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Abstract — In this paper, we propose a diagnostic method for detecting and
localizing bearing faults in induction motors using a combination of discrete
wavelet transforms (DWT) and the spectral envelope derived from the Hilbert
transform. The DWT is used to extract the detail coefficients, while the Hilbert
transform is employed to compute the temporal envelope and the envelope
spectrum of the reconstructed signal from the relevant detail coefficients. The
Kurtosis value is used to determine the optimal wavelet decomposition level

containing the key fault-related frequencies, enabling early fault detection and
localization. The proposed approach is validated using the Sheen model, which
generates the vibration signal for analysis.

I. INTRODUCTION

Induction motors are essential in industrial
applications, but their malfunctions can lead to
production disruptions and increased maintenance
costs. Statistical studies indicate that the majority
of faults in rotating machines are associated with
bearing failures. Predicting these failures can
significantly reduce  maintenance  expenses,
including motor downtime, spare  parts
consumption, and overall operational inefficiencies
[1].

Bearing monitoring is crucial for ensuring the
reliability and operational safety of induction
motors. It primarily  involves extracting
information that reveals signs of degradation.
Various physical parameters are used for this
purpose, including electrical currents, pressure, oil
analysis,  temperature  monitoring,  acoustic
emissions, and vibration analysis, all of which help
assess the condition of the bearings [2].

Vibration analysis is the most widely used
technique for monitoring and diagnosing bearing
defects. During operation, a bearing generates
complex vibration signals, which are captured by
accelerometers placed on the bearings of rotating
machines and recorded using a data acquisition
system. Vibration analysis is conducted at three
levels [3, 4]:

e Monitoring: Utilizes global indicators to
characterize changes in bearing behavior;

e Diagnosis: Employs signal processing tools
to identify and locate defects;

e Follow-up: Tracks the progression of
damage in defective components to assess
their condition over time.

Various studies have been conducted using
wavelet theory to overcome the limitations of
traditional analysis techniques. Wavelet analysis is
a modern signal processing method that has been
widely applied in fault detection and remains an
active area of research across multiple fields.
While it offers significant advantages, it also
comes with certain limitations [5, 6].

The advantages:

Multi-Scale Representation: Wavelets enable the
representation of a signal or image at multiple
scales, facilitating a more detailed analysis of local
features and variations;

Precise Localization: Wavelets offer accurate
localization in both the time and frequency
domains, enabling the precise identification of
changes and transitions within a signal;

Efficient Compression: Wavelets are extensively
used in data compression as they enable a more
compact representation of signals by removing
non-essential  details, reducing storage and
transmission requirements;
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Anomaly Detection: Wavelet methods excel at
detecting anomalies or irregularities in signals by
emphasizing significant variations and deviations,
making them highly effective for fault detection
and error analysis;

Adaptability to Complex Structures: Wavelets are
well-suited for analyzing signals with intricate
structures, including non-stationary signals and
those with discontinuities, making them highly
versatile for various signal processing applications.
The limitations:

Selecting the Appropriate Wavelet Function:
Choosing the right wavelet function can be
challenging, as it must be tailored to the specific
characteristics of the signal being analyzed;
Selection of Decomposition Parameters: Wavelet
methods require careful selection of decomposition
parameters, such as the decomposition level and
compression thresholds. This process can be
iterative and somewhat subjective, impacting the
accuracy and effectiveness of the analysis;
Computational Complexity: Performing a
wavelet transform can be computationally
intensive, requiring significant processing time and
resources, especially for high-resolution signals or
real-time applications;

Interpretation of Coefficients: Analyzing wavelet
coefficients can be challenging, as they may
contain both useful signal features and unwanted
noise. Proper interpretation requires expertise to
distinguish meaningful patterns from irrelevant
variations.

It's important to acknowledge that the advantages
and disadvantages of wavelet methods can vary
depending on the specific application and the
problem at hand. As such, careful consideration of
these factors is crucial when selecting and
implementing wavelet techniques.

We will not elaborate further on this technique
here, as its concept, mathematical foundations, and
properties will be thoroughly explained in the
following sections of this paper.

The remainder of the paper is structured as
follows: Section 2 provides a brief overview of the
characteristic frequencies associated with a faulty
bearing. Section 3 introduces the Sheen model used
to generate the vibration signal analyzed in this
study. In Section 4, we elaborate on the method
employed for fault detection and localization of
faulty components within the bearing. Finally, the
paper concludes with a summary and discussion in
the conclusion section.

Il. OVERVIEW OF FREQUENCIES ASSOCIATED WITH
BEARING FAULTS

The characteristic fault frequencies of a bearing
are defined by its geometry, as illustrated in Fig. 1.

B
=

PD=(D1+D2)/2
NB: Number of rolling elements
B: Contact angle

Fig. 1 Characteristic of bearing [7]

The characteristic frequency for an outer-race fault
is expressed by equation (1) [8]:
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The characteristic frequency for an inner-race fault
is expressed by equation (2) [8]:
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The characteristic frequency for a rolling elements
fault is expressed by equation (3) [8]:

fre =2y {1+(E—DCOSﬂ)2} )
D D

Where: Np: number of rolling elements bearings,
Pp: intermediate diameter, Bp: diameter of rolling
elements bearings, f: contact angle, fi: rotation
frequency.

I11. SHEEN MODEL

The complex filter can be represented in the
following form [9]:

h(t) = h () + jh (1) (4)

In the following, a complex filter for the Hilbert
transform is proposed and defined as [9]:

1 e —ion(f— i
h t) = e (t/a) e j2x(f—f,/2)t —_e j2x(f+f,02)t 5
a,f.,f, ( ) jﬂ't ( )( )

h(t) and h(t), respectively, can be expressed
as follows:



hr(t):ie‘(”a)z sin Zn[fc+f”’jt —sin Zﬂ(fc—fjt (6)
t 2 | 2

hr(t)zie’“’af cos| 27 1‘c+L t |-cos| 27 fc—f“’]t (7
t 2 ] 2) ]

Where: a: represents the scale factor and f_,f :The

center frequency and bandwidth, respectively.
The extraction of vibration signal information is
achieved through demodulation [9]:

X(k) =&~ (sin 27 FKT, )+ (sin 27 £,KT, )
+(sin 27 £,KT;)

(8)

t = mod(kTs fij ©)

0

This implies that e serves as the modulating
signal, while sin(2zf kT, ) + sin (27rf2kTs) functions

as the carrier signal.
Where: f and f, are the resonance frequencies; f_

is the impact fault frequency; a is the exponential
frequency; k is the number of iterations; T_ is the

sampling time.

Bearing fault signals are simulated using
parameters derived from real measurements
obtained from the CWRU test bench.

The specific traits observed using the CWRU
(Case Western Reserve University) test bench are
as follows [10]:

The bearing operates under a load of 12.3 Nm,
with a rotational speed of 1730 rpm. The data is
captured at a sampling frequency of 12,000 Hz,
corresponding to a defect diameter of 0.1778 mm.

The rotational frequency is f=28.83 Hz while the
fault frequencies are as follows: the outer race fault
frequency is for=103.12 Hz, the rolling elements
fault frequency is fre=146.46 Hz, and the inner race
fault frequency is fi=156.34 Hz.

IV.APPLICATION OF DISCRETE WAVELET-BASED
SIGNAL PROCESSING METHOD TO BEARING
FAULT DETECTION

The proposed methodology consists of the
following steps:
Step 1: Determine the decomposition level,

Step 2: Perform multiresolution wavelet analysis
on the signal up to n levels using the Haar wavelet.
Step 3: Calculate the correlation coefficients
between the original signal and its detail
components;

Step 4: Identify detail components with correlation
coefficients greater than 0.2 as significant modes;
Step 5: Reconstruct the signal by summing the
filtered detail components;

Step 6: Calculate the kurtosis of the reconstructed
signal to identify the presence of defects;

Step 7: Apply envelope analysis to determine the
location of the defect, if present.

A. DWT Transform

The discrete wavelet transform (DWT) employs
discretized scale and translation factors, where the
parameters are represented as a and b [11].

a=a,
b=nb,ay
Where: a is a dilation parameter and b, is a

translation parameter.

For the majority of applications we choose
ap=2 and by,=1. The translation step
b = nby2™ which corresponds to a dynamic
network (t, f) = (nby2™,2™f,) where f;the
frequency of the mother wavelet [12]:

(10)

m
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B. Haar Wavelet
Haar introduced a functiony(t), which is
defined by the following equation [13]:
1for0<t< 1
2
w(t) = —1for%£t£1 (12)
O ailleurs
C. Number  of  Calculation Levels  for

Decomposition

Choice of the optimal number of decomposition
levels: The levels of vibration signals
decomposition are expressed by the following
equation [14]:

F
n=1.44log| - 13
9(3FJ (13)

c



Where: n is an integer rounded up, Fc is a shock
frequency and Fmax is the maximum frequency of
the signal.

V. STATISTICAL FACTORS

This section examines the statistical factors
Correlation coefficient (Corr) and Kurtosis (Ku)
for each detail.
A. Coor

The Corr is a crucial tool for selecting
appropriate modes in a given time series, as
determined by the equation [15]:

Corr(i) = Z X(1)d; (1)
- \/Zx (t)JZd (t)

(14)

B. Ku

It quantifies the degree of flattening in the
distribution, offering insight into the prominence of
the peak at the curve's apex. It is defined as [16]:

1N X
“:WE{ - } o

When a bearing is in optimal condition, the
distribution of the collected signal amplitudes
follows a Gaussian distribution, resulting in a
Kurtosis value close to 3. However, the occurrence
of a defect causes the Kurtosis value to rise above
3.

VI.ENVELOPE SPECTRAL ANALYSIS

The spectral envelope is defined using the
following equations [17]:

S DSR
er = L[ PSR()y, (16)
T t—7
DSR = DSR(t) + jDSR(t) (17)
‘DSR(t)‘ = \/ DSR(t)?> + DSR(t)>  (18)
VII. SIMULATION RESULTS AND INTERPRETATION

Fig. 2, illustrates the vibration signals for both
healthy and faulty conditions, clearly emphasizing
the distinct patterns linked to outer race, rolling
element, and inner race faults.
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Fig. 2 Vibration signals

From Equation (9), the number of Haar wavelet
decomposition levels is determined to be n=7.

Fig. 3, illustrates the correlation coefficients
corresponding to outer race, rolling elements, and
inner race fault.

1
Q 0.5 B
-
o T ) R
0 1 2 3 4 5 6 7
Details
Outer race
1
|-
8 0.5 =g F——
e
0 - S
0 1 2 3 4 5 6 7
Details
Rolling elements
1
Beee
0 05 === T
O
\!:..\
- e
0 1 2 3 4 5 6 7

Details
Inner race

Fig. 3 Correlation coefficients



Fig. 3, illustrates the correlation coefficients
between the original signals and their
corresponding details. The details with correlation
coefficients exceeding the threshold, where the
average correlation coefficient is 0.2, are
highlighted.

Table 1 presents the details that are useful for
each case.

Table 1. Useful details

Rolling Inner race
Case Outer race elements
. ds, d, ds ds, do, ds and ds, d, ds
Details |~ ond d, ds and de

Fig. 4, depicts both the original signal and the

filtered signal.
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Fig. 4 Original signal and filtered signal

It is observed that the Kurtosis value increases
after filtering the vibration signal in all fault cases.
For an outer race fault, the Kurtosis value rises
from 7.29 before filtering to 9.78 after filtering.
Similarly, in the case of a rolling elements fault,
the value increases from 3.92 to 6.23, and for an
inner race fault, it grows from 6.71 before filtering
to 8.03 after filtering.

Fig.5, illustrates the spectral envelope of the
filtered signal for the outer race, rolling elements,
and inner race fault.
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Fig. 5 Spectral envelope

Fig. 5, displays the envelope spectra of the
filtered signals, where prominent frequency peaks
at 107 Hz, 140 Hz, and 156.5 Hz, along with their



harmonics, are clearly identifiable. These peaks
facilitate the identification of faults on the bearing's
outer race, rolling elements, and inner race,
respectively.

viil.  CONCLUSION

This paper focuses on diagnosing bearing faults
in induction motors using a method based on
Discrete Wavelet Transform (DWT). The proposed
approach utilizes vibration signal decomposition to
identify harmonics that indicate the location of
bearing faults. A statistical study is conducted by
calculating the correlation coefficient for each
detail level. Only details with a
correlation coefficient greater than or equal to 0.2
are considered useful, which in this case includes
di, d2, d3, and d4. After reconstructing the useful
details, a filtering operation is applied and
optimized using the kurtosis factor. An increase in
kurtosis confirms the filtering effectiveness before
the global signal reconstruction. Finally, spectral
envelope analysis is  conductedon  the
reconstructed signal to identify bearing faults. The
extracted peaks at 107 Hz, 140 Hz, and 156.5 Hz,

along with their harmonics, provide
clearindications  of  faults in  different
bearing components—the outer race, rolling

elements, and inner race, respectively

The automatic selection of the number of
decomposition levels is still a drawback of the
DWT, this choice is not optimal for all types of
signals. In perspective, the proposed method can be
expanded to localize the faulty component using
machine learning approaches.
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