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 Abstract – In this paper, we propose a diagnostic method for detecting and 

localizing bearing faults in induction motors using a combination of discrete 

wavelet transforms (DWT) and the spectral envelope derived from the Hilbert 

transform. The DWT is used to extract the detail coefficients, while the Hilbert 

transform is employed to compute the temporal envelope and the envelope 

spectrum of the reconstructed signal from the relevant detail coefficients. The 

Kurtosis value is used to determine the optimal wavelet decomposition level 

containing the key fault-related frequencies, enabling early fault detection and 

localization. The proposed approach is validated using the Sheen model, which 

generates the vibration signal for analysis. 
 

I. INTRODUCTION 

Induction motors are essential in industrial 

applications, but their malfunctions can lead to 

production disruptions and increased maintenance 

costs. Statistical studies indicate that the majority 

of faults in rotating machines are associated with 

bearing failures. Predicting these failures can 

significantly reduce maintenance expenses, 

including motor downtime, spare parts 

consumption, and overall operational inefficiencies 

[1]. 

Bearing monitoring is crucial for ensuring the 

reliability and operational safety of induction 

motors. It primarily involves extracting 

information that reveals signs of degradation. 

Various physical parameters are used for this 

purpose, including electrical currents, pressure, oil 

analysis, temperature monitoring, acoustic 

emissions, and vibration analysis, all of which help 

assess the condition of the bearings [2]. 

Vibration analysis is the most widely used 

technique for monitoring and diagnosing bearing 

defects. During operation, a bearing generates 

complex vibration signals, which are captured by 

accelerometers placed on the bearings of rotating 

machines and recorded using a data acquisition 

system. Vibration analysis is conducted at three 

levels [3, 4]: 

• Monitoring: Utilizes global indicators to 

characterize changes in bearing behavior; 

• Diagnosis: Employs signal processing tools 

to identify and locate defects; 

• Follow-up: Tracks the progression of 

damage in defective components to assess 

their condition over time. 

Various studies have been conducted using 

wavelet theory to overcome the limitations of 

traditional analysis techniques. Wavelet analysis is 

a modern signal processing method that has been 

widely applied in fault detection and remains an 

active area of research across multiple fields. 

While it offers significant advantages, it also 

comes with certain limitations [5, 6]. 

The advantages: 

Multi-Scale Representation: Wavelets enable the 

representation of a signal or image at multiple 

scales, facilitating a more detailed analysis of local 

features and variations; 

Precise Localization: Wavelets offer accurate 

localization in both the time and frequency 

domains, enabling the precise identification of 

changes and transitions within a signal; 

Efficient Compression: Wavelets are extensively 

used in data compression as they enable a more 

compact representation of signals by removing 

non-essential details, reducing storage and 

transmission requirements; 
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Anomaly Detection: Wavelet methods excel at 

detecting anomalies or irregularities in signals by 

emphasizing significant variations and deviations, 

making them highly effective for fault detection 

and error analysis; 

Adaptability to Complex Structures: Wavelets are 

well-suited for analyzing signals with intricate 

structures, including non-stationary signals and 

those with discontinuities, making them highly 

versatile for various signal processing applications. 

The limitations: 

Selecting the Appropriate Wavelet Function: 

Choosing the right wavelet function can be 

challenging, as it must be tailored to the specific 

characteristics of the signal being analyzed; 

Selection of Decomposition Parameters: Wavelet 

methods require careful selection of decomposition 

parameters, such as the decomposition level and 

compression thresholds. This process can be 

iterative and somewhat subjective, impacting the 

accuracy and effectiveness of the analysis; 

Computational Complexity: Performing a 

wavelet transform can be computationally 

intensive, requiring significant processing time and 

resources, especially for high-resolution signals or 

real-time applications; 

Interpretation of Coefficients: Analyzing wavelet 

coefficients can be challenging, as they may 

contain both useful signal features and unwanted 

noise. Proper interpretation requires expertise to 

distinguish meaningful patterns from irrelevant 

variations. 

It's important to acknowledge that the advantages 

and disadvantages of wavelet methods can vary 

depending on the specific application and the 

problem at hand. As such, careful consideration of 

these factors is crucial when selecting and 

implementing wavelet techniques. 

We will not elaborate further on this technique 

here, as its concept, mathematical foundations, and 

properties will be thoroughly explained in the 

following sections of this paper. 

The remainder of the paper is structured as 

follows: Section 2 provides a brief overview of the 

characteristic frequencies associated with a faulty 

bearing. Section 3 introduces the Sheen model used 

to generate the vibration signal analyzed in this 

study. In Section 4, we elaborate on the method 

employed for fault detection and localization of 

faulty components within the bearing. Finally, the 

paper concludes with a summary and discussion in 

the conclusion section. 

II. OVERVIEW OF FREQUENCIES ASSOCIATED WITH 

BEARING FAULTS 

The characteristic fault frequencies of a bearing 

are defined by its geometry, as illustrated in Fig. 1. 
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PD=(D1+D2)/2

NB: Number of rolling elements

β: Contact angle  

Fig. 1 Characteristic of bearing [7] 

The characteristic frequency for an outer-race fault 

is expressed by equation (1) [8]: 
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The characteristic frequency for an inner-race fault 

is expressed by equation (2) [8]: 
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The characteristic frequency for a rolling elements 

fault is expressed by equation (3) [8]: 
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Where: Nb: number of rolling elements bearings, 

PD:  intermediate diameter, BD: diameter of rolling 

elements bearings, β: contact angle, fr: rotation 

frequency. 

III. SHEEN MODEL 

The complex filter can be represented in the 

following form [9]: 
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In the following, a complex filter for the Hilbert 

transform is proposed and defined as [9]: 
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Where: a: represents the scale factor and
c ω

f , f :The 

center frequency and bandwidth, respectively.  

The extraction of vibration signal information is 

achieved through demodulation [9]: 
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This implies that 
'-αkte  serves as the modulating 

signal, while ( )1 s 2 s
sin(2πf kT )+ sin 2πf kT  functions 

as the carrier signal. 

Where: 
1

f  and 
2

f  are the resonance frequencies; 
0

f  

is the impact fault frequency; a  is the exponential 

frequency; k is the number of iterations; 
s

T  is the 

sampling time. 

Bearing fault signals are simulated using 

parameters derived from real measurements 

obtained from the CWRU test bench. 

The specific traits observed using the CWRU 

(Case Western Reserve University) test bench are 

as follows [10]: 

The bearing operates under a load of 12.3 Nm, 

with a rotational speed of 1730 rpm. The data is 

captured at a sampling frequency of 12,000 Hz, 

corresponding to a defect diameter of 0.1778 mm. 

The rotational frequency is fr=28.83 Hz while the 

fault frequencies are as follows: the outer race fault 

frequency is for=103.12 Hz, the rolling elements 

fault frequency is fre=146.46 Hz, and the inner race 

fault frequency is fir=156.34 Hz. 

IV. APPLICATION OF DISCRETE WAVELET-BASED 

SIGNAL PROCESSING METHOD TO BEARING 

FAULT DETECTION 

The proposed methodology consists of the 

following steps: 

Step 1: Determine the decomposition level; 

Step 2: Perform multiresolution wavelet analysis 

on the signal up to n levels using the Haar wavelet. 

Step 3: Calculate the correlation coefficients 

between the original signal and its detail 

components; 

Step 4: Identify detail components with correlation 

coefficients greater than 0.2 as significant modes; 

Step 5: Reconstruct the signal by summing the 

filtered detail components; 

Step 6: Calculate the kurtosis of the reconstructed 

signal to identify the presence of defects; 

Step 7: Apply envelope analysis to determine the 

location of the defect, if present. 

A. DWT Transform 

The discrete wavelet transform (DWT) employs 

discretized scale and translation factors, where the 

parameters are represented as a and b [11]. 
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Where: 
0

a  is a dilation parameter and 
0

b  is a 

translation parameter.  

For the majority of applications we choose   

𝑎0 = 2 and 𝑏0 = 1. The translation step              

𝑏 = 𝑛𝑏02𝑚 which corresponds to a dynamic 

network (𝑡, 𝑓) = (𝑛𝑏02𝑚, 2𝑚𝑓0) where 𝑓0 the 

frequency of the mother wavelet [12]: 
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B. Haar Wavelet 

Haar introduced a function ( )ty , which is 

defined by the following equation [13]: 
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C. Number of Calculation Levels for 

Decomposition 

Choice of the optimal number of decomposition 

levels: The levels of vibration signals 

decomposition are expressed by the following 

equation [14]: 
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Where: n is an integer rounded up, Fc is a shock 

frequency and Fmax is the maximum frequency of 

the signal. 

V.  STATISTICAL FACTORS 

This section examines the statistical factors 

Correlation coefficient (Corr) and Kurtosis (Ku) 

for each detail. 

A. Coor  

The Corr is a crucial tool for selecting 

appropriate modes in a given time series, as 

determined by the equation [15]: 
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B. Ku 

It quantifies the degree of flattening in the 

distribution, offering insight into the prominence of 

the peak at the curve's apex. It is defined as [16]:  
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When a bearing is in optimal condition, the 

distribution of the collected signal amplitudes 

follows a Gaussian distribution, resulting in a 

Kurtosis value close to 3. However, the occurrence 

of a defect causes the Kurtosis value to rise above 

3. 

VI. ENVELOPE SPECTRAL ANALYSIS 

The spectral envelope is defined using the 

following equations [17]: 
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VII. SIMULATION RESULTS AND INTERPRETATION  

Fig. 2, illustrates the vibration signals for both 

healthy and faulty conditions, clearly emphasizing 

the distinct patterns linked to outer race, rolling 

element, and inner race faults. 

 

Outer race 
 

Rolling elements 
 

Inner race 

Fig. 2 Vibration signals 

From Equation (9), the number of Haar wavelet 

decomposition levels is determined to be n=7. 

Fig. 3, illustrates the correlation coefficients 

corresponding to outer race, rolling elements, and 

inner race fault. 
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Fig. 3 Correlation coefficients 

0 1 2 3 4 5 6 7

0

0.5

1

Details

C
C

0 1 2 3 4 5 6 7

0

0.5

1

Details

C
C

0 1 2 3 4 5 6 7

0

0.5

1

Details

C
C

0 0.1 0.2 0.3 0.4
-8

-6

-4

-2

0

2

4

6

8

Time (s)

Am
pl

itu
de

 

0 0.1 0.2 0.3 0.4
-10

-5

0

5

10

Time (s)

Am
pl

itu
de

 

0 0.1 0.2 0.3 0.4
-8

-6

-4

-2

0

2

4

6

8

Time (s)

Am
pl

itu
de



 

Fig. 3, illustrates the correlation coefficients 

between the original signals and their 

corresponding details. The details with correlation 

coefficients exceeding the threshold, where the 

average correlation coefficient is 0.2, are 

highlighted. 

Table 1 presents the details that are useful for 

each case. 

Table 1. Useful details 

Case  Outer race 
Rolling 

elements 

Inner race 

Details  
d1, d2, d3 

and d4 

d1, d2, d3 and 

d4 

d1, d2, d3 

and d4 

 

Fig. 4, depicts both the original signal and the 

filtered signal. 
Original signal 

 
Filtered signal 

 
Outer race 

Original signal 

 
Filtered signal 

 
Rolling elements 

Original signal 

 
Filtered signal 

 
Inner race 

Fig. 4 Original signal and filtered signal 

It is observed that the Kurtosis value increases 

after filtering the vibration signal in all fault cases. 

For an outer race fault, the Kurtosis value rises 

from 7.29 before filtering to 9.78 after filtering. 

Similarly, in the case of a rolling elements fault, 

the value increases from 3.92 to 6.23, and for an 

inner race fault, it grows from 6.71 before filtering 

to 8.03 after filtering. 

Fig.5, illustrates the spectral envelope of the 

filtered signal for the outer race, rolling elements, 

and inner race fault. 
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Fig. 5 Spectral envelope 

Fig. 5, displays the envelope spectra of the 

filtered signals, where prominent frequency peaks 

at 107 Hz, 140 Hz, and 156.5 Hz, along with their 
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harmonics, are clearly identifiable. These peaks 

facilitate the identification of faults on the bearing's 

outer race, rolling elements, and inner race, 

respectively. 

VIII. CONCLUSION 

This paper focuses on diagnosing bearing faults 

in induction motors using a method based on 

Discrete Wavelet Transform (DWT). The proposed 

approach utilizes vibration signal decomposition to 

identify harmonics that indicate the location of 

bearing faults. A statistical study is conducted by 

calculating the correlation coefficient for each 

detail level. Only details with a 

correlation coefficient greater than or equal to 0.2 

are considered useful, which in this case includes 

d1, d2, d3, and d4. After reconstructing the useful 

details, a filtering operation is applied and 

optimized using the kurtosis factor. An increase in 

kurtosis confirms the filtering effectiveness before 

the global signal reconstruction. Finally, spectral 

envelope analysis is conducted on the 

reconstructed signal to identify bearing faults. The 

extracted peaks at 107 Hz, 140 Hz, and 156.5 Hz, 

along with their harmonics, provide 

clear indications of faults in different 

bearing components—the outer race, rolling 

elements, and inner race, respectively 

The automatic selection of the number of 

decomposition levels is still a drawback of the 

DWT, this choice is not optimal for all types of 

signals. In perspective, the proposed method can be 

expanded to localize the faulty component using 

machine learning approaches. 
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