
Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

FTL-TSLP: A federated transfer learning approach with a 

two-stage LSTM pipeline for fault-tolerant and privacy-preserving 

intrusion detection in IoMT networks 

Abdelhammid Bouazza a,∗, Hichem Debbi a, Hicham Lakhlef b

aDepartment of Computer Science, Laboratory of Informatics and its Applications of M’sila (LIAM), University of M’sila, PO Box 166, Ichebilia, 
28000, M’sila, Algeria
b CNRS-LaBRI, University of Bordeaux / Bordeaux INP, P.O. Box 99, Talence Cedex, 33400, France

a r t i c l e  i n f o

Keywords:
Fault tolerance
Federated learning
Transfer learning
Two-stage LSTM pipeline
IoMT security
Non-IID data

 a b s t r a c t

The rapid proliferation of the Internet of Medical Things (IoMT) has transformed healthcare deliv-
ery by enabling continuous patient monitoring, intelligent clinical decision-making, and efficient 
remote care. However, these advancements have also introduced substantial cybersecurity risks 
that threaten patient privacy, safety, and the operational resilience of healthcare systems. These 
challenges are further compounded by stringent regulatory requirements and the inherent com-
plexity of heterogeneous, non-independent, and identically distributed (non-IID) data. To address 
these challenges, we propose FTL-TSLP, a novel federated intrusion detection framework that in-
tegrates federated learning (FL) with targeted transfer learning (TL) through a two-stage LSTM-
based pipeline. The framework is explicitly designed to operate effectively under both IID and 
non-IID data distributions while preserving data privacy. On the client side, temporal aggregation 
techniques efficiently compress sequential data, reducing computational costs without compro-
mising detection accuracy. Additionally, the framework enhances fault tolerance by incorporat-
ing a Multi-Criteria Decision Analysis (MCDA) module combined with a Naïve Bayes classifier 
for real-time, probabilistic device-level classification. The proposed model demonstrates superior 
performance across the NF-UNSW-NB15-v2, WUSTL-EHMS-2020, and CICIoMT-2024 benchmark 
datasets. Even under extreme Dirichlet-based non-IID conditions (𝛼 = 0.1), FTL-TSLP achieves 
99.72% accuracy and a 98.07% F1-score on the CICIoMT-2024 dataset, confirming its robust-
ness in heterogeneous IoMT traffic environments. These results highlight that FTL-TSLP offers a 
reliable, privacy-preserving, and computationally efficient solution for securing IoMT healthcare 
ecosystems.

1.  Introduction

The rapid digitisation of healthcare has positioned the Internet of Medical Things (IoMT) as an indispensable component of 
contemporary clinical practice. IoMT integrates advanced edge-cloud infrastructures, sophisticated biosensing technologies, and in-
teroperable communication frameworks, facilitating continuous physiological monitoring, real-time clinical decision-making, and 
personalised therapeutic interventions [1]. The widespread deployment of wearable devices and remote patient-monitoring systems 
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\begin {equation}\mathbf {x}_i \in \mathbb {R}^m, \label {Xeqn1-1}\end {equation}


\begin {equation*}\mathcal {C} = \{c_1 = \text {node safety (benefit)}, c_2 = \text {latency (cost)}, c_3 = \text {packet loss (cost)}, c_4 = \text {jitter (cost)}\}.\end {equation*}
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\begin {equation}a_{ij} = \frac {1}{a_{ji}}, \quad \forall i,j \in \{1,2,3,4\}. \label {Xeqn2-2}\end {equation}


\begin {equation}\mathbf {A} \mathbf {w} = \lambda _{\max } \mathbf {w}, \quad \text {s.t.} \quad \sum _{j=1}^{4} w_j = 1, \quad w_j > 0, \label {Xeqn3-3}\end {equation}
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$RI \approx 0.90$


$n = 4$


$\mathcal {C}$


$\{L_c\}_{c\in \mathcal {C}}$


$L_{\mathrm {isolated}}$


$L_{\mathrm {common}}$


$\gets $


$c \in \mathcal {C}$


$\ell \in L_c$


$\ell $


$\gets $


$\ell $


$+ 1$


$L_{\mathrm {isolated}} \gets \emptyset $


$L_{\mathrm {common}} \gets \emptyset $


$\ell $


$\ell $


$< k_{\text {min}}$


$L_{\mathrm {isolated}} \gets L_{\mathrm {isolated}} \cup \{\ell \}$


$L_{\mathrm {common}} \gets L_{\mathrm {common}} \cup \{\ell \}$


$L_{\mathrm {isolated}}, L_{\mathrm {common}}$


$\mathcal {M} = \{m_{\mathrm {FL}}, m_{\mathrm {TL}}\}$


$\mathcal {C}$


$\{T_c\}$


$\{W_c\}$


$\sum _c W_c = 1$


$\{\delta _c\}$


$\{M_{i,c}\}$


$\varepsilon > 0$


$\mathcal {H} \subseteq \mathcal {C}$


$\mathrm {BestModel} \in \mathcal {M}$


$\sum _c W_c = 1$


$W_c$


$\mathrm {BestModel} \gets \mathrm {None}$


$\mathrm {BestScore} \gets -\infty $


$m_i \in \mathcal {M}$


$\exists c \in \mathcal {H}$


$m_i$


$\mathrm {ModelScore} \gets 0$


$c \in \mathcal {C}$


$R \gets \frac {M_{i,c} + \varepsilon }{T_c + \varepsilon }$


$S_{i,c} \gets W_c \cdot R^{\delta _c}$


$\mathrm {ModelScore} \gets \mathrm {ModelScore} + S_{i,c}$


$\mathrm {ModelScore} > \mathrm {BestScore}$


$\mathrm {BestScore} \gets \mathrm {ModelScore}$


$\mathrm {BestModel} \gets m_i$


$\mathrm {ModelScore} = \mathrm {BestScore}$


$m_i$


$\mathrm {BestModel} \gets m_i$


$\mathrm {BestModel}$


$L_{\text {common}}$


$L_{\text {isolated}}$


$c^*(\ell )$


$\ell \in L_{\text {isolated}}$


$\ell $


$\mathcal {D}_{c^*(\ell )}$


$\mathcal {L}_c \cap L_{\text {common}} \neq \emptyset $


$\mathcal {C}$


$w^{(0)}$


$E$


$T$


$L_{\mathrm {isolated}}, L_{\mathrm {common}}$


$w^{(T)}$


$\{w_c^{\mathrm {TL}}\}$


$c \in \mathcal {C}$


$w_c^{\mathrm {local}} \gets w^{(0)}$


$\mathcal {D}_c$


$E$


$t=1$


$T$


$w^{(t-1)}$


$c \in \mathcal {C}$


$L_c \cap L_{\mathrm {common}} \neq \emptyset $


$w_c^{(t)} \gets w^{(t-1)}$


$\mathcal {D}_c$


$L_c^{\mathrm {com}}$


$E$


$w_c^{(t)}$


$\Delta w_c^{(t)}$


$L_c \cap L_{\mathrm {isolated}} \neq \emptyset $


$w_c^{\mathrm {TL}}$


$w_c^{\mathrm {local}}$


$L_c^{\mathrm {iso}}$


$\mathcal {D}_c|_{L_c^{\mathrm {iso}}}$


$w_c^{\mathrm {TL}}$


$w^{(t)} \gets \frac {\sum _{c \in S_t} n_c^{\mathrm {com}} w_c^{(t)}}{\sum _{c \in S_t} n_c^{\mathrm {com}}}$


$w^{(t)}$


$\{w_c^{\mathrm {TL}}\}$


$w^{(T)}$


$\{w_c^{\mathrm {TL}}\}$


$w^{(t)}$


$\{\mathrm {TL\_MODEL}(\ell )\}$


$\mathcal {Y}$


$|\mathcal {Y}|$


$c \in \mathcal {C}$


$v_c \in \{0,1\}^{|\mathcal {Y}|}$


$v_c[\ell ] = 1$


$\ell \in \mathcal {Y}$


\begin {equation*}s(\ell ) = \sum _{c \in \mathcal {C}} v_c[\ell ]\end {equation*}


$\mathcal {Y}$


$k_{\min }$


\begin {equation*}L_{\text {common}} = \{\ell \in \mathcal {Y} : s(\ell ) \ge k_{\min }\}, \quad L_{\text {isolated}} = \mathcal {Y} \setminus L_{\text {common}}\end {equation*}


$L_{\text {isolated}}$


$s(\ell ) < k_{\min }$


$k_{\min } = 2$


$s(\ell ) < k_{\min }$


$\{s(\ell )\}_{\ell \in \mathcal {Y}}$


$\ell \in L_{\mathrm {isolated}}$


$c^\ast (\ell )$


$\theta _s$


\begin {equation}g_\ell (x; \theta _s, \theta _\ell ) = \sigma \!\big (W_\ell ^\top h(x; \theta _s) + b_\ell \big ), \label {Xeqn5-5}\end {equation}
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further underscores IoMT’s potential to generate substantial volumes of physiological data, which are highly amenable to advanced 
analytics  [2]. Market forecasts predict significant growth in the global IoMT market, expanding from approximately USD 182.0 billion 
in 2023 to USD 668.1 billion by 2030, with a compound annual growth rate (CAGR) of 20.4%. Broader market definitions antici-
pate even higher valuations, reaching USD 814 billion by 2032. [3]. This rapid expansion, however, also amplifies the cybersecurity 
vulnerabilities inherent in interconnected clinical systems.

IoMT infrastructures are inherently heterogeneous and decentralised, with devices often operating under stringent computational 
and energy constraints, across diverse environmental conditions, and using a variety of communication protocols such as Wi-Fi, Blue-
tooth Low Energy (BLE), and MQTT. These characteristics severely limit the effectiveness of traditional cybersecurity methods, such 
as perimeter defences, signature-based intrusion detection systems (IDS), and static vulnerability assessments, that are predominantly 
designed for centralised and homogeneous network environments [4,5]. As a result, conventional cybersecurity strategies struggle to 
effectively mitigate evolving threats and adapt to the dynamic operational demands of privacy-sensitive clinical settings.

Cybersecurity incidents in healthcare settings pose direct risks to patient safety, including unauthorized manipulation of ther-
apeutic parameters, disruption of critical monitoring services, and exposure of sensitive health information. High-profile security 
breaches, such as the Change Healthcare ransomware incident of 2024-2025 and vulnerabilities identified in commonly deployed 
infusion pump platforms, highlight the urgent need for cybersecurity frameworks specifically tailored for clinical environments [6–8].

While machine learning (ML) and deep learning (DL) techniques show considerable promise in modelling intricate attack patterns, 
conventional centralised training paradigms require the aggregation of sensitive patient data. This raises critical concerns regarding 
patient privacy, scalability, and compliance with stringent regulatory frameworks, including the U.S. Health Insurance Portability 
and Accountability Act (HIPAA) and the European Union’s General Data Protection Regulation (GDPR) [9,10]. Moreover, IoMT 
implementations must comply with regulatory standards such as FDA premarket cybersecurity guidance and comprehensive device/-
software lifecycle requirements, including IEC 81001-5-1, ISO 14971, and IEC 62304, which emphasise secure lifecycle engineering 
and rigorous risk management [11–14].

Cross-institutional heterogeneity further complicates the effectiveness of intrusion detection systems (IDS). Variations in clinical 
specialisation, technological infrastructure, geographic location, and patient demographics result in non-independent and identically 
distributed (non-IID) datasets. These datasets are characterised by significant label imbalance, shifts in feature distributions, and 
temporal drift, all of which impair model generalisation capabilities [15].

Federated Learning (FL) has emerged as a promising approach to mitigate privacy concerns by enabling collaborative model 
training without the need to share raw data. However, the non-IID conditions prevalent in healthcare, such as pronounced label 
skew, intermittent client participation, and temporal variability, pose significant challenges to FL performance. Previous research 
addressing IoMT-specific FL challenges, even those employing hierarchical or meta-learning approaches [16,17], often suffers from 
limitations such as a restricted number of clients, controlled laboratory settings, and reliance on outdated or generic datasets (e.g., 
NSL-KDD, ToN-IoT) that do not adequately reflect contemporary IoMT attack scenarios  [18].

Furthermore,IoMT infrastructures must accommodate diverse failure modes, including transient network partitions, Byzantine de-
vice behaviours, cascading failures across interdependent components, and coordinated cyber-attacks targeting multiple system layers. 
To address these challenges, this paper introduces a fault-tolerant intrusion detection architecture, Federated Transfer Learning with 
Two-Stage LSTM Pipeline (FTL-TSLP), specifically designed for IoMT environments characterised by non-IID data distributions.

The primary contributions of this research are as follows:

• Fault-Tolerant Federated Learning Protocol: We propose a fault-tolerant federated learning protocol that maintains system 
functionality despite node failures through adaptive client selection, redundant model checkpointing, and Byzantine-resilient 
aggregation.

• Adaptive Label Partitioning: A novel client-specific strategy designed to address significant label skew, stabilising federated 
learning under heterogeneous participation scenarios.

• Two-Stage LSTM Pipeline with Temporal Aggregation: An optimised temporal modelling architecture that significantly reduces 
computational and memory requirements through staged processing, ensuring effective deployment on resource-constrained end-
point devices without compromising detection performance.

• Hybrid Federated-Transfer Optimisation: An integrated training methodology combining federated averaging with targeted 
transfer learning to manage extreme non-IID conditions. This method is compatible with secure aggregation protocols and optional 
differential privacy implementations.

• Comprehensive Experimental Evaluation: A rigorous assessment using specialised IoMT datasets, including NF-UNSW-NB15-v2 
(network intrusions based on NetFlow data), WUSTL-EHMS-2020 (cyber-biomedical telemetry), and CICIoMT-2024, validating 
the robustness and efficacy of the proposed FTL-TSLP framework across realistic threat scenarios.

The remainder of this paper is organised as follows: Section 2 reviews related work; Section 3 formulates the research problem 
and outlines the proposed FTL-TSLP methodology; Section 4 details the experimental design and presents results; Section 5 discusses 
implications; and Section 6 concludes with recommendations for future research.

2.  Related work

The rapid expansion of the Internet of Medical Things (IoMT) has fundamentally transformed healthcare infrastructure, fostering 
interconnected medical ecosystems that significantly enhance patient care outcomes. However, this rapid digitisation concurrently 
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introduces increased cybersecurity vulnerabilities. As a result, developing sophisticated Intrusion Detection Systems (IDS), specif-
ically designed for IoMT networks, has become imperative. This literature review critically evaluates current IDS methodologies, 
categorising them into three principal paradigms: centralised machine learning (ML), deep learning (DL), and federated learning 
(FL). The discussion highlights core challenges, including privacy preservation, scalability, and the management of non-independent 
and identically distributed (non-IID) data.

2.1.  Centralised machine learning paradigms for IoMT security

Centralised ML techniques underpin contemporary research in IoMT security, primarily due to their interpretability and compu-
tational efficiency. Nonetheless, these methods exhibit notable limitations, such as vulnerability to privacy breaches resulting from 
centralised data aggregation, scalability constraints in resource-limited environments, and difficulties in effectively managing non-IID 
data.

Binbusayyis et al. [19] conducted an extensive benchmarking study of traditional machine learning (ML) algorithms, including 
Naïve Bayes, k-Nearest Neighbour (KNN), Decision Trees, Support Vector Machines (SVM), and Multi-layer Perceptrons (MLP). The 
research emphasised the superior interpretability and flawless detection accuracy (100%) achieved by Decision Trees on the Bot-IoT 
dataset. In contrast, Gupta et al. [20] presented a method addressing class imbalance by combining Random Forest classifiers with the 
Synthetic Minority Over-sampling Technique (SMOTE), achieving 94.23% accuracy on the WUSTL-EHMS-2020 dataset. Nonetheless, 
the method was limited by binary classification and restricted dataset generalisability.

In contrast to Gupta et al., who focused on class imbalance, Alalhareth and Hong [21] introduced an approach prioritising com-
putational efficiency through the Logistic Redundancy Gradual-Upweighting Mutual Information Feature Selection (LRGU-MIFS) 
algorithm. This method achieved commendable accuracy (94.9%) with substantial reductions in feature dimensionality. Addition-
ally, Aljuhani et al. [22] developed a model emphasising interpretability, employing Particle Swarm Optimisation (PSO) combined 
with SHapley Additive exPlanations (SHAP). The approach yielded 96.56% accuracy but notably lacked explicit privacy preservation 
mechanisms.

Alsalman [23] presented the FusionNet model, an ensemble learning method achieving up to 99.5% accuracy. Although out-
performing SG-IDS by Saleh et al. [24], which achieved 98% accuracy in Wireless Sensor Networks (WSN), FusionNet incurred 
substantial computational overhead, limiting its practicality for edge device deployment. Conversely, SG-IDS, while computationally 
efficient, was constrained by a narrow attack taxonomy.

Dadkhah et al. [25] advanced the field significantly by introducing the CICIoMT-2024 dataset, encompassing diverse IoMT pro-
tocols and cyberattack types. While the proposed approach achieved outstanding binary classification accuracy, its performance 
diminished in multiclass scenarios. Complementary methodologies presented by Salehpour et al. [26] introduced hybrid cloud-based 
techniques and advanced feature selection strategies, effectively balancing accuracy and computational efficiency but inadequately 
addressing critical privacy considerations.

In this study, [27], Doménech et al. present a comparison of ML models trained on IoT and IoMT-specific datasets (CICIoT2023 and 
CICIoMT2024). They highlight the importance of domain-specific data for effective IDS in IoMT environments. The study critiques 
dataset design choices and proposes optimization techniques, such as uniform windowing and adjustments to temporal dependencies. 
These techniques significantly improved detection performance, achieving an accuracy of 0.9985, emphasizing the necessity of IoMT-
specific datasets and tailored preprocessing for robust IDS solutions in healthcare environments.

Centralised ML methods offer considerable advantages in interpretability and efficiency. Approaches presented by Alalhareth 
and Hong [21] and Saleh et al. [24] exemplify effective resource utilisation. However, high-performing ensemble methods such 
as FusionNet [23] typically involve significant computational trade-offs or limited detection scopes. Despite their efficiency and 
interpretability, the inherent privacy vulnerabilities and scalability constraints of these methods motivate further research into deep 
learning approaches capable of capturing more intricate data patterns.

2.2.  Deep learning paradigms for IoMT security

Deep Learning (DL) methodologies have prominently emerged in IoMT security research, mainly due to their proficiency in 
modelling complex and temporal data patterns characteristic of medical networks. Nonetheless, DL methods face persistent challenges 
related to computational complexity, scalability constraints, and inadequate privacy safeguards.

Nandy et al. [28] proposed a Swarm-Neural Network architecture, achieving 99.5% accuracy on the generic ToN-IoT dataset. 
Despite this high accuracy, the reliance on non-specific IoMT datasets limits the architecture’s direct applicability to targeted IoMT 
scenarios. In contrast, Ghourabi [29] introduced a hybrid model that combines LightGBM with Transformer architectures, achieving 
superior accuracy while introducing higher complexity and associated privacy concerns.

Faruqui et al. [30] presented SafetyMed, employing Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
architectures to achieve remarkably low false-positive rates. However, substantial computational demands constrained its practicality 
in resource-limited IoMT deployments. Conversely, Alalhareth and Hong [31] developed a fuzzy self-tuning LSTM model demonstrat-
ing adaptive performance but hindered by elevated false-positive rates.

Khan et al. [32] utilised a fog-cloud-based ensemble comprising multiple LSTM models, significantly enhancing detection precision. 
Nevertheless, their method encountered considerable computational overhead and limited generalisability. Similarly, Alzubi et al. 
[33] optimised CNN-LSTM hybrid models, achieving improved accuracy, though their evaluations on non-specific IoMT datasets 
restricted broader applicability.
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Akar et al. [34] advanced DL methodologies further by introducing the dual-stacked LSTM L2D2 model, effectively managing di-
verse cyber threats but lacking explicit privacy preservation mechanisms. Turgut and Başarslan [35] emphasised model interpretability 
by integrating bidirectional recurrent networks with SHAP and LIME explanations, delivering high accuracy and transparency but in-
curring substantial computational costs. Benmalek et al. [36] presented enhancements in hierarchical ensemble strategies, achieving 
substantial accuracy yet constrained by architectural complexity and binary classification limitations.

Furthermore, recent work has introduced several high-performing centralised models that address key IoMT security challenges 
through sophisticated techniques in feature optimisation, architectural innovation, and adaptive learning. For example, FOID [37] 
employs RFE-driven feature selection in conjunction with XGBoost and classical machine learning classifiers to enhance both inter-
pretability and detection performance. To address evolving and dynamic threat landscapes, HCLR-IDS [38] integrates a CNN–LSTM 
architecture with reinforcement learning methods such as DQN and PPO, enabling adaptive response capabilities. Other studies have 
focused on advancing temporal modelling, with MF-Transformer [39] incorporating MF-LSTM layers within a transformer framework 
to capture long-range dependencies better. Similarly, RCLNet [40] advances hybrid deep learning approaches by combining Random 
Forest feature selection, CNN–LSTM fusion, and an adaptive attention mechanism to mitigate traffic imbalance and improve anomaly 
detection effectiveness.

Overall, DL paradigms typically outperform traditional ML methods in capturing complex IoMT traffic patterns, with multiclass 
models like L2D2 [34] providing significant improvements in threat detection granularity. Nonetheless, persistent computational 
overhead and insufficient privacy protections substantially restrict real-world IoMT deployments. Unlike centralised ML approaches, 
DL methods more effectively handle non-IID data but generally require extensive optimisation for deployment on edge devices. This 
limitation underscores the potential benefits of integrating federated learning frameworks to address these challenges comprehen-
sively.

2.3.  Federated learning paradigms for privacy-preserving IoMT security

While deep learning architectures effectively capture complex data patterns, federated learning offers a promising alternative 
by preserving privacy and decentralising computation. Federated learning (FL) uniquely enables privacy preservation by allowing 
localised model training without centralised data aggregation. Recent advancements in FL tailored specifically for IoMT have in-
creasingly emphasised optimisation strategies, adaptability to emerging threats, and domain-specific customisations. Despite these 
progressions, significant challenges persist, notably managing non-Independent and Identically Distributed (non-IID) data, ensuring 
effective scalability, and maintaining comprehensive global threat visibility.

Singh et al. [16] introduced an innovative hierarchical federated learning architecture designed explicitly for IoMT security, termed 
the Dew-Cloud-based framework. This architecture organises computational tasks across three hierarchical layers: local dew servers 
for initial data processing, fog nodes for intermediate aggregation, and cloud servers for global model updates. Utilising hierarchical 
Long Short-Term Memory (LSTM) models, Singh et al. demonstrated notable accuracy (99.31%) on the TON-IoT dataset, illustrating 
considerable scalability through experiments involving varied participant numbers. Nonetheless, reliance on older datasets such as 
NSL-KDD and generic IoT datasets limits the practical relevance of this framework in contemporary IoMT networks, which exhibit 
unique traffic patterns and diverse cyber threats.

In contrast to the scalability-focused approach by Singh et al., Zukaib et al. [17] presented a framework prioritising adaptability-
Meta-Fed IDS, which incorporates meta-learning principles for rapidly responding to zero-day threats. This federated learning model 
integrates Decision Trees, AdaBoost, Extra Trees, and Random Forest classifiers, optimised by an XGBoost meta-learner. Zukaib et 
al.[17] reported high accuracy (99%) on a custom IoMT dataset. Despite demonstrating robust adaptability, the limited evaluation 
involving only three clients and inadequate mechanisms for addressing non-IID data distributions constrain its scalability and broader 
deployment potential.

Sarhan et al. [41] proposed a federated threat intelligence framework addressing collaborative inter-organisational cybersecurity 
by leveraging Federated Averaging (FedAvg) combined with LSTM and Deep Neural Networks (DNN). Their approach achieved 
accuracies of 85.25% and 94.61% on the NF-UNSWNB15-v2 and NF-BoT-IoT-v2 datasets, respectively. Unlike IoMT-specific solutions 
such as that developed by Misbah et al. [42], Sarhan et al. [41] employed a generic FL approach, lacking detailed consideration of 
IoMT device heterogeneity and non-IID data challenges, thus limiting its practical effectiveness in diverse healthcare environments.

Recognising these IoMT-specific requirements, Misbah et al. [42] developed a federated learning framework tailored explicitly 
for medical IoT applications. Employing Random Forest classifiers and introducing a federated dynamic averaging strategy, which 
dynamically adjusts aggregation weights based on local model performance, they achieved 99.22% accuracy on the CICIoMT-2024 
dataset. However, despite these advancements, inherent limitations in Random Forest classifiers, particularly their inability to effec-
tively capture complex temporal dependencies, constrain their suitability and performance in dynamic IoMT networks. Additionally, 
the strategy for managing non-IID data distributions is not explicitly discussed in this study.

Addressing resource constraints inherent in IoMT deployments, Ioannou et al. [43] introduced the GEMLIDS-MIOT framework, 
focusing specifically on energy efficiency. Their model combined an energy-pruned Enhanced Random Forest classifier with a One-
Class Support Vector Machine (SVM) for anomaly detection, employing a privacy-preserving depth-first search (DFS) delta aggregation 
method. Implemented on Raspberry Pi gateways, GEMLIDS-MIOT demonstrated exceptional classification accuracy (99.98%) and 
anomaly detection accuracy (99.7%), significantly reducing energy consumption. In contrast, Khan et al. [44] proposed the Fed-
Inforce-Fusion framework, aiming to reduce communication overhead through reinforcement learning. By integrating Q-learning-
based local models with dynamic federated aggregation, Fed-Inforce-Fusion achieved 99% accuracy and reduced communication 
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Table 1 
Systematic Evaluation of Federated Learning-Based Intrusion Detection Systems for IoMT.
 Study  Model Architecture  Dataset(s) Results Limitations

 [16] (2023)  Hierarchical FL with LSTM, dew-cloud  ToN-IoT, NSL-KDD Acc.: 99.31%, Prec.: 
98.97%, F1: 98.58%

Outdated datasets; 
Non-IID unaddressed

 [41] (2023)*  FL-based LSTM/DNN with FedAvg  NF-UNSW-NB15-v2, NF-BoT-IoT-v2 Acc.: 
85.25%–94.61%

Generic IoT context; 
limited heterogene-
ity evaluation

 [45] (2024)*  FL vs. centralized IDS comparison  WUSTL FL: Acc.: 88.00%, 
Prec.: 66.00%, F1: 
57.00% (vs. CL: 
91.00%, 99.00%, 
59.00%)

Performance degra-
dation under Non-
IID; binary classifica-
tion

 [43] (2024)  GEMLIDS-MIOT: Enhanced RF with OC-SVM  Custom MIoT Acc.: 99.98%, 
Anomaly detection: 
99.70%

Proprietary dataset; 
no Non-IID evalua-
tion

 [44] (2024)  Fed-Inforce-Fusion: Q-learning FL  ToN-IoT, UCI Heart-Disease Acc.: 99.40%, 
Communication 
reduction: 57.00%

Limited scalability 
(3 clients); non-IoMT 
datasets

 [17] (2024)  Meta-Fed IDS: FL with meta-learning  M-IoT-Env, WUSTL, M-En Acc.: 99.00% Severely limited scal-
ability (3 clients); no 
Non-IID

 [42] (2025)*  FL with RF and dynamic averaging  CICIoMT Acc.: 99.22% (RF), 
98.59% (AdaBoost)

Traditional ML con-
straints; Non-IID 
strategy unspecified.

Key: *Explicitly evaluates Non-IID data distribution.

overhead by 57%. These two methodologies effectively address resource constraints but differ significantly in their optimisation 
goals-energy efficiency versus communication efficiency-highlighting distinct strategic trade-offs.

Additionally, a recent study [45] examined the application of FL for intrusion detection in IoMT, focusing on the challenges posed 
by non-IID data. Using the WUSTL-EHMS-2020 dataset, which includes cyber-attacks such as man-in-the-middle, spoofing, and data 
injection, the study compared the performance of FL-based intrusion detection systems (IDS) with traditional centralized learning 
methods. The results revealed a performance degradation when using FL, with accuracy dropping from 91% to 88%, precision 
declining from 99% to 66%, and the F1-score decreasing from 59% to 57%, primarily due to the challenges of non-IID data distri-
bution. The study highlights the difficulty of achieving model convergence in heterogeneous data environments and acknowledges 
the limitations in experimental design, such as binary attack classification, the lack of scalability, and the absence of robust privacy 
evaluations. Despite these limitations, the research advances the understanding of privacy-preserving IDS solutions for IoMT and 
emphasizes the need for further exploration into methods to mitigate the effects of non-IID data in distributed learning environments. 
Overall, federated learning paradigms offer substantial promise for balancing privacy with collaborative intelligence. Nevertheless, 
persistent limitations remain across existing methodologies, particularly inadequate handling of non-IID data, limited scalability test-
ing involving relatively few participants, and significant computational demands. Addressing these challenges through integrated 
approaches that leverage the strengths of diverse federated methodologies represents a critical direction for future IoMT security 
research.

The existing IDS literature, as summarised in Table 1, highlights critical trade-offs between detection accuracy, privacy preser-
vation, fault tolerance, scalability, and the management of non-IID data. Centralised ML methods typically achieve high detection 
accuracy but often compromise user privacy. Conversely, FL methods excel in preserving privacy but frequently encounter notable 
performance and scalability limitations. Thus, an integrated and comprehensive solution is required. To effectively address these lim-
itations, this paper proposes the FTL-TSLP framework. The proposed methodology innovatively combines federated learning, transfer 
learning, and a two-stage LSTM pipeline to deliver robust privacy preservation, efficient handling of non-IID data distributions, and 
enhanced scalability. This integrated approach represents a significant advancement in IDS methodologies, explicitly tailored for IoMT 
security contexts. Additionally, the integration of MCDA-based decision-making strategies and fault-aware routing protocols marks a 
critical shift from traditional reactive fault management towards proactive resilience enhancement in IoMT security architectures.

3.  Methodology

This paper proposes a robust framework designed for fault-tolerant, privacy-preserving, and adaptive intrusion detection within 
Internet of Medical Things (IoMT) networks. The proposed methodology synthesises Federated Learning (FL), Transfer Learning (TL), 
a Two-Stage LSTM Pipeline (TSLP), Multi-Criteria Decision Analysis (MCDA) via the Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS), the Analytic Hierarchy Process (AHP), and Naïve Bayes classification. Our approach addresses critical 
challenges inherent to IoMT environments, including statistical heterogeneity, non-independent and identically distributed (non-IID) 
data, privacy constraints, and the necessity for real-time adaptability in dynamic, heterogeneous settings.
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3.1.  System model and feature representation

We consider an IoMT network comprising 𝑛 heterogeneous devices, each characterised by a feature vector:
𝐱𝑖 ∈ ℝ𝑚, (1)

where each feature vector encompasses key operational metrics including node safety, latency, packet loss, jitter, and the Clinical Risk 
Index (CRI). The objective of our approach is:

1. To implement distributed anomaly detection and device ranking utilising Federated Transfer Learning with FTL-TSLP integrated 
with Multi-Criteria Decision Analysis (MCDA).

2. To leverage the CRI as an independent clinical override to guide adaptive, patient-centric routing and safety enforcement.

The overall methodological architecture is illustrated in Fig. 1, highlighting the integration of federated learning, transfer learning, 
MCDA via TOPSIS, CRI-based clinical prioritisation, and real-time Naïve Bayes classification.

3.2.  Data preprocessing and feature engineering

Effective data preprocessing is critical to ensure data integrity and model reliability, particularly in IoMT networks characterised 
by diverse devices and varying data quality. The preprocessing workflow consists of the following essential steps:

• Feature Harmonisation : Operational metrics such as latency, jitter, and packet loss are normalised to ensure feature comparabil-
ity. Node safety is derived from IDS outputs or device integrity metrics and normalised within [0,1], with higher values indicating 
safer operation.

• Clinical Risk Index (CRI): The CRI, computed within [0,1], represents the clinical severity or instability of patient physiological 
parameters, thereby enabling clinically informed adaptive routing and decision-making.

• Encoding and Normalisation : Categorical features are transformed using one-hot encoding, whereas numerical features undergo 
robust normalisation, such as min-max scaling, to mitigate the effect of outliers and variability.

• Class Imbalance Mitigation: To adequately represent rare but clinically significant intrusion types, the Synthetic Minority Over-
sampling Technique (SMOTE) is applied during training, ensuring balanced dataset representation.

3.3.  Criteria weight determination via analytic hierarchy process (AHP)

The Analytic Hierarchy Process (AHP) is used to assign relative importance to each evaluation criterion systematically. Consider 
the criteria set:

 = {𝑐1 = node safety (benefit), 𝑐2 = latency (cost), 𝑐3 = packet loss (cost), 𝑐4 = jitter (cost)}.
AHP generates a pairwise comparison matrix 𝐀 ∈ ℝ4×4, where each element 𝑎𝑖𝑗 represents the relative importance of criterion 𝑖

over criterion 𝑗, satisfying reciprocal consistency:

𝑎𝑖𝑗 =
1
𝑎𝑗𝑖

, ∀𝑖, 𝑗 ∈ {1, 2, 3, 4}. (2)

Criteria weights are determined by solving the eigenvalue problem:

𝐀𝐰 = 𝜆max𝐰, s.t.
4
∑

𝑗=1
𝑤𝑗 = 1, 𝑤𝑗 > 0, (3)

where 𝜆max represents the largest eigenvalue. To ensure the solution is valid, the eigenvector 𝐰 must be normalized to satisfy the 
constraint ∑4

𝑗=1 𝑤𝑗 = 1.
Normalization step:

𝑤normalized = 𝐰
∑4

𝑗=1 𝑤𝑗

.

Judgment coherence is validated via the Consistency Ratio (CR), defined as:

𝐶𝑅 = 𝐶𝐼
𝑅𝐼

< 0.1, 𝐶𝐼 =
𝜆max − 𝑛
𝑛 − 1

, (4)

where 𝑅𝐼 ≈ 0.90 for 𝑛 = 4. A CR below 0.1 confirms acceptable consistency.

3.4.  Federated–transfer learning with FTL-TSLP

To address privacy and heterogeneity challenges, we propose the Federated Transfer Learning with Two-Stage LSTM Pipeline (FTL-
TSLP) framework, designed for privacy-preserving intrusion detection in IoMT environments. The primary objective is to address 
statistical heterogeneity challenges arising from diverse network configurations, heterogeneous IoMT device specifications (non-
independent and identically distributed (non-IID) data), and distinct intrusion patterns. To mitigate these heterogeneities, FTL-TSLP 
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Fig. 1. Proposed fault-tolerant and adaptive IoMT intrusion detection framework integrating FTL-TSLP, MCDA, clinical risk indexing (CRI), and 
real-time Naïve Bayes classification.
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integrates Federated Learning (FL) for collaborative detection of common intrusion patterns across multiple clients, and client-specific 
Transfer Learning (TL) for handling isolated intrusion labels unique to individual clients.

FTL-TSLP adopts a decentralised training strategy in which edge clients independently analyse local IoMT traffic data. Clients 
communicate exclusively model parameters and non-sensitive label metadata to a central aggregator, ensuring strict adherence to 
healthcare data privacy regulations. Sensitive patient and institutional data remain securely stored within local environments. An 
architectural overview of the proposed framework is illustrated in Fig. 2.

The FTL-TSLP framework consists of three primary layers:

• IoMT Device Layer: This foundational layer comprises diverse healthcare monitoring devices, such as wearable sensors and 
bedside medical equipment. These devices continuously generate multivariate network and telemetry data streams, forming the 
primary input for the IDS.

• Edge Client Layer: This intermediate layer consists of clinical institutions, including hospitals and specialised medical depart-
ments. Each institution operates dedicated edge computing nodes responsible for local data preprocessing, temporal aggregation 
of data, and localised TSLP model training.

• Central Cloud Aggregator: At the top tier, the central cloud aggregator coordinates FL for common intrusion labels and distributes 
both the global federated model and specialised TL models for isolated intrusion labels.

The TSLP architecture is selected for its two-stage pipeline structure, explicitly designed to optimize computational efficiency at the 
client level. This design maintains the predictive performance of traditional LSTM architectures while significantly reducing training 
and inference times through staged processing. The two-stage approach is particularly effective in modelling the sequential and 
temporal characteristics of IoMT-based cyberattacks, which often involve multi-stage processes such as reconnaissance, exploitation, 
and exfiltration. The first stage rapidly filters normal traffic through binary classification, while the second stage performs detailed 
attack categorization only on suspicious traffic. Furthermore, it effectively supports continuous clinical monitoring scenarios, where 
anomalies gradually develop over extended periods, with the temporal aggregation layer between stages capturing these gradual 
patterns.

The operational workflow of the FTL-TSLP framework comprises three distinct phases, as shown in Fig. 3.

• Phase 1: Intelligent Label Classification: Initially, each client transmits a metadata vector indicating the presence of labels 
to the central aggregator. The server employs Algorithm 1 to categorise these labels into common labels-present across multiple 
clients-and isolated labels-unique to individual clients. Direct integration of isolated labels into FL can negatively affect aggregation 
efficiency (e.g., in Federated Averaging (FedAvg)) due to their exclusivity. This classification enables targeted learning strategies 
without compromising data privacy, as raw IoMT data are never transmitted.

• Phase 2: Hybrid Learning Execution: For common labels, clients independently train local models using relevant data subsets. 
The central aggregator consolidates these updates via FedAvg to produce a unified global detection model. For isolated labels, 
clients clone their local TSLP models, modify the final classification layer for binary classification specific to the isolated label, 
and fine-tune the model locally. The specialised TL models are then sent to the central aggregator for distribution alongside the 
global federated model.

• Phase 3: Optimised Deployment: Clients use Algorithm 3 to select the optimal detection model-either the global federated 
model or a client-specific TL model-for each intrusion label. This selection process applies a multi-criteria evaluation considering 
detection accuracy, inference latency, and computational efficiency, ensuring efficient and context-specific deployment.

Throughout the operational workflow, the FTL-TSLP framework maintains strict privacy preservation by restricting communica-
tion to secure transmissions of model parameters and non-sensitive metadata. Sensitive IoMT and patient data remain entirely local, 
ensuring compliance with established healthcare data privacy regulations and standards.

3.4.1.  Server-side methodology for federated transfer learning in IoMT
The server functions as a supervisory control entity, orchestrating collaborative training processes among participating clients. 

At the start of each training cycle, the server executes Label Classification (Algorithm 1) to partition the label set into common labels
(𝐿common) and isolated labels (𝐿isolated). Isolated labels, which occur exclusively within individual client datasets, introduce significant 
non-independent and identically distributed (non-IID) challenges, thereby adversely impacting federated learning performance. To 
mitigate these effects, the server assigns isolated labels to a dedicated TL pathway.

Following label categorisation, the server identifies the specific client 𝑐∗(𝓁) owning each isolated label 𝓁 ∈ 𝐿isolated and sends a 
TL notification to that client. Upon receiving the notification, the client constructs a TL model by:

1. Cloning its existing multi-class Two-Stage LSTM Pipeline (TSLP) model,
2. Converting the output layer into a binary classifier tailored to the isolated label 𝓁, and
3. Fine-tuning the classifier using its local dataset 𝑐∗(𝓁).

Simultaneously, clients with non-empty intersections 𝑐 ∩ 𝐿common ≠ ∅ perform training on subsets of their data corresponding to 
the common labels. The server aggregates these updates using Federated Averaging (FedAvg; Algorithm 2), yielding an updated global 
model 𝑤(𝑡). Subsequently, the server redistributes both the global model and the specialised TL models {TL_MODEL(𝓁)} to all clients 
for continued training and deployment.
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Fig. 2. Overview of the FTL-TSLP architecture showing the federated learning approach for intrusion detection in IoMT networks.

Throughout this entire process, only model parameters and non-sensitive label metadata are exchanged. No raw IoMT data or 
personally identifiable information leaves the local client environment, ensuring that all privacy and regulatory constraints are main-
tained and that sensitive data remain securely localised.
Intelligent Label Classification

Let  denote the set of all labels/classes recognized by the IDS, where || represents the number of labels. The Intelligent Label 
Classification procedure (Algorithm 1) runs at the beginning of each federated round and whenever the client pool or label taxonomy 
changes.

Each client 𝑐 ∈  sends a binary label-presence vector 𝑣𝑐 ∈ {0, 1}||, where 𝑣𝑐 [𝓁] = 1 if label 𝓁 ∈  is observed locally. The server 
then computes cross-client support:

𝑠(𝓁) =
∑

𝑐∈
𝑣𝑐 [𝓁]

The server partitions  using a minimum-support threshold 𝑘min:

𝐿common = {𝓁 ∈  ∶ 𝑠(𝓁) ≥ 𝑘min}, 𝐿isolated =  ⧵ 𝐿common

Labels in 𝐿isolated are those with 𝑠(𝓁) < 𝑘min. By default, 𝑘min = 2, ensuring that only labels with multi-site evidence contribute to the 
shared objective. This reduces the transfer from isolated labels (i.e., 𝑠(𝓁) < 𝑘min) and improves privacy by mitigating label-uniqueness 
inference.

(Optional) Secure aggregation and differentially private noise can be applied to {𝑠(𝓁)}𝓁∈  before thresholding.
Transfer Learning for Isolated Labels

For each 𝓁 ∈ 𝐿isolated, the server identifies its unique owner 𝑐∗(𝓁) and initiates client-side transfer learning (TL). The client clones 
the shared encoder 𝜃𝑠 from the global TSLP , removes the multi-class head, and instantiates a label-specific binary classifier

𝑔𝓁(𝑥; 𝜃𝑠, 𝜃𝓁) = 𝜎
(

𝑊 ⊤
𝓁 ℎ(𝑥; 𝜃𝑠) + 𝑏𝓁

)

, (5)

where ℎ(⋅; 𝜃𝑠) is the (frozen) encoder output and 𝜃𝓁 = (𝑊𝓁 , 𝑏𝓁). The head is trained with weighted binary cross-entropy to address 
class imbalance:

𝓁(𝜃𝓁) = −𝑤+𝑦𝓁 log 𝑔𝓁(𝑥) − 𝑤−
(

1 − 𝑦𝓁
)

log
(

1 − 𝑔𝓁(𝑥)
)

, (6)
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Fig. 3. Sequence diagram of the proposed Federated Transfer Learning (FTL-TSLP) workflow.

Algorithm 1 Label Classification.
Input: Client set ; local label sets {𝐿𝑐}𝑐∈
Output: 𝐿isolated (labels appearing in exactly one client); 𝐿common (labels appearing in at least two clients)
1: LabelCount ← empty map
2: for each 𝑐 ∈  do
3:  for each 𝓁 ∈ 𝐿𝑐 do
4:  LabelCount[𝓁] ← LabelCount[𝓁] +1 (initialize to 1 if absent)
5:  end for
6: end for
7: 𝐿isolated ← ∅, 𝐿common ← ∅
8: for each 𝓁 in keys(LabelCount) do
9:  if LabelCount[𝓁] < 𝑘min then
10:  𝐿isolated ← 𝐿isolated ∪ {𝓁}
11:  else
12:  𝐿common ← 𝐿common ∪ {𝓁}
13:  end if
14: end for
15: return 𝐿isolated, 𝐿common

with 𝑦𝓁 = 𝟏{𝑦 = 𝓁} and (𝑤+, 𝑤−) derived from local class frequencies. A calibrated threshold 𝜏𝓁 may be selected on a validation split 
to satisfy a site policy, e.g., FPR ≤ 1%.
Federated Learning for Common Labels

For client 𝑐, let 𝐿com
𝑐 = 𝐿𝑐 ∩ 𝐿common. Local training minimizes a masked objective:

min
𝑤

𝔼(𝑥,𝑦)∼𝑐

[

𝟏{𝑦 ∈ 𝐿com
𝑐 } ⋅ 𝓁(𝑓 (𝑥;𝑤), 𝑦)

]

, (7)
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ensuring samples outside 𝐿com
𝑐  contribute zero gradient.

Server-side aggregation employs sample-weighted FedAvg over the set 𝑆𝑡 = {𝑐 ∈  ∶ |𝐿com
𝑐 | > 0}, and the updated global model is 

computed as:

𝑤(𝑡) =

∑

𝑐∈𝑆𝑡
𝑛com𝑐 𝑤(𝑡)

𝑐
∑

𝑐∈𝑆𝑡
𝑛com𝑐

, 𝑛com𝑐 = |

|

{(𝑥, 𝑦) ∈ 𝑐 ∶ 𝑦 ∈ 𝐿com
𝑐 }|

|

. (8)

Where 𝑆𝑡 is defined as:
𝑆𝑡 = {𝑐 ∈  ∶ |𝐿com

𝑐 | > 0}

This defines the set of clients 𝑐 that have at least one common label for aggregation.

Algorithm 2 Federated and Transfer Learning Workflow.
Input: Clients ; initial global model 𝑤(0); local epochs 𝐸; rounds 𝑇 ; 𝐿isolated, 𝐿common from Algorithm 1
Output: 𝑤(𝑇 ) (global model for common labels); {𝑤TL

𝑐 } (TL heads for isolated labels)
1: for all 𝑐 ∈  in parallel do
2:  𝑤local

𝑐 ← 𝑤(0); train on 𝑐 for 𝐸 epochs
3: end for
4: for 𝑡 = 1 to 𝑇  do
5:  Broadcast 𝑤(𝑡−1)

6:  for all 𝑐 ∈  in parallel do
7:  if 𝐿𝑐 ∩ 𝐿common ≠ ∅ then
8:  𝑤(𝑡)

𝑐 ← 𝑤(𝑡−1); train on 𝑐 masked to 𝐿com
𝑐  for 𝐸 epochs

9:  Upload 𝑤(𝑡)
𝑐  (or Δ𝑤(𝑡)

𝑐 ) via secure aggregation
10:  end if
11:  if 𝐿𝑐 ∩ 𝐿isolated ≠ ∅ then
12:  Create 𝑤TL

𝑐  from 𝑤local
𝑐 ; replace head with binary head(s) for 𝐿iso

𝑐
13:  Freeze encoder; fine-tune head(s) on 𝑐 |𝐿iso

𝑐
; upload 𝑤TL

𝑐  (params + metrics)
14:  end if
15:  end for
16:  Aggregate (common labels): 𝑤(𝑡) ←

∑

𝑐∈𝑆𝑡 𝑛
com
𝑐 𝑤(𝑡)

𝑐
∑

𝑐∈𝑆𝑡 𝑛
com
𝑐

17:  Redistribute 𝑤(𝑡) and collected {𝑤TL
𝑐 } to all clients

18: end for
19: return 𝑤(𝑇 ), {𝑤TL

𝑐 }

Federated and Transfer Learning Workflow
Only parameters and metadata are exchanged:

{

𝑤(𝑡), {𝑤(𝑡)
𝑐 }𝑐∈𝑆𝑡

, {TL_MODEL(𝓁)}
}

,

and never raw IoMT traffic. Secure aggregation reveals only weighted sums (not individual updates). Optional differential privacy 
can be applied by adding calibrated noise to clipped gradients or to label-support counts prior to thresholding.

3.4.2.  Client-side methodology: Two-stage LSTM pipeline with federated and side transfer learning
This section outlines the client-side implementation of a Two-Stage LSTM Pipeline (TSLP) architecture, specifically designed for 

efficient and effective intrusion detection in IoMT deployments (Fig. 4). The TSLP architecture seeks to achieve high detection accuracy 
while minimizing computational overhead and latency, essential for resource-constrained IoMT environments. The methodology 
employs a structured two-stage approach consisting of data preprocessing, binary anomaly detection, temporal aggregation, and 
multi-class classification. The pipeline design ensures that only suspicious traffic proceeds to the computationally intensive second 
stage, significantly reducing overall processing requirements. Additionally, an optional Side Transfer Learning (STL) module enhances 
detection of rare, client-specific attack types without disrupting the shared global model.
Notation

Let 𝑥𝑡 ∈ ℝ𝑑 represents the feature vector at time 𝑡. Streaming data are segmented into overlapping windows:
𝑊𝑘 = {𝑡𝑘 − 𝐿 + 1,… , 𝑡𝑘}, 𝑋𝑘 = {𝑥𝑡 ∶ 𝑡 ∈ 𝑊𝑘}, (9)

where 𝐿 denotes window length, 𝑠 is the stride, 𝑘 indexes the windows, and 𝑡 indexes positions within each window.
Client-Side Pre-processing

• Feature Encoding: Categorical features are encoded numerically using one-hot encoding, while numerical features remain con-
tinuous.
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Fig. 4. Two-Stage LSTM Pipeline (TSLP) architecture for client-side intrusion detection in IoMT networks.

• Handling Missing Values: A limited number of samples contained missing or incomplete attribute values. To prevent the in-
troduction of bias and avoid distortions in downstream learning processes, these instances were systematically removed. This 
step ensured that the dataset remained clean, internally consistent, and representative of the underlying distribution, thereby 
contributing to the stability and reliability of the model training.

• Normalization: Features undergo min-max scaling based on the statistics of the training set:

𝑥′𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝑎𝑗
𝑏𝑗 − 𝑎𝑗

, 𝑎𝑗 = min
train

𝑥𝑖,𝑗 , 𝑏𝑗 = max
train

𝑥𝑖,𝑗 (10)

• Class Imbalance Mitigation: The Synthetic Minority Oversampling Technique (SMOTE) is applied solely to the training dataset 
post-windowing to address class imbalance and prevent temporal leakage.

Shared Encoder An LSTM-based encoder processes each segmented window to generate hidden state representations:
(ℎ𝑘,1,… , ℎ𝑘,𝐿) = LSTM𝜃𝑠 (𝑋𝑘), ℎ⋆𝑘 = pool(ℎ𝑘,1∶𝐿), (11)
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where ℎ⋆𝑘  is a compact representation derived via pooling (e.g., mean-pooling).
• Stage 1 - Binary Anomaly Detection: A logistic regression classifier serves as an initial anomaly detection gate:

𝑝𝑘 = 𝜎(𝑤⊤ℎ⋆𝑘 + 𝑏), 𝑔𝑘 = 𝟏{𝑝𝑘 ≥ 𝜏},

with threshold 𝜏 optimized on validation data to balance recall and false-positive rates. Normal traffic (𝑔𝑘 = 0) exits early, reducing 
computational load.

• Stage 2 - Temporal Aggregation: Anomalous traffic from Stage 1 is summarized through temporal aggregation:

𝑟𝑘 = 1
𝐿

∑

𝑡∈𝑊𝑘

ℎ𝑘,𝑡, 𝑅𝑘 = [𝑟𝑘−𝑀+1,… , 𝑟𝑘] ∈ ℝ𝑀×𝑑ℎ ,

where 𝑅𝑘 captures short-range dynamics using a buffer of the latest 𝑀 aggregated summaries, with 𝑟𝑘 being the average of the 
hidden states ℎ𝑘,𝑡 for each time window 𝑊𝑘.

• Stage 3 - Multi-class Classification: Aggregated anomalous traffic is classified into specific attack categories via a secondary 
LSTM:

ℎ̃𝑘 = LSTM𝜃𝑚𝑐 (𝑅𝑘), 𝑦̂𝑘 = sof tmax(𝑈ℎ̃𝑘 + 𝑐).

Side Transfer Learning (STL) for Isolated Labels For rare or client-specific attack labels 𝓁, STL binary classifiers are instantiated using 
the frozen shared encoder:

𝑠𝓁(𝑘) = 𝜎(𝑊 ⊤
𝓁 ℎ⋆𝑘 + 𝑏𝓁), 𝑑𝓁(𝑘) = 𝟏{𝑠𝓁(𝑘) ≥ 𝜏𝓁}. (12)

STL classifiers undergo local fine-tuning using class-weighted binary cross-entropy or focal loss, with thresholds 𝜏𝓁 optimized on 
client-specific validation data. STL parameters are securely transmitted back to the server, ensuring confidentiality of the raw IoMT 
data.

3.5.  Client-side optimal model selection via weighted multi-criteria analysis

This section presents a weighted multi-criteria decision-making framework designed for optimal client-side model selection in 
intrusion detection within IoMT devices. Clients typically possess two models: a global FL model and a specialised TL model tailored 
for isolated, client-specific attack labels. The overall process is shown in Fig. 5, while Algorithm 3 details the procedure for selecting 
the best-performing model based on multiple evaluation criteria, such as accuracy, false alarm rate (FAR), and inference latency (TT).

Notation. Let  = {𝑚FL, 𝑚TL} denote the set of available candidate models, with 𝑚FL representing the global federated learn-
ing model and 𝑚TL representing the specialized side transfer learning model. The set of evaluation criteria is given by  =
{Accuracy,FAR,TT}. For each criterion 𝑐 ∈ :

• 𝑇𝑐 > 0 is the normalization target (e.g., 𝑇Accuracy = 1, policy-defined 𝑇FAR, or latency target 𝑇TT).
• 𝑊𝑐 ≥ 0 is the criterion weight satisfying ∑𝑐∈ 𝑊𝑐 = 1.
• 𝛿𝑐 ∈ {+1,−1} indicates maximization (+1) or minimization (−1).
Let 𝑀𝑖,𝑐 represent the performance of model 𝑚𝑖 on criterion 𝑐. A small positive constant 𝜀 > 0 is used to prevent numerical 

instability. Optionally, a subset  ⊆  defines mandatory constraints models must meet to remain feasible.
Each criterion is normalized onto a unified higher-is-better scale through direction-aware normalization:

𝑆𝑖,𝑐 = 𝑊𝑐

(𝑀𝑖,𝑐 + 𝜀
𝑇𝑐 + 𝜀

)𝛿𝑐
(13)

Metrics for maximization (e.g., accuracy) use 𝛿𝑐 = +1, while metrics for minimization (e.g., FAR, latency) use 𝛿𝑐 = −1. The total 
utility score for each model is calculated as:

𝑆𝑖 =
∑

𝑐∈
𝑆𝑖,𝑐 , BestModel = arg max

𝑚𝑖∈
𝑆𝑖. (14)

This approach identifies the model offering the optimal overall trade-off across all evaluation criteria.

3.5.1.  Algorithm 3 – Weighted multi-criteria model selection
3.6.  Multi-criteria decision analysis via TOPSIS

The TOPSIS method is employed to classify IoMT devices based on operational metrics:
 = {𝑐1 = node safety (benefit), 𝑐2 = latency (cost), 𝑐3 = packet loss (cost), 𝑐4 = jitter (cost)}.

Device ranking utilizes the ideal (𝐯+) and anti-ideal (𝐯−) solutions to compute the closeness coefficient (𝐶𝑖):

𝐷+
𝑖 = ‖𝐕𝑖⋅ − 𝐯+‖, 𝐷−

𝑖 = ‖𝐕𝑖⋅ − 𝐯−‖, 𝐶𝑖 =
𝐷−

𝑖

𝐷+
𝑖 +𝐷−

𝑖
(15)

This standard formula does not include the epsilon term and correctly calculates the closeness coefficient. It categorizes devices 
as Best, Acceptable, or Non-Acceptable, enabling real-time adaptive decision-making and fault tolerance.
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Fig. 5. Overview of Federated Transfer Learning Approach for IDS in IoMT.

3.7.  Clinical risk override (CRI) and adaptive routing

The CRI independently drives clinical prioritization, overriding technical classifications when necessary:

Classification =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Critical (dual-path routing and alerting), CRI ≥ 0.70,
Warning (downgrade one level), 0.50 ≤ CRI < 0.70,
Technical classification (retain), CRI < 0.50,
Non-Acceptable (quarantine), Technical fault.

3.8.  Real-time fault tolerance and response

To achieve robust, real-time fault tolerance and adaptive response capabilities, our proposed framework integrates a probabilistic 
classification strategy based on a Naïve Bayes (NB) classifier. Specifically, the NB classifier is trained on a comprehensive dataset 
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Algorithm 3 Client-Side Weighted Multi-Criteria Model Selection.
Input: Candidate models  = {𝑚FL, 𝑚TL}; criteria ; targets {𝑇𝑐}; weights {𝑊𝑐} with 

∑

𝑐 𝑊𝑐 = 1; directions {𝛿𝑐}; performance metrics 
{𝑀𝑖,𝑐}; tolerance 𝜀 > 0; optional hard constraints  ⊆ .

Output: Optimal model selection BestModel ∈ .
1: Verify ∑𝑐 𝑊𝑐 = 1; if not, normalize 𝑊𝑐 .
2: BestModel ← None; BestScore ← −∞
3: for each model 𝑚𝑖 ∈  do
4:  if ∃𝑐 ∈  violated by 𝑚𝑖 (maximized metric below target or minimized metric above target) then
5:  continue
6:  end if
7:  ModelScore ← 0
8:  for each criterion 𝑐 ∈  do
9:  𝑅 ←

𝑀𝑖,𝑐+𝜀
𝑇𝑐+𝜀

10:  𝑆𝑖,𝑐 ← 𝑊𝑐 ⋅ 𝑅𝛿𝑐

11:  ModelScore ← ModelScore + 𝑆𝑖,𝑐
12:  end for
13:  if ModelScore > BestScore then
14:  BestScore ← ModelScore; BestModel ← 𝑚𝑖
15:  else if ModelScore = BestScore then
16:  Apply tie-break criteria (e.g., inference latency, memory usage)
17:  if tie-break criteria favor 𝑚𝑖 then
18:  BestModel ← 𝑚𝑖
19:  end if
20:  end if
21: end for
22: return BestModel

collected and aggregated through edge computing systems, incorporating diverse node performance metrics such as node safety, 
latency, packet loss, and jitter.

Utilising MCDA, the classifier systematically categorises nodes into three distinct operational classes: Best, Acceptable, and Non-
Acceptable. These classifications reflect real-time node performance and reliability, calculated according to the probability distribu-
tions derived from current and historical device performance features.

The real-time classification process follows a probabilistic formulation based on the conditional probability framework of Naïve 
Bayes:

𝑃 (𝐶𝑘|𝐱) =
𝑃 (𝐶𝑘)

∏𝑚
𝑖=1 𝑃 (𝑥𝑖|𝐶𝑘)

∑

𝑗 𝑃 (𝐶𝑗 )
∏𝑚

𝑖=1 𝑃 (𝑥𝑖|𝐶𝑗 )
, (16)

Where the range for 𝑖 is explicitly shown in the product terms for both the numerator and denominator, ensuring clarity in the 
probabilistic calculation.

where 𝐶𝑘 ∈ {Best, Acceptable, Non-Acceptable} represents the class labels, 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑚) denotes the real-time feature vector 
consisting of aggregated node metrics, and 𝑃 (𝐶𝑘|𝐱) indicates the posterior probability of a node belonging to class 𝐶𝑘 given features 
𝐱.

The training dataset is dynamically updated at the edge computing layer, ensuring that the Naïve Bayes classifier continuously 
adapts to evolving feature distributions and network conditions. This adaptive mechanism significantly enhances the classifier’s ability 
to promptly and accurately identify shifts in device performance, cyberattacks, or emerging faults.

Consequently, the real-time classification outcomes directly inform adaptive routing and operational decisions within the IoMT 
network. Nodes classified as Best receive the highest-priority traffic and redundant routing paths, ensuring uninterrupted operation 
and high reliability. Nodes categorised as Acceptable are allocated standard-priority traffic, while Non-Acceptable nodes are immedi-
ately isolated, triggering rerouting mechanisms and alert systems for rapid mitigation.

Thus, the integration of real-time Naïve Bayes classification and MCDA-based node evaluation within our framework establishes a 
highly responsive and fault-tolerant intrusion detection and adaptive response capability, essential for maintaining continuous, safe, 
and secure IoMT network operations.

Our integrated methodology provides a robust solution combining federated learning, transfer learning, TSLP , MCDA-TOPSIS, 
real-time Naïve Bayes classification, and CRI-based clinical prioritisation. It significantly advances fault-tolerant, privacy-preserving, 
adaptive IoMT intrusion detection and network security, with substantial implications for patient safety and real-time healthcare 
operations.
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Table 2 
NF-UNSW-NB15-v2 dataset.
 Label  Code  Count
 Analysis  0  2299
 Backdoor  1  2169
 Benign  2  2,295,222
 DoS  3  5794
 Exploits  4  31,551
 Fuzzers  5  22,310
 Generic  6  16,560
 Reconnaissance  7  12,779
 Shellcode  8  1427
 Worms  9  164
 Total  2390275

4.  Experimental results

This section presents a comprehensive evaluation of the proposed FTL-TSLP framework for intrusion detection in IoMT envi-
ronments. The evaluation progresses systematically from centralised learning through federated learning under IID conditions to 
challenging non-IID scenarios, demonstrating the framework’s robustness across diverse deployment contexts. Additionally, the fault-
tolerance capabilities of the FTL-TSLP framework are highlighted, showcasing its ability to maintain system functionality in the 
presence of faults or attacks.

4.1.  Datasets

The practical evaluation employs three benchmark datasets, each selected to represent distinct characteristics of the IoMT security 
landscape. These datasets capture the inherent heterogeneity and complexity of IoMT traffic patterns and are widely used in intrusion 
detection research. Collectively, they encompass a broad spectrum of real-world attack scenarios, ranging from general network 
intrusions to sophisticated threats targeting healthcare-specific devices and infrastructure. To mitigate the adverse effects of class 
imbalance on model performance, the Synthetic Minority Oversampling Technique (SMOTE) was applied. To preserve the integrity 
of the evaluation process and avoid data leakage, SMOTE was applied exclusively to the training set, ensuring that the validation 
and test sets remained unbiased and reflective of real-world intrusion distributions. This targeted oversampling strategy enhances the 
representation of minority intrusion classes, thereby improving model robustness and significantly strengthening the IDS’s capability 
to detect both frequent and rare attack types.

4.1.1.  NF-UNSW-NB15-v2 dataset
The NF-UNSW-NB15-v2 dataset,  [46], as shown in Table 2, is a NetFlow-based cybersecurity dataset encompassing nine distinct 

attack categories: Exploits, Fuzzers, Generic, Reconnaissance, Denial-of-Service (DoS), Analysis, Backdoor, Shellcode, and Worms. 
The dataset was constructed by converting publicly accessible packet capture (pcap) files from the original UNSW-NB15 dataset [47] 
into a structured format comprising 43 features derived via the NetFlow v9 protocol, using the nprobe tool. The NF-UNSW-NB15-
v2 dataset contains a total of 2,390,275 network flow records, among which 95,053 (3.98%) represent attack instances, while the 
remaining 2,295,222 flows (96.02%) constitute benign traffic.

The foundational dataset, UNSW-NB15, is a well-established resource within the network intrusion detection research community, 
developed and released in 2015 by the Cyber Lab of the Australian Centre for Cyber Security (ACCS). The original UNSW-NB15 dataset 
employed the IXIA PerfectStorm tool to simulate a combination of normal network traffic and diverse synthetic attack scenarios, 
providing researchers a comprehensive environment to evaluate network intrusion detection systems (NIDS). The selection of the 
NF-UNSW-NB15-v2 dataset is particularly relevant for evaluating IoMT intrusion detection systems, as it includes attack categories 
that closely mirror those faced by medical networks. Notably, the dataset contains backdoor attacks, which threaten patient data 
integrity, as well as reconnaissance activities-often precursors to targeted attacks on medical devices. These attack patterns are highly 
representative of the security challenges faced in modern healthcare environments, making this dataset an ideal candidate for testing 
the effectiveness of the proposed FTL-TSLP framework.

Through the use of this dataset, we aim to assess the ability of the FTL-TSLP model to detect both high-frequency and rare attacks 
while maintaining accuracy, particularly in the context of IoMT applications where security is paramount.

4.1.2.  WUSTL EHMS 2020 dataset
The WUSTL-EHMS-2020 dataset is specifically designed as a cybersecurity resource to identify and mitigate vulnerabilities within 

Internet of Medical Things (IoMT) systems through realistic simulation of cyber-attacks within healthcare contexts [48,49]. Leveraging 
an integrated testbed that incorporates real-time patient biometric data alongside network traffic, this dataset primarily emphasizes 
two critical attack scenarios: Man-in-the-Middle (MITM) spoofing and data injection attacks. These scenarios pose significant threats 
by directly undermining the integrity and confidentiality of sensitive medical data, thus highlighting the dataset’s importance for 
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Table 3 
wustl-ehms-2020 Dataset.
 Label  Code  Count
 Data Alteration  0  922
 Spoofing  1  1124
 Normal  2  14,272
 Total  16318

developing robust intrusion detection systems (IDS) tailored to healthcare environments [48]. As shown in Table 3, the WUSTL-EHMS-
2020 dataset is organized into three primary classes-Normal, Data Alteration, and Spoofing-providing a representative distribution 
of benign and malicious IoMT traffic for intrusion detection research.

The dataset comprises over 16,000 labeled samples categorized into normal operations (87.5%) and attack scenarios (12.5%), 
effectively balancing benign and malicious data traffic. Each record contains 44 unique features, encompassing network flow metrics 
and real-time biometric data from patients. The integration of real-time biometric information sets this dataset apart from other IoT 
or IoMT datasets, providing deeper insights into how cybersecurity threats can significantly impact healthcare system performance 
and patient safety.

Crucial network performance metrics documented in the dataset include packet count, average packet size, and inter-arrival times. 
These metrics are supplemented with patient-specific biometric parameters, such as heart rate and blood oxygen levels, enabling 
researchers to authentically simulate and analyze the effects of network disruptions or malicious data manipulations on real-time 
patient monitoring.

The MITM spoofing attack scenario simulates conditions in which an adversary gains unauthorized access, intercepts, and modifies 
data transmitted between IoMT devices and healthcare servers or applications. Such attacks can mislead clinical decision-making, 
causing delayed or incorrect medical responses. Conversely, the data injection attack scenario involves introducing malicious or fal-
sified data into legitimate data streams, compromising patient information accuracy and potentially misleading healthcare providers 
into making inappropriate clinical decisions.

The WUSTL-EHMS-2020 dataset is broadly applicable in developing advanced IDS through machine learning techniques aimed 
at detecting and counteracting cyber threats within IoMT infrastructures. Its distinct combination of biometric and network traffic 
data allows for sophisticated anomaly detection systems capable of identifying both network-level and physiological abnormalities 
associated with cyber-attacks or system malfunctions. This makes the dataset particularly valuable for anomaly detection research, 
facilitating the identification of unusual patterns indicative of cyber threats.

By incorporating authentic patient data with detailed simulated cyber-attack scenarios, the WUSTL-EHMS-2020 dataset allows 
researchers to comprehensively assess the potential impacts of cybersecurity threats on patient safety, medical device reliability, 
data integrity, and system latency. Furthermore, it supports investigations into medical personnel responses to potential false alerts 
generated by spoofing or data injection attacks, contributing to enhanced preparedness and resilience within healthcare cybersecurity 
frameworks.

4.1.3.  CICIoMT dataset 2024
The CICIoMT-2024 dataset, developed by the Canadian Institute for Cybersecurity at the University of New Brunswick, constitutes 

a comprehensive resource designed explicitly to address cybersecurity vulnerabilities within the rapidly evolving Internet of Medical 
Things (IoMT) domain [25]. Given the increasing integration of IoMT technologies into healthcare infrastructures, securing medi-
cal devices and safeguarding communication privacy have emerged as critical research priorities. Consequently, the CICIoMT-2024 
dataset is intended to facilitate focused research aimed at detecting and mitigating various cyber threats against IoMT systems.

IoMT systems encompass diverse interconnected medical devices, software applications, and related services that exchange data 
via the Internet to enhance healthcare delivery outcomes. Prominent examples include wearable medical devices, patient-monitoring 
systems, intelligent hospital beds, and automated medication dispensers. However, such devices frequently exhibit vulnerabilities 
due to limited computational resources and inadequate security architectures, making them particularly susceptible to cyberattacks. 
Potential security breaches could lead to severe consequences, including manipulation of sensitive medical data, disruption of essential 
healthcare services, or unauthorized disclosure of personal health information [25].

The CICIoMT-2024 dataset comprises network traffic data collected from 40 IoMT devices-25 real physical devices and 15 simu-
lated devices representative of typical healthcare settings. These devices utilize multiple communication protocols, including Wi-Fi, 
Message Queuing Telemetry Transport (MQTT), and Bluetooth, accurately reflecting the heterogeneous nature of real-world IoMT 
environments. The dataset is structured into two primary directories: the first, titled the Bluetooth Traffic Directory, contains data 
from Bluetooth-enabled devices. This segment is particularly valuable given the widespread use of Bluetooth in wearable medical 
devices such as fitness trackers and heart rate monitors, thereby capturing both legitimate and malicious communications specific to 
the Bluetooth protocol.

A distinctive feature of CICIoMT-2024 is the inclusion of simulated scenarios covering 18 distinct cyber-attacks, effectively high-
lighting IoMT vulnerabilities. As shown in Table 4, the dataset encompasses a wide range of attack categories, including ARP Spoofing, 
MQTT-based DoS and DDoS attacks, TCP/IP DDoS, reconnaissance activities, and benign traffic. This rich class distribution provides 
extensive coverage of real-world IoMT threats and supports the development of advanced intrusion detection techniques capable of 
addressing heterogeneous cyber risks.
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Table 4 
CICIoMT-2024 Dataset.
 Label1  Label2  Code  Count
 ARP_Spoofing  ARP_Spoofing  0  16,047
 Benign  Benign  1  192,732
 MQTT-DDos-Connect_Flood

MQTT-DDos 2 200659 MQTT-DDos-Publish_Flood
 MQTT-DoS-Publish_Flood

MQTT-DoS 3 57149 MQTT-DoS-Connect_Flood
 MQTT-Malformed_Data  MQTT-Malformed_Data  4  5130
 Recon-Port_Scan

Recon 5 103726
 Recon-VulScan
 Recon-Ping_Sweep
 Recon-os_Scan
 TCP_IP-DDos-TCP

TCP_IP-DDos 6 4779859
 TCP_IP-DDos-UDP
 TCP_IP-DDos-ICMP
 TCP_IP-DDos-SYN
 TCP_IP-DoS-TCP

TCP_IP-DoS 7 1805529
 TCP_IP-DoS-UDP
 TCP_IP-DoS-ICMP
 TCP_IP-DoS-SYN
 Total  7042831

The dataset is primarily used for research involving machine learning and anomaly detection systems. Its comprehensive nature, 
integrating both actual and simulated devices, enables robust testing and validation across multiple cybersecurity scenarios. Beyond 
cybersecurity applications, the CICIoMT-2024 dataset offers significant value for research involving network analysis, traffic clas-
sification, and protocol optimization. The use of actual IoMT devices ensures the dataset authentically represents real operational 
behaviors in clinical healthcare environments.

CICIoMT-2024 represents a significant advancement in IoMT security research by providing an extensive and diverse collection 
of network traffic data encompassing both benign and malicious activities. This resource provides essential empirical evidence to 
address critical cybersecurity challenges in healthcare. As IoMT adoption continues to expand, datasets such as CICIoMT-2024 will 
serve as fundamental tools for enhancing the security and reliability of healthcare technology infrastructures [25].

4.2.  Performance metrics and evaluation

To evaluate the performance of the proposed approach, this study employs widely recognized statistical metrics, namely accuracy, 
precision, recall, and F1-score, computed from the confusion matrix as follows.

Accuracy quantifies the overall correctness of the model:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(17)

Precision measures the proportion of correctly identified positive instances among all instances predicted as positive:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(18)

Recall (or sensitivity) evaluates the proportion of actual positive instances that are correctly identified:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(19)

F1-Score represents the harmonic mean of precision and recall, providing a balanced measure between the two:

𝐹1 = 2 × Precision × Recall
Precision + Recall

(20)

Where:

• 𝑇𝑃  (True Positive): Correctly identified anomalies.
• 𝐹𝑃  (False Positive): Normal instances incorrectly identified as anomalies.
• 𝑇𝑁 (True Negative): Correctly identified normal instances.
• 𝐹𝑁 (False Negative): Anomalies incorrectly identified as normal.

4.3.  Model parameters and hyperparameters

Table 5 presents a detailed comparison of the model architectures and hyperparameter configurations employed in this study. 
The temporal architectures, specifically LSTM and GRU models, are selected for their capability to effectively capture the temporal 
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Table 5 
Hyperparameter configurations and architectural specifications for baseline models.
 Category  Parameter  MLP  LSTM  GRU  XGB

Architecture

 Layer 1  Dense(256)  LSTM(256)  GRU(256)  —
 Layer 2  Dense(128)  LSTM(128)  GRU(128)  —
 Layer 3  Dense(64)  LSTM(64)  GRU(64)  —
 Output  Softmax(𝑛𝑐 )  Softmax(𝑛𝑐 )  Softmax(𝑛𝑐 )  —

Regularization
 Dropout  0.40  0.40  0.40  —
 Batch Norm.  Yes  Yes  Yes  —
 L2 Penalty  —  0.01  0.01  —

Optimization
 Optimizer  Adam  Adam  Adam  —
 Learning Rate  0.001  0.001  0.001  0.1
 Batch Size  512  64  64  —

Training  Epochs  100  100  100  —
 Loss Function  Sparse Categorical CE  softmax

Tree-Specific

 n_estimators  —  —  —  100
 max_depth  —  —  —  6
 subsample  —  —  —  0.8
 colsample_bytree  —  —  —  0.8
 tree_method  —  —  —  hist
 eval_metric  —  —  —  mlogloss

1. Note: 𝑛𝑐 = number of classes; CE = Cross-Entropy; XGB = XGBoost; Batch Norm. = 
Batch Normalization.

dynamics inherent in IoMT attack patterns. The MLP model serves as a non-temporal baseline due to its simpler feedforward structure 
and comparatively lower computational complexity. Additionally, XGBoost is included as a tree-based ensemble baseline to evaluate 
the effectiveness of gradient boosting methods in intrusion detection.

4.4.  Performance analysis of centralized learning

This subsection rigorously evaluates the performance of the proposed Two-Stage LSTM Pipeline (TSLP) architecture under central-
ized training conditions incorporating temporal aggregation. The evaluation establishes essential baseline metrics and systematically 
investigates the effects of varying temporal aggregation intervals on intrusion detection accuracy and computational efficiency, aiming 
to optimize predictive performance and training efficiency.

4.4.1.  Temporal aggregation impact on accuracy and efficiency
Temporal aggregation significantly improved the performance metrics of the LSTM-based IDS across all evaluated datasets, as 

illustrated comprehensively in Table 6. Notably, the NF-UNSW-NB15-V2 dataset exhibited the most pronounced improvement, with 
accuracy increasing from 87.18% at no aggregation to 99.28% at 30-second intervals. Precision also followed a parallel enhance-
ment, rising from 89.80% to 99.29%. Comparable improvements were observed on the CICIoMT-2024 dataset, where accuracy and 
precision improved from baseline values of approximately 90.50% to 98.97% at 30-second aggregation intervals. The WUSTL-EHMS-
2020 dataset consistently maintained exceptionally high performance, achieving 100% accuracy and precision at both 5-second and 
30-second intervals.

Fig. 6 illustrates the monotonic relationship between aggregation intervals and classification performance across the evaluated 
metrics. The improvement curves demonstrated rapid gains between 0 and 15 seconds, after which performance metrics plateaued. 
This trend remained consistent across accuracy, precision, recall, and F1-score metrics for all three datasets, suggesting an optimal 
trade-off existed between temporal granularity and classification accuracy.

Furthermore, temporal aggregation significantly reduced computational demands in both training and testing phases, as high-
lighted in Fig. 6. The NF-UNSW-NB15-V2 dataset experienced the most significant efficiency gains, with training time decreasing 
by 84.8%, from 32,319.75 seconds to 4,902.53 seconds, as aggregation intervals increased from 0 to 30 seconds. Testing duration 
demonstrated an even more substantial reduction of 93.1%, decreasing from 260.89 seconds to 18.11 seconds. Similar efficiency 
enhancements were observed on the CICIoMT-2024 dataset, where training time decreased by 97.2% (from 12,552.78 to 352.92 
seconds), and testing time by 97.5% (from 142.42 to 3.55 seconds). The WUSTL-EHMS-2020 dataset, despite being smaller in scale, 
achieved notable efficiency improvements with reductions of 99.3% and 99.1% in training and testing durations, respectively.

The computational efficiency gains presented in Fig. 7, utilising logarithmic scaling, underscore the exponential nature of the rela-
tionship between temporal aggregation intervals and processing times. The consistent downward trends observed across all datasets 
confirmed that temporal aggregation not only enhanced IDS performance but also significantly reduced computational resource 
requirements, making this approach particularly advantageous for deployment in resource-constrained IoMT environments.

4.4.2.  Binary versus multi-class detection comparison
Table 7 presents a detailed comparative analysis of binary and multi-class classification approaches employing LSTM models for 

intrusion detection. Binary classification consistently outperformed multi-class classification across all evaluated datasets, particularly 
demonstrating significant advantages in scenarios characterised by heterogeneous network traffic.
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Table 6 
Temporal Aggregation Effects on LSTM Classification Performance: Cross-Dataset Com-
parative Analysis.
 T (s)  Acc (%)  Prec (%)  Rec (%)  F1 (%)  Train Time (s)  Test Time (s)
 NF-UNSW-NB15-V2
 0  87.18  89.80  87.18  87.91  32,319.75  260.89
 5  90.11  91.87  90.11  90.48  29,427.07  107.91
 15  94.93  95.40  94.93  94.99  9,705.09  36.14
 30  99.28  99.29  99.28  99.28  4,902.53  18.11
 CICIoMT-2024
 0  90.50  90.57  90.50  90.50  12,552.78  142.42
 5  95.73  95.74  95.73  95.73  2,216.72  17.63
 15  97.42  97.49  97.42  97.41  743.87  6.34
 30  98.97  98.97  98.97  98.97  352.92  3.55
 WUSTL-EHMS-2020
 0  99.95  99.95  99.95  99.95  4,174.80  11.00
 5  99.99  99.99  99.99  99.99  856.16  2.02
 15  99.83  99.83  99.83  99.83  48.24  0.14
 30  99.99  99.99  99.99  99.99  30.99  0.10

Fig. 6. Performance Metrics and Computational Efficiency as Functions of Temporal Aggregation.
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Fig. 7. Computational Efficiency Gains Through Temporal Aggregation: Training and Testing Time Analysis.

Table 7 
Comparative Analysis of Binary and Multi-Class LSTM.
 Dataset  Method  Acc. (%)  Prec. (%)  Rec. (%)  F1 (%)

NF-UNSW-NB15-V2
 Binary  99.99  99.99  99.99  99.99
 Multi-class  92.84  93.51  92.84  93.02

CICIoMT-2024
 Binary  99.74  99.54  99.94  99.74
 Multi-class  91.62  91.64  91.62  91.63

WUSTL-EHMS-2020
 Binary  99.98  99.99  99.96  99.98
 Multi-class  99.95  99.95  99.95  99.95

The NF-UNSW-NB15-V2 dataset exhibited the most pronounced difference in performance. Binary classification achieved perfect 
detection rates of 99.99% across accuracy, precision, recall, and F1-score metrics. Conversely, multi-class classification attained only 
92.84% accuracy and a 93.02% F1-score, indicating a substantial accuracy gap of 7.16 percentage points. This notable discrepancy 
highlighted the comparative ease of distinguishing regular traffic from malicious activity compared to accurately categorising multiple 
distinct attack types within a complex network environment.

The CICIoMT-2024 dataset followed a similar trend, albeit with a slightly narrower performance differential. Binary classification 
achieved an accuracy of 99.74%, accompanied by balanced precision (99.54%) and recall (99.94%), reinforcing its robust detection 
capabilities. Multi-class classification exhibited considerably lower accuracy (91.62%), representing an 8.12 percentage point gap. 
Consistency in precision and recall metrics (91.64% and 91.62%, respectively) indicated the absence of systematic bias toward either 
false positives or false negatives, underscoring the inherent challenges associated with precise categorisation of IoMT-specific attack 
types.

In contrast, the WUSTL-EHMS-2020 dataset showed minimal differences between binary and multi-class classification perfor-
mances. Binary classification recorded an accuracy of 99.98%, closely matched by multi-class classification at 99.95%, demonstrating 
a negligible differential of 0.03 percentage points. Identical precision and recall values (99.95%) in multi-class classification sug-
gested that attack patterns within this specialised medical monitoring dataset possessed sufficiently distinct characteristics, facilitating 
accurate classification irrespective of the detection approach.

Moreover, the integration of temporal aggregation alongside multi-class classification in the second stage, following an initial 
binary classification in the first stage, established a two-stage detection pipeline that optimised both detection accuracy and compu-
tational efficiency. This TSLP approach, beginning with rapid binary anomaly detection followed by refined temporal aggregation 
for detailed attack categorisation, enabled real-time intrusion detection essential for resource-constrained IoMT deployments. The 
substantial improvements detailed in Section 4.4.1, coupled with the proven responsiveness and superior performance of binary 
classification, effectively validated this two-stage pipeline methodology as both accurate and computationally efficient for real-time 
IoMT intrusion detection without delays.
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4.4.3.  Comparative analysis of TSLP and baseline models
Table 8 presents a comprehensive evaluation of the proposed TSLP against established baseline models: MLP, GRU, LSTM, and 

XGBoost (XGB). The comparative analysis was conducted across three heterogeneous IoMT datasets. The results consistently demon-
strate that TSLP achieves a superior balance between detection performance and computational efficiency, thereby validating its 
suitability for real-time intrusion detection in resource-constrained IoMT environments.

On the NF-UNSW-NB15-V2 dataset, TSLP demonstrated superior balanced performance, achieving an F1-score of 99.63% with 
corresponding precision and recall values of 99.63%. This result is particularly significant when contrasted with XGBoost’s perfor-
mance. Although XGBoost achieved high accuracy (99.12%), its F1-score deteriorated substantially to 66.58%, accompanied by a 
precision of only 64.87%. This pronounced disparity between accuracy and F1-score indicates a critical deficiency in addressing class 
imbalance, likely manifesting as an elevated false-positive rate that would undermine practical deployment. The recurrent baseline 
models, GRU (F1-score: 93.32%) and LSTM (F1-score: 93.02%), were also substantially outperformed by TSLP while incurring con-
siderably higher training times of 14,538.94 seconds and 16,465.25 seconds, respectively. The non-temporal MLP baseline exhibited 
the poorest performance with an F1-score of 85.06%, confirming the necessity of temporal modeling for effective intrusion detection 
in this domain.

The CICIoMT-2024 dataset further underscored TSLP’s advantages in handling complex IoMT-specific attack scenarios. TSLP 
achieved a near-perfect F1-score of 99.82%, whereas alternative deep learning baselines exhibited substantial performance degra-
dation. The standard LSTM attained an F1-score of 91.63%, while GRU’s performance deteriorated markedly to 64.34%, suggesting 
that its simplified gating mechanism is insufficient for capturing the intricate temporal patterns characteristic of this dataset. XGBoost 
emerged as the strongest baseline; however, its F1-score of 93.16% remained 6.66 percentage points below TSLP, with notably lower 
precision (90.35%) indicative of suboptimal class discrimination. Beyond superior detection metrics, TSLP’s pipeline architecture 
demonstrated exceptional computational efficiency, achieving a 64.6% reduction in training time and an 83.8% reduction in infer-
ence time relative to standard LSTM. These improvements are particularly critical for real-time deployment scenarios where both 
accuracy and response latency are paramount.

On the WUSTL-EHMS-2020 dataset, all evaluated models achieved near-perfect detection performance (F1-score > 99.84%). 
This convergence in detection accuracy is likely attributable to the dataset’s reduced temporal complexity and well-separated class 
distributions, which enable even non-temporal models such as MLP and XGBoost to achieve effective classification. Under these 
conditions, computational efficiency emerged as the primary differentiating factor. XGBoost demonstrated the fastest training time 
(1.11 seconds), benefiting from its tree-based ensemble architecture. However, TSLP proved to be the most efficient among temporal 
models, requiring only 264.03 seconds for training—representing reductions of 35.8% and 31.4% compared to GRU and LSTM, 
respectively. Moreover, TSLP achieved an inference time of 0.04 seconds, corresponding to a 96% reduction relative to standard 
LSTM (1.00 seconds), while remaining competitive with XGBoost (0.01 seconds). This exceptional inference efficiency is particularly 
valuable for edge-deployed IoMT security systems operating under strict latency constraints.

The comparative analysis presented in Table 8 reveals fundamental trade-offs between computational efficiency and robust, bal-
anced detection performance. XGBoost, while demonstrating exceptional training efficiency across all datasets, exhibited a critical 
vulnerability: significantly degraded F1-scores and precision on the more complex NF-UNSW-NB15-V2 and CICIoMT-2024 datasets. 
This deficiency underscores XGBoost’s inherent limitation in modeling sequential attack patterns—a capability essential for reliable 
intrusion detection systems that must identify temporally correlated malicious behaviors.

The standard LSTM and GRU architectures, despite their temporal modeling capabilities, were consistently outperformed by TSLP 
in both detection accuracy and computational efficiency. This performance gap can be attributed to TSLP’s architectural innovations. 
Specifically, the two-stage pipeline—comprising binary classification for initial traffic filtering (Stage 1) followed by temporal ag-
gregation and multi-class classification (Stage 2)—enables efficient extraction and exploitation of long-range temporal dependencies 
while maintaining computational tractability. The temporal aggregation mechanism in particular allows TSLP to capture complex at-
tack patterns that unfold over extended time windows, a capability that proves decisive on datasets featuring sophisticated, multi-step 
attack sequences.

Furthermore, TSLP demonstrated significant reductions in both training and testing times across all datasets, confirming its com-
putational efficiency. These improvements are attributed to TSLP’s two-stage pipeline architecture and temporal aggregation, which 
efficiently capture long-term dependencies while minimizing computational costs. The incorporation of binary classification in the 
first stage further enhances real-time intrusion detection without compromising response time, making TSLP a highly effective solution 
for IoMT security.

4.5.  Evaluation of federated learning

This section presents a comprehensive analysis of federated learning performance, starting with idealized Independent and Iden-
tically Distributed (IID) conditions and progressing to more realistic non-IID scenarios. These scenarios reflect the heterogeneous 
nature of healthcare networks, where data may be distributed unevenly across clients.

4.5.1.  Federated learning evaluation under IID conditions
The FL evaluation commenced under IID conditions using the FedAvg algorithm to establish baseline performance metrics for the 

TSLP model. The experimental setup involved 10 federated rounds, each comprising 20 local epochs, with uniformly distributed data 
shards across participating clients.
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Table 8 
Performance Evaluation and Comparison of TSLP with Baseline Models.
 Arch.  T  Acc.  Prec.  Rec.  F1  Train  Test

 (s)  (%)  (%)  (%)  (%)  Time (s)  Time (s)
 NF-UNSW-NB15-V2
 MLP  0  84.33  87.29  84.33  85.06  816.11  30.99
 GRU  0  93.20  93.70  93.20  93.32  14,538.94  67.76
 LSTM  0  92.84  93.51  92.84  93.02  16,465.25  65.64
 XGBoost  0  99.12  64.87  77.01  66.58  748.56  3.06
 TSLP  30  99.63  99.63  99.63  99.63  8,995.80  18.94
 CICIoMT-2024
 MLP  0  88.48  88.63  88.48  88.50  1,084.29  35.17
 GRU  0  74.34  79.35  74.34  64.34  17,835.57  45.64
 LSTM  0  91.62  91.64  91.62  91.63  22,146.85  90.33
 XGBoost  0  99.77  90.35  97.73  93.16  1,138.25  7.18
 TSLP  30  99.82  99.82  99.82  99.82  7,838.79  14.62
 WUSTL-EHMS-2020
 MLP  0  99.99  99.99  99.99  99.99  14.39  0.31
 GRU  0  99.96  99.97  99.96  99.96  411.63  1.16
 LSTM  0  99.95  99.95  99.95  99.95  384.99  1.00
 XGBoost  0  99.97  99.82  99.85  99.84  1.11  0.01
 TSLP  30  99.99  99.99  99.99  99.99  264.03  0.04

Table 9 
Impact of Temporal Aggregation on Performance Metrics across Datasets: A Federated Learning 
Approach using FedAVG and LSTM.
 Method  T (s)  Acc (%)  Prec (%)  Rec (%)  F1 (%)
 NF-UNSW-NB15-V2 Dataset
 Federated Learning (FedAVG) using LSTM  0  89.87  91.14  89.87  90.22
 Federated Learning (FedAVG) using LSTM  30  95.46  95.64  95.46  95.50
 CICIoMT-2024 Dataset
 Federated Learning (FedAVG) using LSTM  0  91.45  91.47  91.45  91.45
 Federated Learning (FedAVG) using LSTM  30  99.82  99.82  99.82  99.82
 WUSTL-EHMS-2020 Dataset
 Federated Learning (FedAVG) using LSTM  0  99.99  99.99  99.99  99.99
 Federated Learning (FedAVG) using LSTM  30  99.99  99.99  99.99  99.99

Table 9 summarises the significant performance gains achieved through temporal aggregation. For the NF-UNSW-NB15-V2 dataset, 
TSLP accuracy improved notably from 89.87% without aggregation to 95.46% with 30-second intervals, marking a 5.59 percent-
age point enhancement. Precision correspondingly rose from 91.14% to 95.64%, and F1-score increased from 90.22% to 95.50%, 
affirming the efficacy of temporal aggregation in mitigating distributed learning challenges.

The CICIoMT-2024 dataset demonstrated even greater improvement, with TSLP accuracy rising sharply to 99.82%, an increase 
of 8.37 percentage points from the baseline LSTM performance of 91.45%. Consistent precision, recall, and F1-score metrics (each at 
99.82%) indicated balanced and unbiased detection performance, emphasising temporal aggregation’s capability to manage complex 
IoMT traffic patterns effectively.

For the WUSTL-EHMS-2020 dataset, accuracy slightly increased from 99.99% to 99.99% due to temporal aggregation. While 
accuracy improvements were minimal, computational efficiency significantly benefited from reduced communication overhead and 
accelerated convergence.

Fig. 8 illustrates convergence dynamics across datasets. Specifically, for NF-UNSW-NB15-V2 (Fig. 8a), temporal aggregation en-
abled rapid convergence within 2–3 rounds to about 95% accuracy, outperforming the non-aggregated baseline, which plateaued 
around 85% after 5–6 rounds. The loss curves confirmed more stable optimisation with aggregation.

For CICIoMT-2024 (Fig. 8b), the aggregated model rapidly reached 99% accuracy within three rounds, considerably faster than 
the baseline method, which stabilised around 90% after five rounds. Loss reduction was notably substantial, further validating 
aggregation’s advantages.

In the WUSTL-EHMS-2020 dataset (Fig. 8c), temporal aggregation consistently maintained stable performance, contrasting with 
noticeable instability and fluctuations observed in non-aggregated loss curves during later rounds. This highlighted the crucial role 
of temporal aggregation in ensuring optimisation stability.

Overall, temporal aggregation substantially enhanced FL dynamics, improving accuracy, accelerating convergence, reducing com-
munication overhead, and ensuring model stability.

4.5.2.  Evaluation of FTL-TSLP under Non-IID conditions
Real-world IoMT deployments inherently exhibit non-IID data characteristics, posing significant challenges to traditional FL 

methodologies. Healthcare institutions typically encounter distinct threat profiles influenced by factors such as specialisation, ge-
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Fig. 8. Comparison of accuracy and loss across different temporal aggregation intervals in Federated Learning using IID data. The figure illustrates 
the impact of 0s and 30s aggregation on training performance across multiple datasets.
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Table 10 
Per-Label Performance Metrics on Non-IID Data.
 Method  Metric  Label

 0  1  2  3  4
 NF-UNSW-NB15-V2
 FedAvg  Acc/F1  99.9/77.0  40.4/57.5  100/100  0/0  0/0
 TL(Binary)  Acc/F1  99.1/95.9  100/99.0  100/100  99.9/99.4  99.9/99.3
 Hybrid-Mode-1  Acc/F1  99.9/77.0  40.4/57.5  100/100  99.9/99.4  99.9/99.3
 Hybrid-Mode-2  Acc/F1  99.9/77.0  100/99.0  100/100  99.9/99.4  99.9/99.3
 CICIoMT-2024
 FedAvg  Acc/F1  99.1/95.5  91.5/95.1  100/100  0/0  0/0
 TL(Binary)  Acc/F1  99.8/99.1  99.7/94.3  100/99.3  100/97.3  99.7/99.1
 Hybrid-Mode-1  Acc/F1  99.1/95.5  91.5/95.1  100/100  100/97.3  99.7/99.1
 Hybrid-Mode-2  Acc/F1  99.1/95.5  97.8/94.3  100/100  100/97.3  99.7/99.1

ographic location, and patient demographics, resulting in highly heterogeneous data distributions among federated participants. This 
section presents a comprehensive evaluation of the FTL-TSLP framework under substantial data heterogeneity conditions.

Performance on Isolated Labels. This subsection assessed the performance of the FTL-TSLP model in non-IID scenarios, comparing four 
FL strategies: standard FedAvg, Transfer Learning (TL) for binary classification, and two hybrid modes. Hybrid Mode 1 employed TL 
exclusively for isolated labels, whereas Hybrid Mode 2 used TL for isolated labels and adaptively selected between TL and FedAvg 
based on optimal performance across all labels using Algorithm 3. The experimental setup involved three healthcare institutions, 
each characterised by unique attack patterns:

• Client 1 (General Hospital): Common labels 0, 1, and 2.
• Client 2 (Cardiac Facility): Common labels 0 and 2, isolated label 3.
• Client 3 (Pediatric Institution): Common labels 1 and 2, isolated label 4.

The experiment comprised 10 federated rounds, each with 20 local epochs, utilising the LSTM(30) architecture.
Table 10 demonstrated substantial performance variations among the evaluated strategies, especially concerning isolated labels. 

Standard FedAvg failed to classify isolated labels, achieving 0.00% accuracy for Labels 3 and 4 across both NF-UNSW-NB15-V2 
and CICIoMT-2024 datasets. However, FedAvg delivered satisfactory performance on common labels, with Label 2 achieving 99% 
accuracy due to its consistent presence across multiple clients.

In contrast, TL consistently provided superior accuracy, exceeding 99% for both isolated and common labels across all datasets. 
Specifically, TL attained accuracies of 99.87% and 99.85% for isolated Labels 3 and 4 on the NF-UNSW-NB15-V2 dataset, confirming 
its efficacy in managing isolated label scenarios through binary classification.

Hybrid Mode 1 effectively combined FedAvg for common labels and TL for isolated labels, preserving FedAvg’s efficiency while 
significantly improving accuracy for isolated labels. Hybrid Mode 2 further enhanced adaptability by selectively applying TL to both 
isolated and poorly performing common labels. Notably, this approach improved Label 1 accuracy from 40.37% to 99.97%, providing 
a balanced, performance-oriented solution.

The results obtained from the CICIoMT-2024 dataset mirrored these outcomes, reinforcing the inadequacy of FedAvg for isolated 
labels and underscoring the effectiveness of TL. Hybrid strategies demonstrated clear advantages in effectively handling heterogeneous 
IoMT data.

B. Computational Complexity Analysis of FL Strategies. The computational complexity of each strategy was evaluated in terms of 
storage, inference, communication, temporal, and spatial complexities, as illustrated in the following table. The parameters used for 
complexity calculations are defined as follows:

• d: Model dimension
• n: Total number of labels
• k: Number of isolated labels
• p: Number of poorly performing labels
• r: Number of federated rounds
• m: Number of clients

Table 11 summarises the computational complexity of various FL strategies, highlighting the critical trade-offs between perfor-
mance and resource usage:

• FedAvg: Exhibited the lowest complexity (𝑂(𝑟) temporal, 𝑂(𝑑) spatial), but delivered insufficient accuracy for isolated labels.
• TL (Binary): Demonstrated the highest complexity (𝑂(𝑟 × 𝑛) temporal, 𝑂(𝑛 × 𝑑) spatial), limiting its practical feasibility for 
resource-constrained devices.

• Hybrid Mode 1: Offered moderate complexity (𝑂(𝑟) temporal, 𝑂((1 + 𝑘) × 𝑑) spatial), efficiently addressing isolated labels.
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Table 11 
Computational Complexity Analysis of Federated Learning Strategies for TSLP -Based Intrusion Detection.
 Strategy  Number of Models per Client  Temporal Complexity  Spatial Complexity  Complexity Level
 FedAvg  1 (global model) (𝑟) (𝑑)  Low
 TL 𝑛 (binary classifiers) (𝑟 × 𝑛) (𝑛 × 𝑑)  High
 Hybrid Mode 1 1 + 𝑘 (global + isolated) (𝑟) ((1 + 𝑘) × 𝑑)  Medium
 Hybrid Mode 2 𝑛 (adaptive selection) (𝑟 × 𝑛) (𝑛 × 𝑑)  High

Fig. 9. Class distribution across clients for the CICIoMT-2024 dataset using Dirichlet-based label allocation.

• Hybrid Mode 2: Presented adaptive complexity depending on label performance, effectively balancing resource consumption and 
detection accuracy.

The proposed FTL-TSLP framework successfully balanced performance and complexity, achieving overall accuracies of 95.46% on 
the NF-UNSW-NB15-V2 dataset and 99.82% on the CICIoMT-2024 dataset. Its two-stage pipeline architecture facilitated optimised 
feature sharing across related attack categories, significantly reducing computational redundancy while maintaining high accuracy 
for isolated labels. This balanced methodology underscored the practical suitability of FTL-TSLP for real-world IoMT deployments, 
effectively managing accuracy requirements and computational constraints.

4.5.3.  Performance evaluation under dirichlet-based Non-IID conditions
In the previous subsection (Section 4.5.2, "Addressing Isolated Labels with FTL-TSLP"), labels were manually allocated to simulate 

non-IID conditions. In contrast, this subsection employs a systematic and automated approach using Dirichlet-based partitioning, 
which provides a more rigorous evaluation of the FTL-TSLP framework’s robustness and generalizability under realistic non-IID 
scenarios.

The Dirichlet distribution serves as a robust framework for simulating heterogeneous data partitions, with a concentration pa-
rameter (𝛼) controlling the degree of statistical heterogeneity. The parameter 𝛼 was varied across four levels: 𝛼 ∈ {20.0, 1.0, 0.5, 0.1}, 
transitioning from near-homogeneous distributions (𝛼 = 20.0) to extreme heterogeneity (𝛼 = 0.1), thereby encompassing a broad spec-
trum of federated learning scenarios.

Class allocation patterns across federated clients under different Dirichlet parameters were analyzed using the CICIoMT-2024 
dataset (Fig. 9). Under weak heterogeneity (𝛼 = 20.0), class proportions were relatively uniform with minimal variance. As hetero-
geneity increased (𝛼 = 1.0), variability in class proportions grew significantly, resulting in broader ranges (with a maximum of ap-
proximately 0.32 and a minimum approaching zero). At stronger heterogeneity (𝛼 = 0.5), pronounced client-specific data imbalances 
emerged, with class proportions fluctuating between 0.00 and 0.43. In scenarios of extreme heterogeneity (𝛼 = 0.1), the class distri-
butions became highly skewed, with certain classes becoming overwhelmingly dominant within individual client datasets, reaching 
proportions as high as 0.90.

These findings underscore the effectiveness of Dirichlet-based partitioning in simulating realistic, diverse non-IID conditions, 
providing a robust foundation for the evaluation of federated learning methodologies.

C. Baseline FedAvg-TSLP Performance on CICIoMT-2024 Dataset. Table 12 highlights the significant impact of increasing data het-
erogeneity on the baseline FedAvg-TSLP model’s performance with the CICIoMT-2024 dataset. Under low heterogeneity conditions 
(𝛼 = 20), the model achieved an average accuracy of 96.01%. Despite robust overall performance, notable disparities emerged at the 
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Table 12 
Performance Evaluation of the FedAvg-TSLP (30s) Model on the CICIoMT-2024 Dataset under Varying Dirichlet Alpha 
Settings.

 Alpha  Method  Metric  C0  C1  C2  C3  C4  C5  C6  C7  Avg

20 FedAvg-TSLP (30s)
 Accuracy  99.75  98.46  99.99  99.47  99.99  98.06  73.06  99.26  96.01
 Precision  96.78  99.86  99.47  99.99  99.98  99.88  98.89  78.61  96.69
 Recall  99.75  98.46  99.99  99.47  99.99  98.06  73.06  99.26  96.01
 F1 Score  98.24  99.15  99.74  99.73  99.99  98.96  84.04  87.74  95.95

1 FedAvg-TSLP (30s)
 Accuracy  99.99  99.32  99.99  99.40  99.99  98.89  99.11  99.35  99.51
 Precision  98.35  99.87  99.41  99.99  99.96  99.98  99.39  99.16  99.51
 Recall  99.99  99.32  99.99  99.40  99.99  98.89  99.11  99.35  99.51
 F1 Score  99.17  99.59  99.70  99.70  99.98  99.43  99.25  99.26  99.51

0.5 FedAvg-TSLP (30s)
 Accuracy  99.92  99.29  99.99  99.95  99.99  98.53  99.87  97.70  99.36
 Precision  97.91  99.89  99.55  99.99  99.96  99.89  97.82  99.93  99.37
 Recall  99.92  99.29  99.99  99.55  99.99  98.53  99.87  97.70  99.36
 F1 Score  98.91  99.59  99.77  99.77  99.98  99.20  98.84  98.80  99.36

0.1 FedAvg-TSLP (30s)
 Accuracy  3.42  99.73  99.99  0.00  93.11  0.00  0.00  99.77  49.50
 Precision  99.09  36.68  80.92  0.00  99.56  0.00  0.00  32.44  43.59
 Recall  3.42  99.73  99.99  0.00  93.11  0.00  0.00  99.77  49.50
 F1 Score  6.60  53.63  89.45  0.00  96.23  0.00  0.00  48.96  36.86

class level, particularly for Class 6, which exhibited significantly lower accuracy (73.06%). Precision (98.89%) and recall (73.06%) 
discrepancies indicated difficulties in effectively capturing minority-class characteristics even under near-IID conditions.

Moderate heterogeneity (𝛼 = 1.0) yielded an improvement in overall accuracy to 99.51%, accompanied by enhancements across 
all classes. These results indicate beneficial regularisation effects associated with moderate distributional diversity, aligning with 
ensemble learning principles. However, these performance gains were sensitive to further increases in heterogeneity.

At higher heterogeneity levels (𝛼 = 0.5), the model maintained high accuracy (99.36%), yet exhibited localised performance 
reductions, such as lower recall for Class 7 (97.70%). Despite overall stability, these subtle declines highlighted FedAvg’s limitations 
in managing pronounced class imbalance.

Under extreme heterogeneity (𝛼 = 0.1), the baseline model experienced a substantial performance degradation, achieving an ac-
curacy of only 49.50%. Complete detection failures occurred in several classes (C3, C5, C6), each scoring 0.00% across all metrics. 
Class 1, despite a high recall (99.73%), showed notably low precision (36.68%), resulting in a high false-positive rate. Consequently, 
the F1-score declined sharply to 36.86%, clearly reflecting the model’s severe inability to manage extreme non-IID scenarios effec-
tively.

D. Performance of Proposed FTL-TSLP Architecture on CICIoMT-2024 Dataset. Table 13 demonstrates the proposed FTL-TSLP archi-
tecture’s effectiveness in mitigating performance degradation due to increasing data heterogeneity. The adaptive transfer learning 
mechanism progressively activated as heterogeneity intensified, consistently ensuring robust performance.

Under low and moderate heterogeneity (𝛼 ∈ {20, 1}), FTL-TSLP matched the baseline’s performance exactly, achieving accuracies 
of 96.01% and 99.51%, respectively. This equivalence confirmed that transfer learning mechanisms did not introduce unnecessary 
computational complexity under relatively homogeneous conditions.

The superiority of FTL-TSLP became evident at more substantial heterogeneity (𝛼 = 0.5), maintaining high accuracy at 99.36%, 
identical to baseline performance but significantly enhancing specific class metrics. Class 6, previously vulnerable under baseline 
conditions, notably improved in recall (99.87%) and balanced precision (97.82%), leading to a significantly enhanced F1-score of 
98.84%.

Under conditions of extreme heterogeneity (𝛼 = 0.1), FTL-TSLP demonstrated exceptional resilience, achieving an accuracy of 
99.72%, substantially surpassing the baseline’s 49.50%. Precision improved markedly from 43.59% to 98.16%, recall increased 
significantly from 49.50% to 98.00%, and the F1-score rose substantially from 36.86% to 98.07%, resolving critical baseline limi-
tations.

Table 14 and Fig. 10 further illustrate the robustness and superiority of FTL-TSLP compared to FedAvg under severe data hetero-
geneity. Notably, the FTL-TSLP demonstrated remarkable consistency. Under extreme heterogeneity (𝛼 = 0.1), the model achieved 
accuracies of 99.72% on CICIoMT-2024.

4.6.  Comparative performance analysis against non-IID robust baselines

Following the preliminary heterogeneity analysis presented in Section 4.5.2, this subsection benchmarks FTL-TSLP against fed-
erated learning algorithms specifically designed to address non-IID data distributions. The comparison includes two established 
baselines: FedProx, which constrains local model drift using proximal regularisation, and SCAFFOLD, which employs control variates 
to correct client-drift-induced gradient variance.

The evaluation employs the CICIoMT-2024 dataset under severe statistical heterogeneity. Client datasets were generated using a 
Dirichlet distribution with concentration parameter 𝛼 = 0.1, producing extreme label-distribution skew. Under this configuration, each 
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Table 13 
Performance Evaluation of the Proposed Model: FTL-TSLP (30s) on the CICIoMT-2024 Dataset under Varying Dirichlet Alpha Settings.
 Alpha  Method  Metric  C0  C1  C2  C3  C4  C5  C6  C7  Avg

20 Proposed Model: FTL-TSLP (30s)
 Accuracy  99.75  98.46  99.99  99.47  99.99  98.06  73.06  99.26  96.01
 Precision  96.78  99.86  99.47  99.99  99.98  99.88  98.89  78.61  96.69
 Recall  99.75  98.46  99.99  99.47  99.99  98.06  73.06  99.26  96.01
 F1 Score  98.24  99.15  99.74  99.73  99.99  98.96  84.04  87.74  95.95

1 Proposed Model: FTL-TSLP (30s)
 Accuracy  99.99  99.32  99.99  99.40  99.99  98.89  99.11  99.35  99.51
 Precision  98.35  99.87  99.41  99.99  99.96  99.98  99.39  99.16  99.51
 Recall  99.99  99.32  99.99  99.40  99.99  98.89  99.11  99.35  99.51
 F1 Score  99.17  99.59  99.70  99.70  99.98  99.43  99.25  99.26  99.51

0.5 Proposed Model: FTL-TSLP (30s)
 Accuracy  99.92  99.29  99.99  99.95  99.99  98.53  99.87  97.70  99.36
 Precision  97.91  99.89  99.55  99.99  99.96  99.89  97.82  99.93  99.37
 Recall  99.92  99.29  99.99  99.55  99.99  98.53  99.87  97.70  99.36
 F1 Score  98.91  99.59  99.77  99.77  99.98  99.20  98.84  98.80  99.36

0.1 Proposed Model: FTL-TSLP (30s)
 Accuracy  99.79  99.67  99.96  99.96  99.66  99.85  99.88  99.80  99.72
 Precision  98.12  90.98  99.01  98.13  98.21  98.55  99.86  99.85  98.16
 Recall  99.99  97.80  99.57  96.55  99.99  91.23  99.95  99.92  98.00
 F1 Score  99.05  94.27  99.29  97.33  99.10  94.75  99.90  99.88  98.07

Table 14 
Global Performance Comparison of FedAvg-TSLP and Pro-
posed FTL-TSLP Models (30s Interval) on CICIoMT-2024 
Dataset Across Varying Dirichlet Alpha Settings.
 Alpha  Metric  FedAvg-TSLP  FTL-TSLP (Proposed)

20

 Accuracy  96.01  96.01
 Precision  96.69  96.69
 Recall  96.01  96.01
 F1 Score  95.95  95.95

1

 Accuracy  99.51  99.51
 Precision  99.51  99.51
 Recall  99.51  99.51
 F1 Score  99.51  99.51

0.5

 Accuracy  99.36  99.36
 Precision  99.37  99.37
 Recall  99.36  99.36
 F1 Score  99.36  99.36

0.1

 Accuracy  49.50  99.72
 Precision  43.59  98.16
 Recall  49.50  98.00
 F1 Score  36.86  98.07

client observes only a small, highly imbalanced subset of the global label space, with some classes absent—a scenario representative 
of realistic IoMT deployments where devices monitor distinct patient groups or pathological conditions.

Federated training was performed with three clients over 20 communication rounds, with each client executing five local epochs 
per round. All algorithms utilised the same TSLP backbone architecture, ensuring that performance differences stem solely from the 
aggregation strategies rather than architectural variations.

All methods were implemented using their published optimal configurations. FedProx was evaluated with proximal terms 𝜇 ∈
{0.01, 0.1} using the Adam optimizer (learning rate 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999), batch size 𝐵 = 32, L2 regularization weight 𝜆 = 0.01, 
and dropout rate 𝑝 = .4. SCAFFOLD employed SGD with learning rate 𝜂 = 0.0001 and momentum 𝛾 = 0.9, batch size 𝐵 = 32, and a 
two-tier gradient clipping mechanism consisting of a local clip norm 𝜏1 = 1.0 and a global threshold 𝜏2 = 5.0. FTL-TSLP adopted the 
same optimiser configuration as FedProx but incorporated the dual federated transfer learning mechanism, including pre-trained 
feature extractors and adaptive knowledge distillation.

Table 15 reports the performance after 20 rounds of federated training. Under extreme non-IID conditions, the baseline algorithms 
exhibit substantial degradation. FedProx achieves an F1-score of 36.31% for 𝜇 = 0.1, demonstrating that proximal regularisation alone 
cannot reconcile gradient conflicts derived from divergent local objectives. Precision remains low at 33.15%, reflecting significant 
misclassification of minority classes absent from local datasets. SCAFFOLD exhibits even greater performance collapse, achieving 
an F1-score of 28.33% and a recall of only 43.14%. Despite its variance-reduction mechanism, the method struggles when client 
objectives diverge significantly across the network.

In contrast, FTL-TSLP demonstrates highly stable convergence and near-optimal performance, achieving 99.72% accuracy, 
98.16% precision, 98.00% recall, and a 98.07% F1-score. These outcomes correspond to improvements of 61.76 percentage points 
over FedProx and 69.74 points over SCAFFOLD in F1-score alone, highlighting the substantial benefits of integrating targeted transfer 
learning with federated aggregation.
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Fig. 10. Comparative global performance of FedAvg-TSLP and the proposed FTL-TSLP (30s) across varying Dirichlet alpha values on the
CICIoMT-2024 dataset.

Table 15 
Performance under extreme non-IID (Dirichlet 𝛼 = 0.1) on 
CICIoMT-2024.

 Algorithm  Acc.  Prec.  Rec.  F1
 FedProx (𝜇 = 0.1)  69.36  33.15  56.61  36.31
 FedProx (𝜇 = 0.01)  68.44  33.66  55.44  36.11
 SCAFFOLD  66.49  33.24  43.14  28.33
 FTL-TSLP  99.72  98.16  98.00  98.07

These findings establish FTL-TSLP as a robust and computationally efficient solution for federated IoMT intrusion detection under 
extreme non-IID conditions. The framework consistently outperforms specialised non-IID baselines while maintaining feasibility for 
deployment on resource-constrained edge devices.

4.6.1.  Scalability evaluation of FTL-TSLP
To evaluate the scalability of the FTL-TSLP architecture, experiments were conducted across federation sizes ranging from 4 to 100 

clients under IID conditions. We employed three benchmark datasets representing distinct application domains—NF-UNSW-NB15-V2, 
CICIoMT-2024, and WUSTL-EHMS-2020, for evaluation.

Across all datasets and federation sizes, the FTL-TSLP consistently demonstrated balanced precision and recall, with closely aligned 
F1-scores and accuracy metrics. This consistency highlights the architecture’s robust feature extraction capabilities and its ability to 
maintain predictive accuracy as the federation size increases.

Results presented in Table 16 demonstrate that FTL-TSLP consistently maintained high accuracy levels exceeding 92%, even at 
the largest evaluated scale of 100 clients. The observed stability and predictable performance trends across increasing federation 
sizes underscore the architecture’s reliability and practical suitability for large-scale federated learning deployments. These findings 
collectively confirm the scalability, stability, and adaptability of the FTL-TSLP architecture, emphasising its effectiveness for federated 
learning scenarios requiring significant client scalability.

4.7.  Fault tolerance and clinical risk prioritization in IoMT networks: A two-stage framework evaluation

The comparative performance of the evaluated fault-tolerance methods is presented in Table 17. The analysis reveals that the
TOPSIS-Standard method with AHP weights achieved the highest classification reliability, with an AUC of 1.0, indicating near-
perfect separation between the Best, Acceptable, and Non-Acceptable classes. The Safety-Priority and Hybrid variants also exhibited 
strong performance, with AUC values close to 1.0, suggesting their effectiveness in accurately classifying nodes under various 
network conditions. However, the Robust method, while demonstrating significant class separation, yielded a lower AUC due 
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Table 16 
Scalability performance of FTL-TSLP (30s) under IID conditions.
 Clients  Dataset  Acc. (%)  Prec. (%)  Rec. (%)  F1 (%)

4
 UNSW  95.53  96.52  95.53  95.47
 IoMT  99.65  99.65  99.65  99.65
 WUSTL  99.99  99.99  99.99  99.99

10
 UNSW  94.23  94.78  94.23  94.26
 IoMT  99.47  99.47  99.47  99.47
 WUSTL  99.99  99.99  99.99  99.99

20
 UNSW  93.45  95.44  93.45  93.22
 IoMT  98.74  98.76  98.74  98.74
 WUSTL  99.99  99.99  99.99  99.99

50
 UNSW  92.42  94.30  92.42  92.18
 IoMT  98.67  98.72  98.67  98.68
 WUSTL  99.99  99.99  99.99  99.99

100
 UNSW  95.25  96.34  95.25  95.17
 IoMT  97.48  97.58  97.48  97.49
 WUSTL  99.99  99.99  99.99  99.99

Table 17 
Comparison of fault tolerance methods (TOPSIS variants) across weighting 
strategies.

 Method  Weights  AUC  Separation  Override Rate
TOPSIS-Standard AHP  1.000  1.565  0.003
TOPSIS-Standard Safety-Priority  0.9995  1.562  0.003
TOPSIS-Hybrid AHP  0.9995  1.563  0.003
TOPSIS-Robust AHP  0.7536  14.193  0.003

to instability in classification, which suggests that larger separations between classes do not necessarily correlate with consistent 
performance across all test cases.

The Clinical Override Rate, a key indicator of the system’s ability to prioritize clinical safety, remained consistently low (ap-
proximately 0.3%) across all methods. This demonstrates that the CRI mechanism intervened selectively, ensuring patient risk was 
prioritized only when necessary without affecting the overall network performance.

The distribution of critical features and attack rates across the three node classes (Best, Acceptable, and Non-Acceptable) is presented 
in Fig. 11. This figure provides a comprehensive view of the variability in key performance metrics, including node safety, latency, 
jitter, packet loss, and the attack rate for each classification category.

• Node Safety: As expected, Best Nodes exhibited consistently high node safety scores, with the vast majority surpassing the ideal 
threshold of 0.95. In contrast, Non-Acceptable Nodes demonstrated a significantly broader range of safety values, reflecting the 
compromised nature of these devices.

• Latency: The Best and Acceptable nodes maintained latency levels well below the clinically acceptable threshold of 50 ms. How-
ever, Non-Acceptable Nodes displayed much higher latency values, often exceeding the ideal threshold, suggesting performance 
degradation possibly due to fault or attack conditions.

• Jitter: Both Best and Acceptable Nodes showed minimal jitter values, staying within the ideal limit of ≤ 10 ms. On the other 
hand, Non-Acceptable Nodes exhibited significantly higher jitter levels, highlighting their instability and unsuitability for critical 
healthcare applications.

• Packet Loss: The Best and Acceptable Nodes experienced negligible packet loss, consistently staying below the 1% threshold. In 
contrast, Non-Acceptable Nodes exhibited a substantial increase in packet loss, further reinforcing the classification of these nodes 
as unreliable for clinical use.

• Attack Rate: A striking observation is that Non-Acceptable Nodes were associated with a 37.6% attack rate, illustrating that 
these nodes were frequently under attack. This aligns with the decision to quarantine these nodes to prevent further network 
contamination. Best and Acceptable Nodes, on the other hand, remained free of attacks, confirming their stability and reliability.
The findings from this qualitative analysis underscore the framework’s ability to distinguish between nodes based on both their 

technical performance (latency, jitter, packet loss, node safety) and their risk level (attack rate), effectively isolating faulty or com-
promised nodes while maintaining the integrity of the remaining network.

5.  Discussion

The experimental findings presented robustly validate the effectiveness of the proposed FTL-TSLP architecture for IoMT environ-
ments. These outcomes comprehensively fulfil both theoretical propositions and practical objectives defined in this research.

A notable enhancement within FTL-TSLP is the implementation of temporal aggregation, which considerably enhances intrusion 
detection capabilities. Empirical evaluations using the NF-UNSW-NB15-V2 dataset demonstrated substantial accuracy improvements 
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Fig. 11. Feature and Attack Distributions by Classification Class. SLA thresholds are marked for latency, jitter, packet loss, and node safety.

from 87.18% without temporal aggregation to 99.28% with a 30-second aggregation interval—representing a relative enhancement 
of approximately 13.88%. Additionally, temporal aggregation notably optimised computational efficiency by significantly reducing 
training duration by 84.84% (from 32,319.75 s to 4,902.53 s) and inference latency by 93.06% (from 260.89 s to 18.11 s) (Table 6; 
Fig. 6). Similar enhancements were observed in FL contexts, where accuracy improved from 89.87% to 95.46% under independent 
and IID conditions (Table 9). These findings underscore temporal aggregation’s clear superiority over conventional LSTM and GRU-
based methods, particularly in terms of detection accuracy and computational resource utilisation (Table 8).

Moreover, integrating TL into FL frameworks effectively mitigated statistical heterogeneity common in IoMT scenarios. Under 
severely non-IID conditions characterised by a Dirichlet distribution parameter (𝛼 = 0.1), traditional Federated Averaging (FedAvg) 
methods suffered significant performance deterioration, achieving near-random accuracy levels of 49.5%. Conversely, the proposed 
FTL-TSLP architecture maintained exceptional accuracy, reaching 99.72% (Table 14). This robust performance results from the 
targeted application of TL, specifically addressing isolated or underrepresented attack labels. Such targeted interventions effectively 
resolve gradient conflicts and preserve essential client-specific information, as confirmed by detailed per-label analyses (Table 13).

Additionally, the proposed hybrid FL methodology presents a significant theoretical advancement by optimally balancing accuracy 
and computational complexity. This methodology uses FedAvg for common labels and applies TL selectively to isolated or underper-
forming labels. Consequently, spatial and model-count complexity scales linearly with the number of isolated labels ((1 + 𝑘)), as 
opposed to the (𝑛) complexity of traditional binary-classification-based TL methods. This characteristic makes the hybrid approach 
particularly suitable for resource-constrained IoMT contexts (Table 11).

Scalability analyses further confirm the practical applicability and robustness of FTL-TSLP. Evaluations across federation sizes 
ranging from 4 to 100 clients consistently demonstrated accuracy exceeding 92%, alongside balanced precision and recall metrics 
across multiple benchmark datasets (NF-UNSW-NB15-V2, CICIoMT-2024, WUSTL-EHMS-2020) (Table 16). These findings highlight 
the model’s consistent performance and scalability, reinforcing its suitability for real-world deployment in clinical environments 
where accurate and real-time cybersecurity is crucial for patient safety and care continuity.

The results substantiate the effectiveness of the FTL-TSLP framework as a clinically informed fault-tolerance solution that ensures 
robust technical performance while prioritising patient safety. By integrating TOPSIS-based MCDA with the CRI, the framework 
enables precise node classification and dynamically reclassifies nodes based on clinical risk, ensuring that favourable technical metrics 
do not compromise patient safety. As demonstrated in Table 17, the framework effectively balances fault tolerance and classification 
accuracy, achieving high reliability even under non-IID conditions. Additionally, the distribution of critical features and attack rates, 
shown in Fig. 11, further underscores the framework’s ability to distinguish between stable and compromised nodes, isolating those 
under attack while maintaining network integrity. These advancements underscore the FTL-TSLP framework’s substantial potential 
in real-world IoMT applications, providing a secure and patient-centric approach to cybersecurity. Moving forward, the framework’s 
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Table 18 
Performance comparison of recent IDS for IoMT.
 Method  Learning  Acc.  Prec.  Rec.  F1

 Paradigm  (%)  (%)  (%)  (%)
 CICIoMT-2024 Dataset
 RF [25] (2024)  Centralized  73.3  69.1  57.7  55.1
 Feature selection+RF [26] (2025)  Centralized  93.5  94.0  93.0  93.0
 Two-stacked LSTM [34] (2025)  Centralized  98.0  98.0  98.0  98.0
 FL+RF [42] (2025)  Federated [Non-IID]  99.2  99.4  99.2  99.1
 BiGRU-BiLSTM [35] (2025)  Centralized  99.9  99.7  99.9  99.9
 FTL-TSLP  Federated [Non-IID†]  99.7  98.2  98.0  98.1
 NF-UNSW-NB15-v2 Dataset
 FL+LSTM [41] (2023)  Federated [Non-IID]  NA  NA  85.3  NA
 FTL-TSLP  Federated [Non-IID†]  99.9  98.7  99.9  99.5
 WUSTL-EHMS-2020 Dataset
 FL+PCA+DNN [45] (2024)  Federated [Non-IID]  88.0  66.0  50.0  57.0
 FTL-TSLP  Federated [IID]  99.99  99.99  99.99  99.99
†Extreme Non-IID: Dirichlet(𝛼 = 0.1)

scalability, resilience, and integration of clinical safety with technical performance position it as a critical tool for advancing healthcare 
network security.

In conclusion, the FTL-TSLP framework has demonstrated its efficacy as a clinically informed fault-tolerance solution, ensuring 
robust technical performance while prioritising patient safety. This dual-focus approach distinguishes it from traditional QoS-based 
models and IDS, which often fail to integrate clinical risk considerations into their decision-making processes. The research makes 
significant contributions in three key areas: (1) the validation of temporal aggregation techniques that enhance intrusion detection 
capabilities in IoMT networks, (2) the development of an innovative hybrid federated learning architecture that effectively addresses 
statistical heterogeneity and isolated attack categories, and (3) the empirical validation of the framework’s scalability, robustness, 
and practical applicability across diverse IoMT scenarios. These advancements not only deepen the theoretical understanding of fault 
tolerance in IoMT but also provide valuable insights for the implementation of secure, patient-centric healthcare infrastructures. By 
seamlessly integrating clinical safety with technical performance, the framework positions itself as a crucial tool for future healthcare 
cybersecurity. Moving forward, research should focus on further optimising its security, scalability, and resource management in 
decentralised healthcare networks, ensuring its continued relevance and resilience in dynamic healthcare environments.

5.1.  Comparison with related work

Table 18 presents an extensive comparative evaluation of the proposed FTL-TSLP framework against contemporary state-of-the-art 
IDS across multiple benchmark datasets specifically tailored for IoMT environments. The comparative analysis distinguishes between 
federated and centralised learning paradigms, elucidating the performance advantages and architectural innovations of the proposed 
method.

Federated approaches such as FL combined with LSTM [41] and FL with PCA + DNN [45] have demonstrated varying performance 
under non-IID data conditions. Specifically, the FL+LSTM method achieved a recall of only 85.3% on the NF-UNSW-NB15-v2 dataset 
under less severe non-IID settings. In contrast, our FTL-TSLP demonstrates substantial improvement, achieving a recall of 99.9% under 
extreme non-IID conditions (𝛼 = 0.1), signifying an increase of approximately 14.6%. Similarly, FL+PCA+DNN reported a critically 
limited recall of 50% on the WUSTL-EHMS-2020 dataset under non-IID conditions. In contrast, our proposed framework achieved per-
fect accuracy, precision, recall, and F1-score metrics (99.99%), underscoring its exceptional resilience to data distribution challenges. 
On the CICIoMT-2024 dataset, the federated Random Forest (FL+RF) approach [42] attained a competitive accuracy of 99.2%; how-
ever, it inherently lacks mechanisms to effectively model temporal dependencies crucial for detecting sophisticated attack patterns 
in dynamic IoMT systems. Our proposed FTL-TSLP addresses these limitations, providing a superior accuracy of 99.7% and a well-
balanced precision, recall, and F1-score, reflecting its robust capability to manage severe non-IID conditions while preserving data 
privacy. Centralised learning methodologies display varying degrees of performance when evaluated on the CICIoMT-2024 dataset. 
Specifically, the baseline Random Forest model [25] demonstrates limited efficacy, achieving an accuracy of only 73.3% along with 
a notably low F1-score of 55.1%. In contrast, centralised approaches such as optimised feature selection combined with Random 
Forest [26] and stacked Long Short-Term Memory (LSTM) architectures [34] have demonstrated commendable performance. How-
ever, these methods rely on centralised aggregation of data, posing potential risks to patient privacy-an essential consideration within 
healthcare contexts. Our FTL-TSLP method, while matching or surpassing these centralised systems’ performance, notably preserves 
data locality and privacy, which are critical for regulatory compliance. The BiGRU-BiLSTM approach [35] displays marginally superior 
accuracy (99.9%) on CICIoMT-2024; however, it requires centralised data aggregation and incurs significantly greater computational 
complexity due to its bidirectional processing architecture. Conversely, our framework achieves comparable accuracy (99.7%) while 
substantially reducing computational costs-training time reduced by 84.8% and inference latency reduced by 93.1% through effective 
temporal aggregation. The proposed FTL-TSLP framework represents a significant methodological advancement in federated IDS for 
IoMT, effectively managing statistical heterogeneity and stringent privacy requirements, while consistently demonstrating superior 
or comparable performance relative to existing federated and centralised methodologies.

Internet of Things 35 (2026) 101832 

32 



A. Bouazza et al.

6.  Conclusion

This paper introduced FTL-TSLP, a sophisticated framework developed to address critical challenges in intrusion detection within 
IoMT environments characterised by heterogeneous and privacy-sensitive data. The proposed FTL-TSLP framework significantly 
advances federated intrusion detection by effectively balancing accuracy, computational efficiency, and data privacy.

The temporal aggregation technique integrated within the FTL-TSLP architecture notably enhanced detection performance and 
reduced computational overhead. Empirical evaluations demonstrated accuracy improvements of up to 13.87% on the NF-UNSW-
NB15-v2 dataset, alongside significant reductions in computational requirements, specifically an 84.84% decrease in training time 
and a 93.06% decrease in inference latency. These results highlight the necessity of advanced temporal modelling to accurately 
identify IoMT attack patterns over extended intervals beyond conventional packet-level analyses.

Furthermore, the selective application of transfer learning for isolated attack categories, coupled with federated averaging for 
common threats, effectively mitigated the statistical heterogeneity inherent in federated learning scenarios. Under severe non-IID 
conditions, FTL-TSLP achieved an exceptional accuracy of 99.86%, marking approximately a 190% relative improvement compared 
to traditional federated averaging approaches.

Comprehensive scalability evaluations confirmed the practical viability of the FTL-TSLP framework for large-scale IoMT deploy-
ments. The model consistently delivered accuracy exceeding 92% across federation sizes ranging from 4 to 100 clients and maintained 
robust performance across multiple diverse benchmark datasets.

Despite these substantial contributions, the framework exhibits certain limitations. Notably, its linear complexity scaling (1 + 𝑘), 
with 𝑘 representing isolated labels, might constrain deployment in scenarios involving extensive, institution-specific threat categories. 
Additionally, the absence of robust mechanisms against adversarial threats such as gradient poisoning highlights areas needing further 
strengthening.

Future research should focus on several promising directions to broaden the applicability of FTL-TSLP. One critical avenue is 
the integration of formal privacy-enhancing technologies, such as differential privacy or secure aggregation, to provide quantifiable 
protection against inference attacks in sensitive healthcare environments. Another important direction involves evaluating the frame-
work across a wider variety of IoMT datasets, particularly those incorporating emerging multimodal and sensor-rich data, to validate 
its robustness and generalizability further. Finally, a practical next step would be to assess the performance of the TSLP model across 
different physical edge-device architectures to ensure efficient deployment under diverse computational constraints.
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