DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
MINISTRY OF HIGH EDUCATION AND SCIENTIFIC RESEARCH
UNIVERSITY OF MOHAMED BOUDIAF - M’SILA

FACULTY OF SCIENCES DOMAINE: SCIENCE OF MATTER

DEPARTMENT OF PHYSICS | FIELD : PHYSICS

N° - PH/MAT/10/2025 atici s -osess OPTION : MATERIAL PHYSICS

Memory Submitted for Obtaining
Diploma of Academic Master

By:

Douidi ali aboubakeur
TITLE

Study of the mechanical and thermodynamic properties of

some MAX phase compounds using computational

methods

Defended on 18/06/2025 in front of a jury composed of:

Allali djamel University of Msila ~ Chairman
Saber Saad Essaoud University of Msila  Supervisor

Karim boufferrache University of Msila Examiner

Academic Year: 2024/2025




a8 gg

K9

& g ol o o Gl el Tl ol c0rgSadly Iyl 39 <0150 Lo U9 O Lo s dlf ol
- 9o Y9 dai Y Lo paidl e
il g5 U gl esliadsg S 03ySU1 DT cyo L) Jazmg coladl ygid Glug Jaally UayST (gl dld ol
L O9BI 0,83 (8 JaEg (9 S 0,83 Lo dus ehung dnds il Muad cnoedlall day B azmo

O o809 Mg 550 @ U1 e(faglall alall ylgdiall W § Uity cdansl o ke @ 0 0ySidg oaznd
Aol 0l Jf i O Uadaiaal Gyl polg G o gl

oL § palag dalay (U8 plae Ry s Uale 8y Loyl § g o S 0lEpally 1S palliy 2559
o Bl dlaselll 0da a9 duadaidl US pune d J9VI gzl die (L8 yre

ozl dilgar g yoimall dasd Jo 3 gaudl daws o YWl 0,801 U J] dadyl Grasg ol S
Ol St ¢l SU1 AaBladl Lid cliae (a5 Of Wgi Y WS Jaadl 1o Sluks] 78 Jlgho U Lal s <8 I
ol gall dganll 1A oy (ghiadl o 028’ B2 Sudly Jlaz
(@919 Jgadll U 2 Ol ¢2)S)1 dgrgd LIS dlamsg didesg Uiake § 2yl Ol JLud cplisdl 3

duds jaldllg el g df cLdlg pddl § dudlallg

gl e



Qﬂﬂ

el ooy AT g ¢ ilaaall (il (asee B (e pludly B5ally cdls dasell
oplASYlg Ugr )l Game (ol § pust (09 )BgMlg Al Al dadg (0 ]
OBy Jhzeo S § 4 ySuidly dowol Josw Fel o ]
(il grmnd ASuly e yabg cdawly dasy dlil das) — "SI dae™ W1 Wl ]
Aozl oLy e Ay 008 Jazg
S (2 gy claumm 3y o0 sVl S (el Blig dozny 36 30 Jl

118 (3 1555 ) 3153 Jams IS (a1 gl il Lgmomy — "t B35l Gl )
éﬁ-‘w Y day9

il ol — "Sgaudl daus ylo" Jblall §3bud ¢ § 1y pladly GUSYI 3 3998 O e I
daleg dliad e 03039 copas (§ 2ybg eslidl A5 G
oo @ 15580 (Blely laes J iy cdlamed S § (oilom cdBy @1 ¢ 20 dd) ¢ B9) o
A5 5 g dll Ll ol
2yl of bl Jlly e auly Josl ogl 0 3948 1939 Gl 4 eslzsI GVl g
nedball dll Sbe e eglazmg ¢ JS oo paiong ceged
sully Codll (5 g oSV cBghas S § (o809 Siww JI Vg OB (1 cdas, Sl 2L Jlg
JS (o (S (zmdl 13 (0 1852 19369 oyl 04 (395U (Ul ()39 3Bl (ol Vg
adanllg slelly (S



Table of Contents

Table of Contents

Thanks and gratitude

Dedication

List of figures

List of tables

General introduction 01
CHAPTER 1: THEORETICAL PART
1- The Schrddinger Equation 06
2- Born-Oppenheimer Approximation 07
3- Hartree and Hartree-Fock Approximations (HF) 08
4- Density Functional Theory (DFT) 10
4-1 Formalism of Density Functional Theory (DFT) 12
I. Hohenburg and Kohn Theorems 12
[1. The Kohn - Sham equation 13
B-1) Solution of the Kohn - Sham Equation 15
5-The Different Types of Approximation of the Excp 19
5-1 Local density approximation (LSDA) 19
5-2 The Generalized Gradient Approximation GGA 19
5-3 The mBJ Approximation (modified Becke—Johnson) 20
6- Full-Potential Linearized Augmented Plane-wave Method (FP-LAPW) 20
6-1 The Plane Wave method (APW) 20
6-2 The Linearized Augmented Plane Wave Method (LAPW) 22
7- WIEN2K software 23
8-References 26
CHAPTER 2: RESULTS AND DISCUSSION
1- Introduction 29
2- Calculation Details 29
3- Results and discussion 30
3-1 Structural properties 30
3-2 Electronic Properties 34
3-2-1 Energy Bands 34
3-2-2 Total Density of States (TDOS) Partial Density of States (PDOS) 36
4- The Thermodynamic Properties 39
4-1 Heat Capacities 40
4-2 Entropy 42
4-3 Thermal Expansion Coefficien 43




4-4 The Debye temperature 45
5-The elastic Properties 47
References 50
Conclusion 51




List of figures

CHAPTER 1
FIGURE (I-1): Self-consistent calculation flowchart 18
FIGURE ( I-2): Diagram of the distribution of the elementary cell in atomic spheres 20
and in interstitial region
FIGURE (1-3): The flowchart of the Wien2k code subroutines 25
CHAPTER 2
FIGURE ( 11-1): Crystal structure of V2SnC and V2SnN compounds 30
FIGURE ( 11-2) : Total Energy-Volume and volume-pressure Curves of V>SnN 32
calculated using GGA-sol approximations.
FIGURE (11-3): Total Energy-Volume and volume-pressure Curvesof V>SnC 33
calculated using GGA-sol approximations
FIGURE (11-4):The hexagonal Brillouin zone
FIGURE (11-5): band structure spectra for both compounds V.SnC and V.SnN 35
FIGURE (11-6): Total and partial density of states of V>.SnN 37
FIGURE (11-7): Total and partial density of states of V2SnC 38
FIGURE (11-8): variation of the heat capacity "Cv" of the compound V2SnC 41
as a function of temperature
FIGURE (11-9): variation of the heat capacity "Cv" of the compound V.SnN as a 41
function of temperature
. FIGURE (11-10): variation of the entropy (S) as function of temperature of V.SnC 42
FIGURE (11-11): variation of the entropy (S) as function of temperature of V.SnN 43
FIGURE (11-12): variation of the thermal expansion coefficient (a) as function of 44
temperature of V.SnC
FIGURE (11-13): variation of the thermal expansion coefficient (a) as function of 44
temperature of V.SnN
FIGURE (11-14): variation of The Debye temperature 6D as function of temperature 45
of VoSnC
FIGURE (11-15): variation of The Debye temperature 6D as function of temperature 46

of VoSnN




List of Tables

Anisotropy(A), Bulk (B) and Shear modulus (G), G/B ratio, f-index , ductility U, and
machinability U,, factors of MoAX phases (M=V , A= Sn, X =Cor N)

CHAPTER 1
TABLE (I-1): Comparison between the two methods, Hartree-Fock and the Density 09
Functional Theory (DFT)
CHAPTER 2
TABLE (11-1) : Atomic positions for V>SnC and V>SnN compounds 30
TABLE (11-2) : Values of the structural parameters obained for V2SnC and V2SnN 32
compounds and calculated by GGA approximation
TABLE (11-3) : Elastic constants (Cjj), Young's modulus Y, Poisson’s ration (v), 49




INTRODUCTION

INTRODUCTION




INTRODUCTION

Introduction

The term "MAX phase materials™ was first use d in 2000 by Barsoum [1]. These
materials consist of three different types of atoms: transition metal M, atoms from the A
group, and C or N atoms. All of these atoms crystallize in a hexagonal structure with the
chemical formula Mn+1AXn (n=1-3).

MAX phase compounds offer high elastic moduli, high-temperature mechanical
capabilities, and corrosion and oxidation resistance by combining ceramic and metallic
features. They are also resistant to thermal shock, deformable at ambient temperature, and
have high electrical and thermal conductivities. Because of these characteristics, they are
promising and often used materials that, when heated, can compensate for graphite's
resistance to high temperatures.

Numerous theoretical and practical investigations of this kind of material have
recently demonstrated that certain of them only exhibit superconductivity for ternary
carbides M>AC, where M stands for Ti, Nb, and Mo and A for S, Ga, As, In, and Sn [2].
Bouhemadou et al. conducted a theoretical study on the structural and elastic properties of
Nb2InC M2InC phases and M2GaC, with M= Ti, V, Nb, and Ta, under pressure effect, in
addition to numerous other works that deal with determining the elastic properties of other
materials for this type [3,4]. Scabarozi et al. [5] were measured the linear thermal
expansion coefficient by high-temperature X-ray diffraction and dilatometry of some MAX
phase materials. Jonathan et al. [6] have also studied the three compounds Ti.AlC,
TizAIC,, and TisSiC and calculated their resistivity, in order to use them as surfaces for
electrocatalyst support materials in hydrogen fuel cells. Experimentally, Carlos et al. [7]
have prepared the MAX phases Ti2AIC and TizAIC: as thin films in high purity via thermal
treatment and analyzed them using both XRD and Raman spectroscopy, several properties
such as the hardness and the elastic modulus for both MAX phases have been evaluated
using nano-indentation tests.

Further characteristics of ceramic-metallic materials have been investigated and
addressed, particularly the most recent study on how stress affects the magnetic properties
of Mn2AIC and Mn.SiC compounds [8] as well as the study of Superconducting phases in
a class of metallic ceramics and other properties in many studies carried out by Hadi et al
[9-11].

This thesis is organized as follow :
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The first chapter provides a theoretical overview of studying any crystalline system
based on Density Functional Theory (DFT) [12-17] , Hartree-Fock (HF)
approximation, as well as the GGA and mBJ approximations to solve the
Schrodinger equation.

The second chapter applies the concepts discussed in the first chapter using the
Wien2K program to calculate the structural properties, employing the GGA-PBEsol
approximation for compounds V>SnC and V>SnN. This includes parameters such
as lattice constant (a), bulk modulus (B), and a study of their magnetic and
electronic behavior. The electronic behavior of both VV.SnC and VV.SnN compounds
was also verified, and we calculated the elastic properties such as elastic constants,
bulk modulus, shear modulus, Young's modulus, and mechanical stability of the
two compounds. Finally, the effect of both temperature and pressure on the thermal

properties of the compounds was studied.
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1- The Schrodinger Equation

The Schrédinger equation was formulated in 1926 by the Austrian scientist Erwin
Schrodinger (1887-1961) [1] ¢, who shared the Nobel Prize for Physics with Paul
Dirac in 1933 for their outstanding contribution to quantum physics. This f
equation is the cornerstone of quantum mechanics, which specializes in the study
of systems involving microscopic particles. Schrodinger built on the ideas of a

number of scientists such as Planck and De Broglie, who were interested in studying the system

consisting of nuclei and moving electrons as these particles exchange influence with each other

through their wave function, which carries all the necessary information about the studied

system[2,3] The Schrodinger equation has the following expression :

HY(R,#) = E¥(R,#) (1)

The two vectors R, and 7; are the coordinates of the nucleus (1) and of the electron (i).

H: Hamiltonian operator related to the sum of the kinetic energy and the potential energy

of the system.

E: eigenvalue Energy of the system.

¥: wave function which depends on the coordinates of electrons and nuclei.

The Hamiltonian system - made up of nuclei and electrons - includes the Kkinetic energy of

electrons and nuclei, as well as the potential energies (electron-electron, electron-nucleus,

and nucleus-nucleus), therefore the expression of the total Hamiltonian of the system is

written by the following expression:

T, =

T, =

H :T6+TN+I/BB +V€—N+VN—N (|2)

2
- Zi% V? —Electronic Kinetic energy (m; the mass of electron i).

A
— Z,% V72 —Nuclei kinetic energy (m; the mass of the nucleus I).
1

ZIZ]e

ZI:#] |

—The interaction part between the nuclei.

lel R-

—>The nuclei-electrons interaction part.
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2
Vol = D ]lrlefrjl —The interaction part between the electrons.

|Ry — Rg| — The distance between the two nuclei o and f
|r; — R, | — The distance between the nucleus a and the electron i
|r; — ;| - The distance between the two electrons i and j.

solving the Schrddinger equation can be really hard, especially for systems with lots of
electrons and moving parts, and their complicated interactions. So, scientists use simpler
methods to get close to the right answer. Here are some of the main ways they do that:

2- Born-Oppenheimer Approximation

The Born-Oppenheimer approximation was proposed by scientists Max Born and
Robert Oppenheimer in 1927[4], it is one of the basic concepts
underlying the description of the quantum states of molecules .This
approximation is based on the idea of separating the study of the motion
of nuclei from the motion of electrons, that is, adopting independence in

the study without the need to consider the interaction between

them.This approximation makes it possible to separate the motion of the
nuclei and the motion of the electrons. due to the large difference in mass between
electrons and nuclei. Consequently, the nucleus, relative to the electrons, can be assumed
to be at rest, allowing the motion of the nuclei to be ignored and the nucleus-nucleus

interaction energy to be considered as a constant quantity (Vn = Constant).

The Born-Oppenheimer approximation was applied to the Schrédinger equation, resulting
in significant progress in solving the equation. The most notable results

were as follows :

According to the Born-Oppenheimer approximation we can rewrite the

total wave function of the system ¥ (ﬁ,o,ﬁ-)in the form of a product of

- - -0 - - -0
an electronic function ¥, (R, ,ri)and a nuclear function ¥, (R, ) thus,

we can separate the motion of nuclei from that of electrons. Then the wave function is

written:
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@ (ﬁ,O,Fi) =y (ﬁ,o) @, (ﬁ,o,ﬁ) (1.3)

([Te + Vee + Ven]l‘Ue (R*IO, 7_31) = Ee (ﬁlo) lIJe (ﬁlol 7_21)
{ (1.4)
U [Tt Vo + Ee (RO)] 9 (R) = Ew (R))

Despite the use of Born-Oppenheimer simplifications in the Schrodinger equation, the
electron-electron interaction remains a complex challenge that hinders efforts to solve the
equation. Due to this complexity, the equation remains a challenge to solve using standard
mathematical methods, prompting scientists to resort to other approximations to facilitate

its solution

3- Hartree and Hartree-Fock Approximations (HF)

Scientist Hartree introduced a new approximation to the Schrddinger
equation in 1928 [5-7]after the Born-Oppenheimer approximation. This
approximation is based on the principle of independent particles,[8,9] .In this
approximation, Hartree treats the interactions between electrons as particles

carrying a charge without taking into account the spin state, i.e. The

interactions are simplified to Coulombic repulsion interactions, overlooking

both exchange and correlation terms. Additionally, the wave function lacks ™anti-
symmetry” as it does not account for the Pauli exclusion principle.
[3,10].

Although the Hartree approximation overlooks electron spin
and the Pauli exclusion principle, it simplifies the Schrodinger equation

by reducing the study of a large number of electrons to that of a single

electron., so that the total Hamiltonian H of electrons is the sum of the
Hamiltonians hi of each electron, while the total wave function of the
electronic system represents by multiplication the individual wave

functions of each electron [3,10].
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Finally,the total energy of the electronic system is the aggregate of the energies of
all electrons. Following Hartree's approximation, the Hamiltonian equation for a single

electron can be expressed as follows:

H=3h (15)

hz 2 2
hi==5bi= Bt Y= (1L6)

2m; 7 -F 7 =7l
v, =ILY:, (L7

E, =Yg (1.8)

In 1930, Fock [9] improved and refined Hartree's model by replacing electron wave
functions with a Slater determinant[10]. This change allowed Fock to address the exchange
effect, which Hartree had overlooked. As a result, the interaction between electrons now
includes both Coulomb interaction and the exchange effect. This led to the replacement of
previous functions with anti-symmetric functions. In his analysis of electronic interactions,
Fock introduced the concept of "spin” and replaced the electronic system's wave function

with a Slater determinant, as expressed by the formula:

[1“1(771) L|11(7?2) L|11(773) qjl(?N)-l
I R 1 |¢2(71) L|12(772) L|12(773) ‘lJz(FN”
WHF(rl,rz,rg,...,rN)=ﬁ|¢3@) Us () Wa() %(-FN)i (19)

Ly @) Wn@) nG) o )

1

sz_ezls a normalization factor.

where

Despite the positive achievements of the Hartree-Fock approximation, it remains unable to
solve the challenge of quantum correlation between electrons, which involves quantum
interaction. In addition, the Schrddinger equation continues to present analytical
challenges. For this reason, subsequent studies after Hartree-Fock's work were directed
towards the search for simpler and more accurate theories in terms of results, epitomized

by density functional theory (DFT).
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4- Density Functional Theory (DFT)

Density Functional Theory (DFT) is characterized by an attempt to provide a more
simplified formulation of the Schrédinger equation that describes the motion of electrons.
This is done by using electron density instead of wave functions to express the Kinetic
energies and interactions between electrons. The density functional theory was developed
in 1927 by scientists Thomas and Fermi[13,14] ¢, who analogized the electronic system to
a homogeneous and uniform electron gas. As a result of this approach, two mathematical
relationships were arrived at that express the density and kinetic energy of a homogeneous

electron gas sequentially:

w

3
1 5(2m,\2
P=5mky ( h2 ) (110)

E.= E(th ) (3n2)§p§ (1.12)

5\2m,

The theoretical work of scientists such as Lederach, Slater, Hohenberg and Kuhn[12] has
contributed to the advancement of density function theory, and these efforts have yielded

results that closely approximate experimental results.

10
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Principle: Schrddinger equation is solved
by considering the wave functions as a
variable basic.

Depended on the theory of the mean field
theory (MFT).

Calculates wave functions and
eigenvalue energy to obtain ground state

energy.

Depend on the large number of variables,

which makes the equation very
complicated and time consuming.

The wave functions obtained as solutions
for the Schrédinger equation have no
physical meaning.

Does not take into account the

correlation terms.

THEORETICAL PART

Principle: Solving the Schrddinger
equation by considering the electron
density as a variable basic.

Based on the two Hohenburg — Sham
theorems and shifting from the
Schrédinger equation to the Kohn-
Sham equations to find the solution.
Use electron density which has
physical meaning.

Reduce the number of variables
which makes the equation simpler
and faster compared to the HF
method.

Used to treat the correlation terms.

TABLE (I. 1): Comparison between the two methods, Hartree-Fock and the Density
Functional Theory (DFT)[14,15].

11
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4-1 Formalism of Density Functional Theory (DFT)

Density Functional Theory (DFT) is based on the principle of representing the total energy
of a system comprising multiple interacting electrons in terms of the electronic density
instead of the wave function. The electronic density is mathematically defined by the

following equation:
p(@) =L I¥®I* (.12

This approach simplifies the problem by focusing on the spatial distribution of electrons
rather than dealing with the complexity of the many-electron wave function.

I. Hohenburg and Kohn Theorems :

The foundation of Density Functional Theory (DFT) is based on two fundamental
theorems introduced by Hohenberg and Kohn. These theorems establish that the total
energy of an electronic system within an external potential V (¥) can be expressed as a
functional of the electronic density. By determining this density, all properties of the

system can be derived:
E[p(®)] = Flp()] + [V @®pdr®  (1.13)

Here F[p(1)] is a universal functional of the electronic density that accounts for the
contributions of the kinetic energy and the electron-electron interactions [10,15]. This
functional is mathematically represented to describe how different energy contributions,
such as kinetic energy and electron interactions, are incorporated into the overall electronic

density of the system:
Flp]l = T[p]l +Ulp]  (114)
The external potential generated by the nuclei is expressed as:
Vet @) = =Xa=2  (1.15)
iA
in the context of Density Functional Theory specifies the conditions for obtaining the total
energy of the electronic system in its ground state. This is achieved by identifying the

electronic density that minimizes the energy functional, ensuring that the energy functional

reaches its lowest value:

12
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E(po(¥)) <E[p(®] (1.16)

E(po) = MinE() Um(¥|T + B Vewe + Vee| ¥ ) (117)

To find the electronic density corresponding to the ground state, the principle of variation
is used [16] . This principle involves differentiating the total energy with respect to the
electronic density and applying the following mathematical relationship, which depends on
the universal functional F[p(%)]and the external potential V(r)[10] .

dF [p(r)] _
Y. +V(r)=0 (1.18)

I1. The Kohn - Sham equation:

One of the primary challenges in studying many-electron
systems is the difficulty in analytically expressing the
Kinetic energy and electron-electron interactions as

functions of the electron density. In 1965, Kohn and Sham

introduced a revolutionary approach to address this issue.
They proposed replacing the real electronic system with a fictitious system in which
electrons are considered to move independently, unaffected by one another, except through
an effective potential. This effective potential, known as the Kohn-Sham potential,
accounts for both the external potential generated by the nuclei and the potential arising

from interactions with the other electrons in the system [3,17,18].
The Kohn-Sham fictitious system is defined by the following principles:

Kohn-Sham orbitals: These are single-electron wavefunctions that are solutions of the

Schrédinger equation in this independent-electron framework.

Density equivalence: The fictitious system is constructed to ensure that its electronic

density matches that of the real system.

Kinetic energy decomposition: The kinetic energy of the fictitious system Tr represents

the kinetic energy of non-interacting electrons, while the Kkinetic energy of the real system

13
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Tr is expressed as the sum of Trand a correction term T that accounts for correlation
effects[3]:

Te=T;+T, (1.19)
= (PITI¥) — (pITslp)  (1.20)

Additionally, the electron-electron interaction energy in the real system (Vee) IS

decomposed as:
(PVeelP) =Uy + U + U, (1.21)
where:
Un: The electronic Coulomb (Hartree potential)
Ux: The exchange energy.
Uc: The correlation energy between the electrons.
Components of the Kohn-Sham Equation

The Kohn-Sham equation for an electronic system is derived by considering contributions
from the Kkinetic energy, the external potential, the Hartree interaction, and the exchange-

correlation energy. The terms are detailed as follows:

e -Kinetic energy of the fictitious system:

n2 n2 .
Ts[p] = <(pi|_ﬂA|(pi >= —=XiJ eV edr (1.22)

e External potential (nucleus-electron interaction):

Z
Vnelpl = — [ i CeCodr  (123)

e 3-Hartree potential (electron-electron Coulomb interaction):

Ulp) =1

p(r)p( )

drdr'  (1.24)

e 4-Exchange-correlation energy:

14
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_______________________________________________________________________________________________________________________________________|
The exchange-correlation energy is the sum of the exchange (Ex) and correlation (Ec )
contributions. While its exact expression is unknown, it is approximated in practical

calculations:
Evclpl = Exlp]l + Eclp]  (1.25)
The Kohn-Sham equation is finally expressed as[19-21]:
Hyso; () = [Ts[p] + Vs (D] () = %9, (#) (1.26)
where the Kohn-Sham potential V¢ (7) includes contributions from:

Vs () = Vore ) + Vg () + +Vic () (1.27)
The total energy of the system is given by:

Elp] = Tslp] + Ve lpl + Unlpl + Exclp]l  (1.28)
B-1) Solution of the Kohn - Sham Equation
The solution of the Kohn-Sham equation involves two fundamental steps:

e Defining the terms of the effective Kohn-Sham potential:
A critical aspect of this step is determining the exchange-correlation potential,Exc . Unlike
other components of the Kohn-Sham potential, Exc does not have a closed-form analytical
expression and must instead be approximated using suitable models or computational

techniques.

e Finding the wave functions (Kohn-Sham orbitals):
The Kohn-Sham orbitals,

represent the solutions to the Kohn-Sham equation and can be expressed as a linear

combination of basis functions[3]:
pis(T) = Zj Cij ‘Pj(f) (1.29)

Here, @5 (7) are the basis functions, and C;; are the expansion coefficients. The equation

is solved in the form:
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% Cij HK5|<Pj) =Y Cijexs |<Pj> (1.30)

(|2 Cij Hys|oj) = (@il Z; Cijexs |@;) (1.31)

By projecting onto the basis set, the equation can be reformulated as:

Zj ((‘PleKsl(Pj> - 5KS<‘Pk|‘Pj>)Cij =0 (1.32)
The solution requires determining the expansion coefficients C;

e lterative Solution Procedure
The Kohn-Sham equation is solved iteratively using the self-consistent field (SCF) method.
The process is illustrated in Figure (1.1) and proceeds as follows:

e Initialization:
Begin with an initial guess for the electron density, pin, typically derived from a

superposition of atomic densities.

e Constructing the Kohn-Sham matrix:
Using the initial density, solve the Kohn-Sham equation to compute the Kohn-Sham

orbitals, ¢xs(7) , and calculate the Kohn-Sham Hamiltonian matrix elements.

e Calculating the new density:

Compute the new electron density, pout , based on the obtained Kohn-Sham orbitals.

e Checking convergence:
Compare the new density pout With the initial density pin . If the change in density or energy

satisfies the convergence criterion, the solution is complete.

e Density mixing:
If convergence is not achieved, mix the input and output densities to create an updated

density for the next iteration:

pt =0 —-a)ph, +phue  (1.33)

Here, a is a mixing parameter that controls the convergence speed.
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e Repeating the process:
Iterate the procedure until the convergence condition is met, indicating self-consistency

between the density and the Kohn-Sham potential.

This iterative process ensures that the Kohn-Sham orbitals and the electron density are

refined at each step, ultimately leading to an accurate solution of the Kohn-Sham equation.

17
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Figure (I. 1): Self-consistent calculation flowchart.
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5- The Different Types of Approximation of E,.[p]

Since there is no exact analytical expression for the exchange-correlation potential between
electrons, various methods have been developed to approximate its values. The accuracy of
the obtained results primarily depends on the mathematical formulation used for this
potential [3].

5-1 Local Density Approximation (LSDA)

The Local Density Approximation (LSDA) was first introduced by Kohn and Sham in
1964 [22], where an inhomogeneous electronic system is approximated as a locally
homogeneous electronic system by dividing the Brillouin zone into small regions. The

exchange-correlation energy is then expressed by the following relation:

EEPA = [ p(P) Exelp(P]d? (1.34)

dELRAp] o dekDA
Ve = 2RI — £lpA 4 p(7) S (1.35)

For each spin up or down magnetic order, the total electron density becomes the sum of

the two electron densities
p(#) = pr(¥) + pu(F)  (1.36)

The Kohn-Sham equation for the two spins in the form [3]:

( —h2 R R >
| (E vZ+ VeTff(r)> 0i(7) = eksi(P)
(1.37)
(72 4+ V8@ )o@ = ekspi(P)
k om eff Qi ksPi
5-2 The Generalized Gradient Approximation (GGA)

The Generalized Gradient Approximation (GGA) is an advanced method developed to
improve upon previous approximations by considering the non-homogeneity of the
electron density. Unlike the Local Density Approximation (LDA), GGA accounts for
variations in the electron density across different spatial regions. In this approach, the total
energy of the electron system depends not only on the electron density p (¥)but also on its

gradient Vp (¥). This relationship is mathematically expressed as [23]:
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ERCAp®] = [dPtpDegclp @, Vp (]  (1.38)

5-3 The mBJ Approximation (modified Becke—-Johnson) :

The modified Becke—Johnson (mBJ) potential is an improved exchange potential

introduced by Tran and Blaha in 2009, aiming to provide more accurate calculations of the
electronic band gap within the framework of Density Functional Theory (DFT).
While traditional approximations such as the Local Density Approximation (LDA) and the
Generalized Gradient Approximation (GGA) are effective for predicting structural and
mechanical properties, they notoriously underestimate the band gap of semiconductors and
insulators. The mBJ approximation addresses this limitation by offering a more realistic
description of the exchange potential that better reflects the true electronic behavior of
materials.

Unlike LDA or GGA, the mBJ potential is not an energy functional but rather a semi-
local exchange potential that depends on the local electronic density and its gradient, as
well as the Kinetic energy density. This allows the mBJ approximation to better reproduce

the position of the conduction band and hence the band gap.
6- Full-Potential Linearized Augmented Plane-Wave Method (FP-LAPW)

The development of methods for solving the Kohn-Sham equations became essential for
accurately determining the wave functions of electron systems. After extensive research,
several approaches were introduced, including the OPW (Orthogonalized Plane Wave)
method proposed by Herring in 1940 [24], the LMTO (Linear Muffin-Tin Orbital) method
[25], and the FP-LAPW (Full-Potential Linearized Augmented Plane-Wave) method. The
accuracy of these methods strongly depends on the quality of the effective potential

employed.

6-1 The Augmented Plane Wave (APW) Method

The Augmented Plane Wave (APW) method, introduced by Slater [26], is based on the
Muffin-Tin (MT) approximation [27] (see Figure 1.2). In this approach, the crystal space is

divided into two distinct regions:

e Muffin-Tin Spheres: Non-overlapping spheres of radius Ro centered around atomic

nuclei, where core electrons are localized.

20



15T CHAPTER THEORETICAL PART

e Interstitial Region: The space between these spheres, where free electrons move

and interact with a nearly constant potential
The MT 1
Spheres
| interstitial
region

Figure (I. 2): Diagram of the distribution of the elementary cell in atomic spheres and in

interstitial region.

Potential Distribution According to the MT approximation, the potential within the atomic
spheres is assumed to be spherically symmetric, while in the interstitial region, it remains

constant [3]. This can be expressed mathematically as :

V(r) r< R,

V@) = { ' SR (139)

Wave Function Representation

Since the electronic environment differs between the two regions, the wave functions that

describe electron behavior are also distinct.

e Inside the Muffin-Tin Spheres: The wave function is expressed as a sum of radial
functions multiplied by spherical harmonics.
e Inthe Interstitial Region: The wave function is represented using plane waves.

The total wave function can be written as:

‘ © m
DD AU in (@) r< Ry
. I=0 -m
o) = { (1. 40)
1 S
_ C el(K+G)r r>R
\ \/EZ G 0

Where:

Q is the unit cell volume.

21



15T CHAPTER THEORETICAL PART

Yunare the spherical harmonics.
A are expansion coefficients.

U is the regular solution of the Schrddinger equation, given by [28]:

d2

where E; is an energy parameter.

1(l+1) —
2 V(T)) I‘Ul - ElUl (14‘1)

6-2 The Linearized Augmented Plane Wave Method (FP-LAPW)

One of the main drawbacks of the APW method is its computational inefficiency, primarily
due to the dependence on the common radial function U,(r). Additionally, determining the

radial function for each energy value E; is challenging.

To overcome these limitations, Anderson [29] introduced an improvement to the APW
method [30] by employing a Taylor series expansion to express the radial functions U;(r) in

the following form:

Ui(r,E) = UG E) + (B = E)L2|  +o(E~E)?  (1.42)
l

Where the term O(E — E;) 2represents the quadratic error.
After several simplifications, he has got the expression of potential inside and outside of

Muffin-Tin balls as follows:

I(z Vim (1) Yim r< R,
V(r) = { tm (1. 43)
t; Vi (r)er r> Ry

As well as the wave functions inside the spheres in terms of radial functions and their

derivatives. Where the wave functions are written as follows [31,32]:

( .
> (Al @) + Bl ) Yin @) 7= Ry
D) = g (1. 44)
Ik \/_ﬁz C, ol (R+0)F r >R,

G
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Where :

K: represents the wave vector.

-

G : is the vector of the reciprocal lattice.

A are coefficients corresponding to the function U,.

B, are coefficients corresponding to the function U;.

We can determine the coefficients A;,,, and B,,, for each wave vector, and for each atom
by applying the conditions of continuity of the basic functions in the vicinity of the limit of
the spheres. After some simplifications we find the coefficient formula A4;,, and B, in the

following forms:

47TT'02iL .
4mry?it
By, = \/3_2 Y*1m (K + G)b,(K + G) (L. 46)

7. WIEN2K Software

WIENZ2K is a comprehensive computational package composed of multiple Fortran-based
subprograms. These subprograms serve as algorithms that numerically solve the equations
governing crystalline systems within the framework of density functional theory (DFT).
The software employs the full-potential linearized augmented plane wave (FP-LAPW)
method, one of the most accurate techniques for calculating electronic and structural

properties of materials [10].

The key subprograms within WIEN2K [33] and their specific roles are outlined in Figure

1.3 and described as follows [107]:

e NN: Determines the distances between nearest-neighbor atoms up to a predefined
limit, aiding in the calculation of the atomic sphere radius.

e SGROUP: Identifies the space group of the given compound.

e SYMMETRY: Computes the symmetry number and defines symmetry operations
corresponding to the space group of the material.

e LSTART: Calculates electron densities for free atoms and determines the treatment

of different orbitals in band structure calculations.
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e KGEN: Generates a K-point mesh in the irreducible Brillouin zone (BZ),
specifying the total number of K-points in the first BZ.
e DSTART: Constructs an initial electron density for the self-consistent field (SCF)
cycle by superimposing atomic densities obtained from the LSTART step.
Following these preparatory steps, the program enters a self-consistency loop (SCF cycle),

involving the following five key calculations:

v' LAPWO (POTENTIAL): Computes the Coulomb and exchange-correlation
potentials (Hartree-Fock potential) using the total electron density. Additionally, it
partitions space into muffin-tin (MT) spheres and the interstitial region.

v' LAPW1 (BANDS): Solves the Kohn-Sham equation to determine eigenvalues and
wave functions for valence electrons.

v' LAPW?2 (RHO): Derives the valence electron density based on the results from
LAPWL.

v" LCORE: Computes core electron eigenvalues and wave functions to determine core
electron densities.

v' MIXER: Combines the obtained electron densities to generate an updated self-

consistent density for the next iteration.
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Figure (1.3): The flowchart of the Wien2k code subroutinesis).
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1) Introduction

Using a theoretical framework, the study examined the structural, elastic, electrical, and
thermodynamic characteristics of the MAX phase compounds V2SnC and V2SnN. Lattice
constants and bulk modulus were used to evaluate the structural stability. Fundamental
elastic constants and derived parameters were used to assess the elastic characteristics.
Band structure and density of states computations were used to investigate the electronic
behavior. In order to evaluate their possible performance in high-temperature and high-
pressure settings, the thermodynamic properties—such as heat capacity, entropy, thermal
expansion coefficient, Debye temperature, and bulk modulus—were investigated under

various temperature and pressure cases.

2) Calculation Details

Structural, elastic and electronic properties have been estimated using the full-
potential linearized augmented plane wave method (FP-LAPW) implemented in the
WIENZ2k program [1]. The structural properties have been calculated with both generalized
gradient approximation (GGA) [2] to achieve the exchange-correlation potential. Whereas
modified Becke-Johnson potential (mBJ) [3] has been used to improve the electronic
behavior of all the studied compounds. To study the core and valence electrons separately;
the Muffin-Tin approximation is applied where the core electrons are modelled by
spherical harmonic functions with angular momentum up to Imax = 10 and Gaussian factor
Gmax equal to 12, whereas the valence electrons are depicted by plane wave functions,
which are located outside the atomic spheres (interstitial region). The cutoffs of Rmt*Kmax
used in our calculation are equal to 8 for all compounds, where Kmax is the largest
reciprocal lattice vector used in the plane wave expansion and Ruvt represents the smallest
MT sphere radii. For Brillouin zone (BZ) integration; a mesh of (17x17x3) special k-points
were used for all MAX phase compounds in the irreducible wedge to minimize the total
energy for all compounds. The criteria of convergence in the self-consistent were achieved
when the difference in energy between two consecutive cycles is less than 10“ Ry. The
optimized atomic positions are obtained for minimization of the internal forces to vales less
than 10 Ry/a.u. GIBBS2 [4,5] code was employed to obtain the thermal which is based on

semi-classical Boltzmann theory and the quasi-harmonic Debye model.
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3) Results and discussions

3-1) Structural properties

Both compounds V>SnN and V2SnC exhibit a hexagonal crystalline architecture
characterized by the space group (194) P63/mmc. As illustrated in Figure (I1-1), the unit
cell of these materials comprises eight atoms, with the atomic positions delineated in

fractional coordinates presented in TABLE (I1-1).

FIGURE( 11-1): Crystal structure of V>.SnC and V2SnN compounds

V2SnC V2SnN
Atome Position Atome Position
Sn (0.66667;0.33333;0.25000) Sn (0.66667;0.33333;0.25000)
Sn (0.33333;0.66667;0.75000) Sn (0.33333;0.66667;0.75000)
C (0.00000;0.00000;0.00000) N (0.00000;0.00000;0.00000)
C (0.00000;0.00000;0.50000) N (0.00000;0.00000;0.50000)
V (0.33333;0.66667;0.07506) V (0.33333;0.66667;0.07087)
\Y/ (0.66667;0.33333;0.92494) V (0.66667;0.33333;0.92913)
\Y/ (0.66667;0.33333;0.57506) V (0.66667;0.33333;0.57087)
\Y/ (0.33333;0.66667;0.42494) V (0.33333;0.66667;0.42913)
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To find the equilibrium structural properties of V>SnC and V2SnN, we performed GGA
approximation calculations to determine how the total energy of their unit cells changed
with varying volumes. The resulting energy-volume data was then plotted and fitted using

the Murnaghan equation[6]

B
B'(B'-1)

E(V) = E, + lv (%)B - Vol +2V-Vy) (1)

Where the parameters represent:

- Vo : The volume of the cell at equilibrium.

- Eo: The total energy of the primitive cell at equilibrium.
- B: Bulk modulus.

- B Pressure derivative of the bulk modulus.

The expression for the bulk modulus is given by the equation:

oP 0%E
B = _VE = VW (II-2)

Using the data presented in FIGURE (11-2) and FIGURE (11-3), we first identified the
minimum energy volumes for V,SnN and V,SnC. From these, we proceeded to calculate
their respective lattice constants ‘a' (A) and bulk moduli, as detailed in TABLE (11-2).

A key observation is that V,SnC possesses a higher bulk modulus compared to V,SnN.
Given that the bulk modulus quantifies a material's resistance to deformation under
pressure, this implies V,SnC is more mechanically robust. This difference serves as a
valuable indicator of the high mechanical stability of both V,SnC and V,SnN under
pressure. Additionally, our analysis of the volume change as a function of pressure reveals
a nearly linear decrease in crystal volume with increasing pressure, providing clear

evidence of no structural collapse within the tested pressure range.
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V>SnN V2SnC
Vo(a.u)® 710.7055 Vo(a.u)® 716.5291
B(GPa) 200.0260 B(GPa) 195.2101
B’(GPa) 5.5966 B’(GPa) 5.0806
Eo(RyY) -32510.675985 Eo(Ry) -32444.064094
a(A% 3.084 a(A% 3.092
c(A) 12.773 C(A% 12.808

TABLE(11-2) : Values of the structural parameters obained for V.SnC and V>SnN

compounds and calculated by GGA approximation

V.SnN
-32510,58 -
-32510,60 -
=
X .32510,62
>
2
(5]
S  -32510,64
-32510,66 -
-32510,68 - o
T T T T T T T T T T
640 660 680 700 720 740 760 780 800 820 840
Volume (a.u)3
1,20
V2SnN
1,15 -
1,10 -
o
> 105-
>
1,00 -
0,95
0,90
T T T T T
-20 -10 0 10 20 30

PRESSURE(Gpa)

FIGURE( 11-2) : Total Energy-Volume and volume-pressure Curvesof V>SnN calculated

using GGA-sol approximations.
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V,SnC
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FIGURE (I1-3): Total Energy-Volume and volume-pressure Curves of V.SnN calculated

using GGA-sol approximations

33



2N CHAPTER: RESULTS AND DISCUSSION

. 3-2) Electronic Properties:

Studying the electronic properties is essential for identifying the potential electronic
or electrical applications of materials. In this work, we investigated the electronic band
structure to determine whether the studied compounds exhibit insulating, metallic, or
semiconducting behavior. Additionally, we analyzed the density of states to identify the
atomic orbitals contributing to each band, thereby deepening our understanding of the
bonding characteristics within the material.

3-2-1) Energy Bands:

The energy bands for both compounds, V,SnC and V,SnN, were studied in their
stable hexagonal structure within the first Brillouin zone. High-symmetry points were
traced along the path (> M— K — I' —A). Through analyzing the energy band
diagrams, which were calculated using mBJ approximations. As evident from FIGURE
(11-5), which presents the band structure spectra of V,SnC and V,SnN, we observed a
significant overlap between the valence and conduction bands. This finding unequivocally

indicates the metallic nature of both compounds.

FIGURE (11-4):The hexagonal Brillouin zone
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FIGURE (11-5): band structure spectra for both compounds V2SnC and V2SnN
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3-2-2) Total Density of States (TDOS) Partial Density of States (PDOS):

To identify the atomic orbits contributing to the formation of both conduction and valence
bands, the total and partial density of states (DOS) using mBJ method for for both

compounds.

The distribution curves of atomic orbital contributions to the formation of valence and

conduction bands are organized as follows:

1. The presence of electronic states at the Fermi level in both compounds confirms
their metallic nature, as there is no energy gap separating the valence and
conduction bands.

2. The density of states (DOS) profiles of V,SnN and V,SnC exhibit notable
differences, highlighting the impact of substituting the nitrogen atom with carbon

on the energy distribution and the involvement of different atomic orbitals.

The energy-resolved contributions of atomic orbitals, as illustrated in FIGURE (11-6) for
V,SnN and FIGURE (11-7) for V,SnC, can be categorized into the following regions:

» For V,SnN FIGURE (11-6):

e [-7 eV to -5 eV]: Predominantly derived from the s-orbital electrons of the Sn
atom.

e [-5eV to 5 eV]: Major contributions from the d and p orbitals of V, as well as the p
orbitals of N.

» For V,SnC FIGURE (11-7):

e [-8 eV to -5 eV]: Dominated by the s orbitals of Sn, with minor contributions from
the s orbitals of C.
e [-5eV to 5 eV]: Strong contributions from the p orbitals of both C and Sn, along

with significant d-orbital contributions from V.
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FIGURE( 11-6): Total and partial density of states of V.SnN
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FIGURE( 11-7): Total and partial density of states of V2SnC
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4) Thermodynamic Properties

First-principles calculations were performed using the WIEN2k package at zero Kelvin,
where atomic vibrational effects were neglected in the Hamiltonian by applying the Born—
Oppenheimer approximation. To investigate the temperature-dependent thermodynamic
behavior, we employed the quasi-harmonic approximation (QHA) as implemented in the
GIBBS2 code [4,5]. The thermodynamic stability of a solid under given pressure and
temperature conditions is governed by the Gibbs free energy, which is defined as:
G* (X, V;P,T) = Eqa(x, V) + PV + A", (x, V; T) + Fy (x, V; T) (11— 3)
Here, Es:a represents the total static energy, PVaccounts for hydrostatic pressure, and

A*yip and FZI correspond to the non-equilibrium vibrational and electronic free energy

terms, respectively. The vibrational energy contribution A*y;p, is evaluated based on

the Debye model, using the phonon density of states g(w):

. (o _o
Ayip = f [5 +kgTLn (1 —e k8T)| g(w)dw (I —4)
0

F*(x,V; T) = Eq(a (X, V) + A", (X, V; T) (I1-5)
in this equation, n is the number of atoms per unit volume, D (6 / T) represents the Debye

integral, which is given by:

X

3 [ y3eV
D(X)_x_3f1—e‘ydy (I1—-6)
0

The equilibrium state (for pressure (P) and a temperature (T) given) is obtained by the

minimization of;

<0G*(V, P, T)> —0 (1-7)
av -

Once equilibrium is established, other thermodynamic quantities such as entropy S,
heat capacity at constant volume Cy , and thermal expansion coefficient o can be derived

as follows:

S= —3nkgln(1 — e ®/T) + 4nkgD(0,/T) (11 —8)

9nkB G)D/T
CV: 12nkBD(G)D/T) - W ( II— 9)
10V Yy G
*= _V<ﬁ>p =vp, (1710
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In this section, we investigate the thermodynamic properties of the compounds V.SnC and
V2SnN under the influence of pressure and temperature. The properties studied include the
heat capacity at constant volume (Cv), entropy (S), thermal expansion coefficient (a), bulk
modulus (B), Debye temperature (6D), and volume (u.a®). The pressure range considered is
from 0 to 40 GPa, while the temperature range extends from 0 K to 1200 K.

4-1) Heat Capacity Cv

Heat capacity reflects a material's ability to absorb thermal energy, generally
increasing with the number of atomic vibrational degrees of freedom. On a microscopic
level, entropy quantifies disorder within a system, corresponding to the number of
accessible microstates. As temperature rises, atoms vibrate more vigorously, enabling new

vibrational configurations to emerge [7].

Figures (11.8) and (11.9) for V,SnC and V,SnN compounds illustrate that the constant-
volume heat capacity (Cv) follows the Dulong—Petit law [8] above 700 K, plateauing at
approximately 100 J/mol-K. At low temperatures (below 200 K), Cv increases
proportionally to T3. Additionally, we observed that Cv decreases as pressure increases
(from 0 to 40 GPa).
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FIGURE (11-8): variation of the heat capacity "Cv" of the compound V.SnC
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4-2) Entropy S :

Entropy is a multifaceted concept, utilized across various disciplines and viewpoints. From
a thermodynamic perspective, it can be defined at two levels: microscopically, entropy
serves as a measure of a system's disorder (chaos and randomness), representing the
number of possible states the system can occupy. This is expressed as S=k Ln Q, where Q
represents the number of possibilities or arrangements that a compound can occupy, while
k represents the Boltzmann constant. On the macroscopic level, entropy is the amount of
internal energy of a substance that cannot be converted into useful work and can be

considered as unusable energy for obtaining work[4,5].

According to the obtained results, the entropy of both compounds increases almost linearly

with increasing temperature, while it decreases with increasing pressure.

V2SnC

250 T T T T T T T T T T T T
——P=0GPa
200 - —0— P= 20 GPa i
—/— P=40 GPa
150 .
2
g
5 100 - .
wn
50 4 .
0 - -

T T T T T T T T T T T T
0 200 400 600 800 1000 1200
Temperature(K)

FIGURE( 11-10): variation of the entropy (S) as function of temperature of V>SnC
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FIGURE (11-11): variation of the entropy (S) as function of temperature of V>SnN

4-3) Thermal Expansion Coefficient a:

The thermal behavior of solid-state materials plays a crucial role in the design and
reliability of electronic devices, especially those that generate significant heat during
operation. One of the most critical thermal properties of these materials is the thermal
expansion coefficient. This property is important because excessive expansion can cause
mechanical failure, damage to device components, or induce stress that may negatively

affect the electronic performance of the system [4,5].

From the curves below, it is observed that both compounds exhibit a moderate thermal
expansion coefficient. This coefficient is influenced by both temperature and pressure,

increasing with rising temperature and decreasing with increasing pressure

43



2N CHAPTER: RESULTS AND DISCUSSION

V28nCI

5 T T T T T T T
44 i

< 3 .

o

o

N

g 2- -

=

< —— P=0 GPa
14 —Oo—P=20GPaj |

——P=40 GPa

0_ -

T T T T T T T T T T T T
0 200 400 600 800 1000 1200
Temperature(K)

FIGURE (11-12): variation of the thermal expansion coefficient (o) as function of

temperature of V.SnC
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FIGURE (11-13): variation of the thermal expansion coefficient (o) as function of

temperature of VoSnN
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4.5 The Debye temperature 0p :

The Debye temperature, 0D, is a characteristic temperature that reflects the highest normal-
mode vibration (phonon) frequency in a crystalline solid. The data extracted from FIGURE
(11-14), which illustrates the variation of the Debye temperature as a function of both
pressure and temperature, show that the Debye temperature decreases linearly with

increasing temperature at constant pressure, while it increases with rising pressure.

VoSnC
T ' 1 T T T T T T
750 _
—o— P=0 GPa
700 - —o—P=20GPa]
owfz—c:—s-q;{\,CHNNN \ —/— P=40 GPa :
< 650+ 0000 B 4
\D; 000
~ 600 i

5507 w |

500 .

T T T T T T T T T T T T T

0 200 400 600 800 1000 1200
Temperature(K)

FIGURE (11-14): variation of The Debye temperature 6D as function of temperature of
V2SnC
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FIGURE (11-15): variation of The Debye temperature 6D as function of temperature of
V2SnN
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5) The elastic Properties :

The elastic constants C;; for the V.SnC and V.SnN compounds were obtained using
the second-order derivatives of the fitted polynomials of the total energy with respect to
volume-conserving strains that break the symmetry of the hexagonal crystal structure.
These constants allow us to explore the mechanical behavior of the materials and the
influence of the constituent atoms V, Sn, and either C or N on the mechanical stability and
elasticity.

The obtained results such as bulk (B),shear modulus (G), Young’s modulus (Y),
anisotropy (A), and Poisson’s ratio (v) are listed in Table 2, which calculated as a function
of elastic constants Cj; using the following formulas [9,10]:

2 C33
B=5<C11+ C12+2C13+7) (11—11)

1 1 1
G=E(ZC11+ C33— Ci2— 2C13)+§<2C44+§(C11— C1z)> (11 -12)

9BG

Veggre (11-13)
_ 3B—2G H— 14
U=oBBrg )
2 Cyy
- (11 —15
Ci- Co )
C11+ 612_2C13
= I[I-16
e (11=16)

The values of the elastic constants (Table 2) confirm that both V>SnC and V.SnN
satisfy the Born-Huang mechanical stability criteria for hexagonal crystals:
(Ci1 > 1Ci2l, Cag > 0,and (Cyq + C13)C33 > 2C15) [11].

The Bulk modulus (B) of the studied compounds; which expresses the
response of these materials against any uniform compression they undergo; was calculated
again depending on the elastic constants, shows comparable values for both V.SnC (134.13
GPa) and V.SnN (133.15 GPa), indicating similar volumetric incompressibility. In

contrast, the shear modulus (G), indicative of resistance to shape change, is significantly
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higher for V.SnC (83.38 GPa) than V.SnN (55.26 GPa), revealing a greater ability of
V2SnC to resist shear deformation.

Using the three values B, G, and C.s, we can estimate the brittleness/ductility and
machinability of the studied materials by calculating the ductility factor U; = B/G[38] and
the machinability factor U,, = B/C44[12]. The values obtained are 1.61 for V.SnC and
2.41 for V2SnN. According to the Pugh criterion, materials with B/G>1.75 are ductile,
while those with lower values are brittle. Thus, V2SnN exhibits ductile behavior, whereas
V2SnC lies on the borderline between brittleness and ductility , the machinability factor
Uy = B/C,4, indicates better machinability for V2SnN (2.32) compared to V.SnC (1.43).
The G/B ratio is often used to evaluate the dominant bonding nature: ionic compounds tend
to have G/B =~ 0.6, while covalent compounds approach 1.1 [13]. The calculated values
(0.62 for V2SnC and 0.42 for V:SnN) imply that both compounds are dominantly ionic,

with V2SnN having a more pronounced ionic character.

Young’s modulus (Y), which measures stiffness under uniaxial stress, is
significantly higher for V>SnC (207.21 GPa) than for V.SnN (145.64 GPa), indicating that
V2SnC is stiffer.

The Poisson’s ratio (v) values (0.24 for V.SnC and 0.32 for V2SnN) suggest that V.SnC is
more covalent in nature, while V.SnN tends toward metallic bonding characteristics

[14,15].

The anisotropy factor (A) shows both materials are anisotropic, with A =1.13 for
V2SnC and A = 1.14 for V.SnN. Neither compound is isotropic, as their A values deviate

from unity.
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V2SnC V2SnN

Cu 227.993591 179.528599
Cr2 61.202004 78.971341
Cis 97.572322 100.629289
Cs3 250.543246 253.604417
Cu 93.887426 57.499368
B(GPa) 134.12982 133.152012
G(GPa) 83.383508 55.263718
G/B 0.62166271 0.4150423
Y 207.207422 145.635595

v 0.24250 0.31764
A 1.12580529 1,14361447
Ug 1.608589 2.4093929

Um 1.428623 2.315712

TABLE (11-3) : Elastic constants (Cij), Young's modulus Y, Poisson’s ration (v),

Anisotropy(A), Bulk (B) and Shear modulus (G), G/B ratio, f-index , ductility U, and

machinability U,, factors of MoAX phases (M=V , A= Sn, X =Cor N)
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Conclusion

Our analysis in this work involved a thorough verification of the properties of

V,SnC and V,SnN, from which we obtained the following results:

=2 B

Both V,SnC and V,SnN share a hexagonal crystal structure (P6s/mmc space
group) and exhibit metallic behavior due to overlapping valence and conduction
bands.

V,SnC generally shows higher mechanical resistance (larger lattice constant, bulk
modulus, and stiffness) compared to V,SnN, which is softer and more machinable.
Electronic contributions differ: V,SnN primarily involves V-d and N-p orbitals,
while V,SnC involves C-p and V-d orbitals. Bonding analysis suggests
predominantly ionic bonding for both (more so in V,SnN), with V,SnC showing
more covalent character and V,SnN more metallic character.

Both compounds display anisotropic behavior.

Their thermodynamic properties (heat capacity, entropy, thermal expansion
coefficient, and Debye temperature) were studied, showing expected trends with
temperature and pressure. For instance, heat capacity follows the Dulong—Petit law
at high temperatures and decreases with pressure, while entropy increases with
temperature and decreases with pressure.

Mechanical stability for both compounds is confirmed by calculated elastic

constants meeting Born-Huang criteria.
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Abstract

In this work, we carried out a theoretical study to investigate the structural, electronic,
elastic, and thermodynamic properties of the compounds V2SnC and V2SnN using the
GGA-PBEsol approximation within the framework of Density Functional Theory (DFT).
For the structural properties, we calculated the lattice constants, bulk modulus, and its first
pressure derivative. To understand the electronic behavior of both compounds, we
analyzed the electronic band structure and the total and partial density of states (DOS).
Subsequently, the elastic properties were evaluated by calculating the fundamental elastic
constants, along with derived parameters such as the shear modulus, Young’s modulus,
and Poisson’s ratio.

Finally, the thermodynamic properties were studied, including heat capacity, entropy,
thermal expansion coefficient, Debye temperature, and bulk modulus under varying

temperature and pressure conditions.
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