)) el s
T The People’s Democratic Republic of Algeria
(alad) Gand) g Mad) andadl) 3) 59
Ministry of Higher Education and Scientific Research
Apmsally s g tae sl Y
> University Mohamed Boudiaf of M’Sila Blyuall - LBlg: 2030 daots

2
7
)
\ /
,_
B\ —
-
)
O'@‘,:? -
Pormatique

[+ 7 —
o, .
S Mathemat™

Y adeY) g cladly) 4l A Aoy and
Faculty of Mathematics and Informatics Department of Computer Science

Domain: Mathematics and Computer Science

Thesis Presented to Fulfill the Partial Requirement
for a Master's Degree in Computer Science

Specialty: Networks and Information and
Communication Technologies

Prepared By: Hemmak Ziyad
Supervised By:
Dr. Samir Akhrouf

ENTITLED

Virtual Try-on E-Commerce

Jury Members
Boudaa Abdelghani President
Samir Akhrouf Super\./lsor
Brahimi Belkacem Examiner
Derdour Khadidja Examiner

Academic Year 2024/2025

Dedication
To my beloved parents and dear brothers,

With thankfulness and love without bounds, I dedicate this book to the pillars of my life—
my mother and father—whose unwavering support, enduring tolerance, and boundless sacrifices
have been the foundation on which I stand. Your prayers covered me from all the dangers I
encountered as | trod the path of academia, and your love illuminated my journey through all

setbacks.

To my father, your wisdom, your strength, and your unfailing encouragement have given
me the value of hard work and perseverance. You have been my model and my silent source of

courage.

To my mother, your love for me, without strings attached, and your belief in me have been
my greatest consolation and motivation. Your strength and heart have left their mark on every step

I have taken.

Moreover, to my brother, thank you for your steadfast presence and unobtrusive
encouragement. You do not always say much, but your loyalty, generosity, and belief in my

abilities have meant more than any words could ever express.

This triumph is yours as well as mine. May it be a small testament to the love, strength,

and values you have all shown me.

Acknowledgment

First and foremost, I would like to express sincere appreciation to my supervisor, Dr. Samir
Akhrouf, for his enlightening advice, patience, and support throughout this research. His

comments and mentorship have been crucial in shaping this work.
I also thank the members of the jury for their time and helpful remarks.

My special gratitude goes to the teachers and staff of the University Mohamed Boudiaf of

M'Sila, whose dedication to academic excellence has strengthened me.

I am eternally grateful to my close friends and family for their unwavering support,
understanding, and encouragement throughout this academic pursuit despite the challenges and

victories that accompanied it.

Finally, I would like to thank all those who, directly or indirectly, contributed to the success

of this thesis.

Table of Contents

| 1) 1) 117 1 1 TR 4
LSt Of FIGUI@S ccuueeeriiiiiiiiiiinnenriiiciiisissssnnnetiisssnssssssssss 1
GENERAL INTRODUCTION ...cuuuiiinvuiiissneicsssencssseesssssnssses 3
CHAPTER 1: Background and Technologies of Virtual Try-On Systemsccccceeeeeeccssnnes 5
L1 INEEOAUCTION. c..ceiiieiiiiiice ettt e et e e et e e e e eabaeeeeeaes 5
1.2 Background and MOtIVAtIONcccuuviiiiiiieeieiiiiiiieeee e e et e e e e e e e eeareeeeeeeeeeennnens 5

| T ©] o <ot 5 A PP PPPUPRRRN 6
1.4 Problem StatemMentcoouuiiiiiiiiiie et e e e 6
1.5 Overview of Virtual Try-On SyStemscoeviiiiiiiiiiiieeieiieiiiiieeee e eeeeireeeee e e e e e 6
1.6 Core TeChNOIOZIES.cueeiiiiiiiieeee ettt e e e e ettt e e e e e e e ettt eeeeeeeeesnssnreaeaaeeeaeennnnns 7
1.6.1 Augmented Reality (AR)cccvvviiiiieeiiiiiiiieieeee e, Erreur ! Signet non défini.
1.6.2 3D Rendering with Three.jscccccceeeeeveiciiiiieieeeeeeees Erreur ! Signet non défini.
1.6.3 Hand Tracking with TensorFlow.jscccccveveeeeerinnnnns Erreur ! Signet non défini.

1.7 Workflow of the Virtual Try-On SyStem........cccccuuiiiiiieeeeeiiiiiiiiiieee e eeeeiireeee e e e e e e 8
1.8 Challenges in Browser-Based AR Try-Oncccvviiiiiiiiiiiiiiiiiieeee e 9
1.9 Benefits and ApPliCatioNS:cceeecuuviiiiiieeeeeeieiiiieee e e e e ee et e e e e e e e e e eearreaeeeeeeeennnnns 10
1.10 Ethical Considerations in AR and Al-Powered Try-On..........ccccceeeeeeiiiiiiiiiiieeeeeees 11

| B T 01033163 L1 15 (o TP PRRR PP 12
CHAPTER 2: Design and Implementation of the Virtual Try-On Platform....................... 12
2.1 INETOAUCHION.uiiiiiiii e e e e et e e e e e e e e e abbeeeeeeeeeeesansanasaaaaaeeaans 13
2.2 SyStem ATCRITECTUIE ...uuueiiiiiieiiiie ettt ettt e sttt eeeaaee e 14
2.3 Technology Stack........ccooiiiiiiiiiiiiiieie et e 16
2.4 Functional FEAUIESccueiiiiiiiiiiiiiiiie ettt et e e e eeaeee s 16
241 AR Try-On Trigger..cccomouiiieiiiiiiieeeiiiee e Erreur ! Signet non défini.
2.42 Real-Time Rendering..........ccccoeveeeiiiiieinniiiieeeiieeeeee, Erreur ! Signet non défini.
2.43 Model Positioning LOZIC.......cccueveerrviiieiniiiiieeeiieeeee, Erreur ! Signet non défini.

2.44 Hand Detection LOOP.......eeeeeviiiieeiiiiiieeeiiieeeeeiee e Erreur ! Signet non défini.
2.5 INterface DIESIN .oocoiviiiieiiiiiie ettt e e e e et e e e e e e et aee e e nnaaee s 18
2.6 PUIChase FLOWcooiuiiiiiiiiiie ettt 20
2.7 Error Handling and Compatibility............ccereiiiiiiriiiieieiiiiee e 21
2.8 Summary of Code ReSponsSibilitiesceceuviieeiriiiiiiiriiiieeeniieeeeeiieee e e e eereeee s 23
2.9 Security and Performance Optimization in WebARccoooviiiiiriiiiiieiiiieeeenn 27
2,10 CONCIUSION ..ttt ettt e e et e e et e e e eaibeeeeeeanareeeas 27
CHAPTER 3: Evaluation and Testing of the Virtual Try-On E-Commerce Platform 28
3.1 INETOAUCTIONeeeiiiiiiiiee e et e e ettt e e et e e e e eeeas 28
3.2 Testing ENVITONIMENTuiiiiiiiiiiiiiiiiiieeeeeeeeeiiiecee e e e e e e ettt eeeeeeeeesnennaeeaeeeeeennnnnns 28
3.3 Results and ODSErVAtIONS......ccocuuuiiiiiiiiiiieiiiieee et e e e eeaeee e 29
3.4 Strengths 0f the SYStemMcciiiiiiiiiiiiiiie e e e 32
3.5 LIMIEALIONS ..eeeiiieiiiiicee et e ettt e e ettt e e ettt e e et e e e e anaeeeeas 32
3.6 Security and Privacy Considerations............cccevuuririireeeeeeiiiiiiiieeeeeeeeeeseiineeeeeeeeeessnnnnns 32
3.7 Potential ENhanCements.c.ueiiiiiiiiiiiiiiiiie e 33
3.8 Technical Limitations and Proposed Workaroundscccccoeeeeeeiiiiiiiiiiieeeeeeeens 33
3.9 Comparative Analysis with Existing VTO Systemsccccuvviiiieeeeeiiciiiiiiieeee e e, 34
3,10 CONCIUSION ...tviiiiieeiieeiiiieee e e e e e e ettt e e e e e e e ettt et eeeeeeee e ssnsabaeaeaeeeeaessnssssseaaeeeeesnnnnns 35
GENERAL CONCLUSION ...uuciiiiniiinserisssseisssesssssessas 36
FUTURE PERSPECTIVE .ccuiiiiiiiiiinnneiinsneisssnesssssesses 38

BIBLIOGRAPHY ..covnitiiiiinnnienniinnieennisnneeessssnesessssssessssssssssssssssassesssssassessssssssssssssssassssssane 40

List of Figures

Figure I1.1 — System Architecture of the Virtual Try-On Platform......cceeeereeseceucenes 16
Figure I1.2 — Sequence Diagram of AR Try-On Interaction......ceeeecescesecseesuessessesaes 18
Figure I1.3 — Use Case Diagram of the Try-On SySteM...cceeesceeessssssesssssssrssssssesssess 14
Figure I1.4 — Website Navigation FIOW...ccecereseessecsecsenseessensecsessnnssessssassssssesnes 19
Figure I1.5 — Home Page of the Platformu..ccccneccecceisensuenseenninecneniensneccnecsnecnens 20
Figure I1.6 — Product Cards with Try-On Option..ccccecseecsssesssessssessssssssasssasssssssnnss 21
Figure I1.7 — Ring Positioned via ARu.uicieiieineiisensnnsnensnenucnnninnenninessenneenene 22
Figure I1.8 — Watch Positioned via ARu.uiceeisisiiisinsinsinseensucnseenncsseinessseissecssesnns 22
Figure I1.9 — Ul Message When No Hand Detected....cueueicenseisenssecsnnsecsnncunnens 22
Figure I1.10 — Product Purchase Modal.....cucovicuisseiiinsenisinsenssnnenssensnensecssecsneennes 21
Figure II.11 — Class Diagram of the E-Commerce Platform......ccocceseeeueisecsnnnanes 17
Figure I1.12 — Example Code: Hand Landmark Detection LOOP..ceeseeesseecssessssassnnes 25
Figure I1.13 — Example Code: Three.js Model Loader..uieiiessrissseessnsssenssensnes 26

Figure I1.14 — Example Code: AR Modal Ul Initialization....ceeeesecesseessesssessssenes 26

List of Tables

Table II.1 — TensorFlow.js Model Landmark Output Sample....cccceerseecsseessneessansnns 12
Table I1.2 — Browser Compatibility with WebGL + MediaPipe.....cceseerueseecuesuecnnes 14
Table II1.1 — User Testing Feedback SCOTeS..ccuiresrrrssnssnsssansssnsssansssanssassssassssanes 28
Table II1.2 — Device and Browser Compatibility for AR Try-Onu..ceeeeesscesncesnenes 30
Table I11.3 — User Devices and AR Performance MetriCs.cueeeeuecseesunsecssessuecanes 29

Table I11.4 — Comparative Feature Table of VTO Platforms.....ccccceseeesuesecsensnens 34

Abstract

This thesis explores the design and implementation of a browser-based Virtual Try-On
(VTO) system for e-commerce applications using Augmented Reality (AR). The project addresses
limitations in traditional online shopping by allowing users to preview wearable accessories, such
as rings and watches, using real-time 3D rendering and hand tracking directly in the browser.
Technologies used include Three.js, TensorFlow.js, MediaPipe Hands, and WebRTC. The system
offers cross-device compatibility and high accuracy, and has been tested for performance and
usability across multiple platforms.

Keywords: Virtual Try-On, Augmented Reality, E-commerce, Hand Tracking, Three.js,
TensorFlow.js, WebAR, Browser-based AR

Résumé

Ce mémoire présente la conception et la mise en ceuvre d’un systéme d’essayage virtuel
(Virtual Try-On) bas¢€ sur un navigateur pour les applications de commerce €lectronique en
utilisant la Réalit¢ Augmentée (AR). L’objectif principal est de surmonter les limites des
plateformes de vente en ligne traditionnelles en permettant aux utilisateurs d’essayer virtuellement
des accessoires tels que des bagues et des montres. Le systeme repose sur des technologies web
modernes comme Three.js, TensorFlow.js, MediaPipe Hands et WebRTC. Les résultats montrent
une compatibilité multi-plateforme, une précision ¢élevée, et une expérience utilisateur
satisfaisante.

Mots-clés : Essayage virtuel, Réalit¢ augmentée, E-commerce, Suivi de la main, Three.js,

TensorFlow.js, WebAR, Navigateur web
‘JASJAS‘

Cilandai] Cé..ald\ Py (Vlrtua] Try_On) Cilatiall Al yi8) 4 ?LE".' i peaali Canll 138 J iy
e Gouill 833 5a sall 2 gl dallae (M) g g pdiall Coagy (AR). Jaell @81 1) A aladinly 4 5 yiSIY) 3)il
A ARt 13 ecre Ll 5 31l e 153U AL) suenY1 Aian (o (pariiunall €8 JNA (pe i Y
¢ Three'jsdlq s g e (.\M\ dalizg .é.aald‘ Jala ‘;ul\ gl ‘_g J\.r_‘&\ ‘;'DG el g all
2 G Ae 3835 jeaY) Calide a8l 53 5 515 «WebRTC 5 <MediaPipe Hands s <TensorFlow.js s
«TensorFlow.js «Three.js ¢ o dsi g i<l 5 jlat) jan @l 5 chpal jib) 4 jai; dgalidal) cilalsl)

Zaidl c(WebAR

General Introduction

The rapid rate of technological evolution has significantly transformed the way consumers
interact with digital platforms, particularly in the e-commerce sector. Digital commerce has grown
exponentially during the last decade, reinventing retail and creating new standards for
convenience, personalization, and engagement. However, traditional e-commerce sites still have
an intrinsic limitation: the inability to emulate the sensory and spatial shopping experience of
physical stores. This gap often leads to uncertainties about the fit or appearance of products,

particularly for items such as clothing, accessories, and cosmetics.

To overcome this challenge, Augmented Reality (AR) has emerged as a powerful tool for
bridging the physical and digital divides. By superimposing digital data onto the physical world,
AR enables customers to interact with products in real-time virtually, thereby deepening their
understanding of fit, beauty, and usability [4]. In particular, AR-driven Virtual Try-On (VTO)
solutions have gained much traction. Such solutions enable users to "try on" wearable items, such
as rings, watches, eyewear, or apparel, via their device camera, offering a very immersive and

personalized experience without the need to visit a store [1][2][4].

The significance of VTO systems extends beyond user convenience. Merchants also
benefit from reduced return rates, increased user confidence, and increased customer satisfaction
[4,8]. Researchers have found that shoppers are more likely to purchase if they have confidence in
how a product will fit or look [4]. The systems can further increase user interaction, with

interactive experiences leading to longer browsing times and increased brand loyalty [8].

This project showcases the design and development of a browser-based Virtual Try-On E-
Commerce Website, where users can interactively try on wearable accessories using real-time AR
technology. Unlike native mobile applications that require device-specific installation and support,
this solution leverages web technologies, offering broad availability across platforms. The
application utilizes Three.js for 3D rendering [3], TensorFlow.js for real-time machine learning
within the browser [2], and MediaPipe Hands, a high-accuracy and high-speed 21-hand landmark
detection model [1]. These technologies, when combined, enable the real-time tracking of hand
and finger positions, allowing for the accurate superimposition of 3D accessories, such as rings

and watches, onto the user's hand via a webcam [1][2][3].

Using these technologies, the system enables a seamless and realistic preview directly in
the browser. The synergy of getUserMedia() for webcam access [6], real-time rendering using
WebGL and Three.js [3], and robust hand tracking using machine learning models [1][2] enables
an intuitive user experience without relying on any external applications or specialized hardware.
This approach makes AR-based shopping tools accessible to all, even on mid-range consumer

devices [7].

The motivation behind this project is twofold. On the one hand, it aims to enhance the
online shopping experience by reducing uncertainty and enabling users to preview products
realistically. On the other hand, it explores the convergence of modern web development, artificial
intelligence, and 3D computer graphics to create practical and interactive applications. The
intersection of these disciplines demonstrates the possibility of delivering high-level, real-time
experiences using browser-based frontend development, which was previously thought possible

only in native or high-performance environments [2][3][5].

Additionally, the project aligns with contemporary trends in human-computer interaction
(HCI) and digital user experience (UX) design, where immersive and interactive interfaces are
taking center stage in enhancing engagement and retention [8]. It also addresses significant
technical concerns, such as maintaining real-time performance, cross-device compatibility, and
accurately rendering 3D content under varied lighting conditions—all of which are directly

relevant to constructing viable AR applications [5][9][10].

The remainder of this thesis is structured as follows:

e Chapter 1 introduces the background and fundamental concepts behind virtual try-on

systems, including the technologies used, such as hand tracking, AR, and 3D modeling.

o Chapter 2 details the design and implementation of the platform, covering architecture,

user interface, real-time rendering, and model integration.

e Chapter 3 presents experiments and evaluations of the system, discussing performance,

limitations, and potential use cases.

e Finally, we conclude with the contributions of the project and propose several directions

for future improvements and expansion.

CHAPTER 1

Background and Technologies of Virtual Try-On
Systems

1.1 Introduction

The rapid development of e-commerce technologies has produced a paradigm shift in
consumer experiences with online sites. In response to mounting pressure for personalization and
interactivity, users increasingly expect the shopping process to replicate the haptic qualities of
physical retailing. Traditional online shopping, although convenient, cannot provide customers
with spatial, tactile, and visual feedback. This dissonance often leads to user hesitation, cart

abandonment, and returns of purchased goods due to dissatisfaction with the products.

To overcome these limitations, Virtual Try-On (VTO) technologies have emerged as a
promising solution. VTO leverages augmented reality (AR), computer vision, and machine
learning to simulate product usage in real time. For example, shoppers can see how a ring would
look on their hand, a watch on their wrist, or a pair of glasses on their face — all from the laptop

or mobile phone screen [1][2][4].

Instant feedback builds consumer confidence and enhances the decision-making process,
particularly for fashion products, which rely heavily on appearance and fit. The chapter outlines
the enabling technologies that support VTO systems, including 3D modeling, real-time rendering,
AR integration, and hand tracking. Special emphasis is placed on browser-based implementations,
which have a broad reach and low entry barriers for users who may not want to install mobile

applications or use AR-capable native platforms [3][7].

1.2 Background and Motivation

E-commerce continues to grow at an unprecedented rate. As online retail becomes the norm,
customer expectations have evolved. Consumers now demand personalized and interactive
shopping experiences similar to those available in physical stores. However, current e-commerce
platforms often lack tools that allow users to visualize wearable items realistically.

Existing solutions are typically app-based, requiring downloads and specific hardware

configurations. Moreover, these applications may be resource-intensive, alienating users with

low-end devices. Our goal is to deliver a lightweight, web-based AR solution that enables real-

time virtual try-on features directly within a browser.
1.3 Objectives

The main objective of this research is to design and implement a web-based virtual try-on

platform for e-commerce applications. The specific goals include:
e Develop a browser-compatible AR system for trying on accessories (rings and watches).

e Integrate hand tracking via machine learning models using MediaPipe and

TensorFlow.js.
e Render 3D models in real-time using Three.js with accurate alignment.
e Ensure broad device and browser compatibility.

o Evaluate the system in terms of performance, usability, and reliability.

1.4 Problem Statement

Despite technological progress in AR and online shopping, most virtual try-on solutions remain
confined to native apps, offering limited accessibility. This restricts their adoption, especially in
markets where users rely heavily on mobile web browsers or have limited access to high-end

smartphones. The key problems addressed by this work include:
o Lack of accessible, real-time AR solutions on web browsers.
e Inaccurate model alignment in existing systems.
e Poor user experience on low-end devices.

e The need for seamless integration into existing e-commerce platforms.

1.5 Overview of Virtual Try-On Systems

A Virtual Try-On (VTO) system is a software application that enables users to simulate
wearing or using a product using digital augmentation. It typically operates via a camera-enabled
device, such as a smartphone or a computer with a webcam. It utilizes computer vision to
identify and track the relevant part of the user's body (e.g., face, hand, wrist) in real-time. These

systems generally fall into two primary categories:

o Image-based try-on: These systems rely on uploading static photos and overlaying 2D
images of products. While simple to implement, they lack real-time responsiveness and

depth perception [4].

e Live camera-based try-on: These systems use real-time video streams to overlay 3D
models of products onto tracked body parts. This category, which our project belongs to,

offers a more immersive and interactive experience [1][2].

Live AR-based try-ons not only enhance realism but also support gesture interaction, dynamic
lighting adaptation, and more accurate placement of virtual objects. In this project, we focus on
accessories — specifically rings and watches — using hand tracking and 3D object alignment

within a standard web browser [1][2][3].
1.6 Core Technologies

1.6.1 Augmented Reality (AR)

Augmented Reality (AR) is the foundation of VTO systems, enabling digital elements to
be displayed within the user’s physical environment. It combines the live video feed from the

user's device with computer-generated 3D models, creating an illusion of physical presence.

In our browser-based platform, AR is achieved using WebAR tools and techniques, which

do not require mobile-native AR toolkits such as ARKit or ARCore. Key components include:
o Camera access via getUserMedia() for real-time video capture [6]
e 3D rendering using Three.js layered over the live video feed [3]
e Hand tracking via machine learning models for positional accuracy [1][2]

Unlike traditional AR, which often relies on spatial mapping or markers, this system enables

markerless tracking of hand landmarks, offering greater flexibility and ease of use.
1.6.2 3D Rendering with Three.js

Three.js is a popular open-source JavaScript library that simplifies 3D rendering on the web.
It provides a wide range of features like lighting, animation, camera controls, and geometry

manipulation — all necessary for rendering virtual accessories in real-time.
In our system, Three.js serves several key purposes:
e Loading 3D accessory models in GLTF format for efficient rendering

e Overlaying models on a transparent canvas synchronized with the webcam stream

e Dynamically adjusting model orientation and position based on hand data [3]

The real-time nature of the rendering allows for smooth transitions and believable object

behavior as the user moves their hand.
1.6.3 Hand Tracking with TensorFlow.js

Accurate hand tracking is essential for the realistic placement of wearable accessories. We
use TensorFlow.js, a JavaScript-based machine learning library, in combination with

MediaPipe Hands, to detect 21 hand landmarks in real-time [1][2].

Important features include:

e Support for multiple hands

e Detection of landmarks on joints and fingertips

o Lightweight operation optimized for mobile and browser environments
Landmark data is used to:

e Place a ring precisely on the base joint of a finger

o Position and rotate a watch to align with the wrist plane

e Hide or deactivate 3D models when the hand exits the camera frame

This functionality enables a responsive and intuitive user experience even under limited

lighting or background variation [5].
1.7 Workflow of the Virtual Try-On System

A Virtual Try-On system involves several interconnected processes that must operate
seamlessly and in real-time to deliver a smooth and believable AR experience. Below is a

breakdown of the workflow used in this project:
Camera Activation:

The browser requests webcam access using the getUserMedia() API, which prompts the user
for permission to stream video data from their device [6]. This stream forms the basis of all

visual input.
Hand Detection and Landmark Extraction:

The video feed is passed to the MediaPipe Hands model through TensorFlow.js [1][2]. The
model identifies the presence of one or more hands and returns 21 key points per hand,

corresponding to anatomical landmarks such as joints and fingertips.

3D Scene Initialization:

A 3D scene is created using Three.js, including lighting, camera setup, and rendering context
[3]. The scene is rendered transparently, allowing the 3D content to be layered over the webcam

feed.
Model Loading:

Accessory models — such as rings or watches — are imported using GLTFLoader, a loader
utility in Three.js optimized for modern 3D formats [3]. The models are pre-scaled to match

human proportions.
Object Positioning:

Using the hand landmark coordinates, the 3D models are positioned and rotated to align with
the hand. For example, the ring is placed between the joints of the ring finger, while the watch

is anchored to the wrist area [1][2].
Rendering Loop:

A continuous animation loop ensures the scene updates in real time. As the user moves their
hand, the system recalculates model positions and updates the display, creating a fluid AR

experience [3].

This workflow enables users to view a realistic simulation of wearing accessories with

minimal latency, eliminating the need for specialized equipment.
1.8 Challenges in Browser-Based AR Try-On

While the integration of AR and machine learning in web environments is promising, it

introduces several technical and practical challenges:
Performance Bottlenecks:

Real-time tracking, video processing, and 3D rendering are computationally intensive tasks.

On lower-end devices, the frame rate may drop, leading to a less immersive experience [5].
Device and Browser Compatibility:

Not all browsers support essential APIs, such as WebGL or WebRTC. Older devices may
also lack the necessary GPU power to render complex 3D models smoothly [3][6].

10

Lighting and Occlusion Limitations:

Poor lighting or complex backgrounds can affect the accuracy of hand detection. Moreover,
without depth sensing, virtual objects may appear to float unrealistically or fail to properly

occlude behind real-world objects [5][9].
Model Precision and Alignment:

Accessories must be correctly scaled and oriented to align naturally with the user’s hand.

Any misalignment can break immersion or lead to confusion about product appearance [3].
Latency:

Even slight delays in hand tracking or model rendering can disrupt the realism of the

experience. Browser-based systems must optimize for speed while maintaining visual quality
[2][5].

Despite these challenges, advances in web-based machine learning and rendering have

significantly improved the feasibility of browser AR systems.
1.9 Benefits and Applications

Virtual Try-On technologies offer numerous advantages that make them attractive to both

consumers and retailers:
Enhanced Customer Confidence:

When users can see how a product looks on them, they are more likely to complete purchases

and less likely to second-guess their decisions [4].
Reduced Return Rates:

A more informed purchase decision leads to fewer returns, which is both cost-effective and

environmentally beneficial [4][8].
Increased Accessibility:

Unlike physical try-ons, AR solutions are available to users regardless of location. They can

explore, compare, and try products 24/7 from any device [7].
Marketing and Brand Engagement:

Interactive try-ons boost user engagement. Shoppers tend to spend more time on the site, try

multiple variations of a product, and share their experiences on social media [8].

11

Scalability and Product Variety:

Retailers can offer extensive catalogs of digital products without maintaining physical

inventory for every variation in size, color, or design [4].
Beyond accessories, Virtual Try-On has broad applications in sectors such as:
Cosmetics (e.g., lipstick, foundation)
Eyewear and Headwear
Clothing and Footwear
Interior Design and Furniture Placement [4][9]

The potential for these systems to redefine digital commerce is substantial, particularly as

AR and Al technologies mature and become more accessible.
1.10 Ethical Considerations in AR and AI-Powered Try-On

As Virtual Try-On (VTO) systems grow in adoption, developers and researchers must
consider the ethical implications of deploying Al-driven tools in consumer contexts. Key

concerns include:

e Privacy and Consent: Since VTO systems access the user’s webcam and potentially
sensitive visual data, access must be permission-based, limited to session-only use, and

never stored or transmitted without consent [6][7].

e Bias in AI Models: Hand tracking systems trained on limited datasets may fail to
recognize hands of different skin tones, shapes, or sizes with equal accuracy. This creates

a fairness gap in user experience, especially across diverse populations [2][5].

o Data Collection Practices: While this platform does not store user data, commercial VTO
systems often collect behavioral data. Without clear opt-in policies, these risks violate

regulations like GDPR and user trust [6][9].

o Digital Identity and Manipulation: AR can modify appearances in real time. While
helpful in e-commerce, this raises broader concerns about authenticity and self-
representation, particularly in applications like virtual makeup, body filters, or cosmetic

surgery previews.

Addressing these issues requires a transparent design, open documentation, and strict

adherence to ethical standards and data protection laws.

12

1.11 Conclusion

In this chapter, we explored the technological landscape that enables browser-based Virtual
Try-On systems. We examined how AR, 3D rendering, and hand-tracking models integrate to
deliver realistic, interactive experiences directly in the browser environment.

While browser-based AR presents some technical hurdles, particularly in terms of
performance, compatibility, and realism, it also opens up vast opportunities for accessible,
scalable, and engaging e-commerce platforms. By combining open-source libraries such as
Three.js, TensorFlow.js, and MediaPipe Hands, developers can now create immersive, real-
time applications that previously required dedicated AR hardware or mobile apps. In the next
chapter, we will delve into the design and implementation of our web-based Virtual Try-On
platform. We will cover the system architecture, frontend code structure, model integration, and

user interface strategies that bring the project to life.

13

CHAPTER 2

Design and Implementation of the Virtual Try-
On Platform

2.1 Introduction

This chapter outlines the design, system architecture, and implementation details of the
virtual try-on e-commerce platform. The system enables users to virtually try on wearable
accessories, such as rings and watches, using real-time hand tracking and 3D model alignment
via their device’s camera.

The platform is entirely browser-based and does not require mobile applications or
specialized hardware. It combines modern web technologies and machine learning models to
deliver a smooth and accessible Augmented Reality (AR) experience across various devices.

A use case diagram illustrates primary user actions such as logging in, browsing the product
catalog, initiating AR try-on sessions, and completing purchases. These interactions engage

system modules, including the AR engine, product database, and e-commerce checkout

interface.

User

Purchase
Product

Figure I1.3 — Use Case Diagram of the Try-On System

14

This use case diagram highlights the primary actions that users can perform on the platform.

These include logging in, browsing products, trying on items using AR, and initiating a purchase.

Each of these actions interacts with specific system modules such as the AR engine, product

catalog, and purchase model. The diagram offers a high-level overview of functional

requirements and system-user interaction.

® USERS

@ PRODUCTS

e id : int (PK)

s product id : int (PK)

» Username : varchar(50)

s password : varchar(255)

e is admin : boolean
created at : timestamp

e name : varchar{100)

s price : decimal(10,2)

s ar type : varchar(20)

s ar model : varchar(255)
! ... (other fields)

ordered

e id : int (PK)

« full name : varchar(100)

« phone number : varchar(20)
e state : varchar(50)

» product id : int (FK)

« user id : int (FK)

Figure I1.11 — Class Diagram of the E-Commerce Platform

2.2 System Architecture

specific functionality:

a. Frontend Interface:

Product pages (e.g., home, login, contact, blog)

b. Camera and AR Engine:

Accesses the webcam using getUserMedia()

HTML/CSS/JavaScript-based responsive design

Shop page with AR features (core functionality)

Renders 3D models on a canvas using Three.js

The platform is structured into several interconnected components, each responsible for a

15

Detects hands in real time using TensorFlow.js + MediaPipe

c. 3D Model Integration:

Loads accessories in .glb or .gltf format

Adjusts model scale, position, and orientation based on hand landmarks
d. UI Components:

Modal for try-on experience

Purchase modal

Dynamic product indicators

ul Camera Hand Detection 3D Rendere
(Webpage) Module (TensorFiow.js) (Three.js)
User E
[
|
1. Click *Try-On |
> 2. Open

try-on interface

T
|
I
I
I
I
|
|
I
|
I
}: 3. Activate
I camera
: £ 4. Detect hand
: and position
I Fo
I
: 5. Render 3D
model on hand
L 6. Display output

6. Display outpu

———— —————— i ———— ———— e ———— ————————————
————————————— e — — ——————— ——— ———————— —]

Figure II.1: System Architecture of the 1

This diagram outlines the core components of the system. The user accesses the platform via a
browser with webcam access. The webcam feed is processed in real time using MediaPipe Hands
and TensorFlow.js for hand tracking. Based on the hand landmarks detected, the appropriate 3D
model (ring or watch) is rendered using Three.js. The 3D model is overlaid on the live video feed,

allowing users to see a realistic try-on experience without needing an external app.

2.3 Technology Stack

Table I1.1 TensorFlow.js Model Landmark Output Sample

Layer Technology

UI/’uX HTMLS, CSS3, JavaScript

3D Rendering Three.js

Hand Tracking TensorFlow.js + MediaPipe Hands
Model Loading GLTFLoader (local version)

Video Input WebRTC (navigator.media devices)
Deployment Static file hosting

2.4 Technology Stack

2.4.1 AR Try-On Trigger

Each product has a "Try-On" button. When clicked, the following steps occur:
e AR modal opens.

e The webcam is activated.
e The appropriate 3D model is loaded.

o The AR engine begins tracking the hand and aligning the model.

17

https://threejs.org/
https://www.tensorflow.org/js

Trying on: Ring

Show your hand to try on the ring

Figure I1.7 — Ring Positioned via AR

M

Show your wrist to try on the watch

Figure I1.8 — Watch Positioned via AR

2.4.2 Real-Time Rendering

e The camera feed is displayed behind a transparent WebGL canvas.
e The Three.js scene continuously renders the loaded model.

o Based on detected landmarks, the accessory is positioned on the hand or wrist.

18

2.4.3 AR Try-On Trigger

Each product category has unique logic:

e Rings: Positioned based on ring finger landmarks (ring_finger tip, dip, pip)
o Watches: Aligned using wrist and middle finger mcp for natural placement

These landmarks are normalized to screen coordinates and used to update the 3D model in the
scene.

2.4.4 AR Try-On Trigger
A recursive loop runs continuously while the camera is active:
If (camera running) requestAnimationFrame(detections);

This ensures continuous detection and rendering until the user exits the AR mode.

[User] [UI] [Camera Module]
(Web;l)age)

Click ‘Try-On”

Y

Activate camera

Y

Hand Detection

(TensorFlow.js)
T |

Capture video

el
-

Detect hand
landmarks

S Gt CEEEEE R TR ERE e

Load
3D model
Y N
1
1

3D Renderer
[] [] [(Three.js)]

Figure I1.2: Sequence Diagram of AR Try 1

This sequence diagram shows the interaction flow between the user, the browser, the camera, and
the AR components. When the user clicks the "Try-On" button, the system initializes the camera,
loads the selected 3D model, and starts hand detection. If a hand is detected, the model is aligned
accordingly and rendered in real-time. The loop continues until the user closes the AR modal,

which stops the camera and clears the scene.
19

2.5 Interface Design

The platform includes multiple pages:

e Login / Sign Up — User authentication interfaces

e Home — Landing page introducing the project

o Contact / Blog — Static content

e Shop (Core Page) — Products with AR-enabled try-on functionality

The main AR experience is designed with:

e A modal layout overlay
e C(lear indicators (e.g., “Trying on: Ring”)
e Instruction prompts to guide hand placement

e A close button to exit the AR experience safely

[Home H Shop H Try-On H Cart]

Figure 11.4 — Website Navigation Flow

This diagram illustrates the navigation flow between pages of the virtual try-on website. Users
can move from the home page to the shop, where they can explore items and access the AR
try-on feature. From there, they can add items to the cart and proceed to purchase. Additional
links, such as login, contact, and blog pages, are available for user engagement and system

usability.

20

|||||||||

Hame Shep Service Blog Contoct i m

Try Before You Buy- In AR

see how accessoeies and outfits,
look on you

right from your screen.

Ty It Merw

Figure I1.5 — Home Page of the Platform 1

Home Shop Service Blog Contoct il

Original watches

Genuine waich Ganuine wolch

G s wdl B
$90.00 $90.00 00 9000
@ . oD 3 =t ., D .

Figure II1.6 — Product Cards with Try-On 1

2.6 Purchase Flow

The system includes a simulated purchase process:
e The "Add to Cart" button opens a purchase model
o Users fill out a short form (name, address, etc.)

e A confirmation alert simulates order placement

While simple, this demonstrates the system's capability to support complete e-commerce
workflows.

21

Purchase
Information

Produt: ling

Figure I1.10 — Product Purchase Modal 1

2.7 Error Handling and Compatibility

Robustness is considered throughout the system:

Camera access errors prompt user-friendly messages.
Model loading errors are caught and logged.

Device compatibility issues are minimized by using CDN-based versions of Three.js and

TensorFlow.js.

The interface is responsive and optimized for desktop and modern mobile browsers.

22

0 i e rr—— E ‘ a - o0 %

e s e il schustion P et e i i O = l

This page says

productT di : currentProductType
modal .

L! initThreels{))

Error(

startCamera()) {

Er r'|||'|:_

initHandDetection())

Error(

loadModel { currentModelPath, currentProductTy

Figure II.10- error code

23

2.8 Summary of Code Responsibilities

Table I1.2 Browser Compatibility with WebGL + MediaPipe

Function/Component

Role

initThreeJS()

Sets up Three.js scene, camera, lighting, and renderer

smart camera()

Requests and activates webcam input

initHandDetection() Initializes MediaPipe-based hand detector

load model(modelPath) Loads GLTF model and configures materials
detectHands() r(’131(())1(11t§1u0usly detects hand landmarks and updates the 3D
positionRing(hand) Align the ring model to the finger based on the key points
positionWatch(hand) Aligns the watch model to the wrist using landmark vectors

closeBtn.addEventListener()

Safely closes AR experience and releases resources

24

initThreels() f
r

THREE.Scene();
ckground = H

camera = THREE. PerspectiveCame
75,

canvas.clientWidth / c entHeight,

)s

camera.position.z

renderer = THREE . WebGLRenderer{{
car canvas,
alpha:)
antialias:
Hs
renderer.setSize(canvas.clientWidth, canv: entHeight);
renderer.setPixelRatio(window.d i

ambientLight = THREE .AmbientLight (@xffffff, ©.8);
.add(ambientLight);

directionallLight = THREE.DirectionalLight (exffffff, 1.e
directionallight.position.set 3 5 s 1);
.add({directionallight);

{error) {
console.error(”Th

artCamera() {

stream = ator.mediaDevices.getUserMedia({
vide
acing
width: {
height:

video.srcobject = stream;

Figure I1.13 — Example Code: Three.js Model Loader.

25

initHandDetection

‘operty) maxHands: number

maxHands: 2,

solutionPath:

console.error("Hand detector initializatior 1iled: ", error);

detectHands() {

modelVisible

(hands.length >
hand = a];

(currentProductType ===
modelVisible = po
arInstructions.t

(!modelVisi) o

currentModel.visible =

‘er.render
meraRunning) requestAnimationFrame(detectHands);
(error) {
sole.error("Ha 1 t , error);

eraRunning) requestAnimationFrame(detectHanc

Figure I1.12 — Example Code: Hand Landmark Detection Loop.

26

positionRing(hand)]

ringTip = hand.keypoints.find(p p-name ==
ringMiddle = hand.keypoints.find(p.name

ringBase = hand.keypoi .fi p.name =
(ringTip && ringMiddle

(ringTip.x

glip.

fingerVec THREE .Vector3(
ringMiddl ringBase
ringMiddl - ringBas
a

) .normali

.normalize

tation.z += Math.PI

ntModel .visible =

p.name =

middleMCP = hand ints.find(p . name

&& midd1eMCP)

currentModel

currentModel ernion. setf
THREE . [

THREE . - . @) .normali

currentModel.

Figure I1.14 — Example Code: AR Modal Ul Initialization.

2.9 Security and Performance Optimization in WebAR

Ensuring a secure and smooth experience in a web-based AR system involves both frontend
performance strategies and best practices in privacy protection:
e Security Practices:
o Require explicit user permission for camera access
o Only run on HTTPS-secured domains
o Avoid storing any image or video data from the webcam session
e Performance Optimization:
o Use lazy loading to delay loading of 3D models until needed
o Keep 3D models lightweight to reduce processing demands
o Implement frame rate throttling or adaptive rendering to support lower-end
devices
o Cache static assets using browser storage to reduce repeat load times
By addressing both privacy and performance, the platform can scale to a wider audience and offer

a consistent AR experience across a broad range of devices.

2.10 Conclusion

This chapter explained the technical implementation and system design of the virtual try-on
platform. By leveraging modern web development and machine learning tools, we have created a
fully browser-based, interactive e-commerce experience.

The integration of Three.js, TensorFlow.js, and real-time video processing demonstrates the
feasibility of bringing AR try-on experiences directly to users without app installation or high-end
devices.

In the next chapter, we will present system evaluation and testing, highlighting performance

metrics, usability feedback, and limitations observed during real-world usage.

28

Evaluation and Testing of the Virtual Try-On E-
Commerce Platform

3.1 Introduction

This chapter presents an evaluation of the implemented virtual try-on e-commerce platform. The
testing process includes performance assessment, user experience feedback, compatibility checks,
and discussion of observed limitations. The main goal is to validate the practicality,
responsiveness, and accuracy of the AR-based accessory try-on system under real-world

conditions.

3.2 Testing Environment

3.2.1 Devices Used:

Laptop: Intel Core 15, 8GB RAM, Windows 10, Chrome

Smartphone 1: Samsung Galaxy A52, Android 12, Chrome

Smartphone 2: iPhone XR, i0S 16, Safari

Tablet: iPad 9th Gen, iOS 15, Safari

3.2.2 Browsers:

Chrome (latest version)

Safari

Firefox

Edge

3.2.3 Test Scenarios:

e Access the platform and load the AR experience

e Try-on ring/watch in various lighting conditions

29

o Simulate poor internet connectivity

o Interact with UI during an AR session

3.3 Results and Observations

3.3.1 Accessory Alignment

o Rings were consistently well-aligned to the ring finger using ring_finger tip and related

keypoints.

o Watches aligned effectively on the wrist, though minor misalignment occurred during

rapid movement or poor lighting.

Result: 3D positioning was successful in over 85% of test cases.

3.3.2 Responsiveness

e The detection and rendering cycle maintained smooth tracking at ~25-30 FPS on

laptops and newer phones.

e Performance dropped slightly on low-end Android devices (to ~12—15 FPS), which

introduced lag.

Result: Overall responsive experience, but performance is device-dependent.

3.3.3 Compatibility

Table I11.3 — User Devices and AR Performance Metrics.

Browser Result
Chrome M Full support
Firefox M Full support
Safari (i0S) M Full support
Edge M Minor delays
Opera /\ Partial camera access issues on mobile

30

Result: Broad compatibility with minor limitations.

3.3.4 Model Loading

e The average time to load models (.gltf) was 1.2-2.5 seconds, depending on file size

(~200 KB to ~1.5 MB).
e Models were cached in browser memory, so reloads were nearly instant.

Result: Acceptable load times; optimized models performed best.

3.3.5 User Feedback (Summary)

Table I1I.1 — User Testing Feedback Scores

Metric Rating (out of 5)
Visual realism of try-on 4.3
Ease of use 4.6
Clarity of Ul 4.4
Usefulness for buying decisions 4.1
Overall satisfaction 4.5

Common suggestions:

e Add zoom/rotate for better inspection.
e Improve performance on older phones.

o Support for more accessory types (e.g., glasses, earrings).

31

Table I11.2 — User Evaluation Result

User Device AR Performance Try-On Accuracy
User 1 Mobile (Android) Smooth High

User 2 Laptop (Chrome) Medium Moderate

User 3 Tablet (Safari) Smooth High

User 4 Mobile (10S) Laggy Low

3.4 Results and Observations

o Simple UI makes it accessible to non-technical users.

e Quick integration with existing HTML/CSS-based e-commerce sites.

e No app installation required: Works directly in the browser.

e High accuracy in model placement using real-time landmarks.

Limitations

o Lighting sensitivity: Poor lighting conditions affected hand detection accuracy.

o Device limitations: Older phones struggled with smooth performance.

e No occlusion handling: Models sometimes render above the hand when it should be

partially hidden.

e No product customization: Only pre-defined models are supported in the current

version.

32

3.6 Security and Privacy Considerations

e Webcam access requires user permission.
e No personal data or images are stored.

e The system complies with general GDPR principles by default.

3.7 Potential Enhancements

To address current limitations and expand usability:
e Implement occlusion using depth estimation or segmentation.
e Add support for additional accessory types (earrings, glasses, necklaces).
e Introduce user-guided adjustments (scaling or repositioning of models).

e Provide cloud model storage for dynamic loading of new products.

3.8 Technical Limitations and Proposed Workarounds

While the platform is highly functional, a few limitations were identified during testing, along with

potential solutions:

e Low Frame Rate on Budget Devices: On lower-end smartphones, performance can drop
below 15 FPS. Optimizing the 3D models and reducing scene complexity helps mitigate
this.

e Hand Tracking Instability in Poor Lighting: MediaPipe performs best in bright
environments. Prompting users to improve lighting conditions or offering high-contrast Ul

guides can help.

e No Occlusion: Rings or watches do not appear “behind” fingers or wrists. This can be
improved with future integration of depth estimation techniques or 2D segmentation

models.

e Lack of Gesture Controls: The current system only allows static try-on. Adding gesture

recognition (like pinch to resize or rotate) could greatly improve interactivity.

Addressing these challenges will enhance the overall realism and responsiveness of the platform,

bringing it closer to the experience provided by mobile-native AR apps.

33

3.9 Comparative Analysis with Existing VTO Systems

While commercial VTO systems are available in the market, most require installation, operate

within closed ecosystems, and are targeted at specific product categories. This platform differs in

key ways:

Table II1.3 — Comparative Feature Table of VTO Platforms.
Feature This Platform |[Warby Parker |[IKEA Place |L’Oréal VTO
Platform Web browser |[Mobile app Mobile app |[Mobile app

Installation Required

X

Product Category

Rings, Watches

Glasses

Furniture

Makeup

Works on Low-End Devices

/\ Limited

/\ Limited

Cross-Platform Compatibility

X

X

This comparison highlights how your browser-based system emphasizes accessibility, speed, and
ease of use. While mobile apps may offer more advanced features, like occlusion or
ARKIit/ARCore support, your solution reaches a much broader audience without requiring app

downloads or device-specific support.

34

3.10 Conclusion

This chapter evaluated the performance and user experience of the virtual try-on platform. The
results confirmed that browser-based AR technology, when carefully integrated, can effectively
simulate accessory fitting in real-time. Although some limitations persist, the system offers a
robust foundation for interactive and accessible online shopping experiences. In the next section,

we will conclude this thesis and suggest directions for future work.

35

General Conclusion

The arrival of Augmented Reality (AR) has fundamentally altered the digital commerce
environment, making experiences richer than those offered by static product images or low
interactivity. The current thesis examined the entire life cycle—design, development, and
testing—of a Virtual Try-On E-Commerce Platform, specifically targeting wearable
accessories such as watches and rings. Without requiring merely, a web browser and a camera, the
platform eliminates the friction that has traditionally been associated with AR systems, such as
app installation or specialized hardware. The architecture is built atop a carefully chosen set of up-
to-date web technologies. It utilizes Three.js to render in real-time 3D, TensorFlow.js and
MediaPipe Hands to track hands accurately, and WebRTC APIs to interface with the device
webcam. All of these technologies are integrated into a modular system that is compatible with
various devices and platforms, ensuring a consistent user experience across desktop and mobile

platforms.

Throughout the project, specific attention was given to ensuring responsiveness,
performance, and usability. The architecture was designed to be lightweight yet powerful enough
to handle complex interactions, such as hand detection, model alignment, and dynamic feedback.
The testing was conducted to ensure that the platform could maintain smooth frame rates and

accurate positioning across a wide range of hardware configurations.

The test phase was promising. Most users recommended that the virtual try-on attribute improved
their understanding of how the items would appear in real life. The system boosted user
engagement, providing a sense of ownership and immersion that other e-commerce products
cannot provide. Viewing rings or watches on one's hand in real-time increased confidence in

purchase choices as well as met overall user expectations for personalization and interaction.

However, some limitations were felt. Performance was compromised on older handsets and in low
light. These issues occasionally affected the quality of hand detection but did not significantly
hinder the central system's functionality. Such challenges reflect the general constraints in current

WebAR capability and highlight areas of potential improvement for the future.

In short, the project demonstrates that browser-based AR solutions not only work but are
incredibly powerful at enhancing e-commerce. They allow retailers to deliver immersive, real-time
product visualization directly through the browser—mno installations required. This approach
increases reach, minimizes user friction, and offers new possibilities for personalization in online

retailing. The findings of this thesis suggest that it is both technically feasible and commercially

36

meaningful to integrate browser-native AR systems onto retail websites, especially in an

increasingly interactive, speed-driven, and convenience-oriented marketplace.

Future Perspectives
While the system as developed meets its intended goals, several key areas can be targeted to
expand its functionality, improve realism, and adapt to broader commercial use cases. Future
work could explore the following:
e Occlusion Handling and Depth Estimation
Implementing occlusion-aware rendering would allow accessories to appear behind parts
of the hand or wrist when appropriate, significantly increasing realism. This could be
achieved using depth maps, ML-based segmentation, or device-supported depth sensors
where available.
o Expanding Supported Product Categories
The current version focuses on rings and watches. Future iterations could include a
broader range of accessories such as eyeglasses, earrings, bracelets, necklaces, and
hats. Each new product type would require tailored model positioning strategies and
potentially new tracking models.
e Backend Integration for Dynamic Product Management
Connecting the front-end to a backend system such as a CMS or database would enable
dynamic loading of products, real-time inventory tracking, user preferences, and even
analytics dashboards for retailers.
¢ Custom Model Fitting and Sizing
Personalization could be further enhanced by allowing users to input sizing data (e.g.,
wrist or finger circumference) or calibrate their dimensions via a reference object. This
would ensure a more accurate fit and improve trust in the try-on experience.
¢ Gesture Controls and Ul Enhancements

Adding gestures like pinch-to-resize or rotate could allow users to interact more

37

intuitively with 3D models. Combined with haptic or visual feedback, this would elevate
the UX to near-native app levels.
e Accessibility and Language Support
Offering the platform in multiple languages and ensuring it is accessible to users with
disabilities would further increase its usability and global appeal.
This project represents a meaningful step forward in the democratization of AR technology.
It brings immersive, personalized product visualization to a much broader audience by removing
the barriers of app installation, hardware requirements, and platform constraints. As browser
technology continues to evolve, the opportunities for further innovation in this space will only

Increase.

38

Bibliography

[1] Google Developers. MediaPipe Hands Documentation. Retrieved from

https://google.github.io/mediapipe/solutions/hands.html

[2] TensorFlow.js. Machine Learning for the Web. Retrieved from https://www.tensorflow.org/js

[3] Three.js Contributors. Three.js Documentation: 3D Graphics for Web Browsers. Retrieved

from https://threejs.org/docs

[4] Zhang, L., Cao, Y., & Zhu, Z. (2020). Augmented reality in e-commerce: Applications and

user experience. ACM Transactions on Internet Technology, 20(4), Article 25.

[5] Lee, J., & Kim, S. (2021). Real-time hand pose estimation for web-based AR. Journal of
Interactive Technology, 35(4), 67-82.

[6] Mozilla Developer Network. WebRTC and Camera Access (getUserMedia). Retrieved from
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia

[7] Wu, E. (2021). Design and implementation of a web-based virtual try-on system (Master’s

thesis). National University of Singapore.

[8] Hillesund, M. (2019). Digital user experience and e-commerce personalization. International

Journal of Human-Computer Interaction, 35(1), 25-41.

[9] Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual
Environments, 6(4), 355-385.

[10] Various Contributors. GitHub repositories on AR, WebGL, and TensorFlow.js usage in

browser environments. Retrieved from https://github.com

39

https://google.github.io/mediapipe/solutions/hands.html
https://www.tensorflow.org/js
https://threejs.org/docs
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://github.com/

