
0

t
+’/ %5 P fo(8, Y5, Zs, i) AW
0

1
£.1%) (s, Yy, Zs, us)ds

T p_
< lg (Yol +p / sup (1 P} (1f, ] +

0 0<r<s 2

t
o [ it v zoupaw| (19)
0
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By BDG’s inequality

t
E[SUP /|xs|pﬁ(s,1’s,zs,us)d"7s
0

0<t<T

_ )

1
T 2
<3E ( f ENEJ/AC Ys,zs,umzds)
0

1
T 2
< 3E (/ sup Ixy|2p[fz(5, Y.S)Zs, Lts)|2dS)
0 0<r<s

1
T 2
<3E| sup |xr|‘7’< f sup |xr|”tﬂ<s,n,zs,us>|2ds>
0

0<t<T 0<r<s

1 9 T
S E |:_ Sup |xt|p + E / Sup |xr|plfz(s, Yers» Ms)|2ds] )
0

0<t<T 0<r<s

the last inequality is obtained using Young’s (ab < %az + %bz). Therefore, by taking the
supremum and then the expectation of (19), and applying the previous inequality, we ob-
tain:

T
B[ sup ] <E[2g 00 + [ sup fn P (20156 Yo Zoo)
0

0<t<T 0<r<s

Hp(p = 1)+ Nfels, Yo Zy ) ) ds |-

Gronwall’s lemma, yields,

T
E[ sup lnf] szE[|gy(Yo)|f’exp ( | @olsie o= 9P n,zs,uods)]
0

0<t<T

Since g, is locally bounded and Yy, Y < C; 7 (where Cy,r does not depend on n), g,(Yo)
and g, (Y} are bounded. Moreover, by Hy;,, we have:

T
]E[ sup |xt|p] <CE [exp (/ (2p€1n(|ZS|+1)+(p(p—1)+9)621n(|Zs|+1))ds):|,
0

0<t<T

where C is a constant that may change from line to line. Since ¢ is sufficiently small, there-

fore 2pe + (p(p — 1) + 9)e? < 2. Thus, by Jensen’s inequality, we get:

T
]E[ sup |xt|p] <CE |:exp </ In(|Z| + l)zds):|
0<t<T 0

T
< C(1 + / E[|Zs|2]ds) =07,
0
Following the same arguments as previously, and since nip f"(r, Y, Z8,v)IP < C, we have:

sgp]E[ sup Ix?lp] <y O

0<t<T
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Lemma 13 Let (x;);>0 and (x]):>o be respectively the solution of (3) and (8), then under

Assumption 2, we have:

lim sup E[[x} -x["]=0, Vp=>2. (20)
=0 1e[0,T]

Proof Lemma 12 implies that {|x}|?, ¢t € [0,T], n € N¥, p > 2} is uniformly integrable.
Based on Equations (3) and (8), applying Itd’s formula, we get:

o) — i) < |g)(Yg) - gy(Yo)I?

T
+2f o — x| |xffy"(r, YNLZ0uy) — % fy(r, Y, Zy, uy) | dr
0
T
. f W, Y2, Z ) = 5folr, Yoo Zoy )
0
t
—Zf @ =2 ) f) (r, YL 20, u)) — %, fo(r, Y, Zy, uy))d W
0
By using Young’s inequality and taking the expectation, we arrive at:

B[l ] < E[1g03) g (Y0P

T
+2E/ |x:‘—xr|2([fy”|+[fZ”|(r,Y,”,Zf,u:‘)dr:|
0

T
+2E / ! = e ) (s Y7, 200 wy) = fo(r, Y Z,,u,)|dr:|
0

T
+2E / |x,|2[f2”(r,Y:’,Zf,uf)—fz(r,Yr,Z,,u,)|2dri|.
0

Since for any n € N* and p > 2, E[supy,r(|x: [ + [x}|P)] < £7 + £7. By Holder’s inequality,

we get a universal constant C, such that:
B[l - x| < E[lgi7) - (Yo | + Cv”
T
+2F [ / ! = P+ U P Y 2, uf)dr] ,
0
where,
T
y" = E[ / U7 Y0 Z0 ) =, Yo Zos )
0
P Y7200 0, Yo Zy ) |

The sequence y” tends to zero as #n approaches infinity, as indicated by (17) and (18).

Moreover, with the same steps as in the proof of Lemma 12, we can obtain:

sng[exp (2/(;T([fy"| + [fz"lz)(r, Y,”,Zf,uf)dr)] <C.
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Establishing the desired result is facilitated by demonstrating the convergence of the initial
terms to zero and applying Gronwall’s lemma. Since g,(Y), g(Yo) and g,(Yy) are bounded,
allowing us to use the Dominated Convergence Theorem. Furthermore, by (iv) of Lemma 6
and Equation (9), we obtain:

2
Tim B |g(v) - g,(%)| =2 lim B [1g/07) - (Y + lg(%3) - g, (Yo’
=0. 0

3 Necessary and sufficient conditions for optimality
This section is dedicated to establishing the necessary optimality condition for the opti-
mization Problem (A).

3.1 Necessary optimality condition
We rely on the following lemma to establish the necessary condition for optimality, which
forms the foundation for our further investigation.

Lemma 14 Under the fulfillment of Assumption 2, we can establish the following:

n—00

T
lim IE/ |®" (r) = ® (r)| dr = 0,
0
where

" (r) = [H"(r, Y], Z) & u)) = H'(r, Y], 20,0, v

r
and
P (V) = [7'[(7’, Yr; er Xrs ur) - H(’”: Yr; er Xrs Vr)] .
Proof A straightforward computation demonstrates that:
T T
E / |®"(r) - ®(r)|dr <E / V" (r, Y, Z2 ulyxt = f(r, Yy Zyy )| dr
0 0
T
+E / ", Y, Z0 vt = f(r, Yo, Zy v | dr.
0
To simplify matters, we represent the first and second integrals by I} and I, respectively,
and demonstrate their convergence to 0 as # goes to +00.

By applying Hélder’s inequality (for o, @ = ;%) and utilizing both 12 and property (iii)

from Lemma 8, we obtain:

1 1
T o T ~ 1
Il < (/ E|f"(r, Y,",Zf,uf)l"’dr) (/ E|x! —x,|°‘dr>
0 0

1 1
T a T «
+ </ E|x;«|&d}"> </ ]Elfn(r, an;Z;qy u:l) _fn(rr Yr,Zr; ur|adr>
0 0

T 1
1 _ a
<Ky </ Elx) —x,|°‘dr)
0
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1
T o
+Tlr (/ Elf"(r,Yf,Zﬁ’,uf)—f(r,Yr,Zr,ur)I“dr> .
0

By (16) and (20), I} converges to 0 as # — 0o. On the flip side, utilizing similar arguments
as presented earlier, it becomes apparent that the limit of I} tends to 0 as # approaches
+00. This concludes the proof. g

Primary result of this paper

Theorem 15 Let u denote the optimal control for the problem (A), and (Y,Z) represent
the unique solution of BSDE (1) corresponding to u. There exists a unique adapted process
(x0)s=0 in S2([0, T1, R), which is the solution to the associated forward SDE (3). This process
(X)e>0 is uniquely characterized by ensuring that the Hamiltonian H is minimized at the

control (uy)>0, such that

H(t, Yy, Zs, x4, uy) = min H(t, Yy, Zg, x4, v) dt-a.e., P-a.s. (21)

vellyq
Proof To elucidate the key steps in our proof, we begin by transforming Problem (A4) into
a more manageable Problem (B).

Next, we employ the spike variation approach to establish a necessary condition for ap-
proximate optimality while addressing Problem (B). Finally, leveraging Lemma 14 and tak-
ing appropriate limits, we culminate the desired optimality condition (21).

For any integer 7, let #” be a control that is optimal for Problem (B), satisfying J"(u") <
inf 4, J"(v.). Let the solution of BSDE (6) be denoted by (Yt”, Z}
Define the spike variation as:

. . }
) 0 associated with #”.

no Vtifte[to,to-!-e),
ut’ =

t .
u} otherwise.

where ¢ is a fixed time within the interval [0, T, # > 0 is a small positive constant, and v
represents any J -measurable random variable.
Consider the following:

Ty < T,
and
dw™’,u") < 6.
These lead to:
T = T = ~(Sun) 0. (22)

Utilizing standard arguments (see, for instance, [18]), we can show that the expression
on the left side of (22) is:

to+0
]E/ (W, Y Z0 % vy) = H (o, Y Z0 &0 ul) ] dr + 0 (6)

to
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By dividing each side of (22) by 6, we obtain:

1 to+6 0
_(8"’1‘[)% = 5E/ [H"(r, Y], Z0 &) vy) = H (n, YL Z0 0w ] dr + —0(9 ).
to

Applying Lemma 14 and successively taking limits on #, N, and 6, while considering the
arbitrary nature of ¢ in [0, T, yields:

]E [H(tl Yt’ Zt’ Xts Vt) - H(tl Yt’ Zt’ Xts ut)] Z 0.

Consider a fixed element a within the set U, and let B be any set belonging to the o -
algebra F;. Define:

wy = allp + ullg\p.

The control w satisfies the admissibility criteria. Utilizing the aforementioned inequality
with w, we infer:

E []]-B (H(t’ Yt,Z,,xt,a) - H(t’ )/tfzt!xt’ ut))] > O: VBe -Er
which leads to:
]E]:t [H(tx }/t, Ztr Xt» ﬂ) - H(tx }/t, Ztr Xt» ut)] Z O

Since the expression inside the conditional expectation is measurable with respect to F;,
the desired result follows directly. O

Example 1 Let f(t,y,z,u) :=n + yIn|y| + z + u. Clearly, f satisfies the conditions of exis-
tence and uniqueness, i.e., (A.2)-(A.4), as outlined in the first example in [3]. Therefore, it
remains to verify that (A.1) holds.

The partial derivatives of f are given by:

Sy zu)=1+Inlyl; f(&y,zu) =1

This shows that f is continuously differentiable with respect to z and is differentiable al-
most everywhere in y. Moreover, it is evident that for any L > 1 and € > 0:
&y z,w)] < L(1+ |y]) + €n(lz] + 1), a.e. £ € [0, T],
Izt y,z,u)] < L1+ |y|) + €/In(|z] + 1) a.e. £ € [0, T].
Thus, assumption Hy, is satisfied.
Next, consider the function g(y) := ¥, which is continuously differentiable and locally

Lipschitz. As a result, Assumption 2 is also fulfilled. According to Theorem 15, we then
obtain:

H(t, Yy, Zs, %:, 1) = min H(t, Yy, Zs, x:, v¢) dE-a.e., P-a.s.,

vellyq

where H(t, Yy, Zi, %, ve) = xe(n + Y In | Yy | + Zy + vp).
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3.2 Theinverse problem

This section investigates the extension of a previously established necessary optimality
condition (21) to serve as a sufficient condition under additional assumptions.

Theorem 16 Assume that the mapping (y,z, u) — H(t,y,z,x, u) is convex for almost every-
where t € [0, T], and that f satisfies the Lipschitz condition with respect to u. Furthermore,

assume that g is convex. Provided that condition (21) is satisfied, then (u;);> is optimal for
Problem (A).

Proof For any t € [0, T], let V; denote the set of all F;-measurable, I/-valued random
variables. Consider any B € F;. For v € V, define

Lu(v) = E[Hu(6, X7, V7', v)1Lg].
Let u satisfy the condition in Equation (21). Note that # does not necessarily satisfy the
necessary condition for optimality for the perturbed control problem (6) and (7).
Using convergence results, a simple computation shows that:

Ta(us) = inf T,(v) +6,,.
VEVt

where §,, is a positive sequence that approaches 0.
Applying Ekeland’s variational principle to Z,,, we can find u” € U,; for which:

Los(ve) = T,(ve) + \/Ed(v., u’), forany v e U,

We want to show that u is an optimal control for the original cost function 7.

(i) " minimizes Z,4:
Lo (u:’) <Z,s(v), foranyvell,.

(ii) The distance between #" and u is bounded by:
d(u',u) < V5,

(iii) Given that B is an arbitrary element of the o -algebra F; and since & minimizes Z,,

by definition, we have:

\/gd(v-) u}’l) = E [Hn(t1 Ytn,Z;q,x?, u:l) - Hn(tl )/[nrz?’x:lr Vt)|ft]

=H", Y], Z) x), ul) - H' (&, Y], Z), %), v).
Therefore, it follows that:
Hg’(ty Ytny Z;’l’x;’l, u:‘) - Hg‘(tx }/tl’l’ Z:’rx;’r Vt) S Or (23)

where Hj (¢, Y], Z}, xf,ve) = H' (6, Y], ZE, %0, ve) + N/ 8ud (v, u).
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Since f” is globally Lipschitz and x” is bounded, 7" is also globally Lipschitz. Thus, by
applying the result from [10], the necessary condition (23) becomes sufficient. Therefore,
we obtain:

Ji (") = inf J.).

Veuad

This definition of the modified cost-functional:
Jiw.):=J"(v)+ \/Ed (VA, uf’) s

allows us to conclude that for each admissible control v € U,
T (") < T"w)+ 0y,

where O (8, represents terms that vanish as §, approaches zero.
According to assertion (ii) in Lemma 7, J"(v.) approaches [J(v.) as n goes to infinity.
Moreover, we have:

\T" (") - T ()| < Ellg"(Yg) - g(Yo)l]
< E[lg"(Yy) - g"(Yo)ll + Ellg" (Yo) - g(Yo)l]
= CE[1Yy - Yol] + E[lg"(Yo) — g(Yo)].

Since g (respectively, g”) has linear growth and Y; (respectively, Y§) is bounded, this
enables the application of the Dominated Convergence Theorem. By assertion (iv) of
Lemma 6 and Lemma 9, we obtain: lim,,_, ;0o J" (") — J (u.). Thus,

Jw.)= inf J(v),
uelyy
which implies that « is an optimal control for the cost function J. O

4 A generalized logarithmic growth condition in the context of Malliavin
differentiability

In this section, we address a significant extension of the previous part by relaxing the linear

condition on z. Specifically, we generalize the logarithmic growth condition to include

both y and z, thereby broadening the applicability of the results beyond the restrictive

linear case. This relaxation is achieved through the use of Malliavin differentiability.

Assumption 3
(A.3.1) f and g are continuously differentiable with respect to (y,z) and f is globally
Lipschitz with respect to v.
(A.3.2) Assume that ¢ is bounded and an element of D'2, and there are constants Ms
and M, for which, for all v € U, we have:

T
/ |Dyvglds < M3, and |D,¢| <My, Vr<T.
0
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(A.3.3) There exists a positive constant ¢ such that, for every t, y, z, v € U:

[f(&y,2,v)] < e + [yl In|yll + 2]/ [In(]zDD.
(A.3.4) There is a positive constant L > 0 such that for all (y,z,v) e R x R x U:
V(&3 2V < LA +|y]) +1In(lz] + 1), -a.e. £ €[0, T].

Theorem 17 Assuming conditions (A.3.2) and (A.3.3) hold, the BSDE (1) possesses at least
one solution (Y,Z) in sttt ([0, T1,R) x M2 ([0, T],R).

Indeed, if Assumptions (A.3.2) and (A.3.3) hold, then conditions (H1) and (H2) in [4]
are fulfilled. Therefore, according to Theorem 2.2 in [4], the BSDE (1) is guaranteed to
have a solution.

Lemma 18 If Assumption 3 holds, we can get constants Cy,r, Cy,r and Cs,1 such that:
(i) supgey<r |Yel < Cur.
(ii) supg<s<r 1Z:|l < Cor.
(iif) supg<;<7 If & Ye, Zs,ve)l < Car.

Proof By following the identical procedure used in the proof of Lemma 3, we can show
that assertion (i) also holds.

We aim to substantiate assertion (ii).

Let N € N* and fN(¢,y,2,v) = f(t, 9,2, MY (%), where ¥(x) = 1if [x| < 1 and ¥(x) = 0 if
|x| > 2. Clearly fN satisfies Assumption 3, thus:

dY; = fN(t, Y:, Zs,ve)dt + Z,d W,
YT = é‘)

admits a solution (Y,2) € Sl*ekT([O, T1,R) x M?([0, T],R). Moreover, SUPg<s<7 | Yi| <

C1,r. According to Proposition 2.2 in [15], we deduce that for all £ < T, Y and Z are ele-
ments of D2, Furthermore, for all r € [0, T] the pair (D, Y, Dy Z;), 7 satisfies linear BSDE:

T
D,Y; =Dyt - / (FN (s, Ye, Zoy vo)D, Y + £ (5, Yoy Zs, vi)D1 Zs ) dis
t

T T
—/ AsDrvsds—/ D, Z,dW5,
t t

Dth = Zt:

where (4;)s>0 is a bounded process, with the bound denoted by a constant M5 [11]. Con-
sider the process y/z = (y[z Jo<t<T given by:

t
vE=¢ (— f NG, Y, Z,, vs)dWS> ,t€[0,T], Pas,
0

where £ denotes the stochastic exponential. Since £V is uniformly bounded it follows
that, the process (y[z)oftST is a martingale process. Moreover, E[|ytfz|2] is finite. Let
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o

theorem.

| 7,, this implies absolute continuity of Pz with respect to P under Girsanov’s

Girsanov’s theorem further establishes that:

t

WE o= W+ / N (s, Y5, Zg,v5)ds, for t € [0, T,

0
is a Brownian motion under P%. Therefore, under P* we have
T

D.Y; =D¢ —/ (ny(S, Y;, Zs, vs)D, Y +ASD,vS) ds

t

T
- / D,Z AW ¢t <T, (24)
t

D,Y;=0 r>t.

Moreover,

1

; T 3 T 2
EP* ( / |D,ZS|2ds) =E ;/T( / |D,Zs|2ds)
0 0

T
< E]| ;|2]+E[/ ID,ZS|2ds] oo
0

By taking the conditional expectation of (24) and applying Jensen’s inequality, we obtain:

T T
Dl = Ma+ B[ [ 1D idss [ 15N v Zown, ies| 7]
0 t

T

< My + MMs + B | / (5, Yo Zo, v)D, Y, | ds| 72 . (25)
t

Since sup,c(o 7y 12l < Cor and Y guarantees that |Z;| < N, there exists a constant Cr

such that [ny(s, Y, Zs,vs)| < Cr . For any ¢ < ¢, we have:

T
B [ID,¥il| 7] <y + Mtz + Cr [ B [0

t

Fas
Gronwall’s Lemma yields to,

fz
E* 10,7

]—7] < (M + MsMg)e TN = MeTCT,

For ¢ = t, we get |D,Y;| < MgeT“TN; thus, (D,Y;);s0 is uniformly bounded. Therefore, we

apply Gronwall’s Lemma to (25) (Theorem 1 in [16]), and obtain:

DYl = MoE™ [ exp / ' 165, Yo Zoyv)lds )| 7
t

Using (A.3.4) and the boundedness of Y and for r = ¢,

T
|Z;| < Mgexp(L(1+ Cl,T))]E]PfZ [eXp < / In(1Z] + l)ds> ‘E}

t
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T
< Mgexp(L(1 + Cy 1) EP” [ / (1Zs| + 1)ds|ft]
t

T
< Mgexp(L(1 + Cy,7)) <T + EP* [ / |Zs|ds|]-"t]> .
t

By computing the conditional expectation given F,, where ¢ < t, we obtain:

T
EP* [1Z,| 5] < Mg exp(L(1 + Cy.1)) <T+E“”fz [ f |zs|ds|£]).

t

By applying Gronwall’s Lemma and then setting ¢ = ¢, we obtain:

sup |Z;| < MeT exp (L(1 + Cy,1)) exp <M6Texp (L(1+ CLT)))

0<t<T

- MeTexp (L(l + Cur) + MeTexp (L(1 + CLT))> = Cor.

Alternatively, we can use Theorem 1 from [16], as Z; = D,Y;, and thus it is uniformly

bounded.
Thus, for any N > Cy 1, f¥ = f and Supg<s<7 1Z:| < Cy,7. The assertion (iii) follows di-
rectly from (A.3.3) and the preceding assertions. O

Theorem 19 Under Assumption 3, the BSDE (1) has one solution.

Proof According to Theorem 17, the BSDE (1) has a solution. To prove uniqueness, we
consider two solutions (Y, 2), (Y',Z") of (1) with the same terminal condition. It follows
that:

T T
Yt - Yt/ = _/ (f (S’ Ys’Zsr Vs) _f (S, YSI,Z;, Vs)) dS - / (Zs - Z;) dVVS
t t
T
= —/ (f (s, Y5s Zove) = f (5, Y, Zs, v5)) ds
t

T T
_ / (F (5, Y Zoovs) =1 (5, Y1r Zovs)) ds = / (2 - Z)) dw..
t t

Since f is locally Lipschitz and according to Lemma 18 the solutions are bounded, thus
there is a positive constant C7 that is determined by C;,7 and Cy 1, such that Vs € [0, T]:

[f (s, Y5, Zs, ve) = (5, Y, Zg, vo)l < Cr(|Y = Y| + 1Zs = Z()).
By taking similar steps as the proof of Lemma 18, we get:
T
Y - Yt/ = _/ (f (S’ Ys’Zsr Vs) _f (Sr Ys/rZsr Vs)) ds
t
T ~
[ @-z)aw,
t
where

t
W, = W, + / (F (5 Yo Zorv) —f (5, Y Zo ) (Ze = Z) ™ W ds.
0
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Moreover, the same arguments yield that for all ¢ € [0, T]: |Y; — Y/| = 0. This implies Y and
Y’ coincide. Intuitively, this should also imply, Z; = Z, for all ¢. Thus, the uniqueness is
satisfied. O

These results ensure that the control problem is well-posed. Additionally, the bounded-

ness of f and f, allows us to leverage the previous control result under Assumption 3.

5 Conclusion

In this study, we explored a stochastic optimal control problem for a specific type of con-
trolled BSDE characterized by a locally Lipschitz coefficient and a generator with logarith-
mic growth. The main challenges stemmed from the local Lipschitz nature of the BSDE
generator and the adjoint equation, which is described by a linear SDE, complicating the
application of standard duality techniques for solving the control problem. To address
these challenges, we introduced certain assumptions to ensure the existence and unique-
ness of the associated adjoint process. By applying the variational principle of Ekeland in
conjunction with approximation techniques and taking limits, we established the required
conditions for both necessity and sufficiency in optimality.

6 Perspective

We plan to extend our results to backward stochastic differential equations driven by a
Poisson process and a Brownian motion, aiming to establish the necessary and sufficient
conditions for optimality in this broader context [6]. Additionally, we intend to relax the
bounded condition on the terminal variable ¢ and to illustrate our findings through a fi-
nance application supported by a numerical study.

Acknowledgements
The second-named author extends his appreciation to the Ongoing Research Funding Program: Grant number
(ORF-2025-869), King Saud University, Riyadh, Saudi Arabia.

Author contributions

Conceptualization, EBB and NK; Formal analysis, NK, ME and AA; Methodology, EBB and NK; Supervision, ME and NK;
Writing—original draft, EBB; Writing—review and editing, EBB; AA; N.K. and M.E. All authors read and approved the final
manuscript.

Funding information
King Saud University, Riyadh, Ongoing Research Funding Program (ORF-2025-869), Saudi Arabia

Availability of data and material
Not applicable

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Author details

"Laboratory of Pure and Applied Mathematics, University of M'sila, University Pole, Road Bordj Bou Arreridj, M'sila, 28000,
Algeria. ?Department of Mathematics, College of Science, King Saud University, PO. Box 2455, Riyadh, 11451, Saudi
Arabia. 3Laboratory of Applied Mathematics, University of Biskra, PO. Box 145, Biskra, 07000, Algeria.

Received: 27 August 2024 Accepted: 10 August 2025 Published online: 01 September 2025
References

1. Azizi, H, Khelfallah, N.: The maximum principle for optimal control of BSDEs with locally Lipschitz coefficients. J. Dyn.
Control Syst. 28(3), 565-584 (2022)



Bouhadjar et al. Advances in Continuous and Discrete Models (2025) 2025:132 Page 24 of 24

. Bahlali, K, Djehiche, B, Mezerdi, B.: On the stochastic maximum principle in optimal control of degenerate diffusions

with Lipschitz coefficients. Appl. Math. Optim. 56, 364-378 (2007)

. Bahlali, K, Hassan Essaky, E.,, Hassani, M.: Existence and uniqueness of multidimensional BSDEs and of systems of

degenerate PDEs with superlinear growth generator. SIAM J. Math. Anal. 47(6), 4251-4288 (2015)

. Bahlali, K, Kebiri, O, Khelfallah, N., Moussaoui, H.: One dimensional BSDEs with logarithmic growth application to

PDEs. Stoch. Int. J. Probab. Stoch. Process. 89(6-7), 1061-1081 (2017)

. Bahlali, K, Mezerdi, B, Ouknine, Y.: The maximum principle for optimal control of diffusions with non-smooth

coefficients. Stoch. Int. J. Probab. Stoch. Process. 57(3-4), 303-316 (1996)
Bouhadjar, EM.B,, Khelfallah, N., Eddahbi, M.: One-dimensional BSDEs with jumps and logarithmic growth. Axioms
13(6), 354 (2024)

. Brahim, M.: Necessary conditions for optimality for a diffusion with a non-smooth drift. Stoch. Int. J. Probab. Stoch.

Process. 24(4), 305-326 (1988)

. Chighoub, F, Djehiche, B, Mezerdi, B.: The stochastic maximum principle in optimal control of degenerate diffusions

with non-smooth coefficients. Random Oper. Stoch. Equ. 17(1), 37-54 (2009)

. Crandall, M.G,, Lions, P-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1-42 (1983)
. Dokuchaev, N., Zhou, X.Y.: Stochastic controls with terminal contingent conditions. J. Math. Anal. Appl. 238(1),

143-165 (1999)

. Lépingle, D, Nualart, D., Sanz, M.: Dérivation stochastique de diffusions réfléchies. Ann. Inst. Henri Poincaré Probab.

Stat. 25(3), 283-305 (1989)
Ma, J,, Shen, J,, Zhao, Y.: On numerical approximations of forward-backward stochastic differential equations. SIAM J.
Numer. Anal. 46(5), 2636-2661 (2008)

. Milstein, G.N,, Tretyakov, M.V.: Numerical algorithms for forward-backward stochastic differential equations. SIAM J.

Sci. Comput. 28(2), 561-582 (2006)

. Orrieri, C.: A stochastic maximum principle with dissipativity conditions. Discrete Contin. Dyn. Syst. 35(11), 5499-5519

(2015)

Pardoux, £, Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential
equations. In: Rozovskii, B.L, Sowers, R.B. (eds.) Stochastic Partial Differential Equations and Their Applications,

pp. 200-217. Springer, Berlin (1992)

Wang, X, Fan, S.: A class of stochastic Gronwall's inequality and its application. J. Inequal. Appl. 2018(1), 336 (2018)
Xu, R, Wu, T.: Mean-field backward stochastic evolution equations in Hilbert spaces and optimal control for BSPDEs.
Math. Probl. Eng. 2014, 1-18 (2014)

. Xu, W.: Stochastic maximum principle for optimal control problem of forward and backward system. ANZIAM J. 37(2),

172-185 (1995)

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Maximum principle for BSDEs with locally Lipschitz and logarithmic growth
	Abstract
	Mathematics Subject Classification
	Keywords

	Introduction
	Foundational concepts and existence findings
	Control problem framework
	Preliminary lemmas

	Necessary and sufficient conditions for optimality
	Necessary optimality condition
	The inverse problem

	A generalized logarithmic growth condition in the context of Malliavin differentiability
	Conclusion
	Perspective
	References

