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Abstract
This paper tackles a stochastic control problem involving a backward stochastic
differential equation (BSDE) with a local Lipschitz coefficient and logarithmic growth.
We derive the necessary and sufficient conditions for optimality that hold for all
optimal controls, even without convexity assumptions on the control domain. These
conditions involve a local Lipschitz stochastic differential equation and a minimized
Hamiltonian. We begin by demonstrating the existence and uniqueness of the
solution to the associated adjoint equation under suitable conditions. Next, we
introduce a series of control problems with global Lipschitz coefficients using an
approximation approach. This framework allows us to derive a stochastic maximum
principle, facilitating the analysis of near-optimal controls within these approximated
systems. Finally, we seamlessly transition back to the initial control problem through a
well-defined limit process.
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1 Introduction
The domain of stochastic optimal control problems is commonly traversed through two
primary avenues: the maximum principle introduced by Pontryagin and the method of
dynamic programming. Each of these methodologies necessitates distinct mathematical
treatments. Dynamic programming, for instance, aims to derive a second-order partial
differential equation, commonly known as the Hamilton-Jacobi-Bellman (HJB) equation,
serving as a characterization of the value function.

However, a significant drawback arises when employing this approach-classical solu-
tions to the HJB equation are only guaranteed for sufficiently smooth value functions, a
condition often unmet in practical scenarios. Crandall and Lions [9] addressed this limita-
tion by introducing viscosity solutions, wherein (set-valued) sub-derivatives replace con-
ventional derivatives. This innovation empowers dynamic programming with enhanced
applicability in real-world situations.

While the maximum principle is extensively employed for solving optimal control prob-
lems in deterministic systems, translating theoretical results into practical solutions en-
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counters numerous obstacles. The inherent difficulty lies in explicitly solving the resultant
adjoint systems. Some scholars (e.g. [12, 13]) have proposed numerical methods to address
such challenges, expanding the applicability of Pontryagin’s maximum principle into fields
like mathematical finance and economics. Several attempts have been made to loosen the
constraints on coefficients, facilitating the extension of the stochastic maximum principle
to irregular cases.

Mezerdi [7] pioneered this direction by deriving a maximum principle for a controlled
stochastic differential equation (SDE) that accounts for a non-smooth drift, leveraging
Clarke’s generalized gradients, and stable convergence of probability measures. Building
on this, Bahlali et al. [5] extended the principle to SDEs characterized by Lipschitz conti-
nuity and a non-degenerate diffusion matrix, employing Krylov’s inequality with uniform
ellipticity. In a broader context, Bahlali et al. [2] developed a stochastic maximum prin-
ciple for optimizing control over a broad category of diffusion processes that exhibit de-
generacy, assuming only Lipschitz continuity in state equation coefficient and continuous
differentiability in cost functional coefficients. Chighoub et al. [8] further expanded these
results to cases where both state equation and cost functional coefficients lack differen-
tiability.

Recent advancements include Xu and Wu’s [17] work, where they established the well-
posedness of mild solutions for a class of mean-field BSDEs within Hilbert spaces with
less restrictive conditions than Lipschitz continuity. They then demonstrated a maximum
principle for optimal control problems involving mean-field type backward stochastic par-
tial differential equations. Additionally, Orrieri [14] introduced a version of the maximum
principle for optimal control in SDEs influenced by multidimensional Brownian processes.
Dokuchaev and Zhou [10] derived conditions that are both required and sufficient for op-
timality in cases where the control domain lacks convexity.

Consider T > 0 and let (Ω,ℱ , (ℱt)0≤t≤T ,ℙ) be a probability space with completeness,
equipped with a filtration that satisfies the usual conditions. Given this probability space,
we introduce a one-dimensional Brownian motion W = (Wt)0≤t≤T . We make the assump-
tion that 𝔽 = (ℱt)0≤t≤T represents the ℙ-augmentation of the natural filtration associated
with (Wt)0≤t≤T . For our subsequent analysis, we define the following spaces for p ≥ 1:

• Sp ([0, T],ℝ): the space of continuous, 𝔽-adapted stochastic processes {Yt : t ∈ [0, T]},
such that

𝔼[ sup
0≤t≤T

|Yt|p] < ∞.

• ℳ2 ([0, T],ℝ): the space of 𝔽-predictable, ℝ-valued processes {Zt : t ∈ [0, T]},
satisfying

∫︂ T

0
𝔼[|Zr|2]dr < ∞.

• 𝕃
p
loc (ℝ+,ℝ): the set of 𝔽-adapted processes taking values in ℝ, denoted by {Xt : t ≥ 0},

such that

∫︂ T

0
|Xr|p dr < ∞ ℙ-a.s for every T .
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We examine the following controlled backward stochastic differential equation (BSDE):

{︄
dYt = f (t, Yt , Zt , vt)dt + ZtdWt ,
YT = ζ .

(1)

Here, f is a function defined on f : [0, T]×ℝ×ℝ×U −→ℝ. The terminal condition ζ is a
random variable adapted to ℱT . The control variable (vt)t≥0 is represented by the process
vt , considered as an 𝔽-adapted process that takes values within a non-empty subset U
within ℝ. The collection of all admissible controls is represented by 𝒰ad .

Given a mapping g from ℝ to ℝ, we describe the cost functional associated with the
stochastic control issue as:

𝒥 (v·) = 𝔼
[︁
g(Y v

0 )
]︁

. (2)

The aim is to minimize the cost functional (2) among all admissible controls. The control
problem can now be stated as follows:

Problem (A) Given the cost functional (2) and the constraint (1), the objective is to iden-
tify an optimal control, denoted as u from the set 𝒰ad , that minimizes the specified cost
functional.

There exists an extensive body of literature addressing stochastic optimal control issues
related to BSDEs and Forward-BSDEs within the global Lipschitz framework. Azizi and
Khelfallah [1] were the first to investigate a stochastic control problem involving BSDEs
with local Lipschitz continuity in y and global Lipschitz continuity in z under the initial
assumption. In their study, they demonstrated that the generator satisfies specific condi-
tions, which include:

• There exist three constants, M0, M1 > 0, κ ∈ (0, 1) and a non-negative function h
defined on ℝ+. For all y and z,

⟨︁
y, f (t, y, z, v)

⟩︁ ≤ M0(1 +
⃓⃓
y
⃓⃓2 +

⃓⃓
y
⃓⃓ |z|) a.e. t ∈ [0, T],

⃓⃓
f (t, y, z, v)

⃓⃓ ≤ M1(1 + h
(︁⃓⃓

y
⃓⃓)︁

+ |z|κ ) a.e. t ∈ [0, T].

Moreover, they present results under another assumption where the generator exhibits
local Lipschitz continuity in both (y, z), along with linear growth. They establish necessary
and sufficient optimality conditions for non-convex control domains, characterized by a
linear SDE with local Lipschitz continuity and a maximum condition on the Hamiltonian.

In our context, we loosen the standard Lipschitz condition on the generator of the BS-
DEs, imposing a logarithmic growth condition with respect to y and linear growth with
respect to z in the first assumption. In the second assumption, we require the generator
to satisfy the logarithmic growth condition for both y and z, and we employ the Malliavin
approach.

For ease of notation, we denote hθ = ∂h
∂θ

for a given function h and parameter θ . The
primary challenge we face is with the coefficients in the resulting local Lipschitz linear
adjoint equation,

{︄
–dxt = fy(t, Yt , Zt , ut)xtdt + fz(t, Yt , Zt , ut)xtdWt ,

x0 = gy(Y0),
(3)
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which are only locally bounded. Consequently, they are locally Lipschitz on x but do not
satisfy the linear growth condition.

Given the existing results in the literature, confirmation regarding whether the adjoint
Equation (3) admits a unique solution remains elusive.

The organization of the paper is as follows: Sect. 2 introduces the foundational concepts
of our study, including the existence and uniqueness of both BSDE (1) and SDE (3), as
well as the control problem framework and preliminary lemmas. Section 3 establishes the
necessary and sufficient conditions for optimality (maximum principle). Finally, Sect. 4
relaxes the linear condition on z by extending the logarithmic growth condition to both
(y, z), with the analysis grounded in Malliavin differentiability.

2 Foundational concepts and existence findings
In this section, we will state some basic results related to BSDEs theory and prove the exis-
tence and uniqueness results for one kind of linear SDEs with local Lipschitz coefficients.

Assumption 1
(A.1.1) f and g are continuously differentiable with respect to (y, z) and there exists a

positive constant L such that: |g(y)| ≤ L(1 + |y|).
(A.1.2) We posit the existence of a positive constant λ, large enough where the

expected value of |ζ |1+eλT is finite.
(A.1.3) (i) f is continuous in (y, z).

(ii) There exist constants η, c0, c1: for any t ≥ 0, y, z, u ∈ U :

|f (t, y, z, u)| ≤ η + c0|y|| ln |y|| + c1|z|, a.e.

(A.1.4) There exist a real-valued sequence (AN )N>1 and constants M2 ∈ℝ+, r > 0 such
that:

(i) ∀ N > 1, 1 < AN ≤ Nr .
(ii) limN→∞ AN = ∞.

(iii) For every N ∈ℕ, u ∈ U and every y, y′, z, z′ such that |y|, |y′|, |z|, |z′| ≤ N ,
we have:

(︁
y – y′)︁(︁f (t, y, z, u) – f (t, y′, z′, u)

)︁

≤ M2
(︁ | y – y′ |2 ln(AN ) + |y – y′||z – z′|√︁ln(AN )

)︁
.

Remark 1 If f satisfies (A.1.1), then it satisfies a local Lipschitz condition, i.e., for all N ∈ℕ,
there exist two constants L1,N , L2,N > 0 such that for any u ∈ U and for those y, y′, z, z′ ∈ℝ

with max{|y|, |y′|, |z|, |z′|} ≤ N , the following condition holds:

|f (t, y, z, u) – f (t, y′, z, u)| ≤ L1,N |y – y′|,
|f (t, y, z, u) – f (t, y, z′, u)| ≤ L2,N |z – z′|.

Remark 2 Assume that f satisfies (A.1.1) and (A.1.4). Consequently, L1,N = M2 ln(AN ),
L2,N = M2

√
ln(AN ).
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Remark 3 If f satisfies (A.1.3), then for every t, y, z and u ∈ U :

|f (t, y, z, u)| ≤ ˜︁η + c0|y|| ln |y|| + c1|z|
√︁| ln(|z|)|,

where ˜︁η = η + c1e.

The following lemmas establish estimates, guaranteeing the boundedness of both the
generator and the solutions. The first two lemmas are thoroughly detailed and proven in
[4], with further details provided in [6].

Lemma 1 Assuming that conditions (A.1.2) and (A.1.3) hold, there exists a positive con-
stant C(T ,α,η, c0, c1) such that,

∫︂ T

0
𝔼

[︁⃓⃓
f (s, Ys, Zs, us)

⃓⃓α]︁
ds ≤ C(T ,α,η, c0, c1)

(︃
1 +

∫︂ T

0
𝔼

[︁ |Ys|μs+1 + |Zs|2
]︁

ds
)︃

,

where 1 < α < 2.

Lemma 2 Let (Yt , Zt)t≥0 represent the unique solutions to Equation (1). Then, there are
constants CT ,η and C(T , c0, c1), both positive, such that, under Assumption 1, the following
hold:

𝔼

[︂
sup

0≤t≤T
|Yt|1+eλT

]︂
≤ CT ,η𝔼

[︂
1 + |ζ |eλT +1

]︂
.

∫︂ T

0
𝔼[|Zs|2]ds ≤ C(T ,η, c0, c1)𝔼

[︂
1 + |ζ |2 + sup

0≤t≤T
|Yt|1+eλT

]︂
.

Lemma 3 If the assumption of the previous Lemma 2 holds and if ζ is bounded, we can
find constants C1,T , C2,T and C3,T , which depend on η, such that:

(i) sup0≤t≤T |Yt|1+eλT ≤ C1,T ,
∫︁ T

0 𝔼[|Zs|2]ds ≤ C2,T .
(ii)

∫︁ T
0 𝔼[|f (s, Ys, Zs, us)|2]ds ≤ C3,T .

Proof We derive the following insight based on the work of Bahlali et al. [4].

| Yt |1+eλT ≤ ℓ(η)
(︂

1+ | ζ |1+eλT
–

∫︂ T

t
(eλs + 1) | Ys |eλs

sgn(Ys)ZsdWs

)︂
,

and

∫︂ T

t
|Zs|2 ds ≤ ℓ(η)

(︄
1 + |ζ |2 + sup

s∈[0,T]
|Ys|1+eλT

+
∫︂ T

t
YsZs dWs

)︄
,

where ℓ(η) is a universal positive constant. We get the assertion (i) by taking the condi-
tional expectation for Y and the expectation for the rest.

By (A.1.3) and assertion (i), and since |Yt| ≤ 1 + |Yt|1+eλT ≤ 1 + C1,T , we get:

•
∫︂ T

0
𝔼[|f (s, Ys, Zs, us)|2]ds ≤ ℓ(η)

(︃
1 +

∫︂ T

0
𝔼

[︁|Ys|μs+1 + |Zs|2
]︁

ds
)︃

≤ C3,T . □
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Theorem 4 Let Assumptions (A.1.2)–(A.1.4) hold, then the BSDE (1) admits a unique so-
lution (Y , Z) in S1+eλT

([0, T],ℝ) ×ℳ2 ([0, T],ℝ).

Under Assumptions (A.1.2)–(A.1.4), the conditions in [4] that guarantee the existence
and uniqueness of the BSDE solution are satisfied. Therefore, the preceding theorem is
applicable.

It is important to observe that, for every v ∈ 𝒰ad , the functions fy(t, ·, ·, vt) and fz(t, ·, ·, vt)

are generally unbounded.
In the subsequent theorem, we establish the existence and uniqueness outcomes for the

SDE given by (3) up to a potential explosion time.

Theorem 5 Assuming that Assumption 1 is satisfied, we can assert that for any v ∈ 𝒰ad ,
the SDE (3) possesses a unique solution.

Remark 4 The previous theorem cannot guarantee the existence of a global solution but
rather only up to an ‘explosion time’ denoted as

τ ex
N := inf{t ∈ [0, T]; |fy(t, y, z, u)| ∧ |fz(t, y, z, u)| ≥ N}.

We require the following additional assumptions to ensure the existence of a global solu-
tion.

• Hloc: fy ∈ 𝕃
1
loc (ℝ+,ℝ), fz ∈ 𝕃

2
loc (ℝ+,ℝ).

• Hlin: There exists a positive constant L > 0, such that ∀ (y, z, u) ∈ℝ×ℝ× U :

|fy(t, y, z, u)| ≤ L(1 + |y|) + ϵ ln (|z| + 1), a.e. t ∈ [0, T],

|fz(t, y, z, u)| ≤ L(1 + |y|) + ϵ
√︁

ln (|z| + 1) a.e. t ∈ [0, T],

where ϵ is a positive constant that is small enough.

Remark 5 The assumption Hloc ensures that for any (Yt , Zt)t≥0 𝔽-adapted stochastic
processes, the SDE (3) has a global solution, while the assumption Hlin guarantees the
global solution under square-integrable 𝔽-adapted stochastic processes (i.e., (Yt , Zt)t≥0 ∈
𝕃

2
loc(ℝ+,ℝ)).

2.1 Control problem framework
This paper aims to address the control problem outlined in Equation (1) and the associated
cost functional (2). Our objective is to determine both necessary and sufficient conditions
for optimality. It is important to note that due to the unbounded nature of the derivatives
of f , standard duality methods are not directly applicable to this context.

For any p ≥ 1 and v ∈ 𝒰ad , we introduce a family of semi-norms (ρv
N ,p(f ))N∈ℕ defined as

follows:

ρv
N ,p(f ) =

(︄
𝔼

∫︂ T

0
sup

|y|,|z|≤N

⃓⃓
f (r, y, z, vr)

⃓⃓p dr

)︄ 1
p

.
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Lemma 6 Let f be a function that satisfies Assumption 1 and Hloc or Hlin. Then, there
exists a sequence of functions f n such that:

(i) For each n, f n is globally Lipschitz in (y, z) -a.e. t ∈ [0, T].
(ii) For each n, f n satisfies Assumption 1.

(iii) For every n, ρv
n,p(f n – f ) → 0 as n → ∞.

(iv) For every n, |f n
y | ≤ |fy| + c

n |f |, |f n
z | ≤ |fz| + c

n |f | and lim
n→+∞gn (resp. gn

y ) → g (resp. gy).

The following paragraphs are dedicated to transforming the original Problem (A) into
a sequence of control issues characterized by globally Lipschitz continuous functions. To
achieve this, take any specific n ∈ ℕ

∗ and a control v ∈ 𝒰ad . Let (Ȳ n
t , Z̄n

t )t≥0 represent the
solution of the corresponding controlled BSDE:

{︄
dȲ n

t = f n(t, Ȳ n
t , Z̄n

t , vt)dt + Z̄n
t dWt ,

Ȳ n
T = ζ .

(4)

Furthermore, define

𝒥 n(v·) = 𝔼
[︁
gn(Ȳ n

0 )
]︁

. (5)

The subsequent lemma provides estimates that will be employed to establish a relation-
ship between the control problem (4), (5) and Problem (A).

Lemma 7 Let (Yt)t≥0 and (Ȳ n
t )t≥0 be the solutions of BSDE (1) and (4), respectively, corre-

sponding to the control v ∈ 𝒰ad . Then, for any α ∈ (1, 2), q ∈ (0, 2) and any β ∈ (1, 3 – 2
α

),
the following hold:

(i) supt∈[0,T] 𝔼[|Ȳ n
t – Yt|β ] ≤ Kn,N , and 𝔼[

∫︁ T
0 |Z̄n

r – Zr|qdr] ≤ Kn,N .
(ii) |𝒥 n(v) – 𝒥 (v)| ≤ Cεn,N ,

where Kn,N and εn,N approach 0 as n goes to +∞ and N approaches +∞ subsequently, here
N denotes the radius of the ball B(0, N).

The proof of assertion (i) follows a similar methodology to that of Theorem 2.1 in [4],
while assertion (ii) is derived using the approach outlined in [1].

Consider an optimal control u defined as the solution to:

𝒥 (u·) = inf
v∈𝒰ad

𝒥 (v·),

under to the constraint (1). It is crucial to observe that u might not remain optimal for the
modified control problem. By Lemma 7, there is a positive sequence (δn) approaching to
0 where:

𝒥 n(u·) ≤ inf
v∈Uad

𝒥 n(v·) + δn,N ,

where δn,N = 2Cεn,N . To facilitate the application of Ekeland’s lemma, we need to introduce
a metric d on 𝒰ad . For any two controls u, v ∈ 𝒰ad , the metric d is given by:

d(u·, v·) = ℙ⊗ dt {(ω, t) ∈ Ω × [0, T] : u(ω, t) ≠ v(ω, t)} ,
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here,ℙ⊗dt denotes the product measure combining ℙ and the Lebesgue measure over the
interval [0, T]. Utilizing Ekeland’s lemma on 𝒥 n(u·) allows us to find un ∈ 𝒰ad satisfying:

d(un
· , u·) ≤ (δn,N )

1
2

and

𝒥 n(un
· ) ≤ 𝒥 n(v·) ∀ v ∈ 𝒰ad,

given that

𝒥 n(v·) = 𝒥 n(v·) + (δn,N )
1
2 d(v·, un

· ).

From the preceding arguments, we can deduce that un solves the optimal control prob-
lem given by Equations (4) and (5), but with 𝒥 n. For every n ∈ ℕ

∗, consider the pair
(Y n

t , Zn
t )t≥0, representing the distinctive solution to the subsequent BSDE under the in-

fluence of un:
{︄

dY n
t = f n(t, Y n

t , Zn
t , un

t )dt + Zn
t dWt ,

Y n
T = ζ .

(6)

Associated with this control problem is the following cost function:

𝒥 n(un
· ) = 𝔼

[︁
gn(Y n

0 )
]︁

. (7)

Now, we pose the subsequent optimization task, denoted as Problem (B): For any integer
n, find un ∈ 𝒰ad that minimizes (7) subject to (6).

In concluding this subsection, we introduce a set of adjoint equations. For every integer
n, examine the SDE given by:

{︄
–dxn

t = f n
y (t, Y n

t , Zn
t , un

t )xn
t dt + f n

z (t, Y n
t , Zn

t , un
t )xn

t dWt ,
xn

0 = gn
y (Y n

0 ).
(8)

Given that f n is a globally Lipschitz, implying boundedness of f n
y and f n

z . Consequently,
the coefficients of Equation (8) satisfy a global Lipschitz condition and exhibit linear
growth behavior. This implies that for any integer n, Equation (8) possesses a unique so-
lution.

Furthermore, we introduce a collection of Hamiltonian functions ℋn : [0, T] ×ℝ×ℝ×
ℝ× U →ℝ as follows:

ℋn(t, y, z, x, u) = xf n(t, y, z, u) for each n ∈ℕ.

2.2 Preliminary lemmas
In the following part of this subsection, we aim to consolidate and establish several help-
ful lemmas. These lemmas are instrumental in achieving our primary findings within the
subsequent section.
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Lemma 8 Define (f n) as the sequence of functions linked to f according to Lemma 6. Let
(Y n

t , Zn
t )t≥0 stand for the solution of Equation (6). Consequently, there exist constants K1,

K2 and K3 satisfying:
(i) supn 𝔼[sup0≤t≤T |Y n

t |eλT +1] ≤ K1.
(ii) supn 𝔼[

∫︁ T
0 |Zn

s |2ds] ≤ K2.
(iii) supn 𝔼[

∫︁ T
0 |f n(s, Y n

s , Zn
s , un

s )|αds] ≤ K3,
where α ∈ (1, 2).

The demonstration of the following Lemma is outlined in [4].

Lemma 9 Under Assumption 1, we have:

lim
n→∞𝔼

[︂
sup

t∈[0,T]
|Y n

t – Yt|β
]︂

= 0. (9)

lim
n→∞𝔼

∫︂ T

0

⃓⃓
Zn

t – Zt
⃓⃓q dt = 0. (10)

Lemma 10 Under Assumption 1 and Hlin, the following estimates hold:

lim
n→∞𝔼

∫︂ T

0

⃓⃓
f n(r, Y n

r , Zn
r , un

r ) – f (r, Yr , Zr , ur)
⃓⃓ᾱ dr = 0. (11)

lim
n→∞𝔼

∫︂ T

0

⃓⃓
⃓f n

y (r, Y n
r , Zn

r , un
r ) – fy(r, Yr , Zr , ur)

⃓⃓
⃓q

dr = 0. (12)

lim
n→∞𝔼

∫︂ T

0

⃓⃓
f n
z (r, Y n

r , Zn
r , un

r ) – fz(r, Yr , Zr , ur)
⃓⃓q dr = 0, (13)

where q ∈ (0, 2) and ᾱ ∈ (1,α).

Remark 6 To demonstrate the convergence of a sequence Xn of random variables in 𝕃
p,

where p ≥ 1, it suffices to establish convergence in probability and ensure that {|Xn|p, n ∈
ℕ

∗} is uniformly integrable.

Proof Assuming Assumption 1 and Hlin hold. Drawing from our knowledge and the pre-
ceding remark, it is essential to demonstrate the convergence in 𝕃

1.

𝔼

∫︂ T

0
|f n(r, Y n

r , Zn
r , un

r ) – f (r, Yr , Zr , ur)|dr

≤ 𝔼

∫︂ T

0
|f n(r, Y n

r , Zn
r , ur) – f (r, Yr , Zr , ur)|dr

+𝔼
∫︂ T

0
|f n(r, Y n

r , Zn
r , un

r ) – f n(r, Y n
r , Zn

r , ur)|11{un
r ≠ur}dr.

Considering the previous derivation in [4], we have:

lim
n→∞𝔼

∫︂ T

0
|f n(r, Y n

r , Zn
r , ur) – f (r, Yr , Zr , ur)|dr = 0.
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Holder’s inequality yields to:

𝔼

∫︂ T

0
|f n(r, Y n

r , Zn
r , un

r ) – f n(r, Y n
r , Zn

r , ur)|11{un
r ≠ur}dr

≤
(︃
𝔼

∫︂ T

0
|f n(r, Y n

r , Zn
r , un

r ) – f n(r, Y n
r , Zn

r , ur)|αdr
)︃ 1

α
(︃
𝔼

∫︂ T

0
11{un

r ≠ur}dr
)︃1– 1

α

≤ (4K3)
1
α

(︁
d(un

· , u·)
)︁1– 1

α .

d(un· , u·) approaches 0 as n tends to infinity, thus (11) is satisfied.
We give the proof of (12). The proof of (13) can be performed similarly. Since |y|| ln |y|| ≤

e–1 + |y|2 and for any n ∈ ℕ
∗, t ∈ [0, T], we have |Y n

t |, |Zn
t | ≤ n. Thus by (A.1.3), we have

for any v ∈ 𝒰ad that,

1
n2 |f n(r, Y n

r , Zn
r , vr)|2 ≤ C

n2 (1 + η2 + |Y n
r |4 + |Zn

r |2)

≤ C(1 +
1
n2 +

η2

n2 + |Y n
r |2).

By (i) of Lemma 8, we get:

sup
n

𝔼

∫︂ T

0

1
n2 |f n(r, Y n

r , Zn
r , vr)|2dr ≤ C, (14)

where C is a universal constant. Using assertion (iv) of Lemma 6, along with Hlin and (14),
we obtain:

sup
n

𝔼

∫︂ T

0
(|f n

y (r, Y n
r , Zn

r , vr)|2 + |f n
z (r, Y n

r , Zn
r , vr)|2)dr ≤ K4. (15)

Let N > 1, we put ΛN
n :=

{︁
(r,ω), |Y n

r | + |Zn
r | > N

}︁
and Λ̄N

n = Ω\ΛN
n , then we have:

𝔼

∫︂ T

0

⃓⃓
⃓f n

y (r, Y n
r , Zn

r , un
r ) – fy(r, Yr , Zr , ur)

⃓⃓
⃓dr

≤ 𝔼

∫︂ T

0

⃓⃓
⃓f n

y (r, Y n
r , Zn

r , un
r ) – f n

y (r, Y n
r , Zn

r , ur)
⃓⃓
⃓11{un

r ≠ur}dr

+𝔼
∫︂ T

0

⃓⃓
⃓f n

y (r, Y n
r , Zn

r , ur) – fy(r, Y n
r , Zn

r , ur)
⃓⃓
⃓dr

+𝔼
∫︂ T

0

⃓⃓
fy(r, Y n

r , Zn
r , ur) – fy(r, Yr , Zr , ur)

⃓⃓
dr.

By Schwarz’s inequality and Hlin, we have:

𝔼

∫︂ T

0
|f n

y (r, Y n
r , Zn

r , un
r ) – f n

y (r, Y n
r , Zn

r , ur)|11{un
r ≠ur}dr

≤ 2𝔼
∫︂ T

0

(︁
L(1 + |Y n

r |) + ϵ ln (|Zn
r | + 1)

)︁
11{un

r ≠ur}dr

≤ 2L𝔼
∫︂ T

0

(︁
2 + |Y n

r | + |Zn
r |)︁11{un

r ≠ur}dr
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≤ 2L
(︃

8T + 4𝔼
∫︂ T

0
(|Y n

r |2 + |Zn
r |2)dr

)︃ 1
2 (︃

𝔼

∫︂ T

0
11{un

r ≠ur}dr
)︃ 1

2

≤ 4L (2T + TK1 + K2)
1
2
(︁
d(un

· , u·)
)︁ 1

2 .

Therefore,

lim
n→∞𝔼

∫︂ T

0
|f n

y (r, Y n
r , Zn

r , un
r ) – f n

y (r, Y n
r , Zn

r , ur)|11{un
r ≠ur}dr = 0.

Due to the fact that 11AN < |Y n
r |+|Zn

r |
N 11AN , and by using Schwarz’s inequality, we obtain:

𝔼

∫︂ T

0

⃓⃓
⃓(f n

y – fy)(r, Y n
r , Zn

r , ur)
⃓⃓
⃓dr

≤ ρu
N ,1(f n

y – fy) +
2(TK1 + K2)

1
2

N

(︃
𝔼

∫︂ T

0

⃓⃓
⃓(f n

y – fy)(r, Y n
r , Zn

r , ur)
⃓⃓
⃓2

dr
)︃ 1

2

.

By (15), we can assert the presence of a constant ℓ > 0 for which:

𝔼

∫︂ T

0

⃓⃓
⃓(f n

y – fy)(r, Y n
r , Zn

r , ur)
⃓⃓
⃓dr ≤ ρu

N ,1(f n
y – fy) + ℓ

(︂2(TK1 + K2)

N
(K4)

1
2
)︂

.

Taking the limit initially with respect to n followed by N , we obtain,

lim
n→∞𝔼

∫︂ T

0

⃓⃓
⃓(f n

y – fy)(r, Y n
r , Zn

r , ur)
⃓⃓
⃓dr = 0.

Assumption Hlin and Lemma 8 enable the use of the Lebesgue Dominated Convergence
Theorem, which facilitates the demonstration that:

lim
n→∞𝔼

∫︂ T

0

⃓⃓
fy(r, Y n

r , Zn
r , ur) – fy(r, Yr , Zr , ur)

⃓⃓
dr = 0.

Hence, (12) is established. □

Assumption 2 The validity of Assumption 1 in conjunction with Hlin, along with the con-
straint that ζ is bounded.

Lemma 11 Assume that Assumption 2 holds. Let (Yt , Zt)t≥0 (resp. (Y n
t , Zn

t )t≥0) denote the
unique solutions of the BSDE (1) (resp. (6)). Then, for any v ∈ 𝒰ad and p ≥ 2 there exists a
universal constant C, for which:

𝔼

∫︂ T

0
(|f |2 + |fy|p + |fz|p)(r, Yr , Zr , vr)dr ≤ C,

sup
n

𝔼

∫︂ T

0
(|f n|2 + |f n

y |p + |f n
z |p)(r, Y n

r , Zn
r , vr)dr ≤ C.

Proof By assertion (i) of Lemma 3, we have Y is bounded. Moreover,

ln (|z| + 1) =
p
2

ln (|z| + 1)
2
p ≤ p

2
(|z| + 1)

2
p .
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Thus (ln (|z| + 1))p ≤ C(|z|2 + 1). By Hlin and Lemma 3 we get:

𝔼

∫︂ T

0
(|f |2 + |fy|p + |fz|p)(r, Yr , Zr , vr)dr ≤ C.

For any n ∈ ℕ
∗ and t ∈ [0, T], we have |Y n

t | ≤ C1,T . Since |Zn
t | ≤ n, Assumption (A.1.3)

yields,

1
np |f n(r, Y n

r , Zn
r , vr)|p ≤ C and |f n(r, Y n

r , Zn
r , vr)|2 ≤ C(1 + |Zn

r |2).

Thus, by assertion (iv) of Lemma 6, assertion (ii) of Lemma 8, and the previous result, we
have:

sup
n

𝔼

∫︂ T

0
(|f n|2 + |f n

y |p + |f n
z |p)(r, Y n

r , Zn
r , vr)dr ≤ C. □

Remark 7 If Assumption 2 holds, then for any α ∈ (1, 2) and p ≥ 2, Lemma 10 and
Lemma 11 guarantee the following convergence:

lim
n→∞𝔼

∫︂ T

0

⃓⃓
f n(r, Y n

r , Zn
r , un

r ) – f (r, Yr , Zr , ur)
⃓⃓α dr = 0. (16)

lim
n→∞𝔼

∫︂ T

0

⃓⃓
⃓f n

y (r, Y n
r , Zn

r , un
r ) – fy(r, Yr , Zr , ur)

⃓⃓
⃓p

dr = 0. (17)

lim
n→∞𝔼

∫︂ T

0

⃓⃓
f n
z (r, Y n

r , Zn
r , un

r ) – fz(r, Yr , Zr , ur)
⃓⃓p dr = 0. (18)

Lemma 12 Under the fulfillment of Assumptions 2, the solutions x and xn to Equations (3)
and (8), respectively, are bounded in the space Sp ([0, T],ℝ) for all p ≥ 2. More specifically,
two positive constants ℓT and ℓT can be found, ensuring that:

𝔼

[︃
sup

0≤t≤T
|xt|p

]︃
≤ ℓT ,

𝔼

[︃
sup

0≤t≤T
|xn

t |p
]︃

≤ ℓT , ∀n ∈ℕ.

Proof Let p ≥ 2. By applying Itô’s formula, we obtain (sgn(xt)xt = |xt|):

|xt|p ≤ |gy(Y0)|p + p
∫︂ T

0
|xs|p

(︁|fy| +
p – 1

2
|fz|2

)︁
(s, Ys, Zs, us)ds

+
⃓⃓
⃓
∫︂ t

0
|xs|pfz(s, Ys, Zs, us)dWs

⃓⃓
⃓

≤ |gy(Y0)|p + p
∫︂ T

0
sup

0≤r≤s
{|xr|p}

(︁|fy| +
p – 1

2
|fz|2

)︁
(s, Ys, Zs, us)ds

+
⃓⃓
⃓
∫︂ t

0
|xs|pfz(s, Ys, Zs, us)dWs

⃓⃓
⃓. (19)
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By BDG’s inequality

𝔼

[︃
sup

0≤t≤T

⃓⃓
⃓
∫︂ t

0
|xs|pfz(s, Ys, Zs, us)dWs

⃓⃓
⃓
]︃

≤ 3𝔼

⎡
⎣

(︃∫︂ T

0
|xs|2p|fz(s, Ys, Zs, us)|2ds

)︃ 1
2
⎤
⎦

≤ 3𝔼

⎡
⎣

(︃∫︂ T

0
sup

0≤r≤s
|xr|2p|fz(s, Ys, Zs, us)|2ds

)︃ 1
2
⎤
⎦

≤ 3𝔼

⎡
⎣ sup

0≤t≤T
|xt| p

2

(︃∫︂ T

0
sup

0≤r≤s
|xr|p|fz(s, Ys, Zs, us)|2ds

)︃ 1
2
⎤
⎦

≤ 𝔼

[︃
1
2

sup
0≤t≤T

|xt|p +
9
2

∫︂ T

0
sup

0≤r≤s
|xr|p|fz(s, Ys, Zs, us)|2ds

]︃
,

the last inequality is obtained using Young’s (ab ≤ 1
6 a2 + 3

2 b2). Therefore, by taking the
supremum and then the expectation of (19), and applying the previous inequality, we ob-
tain:

𝔼

[︂
sup

0≤t≤T
|xt|p

]︂
≤ 𝔼

[︂
2|gy(Y0)|p +

∫︂ T

0
sup

0≤r≤s
|xr|p

(︁
2p|fy(s, Ys, Zs, us)|

+(p(p – 1) + 9)|fz(s, Ys, Zs, us)|2
)︁
ds

]︂
.

Gronwall’s lemma, yields,

𝔼

[︂
sup

0≤t≤T
|xt|p

]︂
≤ 2𝔼

[︃
|gy(Y0)|p exp

(︃∫︂ T

0

(︁
2p|fy| + (p(p – 1) + 9)|fz|2

)︁
(s, Ys, Zs, us)ds

)︃]︃
.

Since gy is locally bounded and Y0, Y n
0 ≤ C1,T (where C1,T does not depend on n), gy(Y0)

and gy(Y n
0 ) are bounded. Moreover, by Hlin, we have:

𝔼

[︂
sup

0≤t≤T
|xt|p

]︂
≤ C𝔼

[︃
exp

(︃∫︂ T

0

(︁
2pϵ ln (|Zs| + 1) + (p(p – 1) + 9)ϵ2 ln (|Zs| + 1)

)︁
ds

)︃]︃
,

where C is a constant that may change from line to line. Since ϵ is sufficiently small, there-
fore 2pϵ + (p(p – 1) + 9)ϵ2 ≤ 2. Thus, by Jensen’s inequality, we get:

𝔼

[︂
sup

0≤t≤T
|xt|p

]︂
≤ C𝔼

[︃
exp

(︃∫︂ T

0
ln (|Zs| + 1)2ds

)︃]︃

≤ C
(︂

1 +
∫︂ T

0
𝔼[|Zs|2]ds

)︂
=: ℓT .

Following the same arguments as previously, and since 1
np |f n(r, Y n

r , Zn
r , vr)|p ≤ C, we have:

sup
n

𝔼

[︂
sup

0≤t≤T
|xn

t |p
]︂

≤ ℓT . □
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Lemma 13 Let (xt)t≥0 and (xn
t )t≥0 be respectively the solution of (3) and (8), then under

Assumption 2, we have:

lim
n→∞ sup

t∈[0,T]
𝔼

[︁⃓⃓
xn

t – xt
⃓⃓p]︁ = 0, ∀ p ≥ 2. (20)

Proof Lemma 12 implies that {|xn
t |p, t ∈ [0, T], n ∈ ℕ

∗, p ≥ 2} is uniformly integrable.
Based on Equations (3) and (8), applying Itô’s formula, we get:

|xn
t – xt|2 ≤ |gn

y (Y n
0 ) – gy(Y0)|2

+2
∫︂ T

0
|xn

r – xr||xn
r f n

y (r, Y n
r , Zn

r , un
r ) – xrfy(r, Yr , Zr , ur)|dr

+
∫︂ T

0
|xn

r f n
z (r, Y n

r , Zn
r , un

r ) – xrfz(r, Yr , Zr , ur)|2dr

–2
∫︂ t

0
(xn

r – xr)(xn
r f n

z (r, Y n
r , Zn

r , un
r ) – xrfz(r, Yr , Zr , ur))dWr .

By using Young’s inequality and taking the expectation, we arrive at:

𝔼
[︁|xn

t – xt|2
]︁ ≤ 𝔼

[︂
|gn

y (Y n
0 ) – gy(Y0)|2

]︂

+2𝔼
[︃∫︂ T

0
|xn

r – xr|2(|f n
y | + |f n

z |(r, Y n
r , Zn

r , un
r )dr

]︃

+2𝔼
[︃∫︂ T

0
|xn

r – xr||xr||f n
y (r, Y n

r , Zn
r , un

r ) – fy(r, Yr , Zr , ur)|dr
]︃

+2𝔼
[︃∫︂ T

0
|xr|2|f n

z (r, Y n
r , Zn

r , un
r ) – fz(r, Yr , Zr , ur)|2dr

]︃
.

Since for any n ∈ℕ
∗ and p ≥ 2, 𝔼[sup0≤t≤T (|xt|p + |xn

t |p)] ≤ ℓT + ℓT . By Hölder’s inequality,
we get a universal constant C, such that:

𝔼

[︂
|xn

t – xt|2
]︂

≤ 𝔼

[︂
|gn

y (Y n
0 ) – gy(Y0)|2

]︂
+ Cγ n

+2𝔼
[︃∫︂ T

0
|xn

r – xr|2(|f n
y | + |f n

z |2)(r, Y n
r , Zn

r , un
r )dr

]︃
,

where,

γ n := 𝔼

[︂∫︂ T

0
(|f n

y (r, Y n
r , Zn

r , un
r ) – fy(r, Yr , Zr , ur)|2

+|f n
z (r, Y n

r , Zn
r , un

r ) – fz(r, Yr , Zr , ur)|4)dr
]︂
.

The sequence γ n tends to zero as n approaches infinity, as indicated by (17) and (18).
Moreover, with the same steps as in the proof of Lemma 12, we can obtain:

sup
n

𝔼

[︂
exp

(︂
2
∫︂ T

0
(|f n

y | + |f n
z |2)(r, Y n

r , Zn
r , un

r )dr
)︂]︂

≤ C.
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Establishing the desired result is facilitated by demonstrating the convergence of the initial
terms to zero and applying Gronwall’s lemma. Since gy(Y0), gn

y (Y0) and gy(Y n
0 ) are bounded,

allowing us to use the Dominated Convergence Theorem. Furthermore, by (iv) of Lemma 6
and Equation (9), we obtain:

lim
n→∞𝔼

⃓⃓
⃓gn

y (Y n
0 ) – gy(Y0)

⃓⃓
⃓2 ≤ 2 lim

n→∞𝔼

[︂
|gn

y (Y n
0 ) – gy(Y n

0 )|2 + |gy(Y n
0 ) – gy(Y0)|2

]︂

= 0. □

3 Necessary and sufficient conditions for optimality
This section is dedicated to establishing the necessary optimality condition for the opti-
mization Problem (A).

3.1 Necessary optimality condition
We rely on the following lemma to establish the necessary condition for optimality, which
forms the foundation for our further investigation.

Lemma 14 Under the fulfillment of Assumption 2, we can establish the following:

lim
n→∞𝔼

∫︂ T

0

⃓⃓
Φn (r) – Φ(r)

⃓⃓
dr = 0,

where

Φn (r) =
[︁ℋn(r, Y n

r , Zn
r , xn

r , un
r ) – ℋn(r, Y n

r , Zn
r , xn

r , vr)
]︁

,

and

Φ(r) = [ℋ(r, Yr , Zr , xr , ur) – ℋ(r, Yr , Zr , xr , vr)] .

Proof A straightforward computation demonstrates that:

𝔼

∫︂ T

0

⃓⃓
Φn(r) – Φ(r)

⃓⃓
dr ≤ 𝔼

∫︂ T

0

⃓⃓
f n(r, Y n

r , Zn
r , un

r )xn
r – f (r, Yr , Zr , ur)xr

⃓⃓
dr

+𝔼
∫︂ T

0

⃓⃓
f n(r, Y n

r , Zn
r , vr)xn

r – f (r, Yr , Zr , vr)xr
⃓⃓
dr.

To simplify matters, we represent the first and second integrals by In
1 and In

2 , respectively,
and demonstrate their convergence to 0 as n goes to +∞.

By applying Hölder’s inequality (for α, ᾱ = α
α–1 ) and utilizing both 12 and property (iii)

from Lemma 8, we obtain:

In
1 ≤

(︃∫︂ T

0
𝔼|f n(r, Y n

r , Zn
r , un

r )|αdr
)︃ 1

α
(︃∫︂ T

0
𝔼|xn

r – xr|ᾱdr
)︃ 1

ᾱ

+
(︃∫︂ T

0
𝔼|xr|ᾱdr

)︃ 1
ᾱ

(︃∫︂ T

0
𝔼|f n(r, Y n

r , Zn
r , un

r ) – f n(r, Yr , Zr , ur|αdr
)︃ 1

α

≤ K
1
α

3

(︃∫︂ T

0
𝔼|xn

r – xr|ᾱdr
)︃ 1

ᾱ
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+TℓT

(︃∫︂ T

0
𝔼|f n(r, Y n

r , Zn
r , un

r ) – f (r, Yr , Zr , ur)|αdr
)︃ 1

α

.

By (16) and (20), In
1 converges to 0 as n → ∞. On the flip side, utilizing similar arguments

as presented earlier, it becomes apparent that the limit of In
2 tends to 0 as n approaches

+∞. This concludes the proof. □

Primary result of this paper

Theorem 15 Let u denote the optimal control for the problem (A), and (Y , Z) represent
the unique solution of BSDE (1) corresponding to u. There exists a unique adapted process
(xt)t≥0 in 𝒮2([0, T],ℝ), which is the solution to the associated forward SDE (3). This process
(xt)t≥0 is uniquely characterized by ensuring that the Hamiltonian ℋ is minimized at the
control (ut)t≥0, such that

ℋ(t, Yt , Zt , xt , ut) = min
v∈𝒰ad

ℋ(t, Yt , Zt , xt , vt) dt-a.e., ℙ-a.s. (21)

Proof To elucidate the key steps in our proof, we begin by transforming Problem (A) into
a more manageable Problem (B).

Next, we employ the spike variation approach to establish a necessary condition for ap-
proximate optimality while addressing Problem (B). Finally, leveraging Lemma 14 and tak-
ing appropriate limits, we culminate the desired optimality condition (21).

For any integer n, let un be a control that is optimal for Problem (B), satisfying 𝒥 n(un· ) ≤
infv∈𝒰ad 𝒥 n(v·). Let the solution of BSDE (6) be denoted by

(︁
Y n

t , Zn
t
)︁

t≥0 associated with un.
Define the spike variation as:

un,θ
t =

{︄
vt if t ∈ [t0, t0 + θ) ,
un

t otherwise.

where t0 is a fixed time within the interval [0, T], θ > 0 is a small positive constant, and v
represents any ℱt0 -measurable random variable.

Consider the following:

𝒥 n(un
· ) ≤ 𝒥 n(un,θ

· ),

and

d(un,θ
· , un

· ) ≤ θ .

These lead to:

𝒥 n(un,θ
· ) – 𝒥 n(un

· ) ≥ –(δn,N )
1
2 θ . (22)

Utilizing standard arguments (see, for instance, [18]), we can show that the expression
on the left side of (22) is:

𝔼

∫︂ t0+θ

t0

[︁ℋn(r, Y n
r , Zn

r , xn
r , vr) – ℋn(r, Y n

r , Zn
r , xn

r , un
r )

]︁
dr + o (θ) .
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By dividing each side of (22) by θ , we obtain:

–(δn,N )
1
2 ≤ 1

θ
𝔼

∫︂ t0+θ

t0

[︁ℋn(r, Y n
r , Zn

r , xn
r , vr) – ℋn(r, Y n

r , Zn
r , xn

r , un
r )

]︁
dr +

o (θ)

θ
.

Applying Lemma 14 and successively taking limits on n, N , and θ , while considering the
arbitrary nature of t0 in [0, T], yields:

𝔼 [ℋ(t, Yt , Zt , xt , vt) – ℋ(t, Yt , Zt , xt , ut)] ≥ 0.

Consider a fixed element a within the set U , and let B be any set belonging to the σ -
algebra ℱt . Define:

wt = a11B + ut11Ω\B.

The control w satisfies the admissibility criteria. Utilizing the aforementioned inequality
with w, we infer:

𝔼 [11B (ℋ(t, Yt , Zt , xt , a) – ℋ(t, Yt , Zt , xt , ut))] ≥ 0, ∀ B ∈ℱt ,

which leads to:

𝔼
ℱt [ℋ(t, Yt , Zt , xt , a) – ℋ(t, Yt , Zt , xt , ut)] ≥ 0.

Since the expression inside the conditional expectation is measurable with respect to ℱt ,
the desired result follows directly. □

Example 1 Let f (t, y, z, u) := η + y ln |y| + z + u. Clearly, f satisfies the conditions of exis-
tence and uniqueness, i.e., (A.2)-(A.4), as outlined in the first example in [3]. Therefore, it
remains to verify that (A.1) holds.

The partial derivatives of f are given by:

fy(t, y, z, u) = 1 + ln |y|; fz(t, y, z, u) = 1.

This shows that f is continuously differentiable with respect to z and is differentiable al-
most everywhere in y. Moreover, it is evident that for any L ≥ 1 and ϵ > 0:

|fy(t, y, z, u)| ≤ L(1 + |y|) + ϵ ln (|z| + 1), a.e. t ∈ [0, T],

|fz(t, y, z, u)| ≤ L(1 + |y|) + ϵ
√︁

ln (|z| + 1) a.e. t ∈ [0, T].

Thus, assumption Hlin is satisfied.
Next, consider the function g(y) := y2, which is continuously differentiable and locally

Lipschitz. As a result, Assumption 2 is also fulfilled. According to Theorem 15, we then
obtain:

ℋ(t, Yt , Zt , xt , ut) = min
v∈𝒰ad

ℋ(t, Yt , Zt , xt , vt) dt-a.e., ℙ-a.s.,

where ℋ(t, Yt , Zt , xt , vt) = xt(η + Yt ln |Yt| + Zt + vt).
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3.2 The inverse problem
This section investigates the extension of a previously established necessary optimality
condition (21) to serve as a sufficient condition under additional assumptions.

Theorem 16 Assume that the mapping (y, z, u) ↦→ℋ(t, y, z, x, u) is convex for almost every-
where t ∈ [0, T], and that f satisfies the Lipschitz condition with respect to u. Furthermore,
assume that g is convex. Provided that condition (21) is satisfied, then (ut)t≥0 is optimal for
Problem (A).

Proof For any t ∈ [0, T], let 𝒱t denote the set of all ℱt-measurable, U-valued random
variables. Consider any B ∈ℱt . For ν ∈ 𝒱t , define

ℐn(v) = 𝔼[ℋn(t, X̂n
t , Ŷ n

t , v)11B].

Let u satisfy the condition in Equation (21). Note that u does not necessarily satisfy the
necessary condition for optimality for the perturbed control problem (6) and (7).

Using convergence results, a simple computation shows that:

ℐn(ut) = inf
v∈𝒱t

ℐn(v) + δn.

where δn is a positive sequence that approaches 0.
Applying Ekeland’s variational principle to ℐn, we can find un ∈ 𝒰ad for which:

ℐn,δ(vt) = ℐn(vt) +
√︁

δnd(v·, un
· ), for any v ∈ 𝒰ad.

We want to show that u is an optimal control for the original cost function 𝒥 .
(i) un minimizes ℐn,δ :

ℐn,δ
(︁
un

t
)︁ ≤ ℐn,δ(vt), for any v ∈ 𝒰ad.

(ii) The distance between un and u is bounded by:

d
(︁
un

· , u·
)︁ ≤ √︁

δn.

(iii) Given that B is an arbitrary element of the σ -algebra ℱt and since un minimizes ℐn,δ

by definition, we have:

√︁
δnd(v·, un

· ) ≥ 𝔼
[︁ℋn(t, Y n

t , Zn
t , xn

t , un
t ) – ℋn(t, Y n

t , Zn
t , xn

t , vt)
⃓⃓ℱt

]︁

= ℋn(t, Y n
t , Zn

t , xn
t , un

t ) – ℋn(t, Y n
t , Zn

t , xn
t , vt).

Therefore, it follows that:

ℋn
δ (t, Y n

t , Zn
t , xn

t , un
t ) – ℋn

δ (t, Y n
t , Zn

t , xn
t , vt) ≤ 0, (23)

where ℋn
δ (t, Y n

t , Zn
t , xn

t , vt) = ℋn(t, Y n
t , Zn

t , xn
t , vt) +

√
δnd(v·, un· ).
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Since f n is globally Lipschitz and xn is bounded, ℋn is also globally Lipschitz. Thus, by
applying the result from [10], the necessary condition (23) becomes sufficient. Therefore,
we obtain:

𝒥 n
δ

(︁
un

·
)︁

= inf
v∈𝒰ad

𝒥 n
δ (v·).

This definition of the modified cost-functional:

𝒥 n
δ (v·) := 𝒥 n(v·) +

√︁
δnd

(︁
v·, un

·
)︁

,

allows us to conclude that for each admissible control v ∈ 𝒰ad ,

𝒥 n (︁
un

·
)︁ ≤ 𝒥 n(v·) + O (δn) ,

where O (δn) represents terms that vanish as δn approaches zero.
According to assertion (ii) in Lemma 7, 𝒥 n(v·) approaches 𝒥 (v·) as n goes to infinity.

Moreover, we have:

|𝒥 n (︁
un

·
)︁

– 𝒥 (u·) | ≤ 𝔼[|gn(Y n
0 ) – g(Y0)|]

≤ 𝔼[|gn(Y n
0 ) – gn(Y0)|] + 𝔼[|gn(Y0) – g(Y0)|]

≤ C𝔼[|Y n
0 – Y0|] + 𝔼[|gn(Y0) – g(Y0)|].

Since g (respectively, gn) has linear growth and Y0 (respectively, Y n
0 ) is bounded, this

enables the application of the Dominated Convergence Theorem. By assertion (iv) of
Lemma 6 and Lemma 9, we obtain: limn→+∞ 𝒥 n (︁

un·
)︁ → 𝒥 (u·). Thus,

𝒥 (u·) = inf
u∈𝒰ad

𝒥 (v·),

which implies that u is an optimal control for the cost function 𝒥 . □

4 A generalized logarithmic growth condition in the context of Malliavin
differentiability

In this section, we address a significant extension of the previous part by relaxing the linear
condition on z. Specifically, we generalize the logarithmic growth condition to include
both y and z, thereby broadening the applicability of the results beyond the restrictive
linear case. This relaxation is achieved through the use of Malliavin differentiability.

Assumption 3
(A.3.1) f and g are continuously differentiable with respect to (y, z) and f is globally

Lipschitz with respect to v.
(A.3.2) Assume that ζ is bounded and an element of 𝔻1,2, and there are constants M3

and M4 for which, for all v ∈ 𝒰ad , we have:

∫︂ T

0
|Drvs|ds ≤ M3, and |Drζ | ≤ M4, ∀ r ≤ T .
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(A.3.3) There exists a positive constant c such that, for every t, y, z, v ∈ U :

|f (t, y, z, v)| ≤ c(1 + |y|| ln |y|| + |z|√︁| ln(|z|)|).

(A.3.4) There is a positive constant L > 0 such that for all (y, z, v) ∈ℝ×ℝ× U :

|fy(t, y, z, v)| ≤ L(1 + |y|) + ln (|z| + 1), -a.e. t ∈ [0, T].

Theorem 17 Assuming conditions (A.3.2) and (A.3.3) hold, the BSDE (1) possesses at least
one solution (Y , Z) in S1+eλT

([0, T],ℝ) ×ℳ2 ([0, T],ℝ).

Indeed, if Assumptions (A.3.2) and (A.3.3) hold, then conditions (H1) and (H2) in [4]
are fulfilled. Therefore, according to Theorem 2.2 in [4], the BSDE (1) is guaranteed to
have a solution.

Lemma 18 If Assumption 3 holds, we can get constants C1,T , C2,T and C3,T such that:
(i) sup0≤t≤T |Yt| ≤ C1,T .

(ii) sup0≤t≤T |Zt| ≤ C2,T .
(iii) sup0≤t≤T |f (t, Yt , Zt , vt)| ≤ C3,T .

Proof By following the identical procedure used in the proof of Lemma 3, we can show
that assertion (i) also holds.

We aim to substantiate assertion (ii).
Let N ∈ ℕ

∗ and f N (t, y, z, v) = f (t, y, z, v)ψ( z
N ), where ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if

|x| ≥ 2. Clearly f N satisfies Assumption 3, thus:

{︄
dYt = f N (t, Yt , Zt , vt)dt + ZtdWt ,
YT = ζ ,

admits a solution (Y , Z) ∈ S1+eλT
([0, T],ℝ) × ℳ2([0, T],ℝ). Moreover, sup0≤t≤T |Yt| ≤

C1,T . According to Proposition 2.2 in [15], we deduce that for all t ≤ T , Y and Z are ele-
ments of 𝔻1,2. Furthermore, for all r ∈ [0, T] the pair (DrYt , DrZt)t≤T satisfies linear BSDE:

DrYt = Drζ –
∫︂ T

t

(︁
f N
y (s, Ys, Zs, vs)DrYs + f N

z (s, Ys, Zs, vs)DrZs
)︁
ds

–
∫︂ T

t
AsDrvsds –

∫︂ T

t
DrZsdWs,

DtYt = Zt ,

where (As)s≥0 is a bounded process, with the bound denoted by a constant M5 [11]. Con-
sider the process γ fz = (γ fz

t )0≤t≤T given by:

γ
fz
t := ℰ

(︃
–

∫︂ t

0
f N
z (s, Ys, Zs, vs)dWs

)︃
, t ∈ [0, T], ℙ a.s.,

where ℰ denotes the stochastic exponential. Since f N
z is uniformly bounded it follows

that, the process (γ fz
t )0≤t≤T is a martingale process. Moreover, 𝔼[|γ fz

t |2] is finite. Let
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γ
fz
t := dℙfz

dℙ |ℱt , this implies absolute continuity of ℙfz with respect to ℙ under Girsanov’s
theorem.

Girsanov’s theorem further establishes that:

W fz
t = Wt +

∫︂ t

0
f N
z (s, Ys, Zs, vs)ds, for t ∈ [0, T],

is a Brownian motion under ℙfz . Therefore, under ℙfz we have

DrYt = Drζ –
∫︂ T

t

(︂
f N
y (s, Ys, Zs, vs)DrYs + AsDrvs

)︂
ds

–
∫︂ T

t
DrZsdW fz

s t ≤ T , (24)

DrYt = 0 r > t.

Moreover,

𝔼
ℙ

fz

⎡
⎣

(︃∫︂ T

0
|DrZs|2ds

)︃ 1
2
⎤
⎦ = 𝔼

⎡
⎣γ

fz
T

(︃∫︂ T

0
|DrZs|2ds

)︃ 1
2
⎤
⎦

≤ 𝔼[|γ fz
T |2] + 𝔼

[︃∫︂ T

0
|DrZs|2ds

]︃
< ∞.

By taking the conditional expectation of (24) and applying Jensen’s inequality, we obtain:

|DrYt| ≤ M4 + 𝔼
ℙ

fz
[︂∫︂ T

0
|AsDrvs|ds +

∫︂ T

t
|f N

y (s, Ys, Zs, vs)DrYs|ds
⃓⃓
⃓ℱt

]︂

≤ M4 + M3M5 + 𝔼
ℙ

fz
[︂∫︂ T

t
|f N

y (s, Ys, Zs, vs)DrYs|ds
⃓⃓
⃓ℱt

]︂
. (25)

Since supt∈[0,T] |Yt| ≤ C1,T and ψ guarantees that |Zt| ≤ N , there exists a constant CT ,N

such that |f N
y (s, Ys, Zs, vs)| ≤ CT ,N . For any ι ≤ t, we have:

𝔼
ℙ

fz
[︂
|DrYt|

⃓⃓
⃓ℱι

]︂
≤ M4 + M3M5 + CT ,N

∫︂ T

t
𝔼
ℙ

fz
[︂
|DrYs|

⃓⃓
⃓ℱι

]︂
ds.

Gronwall’s Lemma yields to,

𝔼
ℙ

fz
[︂
|DrYt|

⃓⃓
⃓ℱι

]︂
≤ (M4 + M3M5)eTCT ,N := M6eTCT ,N .

For ι = t, we get |DrYt| ≤ M6eTCT ,N ; thus, (DrYt)t≥0 is uniformly bounded. Therefore, we
apply Gronwall’s Lemma to (25) (Theorem 1 in [16]), and obtain:

|DrYt| ≤ M6𝔼
ℙ

fz
[︂

exp
(︂∫︂ T

t
|f N

y (s, Ys, Zs, vs)|ds
)︂⃓⃓
⃓ℱt

]︂
.

Using (A.3.4) and the boundedness of Y and for r = t,

|Zt| ≤ M6 exp (L(1 + C1,T ))𝔼ℙ
fz

[︃
exp

(︃∫︂ T

t
ln (|Zs| + 1)ds

)︃⃓⃓
⃓ℱt

]︃
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≤ M6 exp (L(1 + C1,T ))𝔼ℙ
fz

[︃∫︂ T

t
(|Zs| + 1)ds|ℱt

]︃

≤ M6 exp (L(1 + C1,T ))

(︃
T + 𝔼

ℙ
fz

[︃∫︂ T

t
|Zs|ds|ℱt

]︃)︃
.

By computing the conditional expectation given ℱι, where ι ≤ t, we obtain:

𝔼
ℙ

fz
[|Zt||ℱι] ≤ M6 exp (L(1 + C1,T ))

(︃
T + 𝔼

ℙ
fz

[︃∫︂ T

t
|Zs|ds|ℱι

]︃)︃
.

By applying Gronwall’s Lemma and then setting ι = t, we obtain:

sup
0≤t≤T

|Zt| ≤ M6T exp
(︁
L(1 + C1,T )

)︁
exp

(︂
M6T exp

(︁
L(1 + C1,T )

)︁)︂

= M6T exp
(︂

L(1 + C1,T ) + M6T exp
(︁
L(1 + C1,T )

)︁)︂
=: C2,T .

Alternatively, we can use Theorem 1 from [16], as Zt = DtYt , and thus it is uniformly
bounded.

Thus, for any N ≥ C2,T , f N = f and sup0≤t≤T |Zt| ≤ C2,T . The assertion (iii) follows di-
rectly from (A.3.3) and the preceding assertions. □

Theorem 19 Under Assumption 3, the BSDE (1) has one solution.

Proof According to Theorem 17, the BSDE (1) has a solution. To prove uniqueness, we
consider two solutions (Y , Z), (Y ′, Z′) of (1) with the same terminal condition. It follows
that:

Yt – Y ′
t = –

∫︂ T

t

(︁
f (s, Ys, Zs, vs) – f

(︁
s, Y ′

s , Z′
s, vs

)︁)︁
ds –

∫︂ T

t

(︁
Zs – Z′

s
)︁

dWs

= –
∫︂ T

t

(︁
f (s, Ys, Zs, vs) – f

(︁
s, Y ′

s , Zs, vs
)︁)︁

ds

–
∫︂ T

t

(︁
f
(︁
s, Y ′

s , Zs, vs
)︁

– f
(︁
s, Y ′

s , Z′
s, vs

)︁)︁
ds –

∫︂ T

t

(︁
Zs – Z′

s
)︁

dWs.

Since f is locally Lipschitz and according to Lemma 18 the solutions are bounded, thus
there is a positive constant CT that is determined by C1,T and C2,T , such that ∀s ∈ [0, T]:

|f (s, Ys, Zs, vs) – f (s, Y ′
s , Z′

s, vs)| ≤ CT (|Ys – Y ′
s | + |Zs – Z′

s|).

By taking similar steps as the proof of Lemma 18, we get:

Yt – Y ′
t = –

∫︂ T

t

(︁
f (s, Ys, Zs, vs) – f

(︁
s, Y ′

s , Zs, vs
)︁)︁

ds

–
∫︂ T

t

(︁
Zs – Z′

s
)︁

d ˜︁Ws,

where

˜︁Ws = Ws +
∫︂ t

0

(︁
f
(︁
s, Y ′

s , Zs, vs
)︁

– f
(︁
s, Y ′

s , Z′
s, vs

)︁)︁ (︁
Zs – Z′

s
)︁–1 11{Zs≠Z′

s}ds.
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Moreover, the same arguments yield that for all t ∈ [0, T]: |Yt – Y ′
t | = 0. This implies Y and

Y ′ coincide. Intuitively, this should also imply, Zt = Z′
t for all t. Thus, the uniqueness is

satisfied. □

These results ensure that the control problem is well-posed. Additionally, the bounded-
ness of f and fy allows us to leverage the previous control result under Assumption 3.

5 Conclusion
In this study, we explored a stochastic optimal control problem for a specific type of con-
trolled BSDE characterized by a locally Lipschitz coefficient and a generator with logarith-
mic growth. The main challenges stemmed from the local Lipschitz nature of the BSDE
generator and the adjoint equation, which is described by a linear SDE, complicating the
application of standard duality techniques for solving the control problem. To address
these challenges, we introduced certain assumptions to ensure the existence and unique-
ness of the associated adjoint process. By applying the variational principle of Ekeland in
conjunction with approximation techniques and taking limits, we established the required
conditions for both necessity and sufficiency in optimality.

6 Perspective
We plan to extend our results to backward stochastic differential equations driven by a
Poisson process and a Brownian motion, aiming to establish the necessary and sufficient
conditions for optimality in this broader context [6]. Additionally, we intend to relax the
bounded condition on the terminal variable ζ and to illustrate our findings through a fi-
nance application supported by a numerical study.
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