
             DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

MINISTRY OF HIGH EDUCATION AND SCIENTIFIC RESEARCH 

UNIVERSITY OF MOHAMED BOUDIAF - M’SILA 

 

FACULTY OF SCIENCES 

DEPARTMENT OF PHYSICS 

N° : PH/MAT/10/2025  

DOMAINE: SCIENCE OF MATTER 

FIELD : PHYSICS 

OPTION : MATERIAL PHYSICS 

 

 

Memory Submitted for Obtaining 

Diploma of Academic Master 

By: 

Douidi ali aboubakeur 

TITLE  

 

 
Defended on 18/06/2025 in front of a jury composed of: 

 

 

Allali djamel University of Msila Chairman 

Saber Saad Essaoud University of Msila Supervisor 

Karim boufferrache University of Msila Examiner 

 

 

 

 

 

Academic Year: 2024/2025 
 

 

Study of the mechanical and thermodynamic properties of 

some MAX phase compounds using computational 

methods 



 

 

 
 
 

 

 
 
ر له الحمد لله عدد ما كان وعدد ما يكون، وعدد الحركات والسكون، الحمد لله الذي علم الإنسان ما لم يعلم، وسخ

حصى
ُ
 ولا ي

 
عد
ُ
  .  من النعم ما لا ي

خلقه  الحمد لله الذي أكرمنا بالعقل وهدانا لنور العلم، وجعل لنا من القرآن الكريم هدىً وشفاء، وأرسل لنا خي  

ا 
ً
، فصلى الله عليه وسلم عدد ما ذكره الذاكرون وغفل عن ذكره الغافلون صلى الله عليه وسلممحمد ن  .  رحمة للعالمي 

 

، ولكن نحمده
ً
ي هذا المشوار العلمي الطويل، الذي لم يكن سهلً

ن
بعون  ونشكره أن أتم  علينا هذه النعمة، ووفقنا ف

نا وإصرارنا استطعنا أن نصل إلى هذه اللحظة  .  الله وصير

 

ي بنا ونتوجه
ن
منا به، ولكل معلم أفاض بعلمه وساهم ف

ّ
ا عل

ً
ي طريقنا حرف

ن
ء بخالص الشكر والعرفان لكل من وضع ف

ة معرفتنا، منذ الخطوة ن تنا التعليمية وحتى هذه اللحظة الممي  ي مسي 
ن
 ..  الأولى ف

 

فنا الكريم الدكتور  شكر  مة، ، على دعمه المستمر وتوجيصابر سعد السعود  خاص وعميق نرفعه إلى مشر هاته القي 

ة إعداد هذا العمل. كما لا يفوتنا أن نشكر أعضاء اسًا لنا طوال فيى ي كانت نير
علًلىي  لأستاذ الجنة المناقشة الكرام،  التى

 .المتواضع هد ، على تفضلهم بتقييم هذا الجبوفراش كريم والأستاذ  جمال

 

ي 
ن
ي علمنا وعملنا، ويجعله خالصًا ل وف

ن
فيق، وجهه الكريم، وأن يرزقنا القبول والتو الختام، نسأل الله أن يبارك ف

ي الدين والدنيا، إنه ولىي  ذلك والقادر عليه
ن
 والعافية ف

 

 

 

ابوبكر علىي                                                                 



 

 
 

 

 

ن الحمد لله ، وعلى آله وصحبه أجمعي  ي المصطفن  .، والصلًة والسلًم على سيدنا محمد، النتر

ام ي معتن الرجولة والاحيى ي قلتر
ن
 ...إلى من وهبه الله الهيبة والوقار، ومن غرس ف

ي كل محفل ومكان
ن
ن بحمل اسمه وأفتخر به ف  ...إلى من أعيى

وغفر له، وأسكنه فسيح جناته، رحمه الله رحمة واسعة،  –" عبد الدائمإلى والدي الغالىي "

ه روضة من رياض الجنة  .وجعل قير

، وكانت  ي بحبها، وسهرت لأجلىي
تتن
 
ي على الأرض، إلى من رب

ا تمشر
ً
وإلى من كانت رحمة وحنان

نش
ُ
ا لا ي

ً
ا دافئ

ً
 ...حضن

ي العزيزة "
ى
ي لها نورًا  –" زينبإلى والدت

 
ي رحمها الله وأسكنها الفردوس الأعلى، وجعل دعات

ن
هف  ا  قير

 .ورحمة لا تنقطع

، أستاذي الفاضل "صابر سعد السعود"  ي
ى
ي الأخلًق والعلم والرف

ن
ي ف

 جزاه الله –وإلى من كان قدوتى

ي عمره، وزاده من فضله وعلمه
ن
ي خي  الجزاء، وبارك ف

 .عتن

ا، فشكرً 
ً
ي كل لحظة، وكانت لىي دعمًا وأمان

ن
ي ف ي وقفت بجانتر

ي ، التى ي ، رفيقة درتر
من  ا لها وإلى زوجتى

ي كل خي  القلب
 ، وجزاها الله عتن

، من أجلهم أعمل وأسعى، وأسأل الله أن يبار   ي
ي ونور عيوتن

ك وإلى أولادي الأعزاء، زينة حياتى

ن  ، ويجعلهم من عباد الله الصالحي   .فيهم، ويحفظهم من كل شر

ي كل الحب والتقوإلى 
ي كل خطوة، لكم متن

ن
ي كانت ولا تزال سندي ودعمي ف

ي الكريمة، التى
  ديرعائلتى

ي هذه الرحلة، وكانوا جزءًا من هذا النجاح، فلكم 
ي الذين شاركوتن

ي وزملًت 
ي كلمولا أنش أصدقات 

 تن

 الشكر والدعاء والتقدير 
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Introduction 

 
The term "MAX phase materials" was first use d in 2000 by Barsoum [1]. These 

materials consist of three different types of atoms: transition metal M, atoms from the A 

group, and C or N atoms. All of these atoms crystallize in a hexagonal structure with the 

chemical formula Mn+1AXn (n=1-3).  

MAX phase compounds offer high elastic moduli, high-temperature mechanical 

capabilities, and corrosion and oxidation resistance by combining ceramic and metallic 

features. They are also resistant to thermal shock, deformable at ambient temperature, and 

have high electrical and thermal conductivities. Because of these characteristics, they are 

promising and often used materials that, when heated, can compensate for graphite's 

resistance to high temperatures. 

Numerous theoretical and practical investigations of this kind of material have 

recently demonstrated that certain of them only exhibit superconductivity for ternary 

carbides M2AC, where M stands for Ti, Nb, and Mo and A for S, Ga, As, In, and Sn [2]. 

Bouhemadou et al. conducted a theoretical study on the structural and elastic properties of 

Nb2InC M2InC phases and M2GaC, with M= Ti, V, Nb, and Ta, under pressure effect, in 

addition to numerous other works that deal with determining the elastic properties of other 

materials for this type [3,4]. Scabarozi et al. [5] were measured the linear thermal 

expansion coefficient by high-temperature X-ray diffraction and dilatometry of some MAX 

phase materials. Jonathan et al. [6] have also studied the three compounds Ti2AlC, 

Ti3AlC2, and Ti3SiC2 and calculated their resistivity, in order to use them as surfaces for 

electrocatalyst support materials in hydrogen fuel cells. Experimentally, Carlos et al. [7] 

have prepared the MAX phases Ti2AlC and Ti3AlC2 as thin films in high purity via thermal 

treatment and analyzed them using both XRD and Raman spectroscopy, several properties 

such as the hardness and the elastic modulus for both MAX phases have been evaluated 

using nano-indentation tests.  

Further characteristics of ceramic-metallic materials have been investigated and 

addressed, particularly the most recent study on how stress affects the magnetic properties 

of Mn2AlC and Mn2SiC compounds [8] as well as the study of Superconducting phases in 

a class of metallic ceramics and other properties in many studies carried out by Hadi et al 

[9–11]. 

 This thesis is organized as follow : 
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۩ The first chapter provides a theoretical overview of studying any crystalline system 

based on Density Functional Theory (DFT) [12–17] , Hartree-Fock (HF) 

approximation, as well as the GGA and mBJ approximations to solve the 

Schrödinger equation. 

۩ The second chapter applies the concepts discussed in the first chapter using the 

Wien2K program to calculate the structural properties, employing the GGA-PBEsol 

approximation for compounds V2SnC and V2SnN. This includes parameters such 

as lattice constant (a), bulk modulus (B), and a study of their magnetic and 

electronic behavior. The electronic behavior of both V2SnC and V2SnN compounds 

was also verified, and we calculated the elastic properties such as elastic constants, 

bulk modulus, shear modulus, Young's modulus, and mechanical stability of the 

two compounds. Finally, the effect of both temperature and pressure on the thermal 

properties of the compounds was studied. 
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1- The Schrödinger Equation 

The Schrödinger equation was formulated in 1926 by the Austrian scientist Erwin 

Schrodinger (1887-1961) [1]  ، , who shared the Nobel Prize for Physics with Paul 

Dirac in 1933 for their outstanding contribution to quantum physics. This 

equation is the cornerstone of quantum mechanics, which specializes in the study 

of systems involving microscopic particles. Schrödinger built on the ideas of a 

number of scientists such as Planck and De Broglie, who were interested in studying the system 

consisting of nuclei and moving electrons as these particles exchange influence with each other 

through their wave function, which carries all the necessary information about the studied 

system[2,3]  The Schrödinger equation has the following expression : 

𝐻𝛹(𝑅⃗ 𝐼 , 𝑟 𝑖) = 𝐸𝛹(𝑅⃗ 𝐼 , 𝑟 𝑖)      (I.1) 

The two vectors 𝑅⃗ 𝐼  and 𝑟 𝑖 are the coordinates of the nucleus (I) and of the electron (i). 

H: Hamiltonian operator related to the sum of the kinetic energy and the potential energy 

of the system. 

E: eigenvalue Energy of the system. 

Ψ: wave function which depends on the coordinates of electrons and nuclei. 

The Hamiltonian system - made up of nuclei and electrons - includes the kinetic energy of 

electrons and nuclei, as well as the potential energies (electron-electron, electron-nucleus, 

and nucleus-nucleus), therefore the expression of the total Hamiltonian of the system is 

written by the following expression: 

𝐻 = 𝑇𝑒 + 𝑇𝑁 + 𝑉𝑒𝑒 + 𝑉𝑒−𝑁 + 𝑉𝑁−𝑁    (I.2) 

𝑇𝑒 = −∑
ℏ2

2𝑚𝑖
𝛻⃗ 𝑖
2 →𝑖 Electronic kinetic energy (mi the mass of electron i). 

𝑇𝑛 = −∑
ℏ2

2𝑚𝐼
𝛻⃗ 𝐼
2

𝐼 →Nuclei kinetic energy (mI the mass of the nucleus I). 

𝑉𝑁−𝑁 = ∑
𝑍𝐼𝑍𝐽𝑒

2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽 →The interaction part between the nuclei. 

𝑉𝑒−𝑁 = ∑
𝑍𝐼𝑒

2

|𝑅𝐼−𝑟𝑗|
𝐼,𝑗 →The nuclei-electrons interaction part. 
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𝑉𝑒−𝑒 = ∑
𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 →The interaction part between the electrons. 

|𝑅𝛼 − 𝑅𝛽| → The distance between the two nuclei α and β 

|𝑟𝑖 − 𝑅𝛼| → The distance between the nucleus α and the electron i 

|𝑟𝑖 − 𝑟𝑗| → The distance between the two electrons i and j. 

solving the Schrödinger equation can be really hard, especially for systems with lots of 

electrons and moving parts, and their complicated interactions. So, scientists use simpler 

methods  to get close to the right answer. Here are some of the main ways they do that: 

2- Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation was proposed by scientists Max Born and 

Robert Oppenheimer in 1927[4], it is one of the basic concepts 

underlying the description of the quantum states of molecules .This 

approximation is based on the idea of separating the study of the motion 

of nuclei from the motion of electrons, that is, adopting independence in 

the study without the need to consider the interaction between 

them.This approximation makes it possible to separate the motion of the 

nuclei and the motion of the  electrons. due to the large difference in mass between 

electrons and nuclei. Consequently, the nucleus, relative to the electrons, can be assumed 

to be at rest, allowing the motion of the nuclei to be ignored and the nucleus-nucleus 

interaction energy to be considered as a constant quantity (Vnn = Constant). 

The Born-Oppenheimer approximation was applied to the Schrödinger equation, resulting 

in significant progress in solving the equation. The most notable results 

were as follows : 

According to the Born-Oppenheimer approximation we can rewrite the 

total wave function of the system 𝛹 (𝑅⃗ 𝐼
0
, 𝑟 𝑖)in the form of a product of 

an electronic function 𝛹𝑒 (𝑅⃗ 𝐼
0
, 𝑟 𝑖)and a nuclear function 𝛹𝑛 (𝑅⃗ 𝐼

0
), thus, 

we can separate the motion of nuclei from that of electrons. Then the wave function is 

written: 
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𝛹 (𝑅⃗ 𝐼
0
, 𝑟 𝑖) = 𝛹𝑛 (𝑅⃗ 𝐼

0
)𝛹𝑒 (𝑅⃗ 𝐼

0
, 𝑟 𝑖)      (I.3) 

{
 

 [𝑇𝑒  + 𝑉𝑒𝑒 + 𝑉𝑒𝑛]𝛹𝑒 (𝑅⃗ I
0
, 𝑟 i) = 𝐸𝑒 (𝑅⃗ I

0
)Ψ𝑒 (𝑅⃗ I

0
, 𝑟 i)

[𝑇𝑛 + 𝑉𝑛𝑛 + 𝐸𝑒 (𝑅⃗ I
0
)]𝛹𝑛 (𝑅⃗ I

0
)  = 𝐸𝛹𝑛 (𝑅⃗ I

0
)

     (I.4) 

   Despite the use of Born-Oppenheimer simplifications in the Schrödinger equation, the 

electron-electron interaction remains a complex challenge that hinders efforts to solve the 

equation. Due to this complexity, the equation remains a challenge to solve using standard 

mathematical methods, prompting scientists to resort to other approximations to facilitate 

its solution 

3- Hartree and Hartree-Fock Approximations (HF) 

Scientist Hartree introduced a new approximation to the Schrödinger 

equation in 1928 [5–7]after the Born-Oppenheimer approximation. This 

approximation is based on the principle of independent particles,  [8,9] .In this 

approximation, Hartree treats the interactions between electrons as particles 

carrying a charge without taking into account the spin state, i.e. The 

interactions are simplified to Coulombic repulsion interactions, overlooking 

both exchange and correlation terms. Additionally, the wave function lacks "anti-

symmetry" as it does not account for the Pauli exclusion principle. 

[3,10]. 

Although the Hartree approximation overlooks electron spin 

and the Pauli exclusion principle, it simplifies the Schrödinger equation 

by reducing the study of a large number of electrons to that of a single 

electron., so that the total Hamiltonian H of electrons is the sum of the 

Hamiltonians hi of each electron, while the total wave function of the 

electronic system represents by multiplication the individual wave 

functions of each electron [3,10]. 
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Finally,the total energy of the electronic system is the aggregate of the energies of 

all electrons. Following Hartree's approximation, the Hamiltonian equation for a single 

electron can be expressed as follows: 

𝐻 = ∑ ℎ𝑖𝑖     (I.5) 

ℎ𝑖 = −
ℏ2

2𝑚i
∆𝑖 − ∑

𝑍𝐼𝑒
2

|𝑟𝑖⃗⃗⃗  −𝑅⃗ I
0
|

𝐼 +
1

2
∑

𝑒2

|𝑟𝑖⃗⃗⃗  −𝑟 𝑗|
𝑗       (I.6) 

𝛹𝑒 = ∏ 𝛹𝑖𝑖         (I.7) 

𝐸𝑒 = ∑ 𝜀𝑖𝑖              (I.8) 

In 1930, Fock [9] improved and refined Hartree's model by replacing electron wave 

functions with a Slater determinant[10]. This change allowed Fock to address the exchange 

effect, which Hartree had overlooked. As a result, the interaction between electrons now 

includes both Coulomb interaction and the exchange effect. This led to the replacement of 

previous functions with anti-symmetric functions. In his analysis of electronic interactions, 

Fock introduced the concept of "spin" and replaced the electronic system's wave function 

with a Slater determinant, as expressed by the formula: 

𝛹𝐻𝐹(𝑟 1, 𝑟 2, 𝑟 3, … , 𝑟 𝑁) =
1

√𝑁𝑒!

[
 
 
 
 
ψ1(𝑟 1) ψ1(𝑟 2) ψ1(𝑟 3) ⋯ ψ1(𝑟 𝑁)

ψ2(𝑟 1) ψ2(𝑟 2) ψ2(𝑟 3) ⋯ ψ2(𝑟 𝑁)

ψ3(𝑟 1) ψ3(𝑟 2) ψ3(𝑟 3) … ψ3(𝑟 𝑁)
⋮ ⋮ ⋮ ⋱ ⋮

ψ𝑁(𝑟 1) ψ𝑁(𝑟 2) ψN(𝑟 3) ⋯ ψ𝑁(𝑟 𝑁)]
 
 
 
 

    (I.9) 

where 
1

√𝑁𝑒!
is a normalization factor. 

Despite the positive achievements of the Hartree-Fock approximation, it remains unable to 

solve the challenge of quantum correlation between electrons, which involves quantum 

interaction. In addition, the Schrödinger equation continues to present analytical 

challenges. For this reason, subsequent studies after Hartree-Fock's work were directed 

towards the search for simpler and more accurate theories in terms of results, epitomized 

by density functional theory (DFT). 
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4- Density Functional Theory (DFT) 

Density Functional Theory (DFT) is characterized by an attempt to provide a more 

simplified formulation of the Schrödinger equation that describes the motion of electrons. 

This is done by using electron density instead of wave functions to express the kinetic 

energies and interactions between electrons. The density functional theory was developed 

in 1927 by scientists Thomas and Fermi[13,14]  ، , who analogized the electronic system to 

a homogeneous and uniform electron gas. As a result of this approach, two mathematical 

relationships were arrived at that express the density and kinetic energy of a homogeneous 

electron gas sequentially: 

𝜌 =
1

3𝜋2
𝐸
𝑓

3

2 (
2𝑚𝑒

ℎ2
)

3

2
      (I.10) 

𝐸𝑐 =
3

5
(
ℎ2

2𝑚𝑒
) (3𝜋2)

2

3𝜌
5

2        (I.11) 

The theoretical work of scientists such as Lederach, Slater, Hohenberg and Kuhn[12] has 

contributed to the advancement of density function theory, and these efforts have yielded 

results that closely approximate experimental results. 
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TABLE (I. 1): Comparison between the two methods, Hartree-Fock and the Density 

Functional Theory (DFT)[14,15]. 

 

 

 

 

HF method DFT 

  

 Principle: Schrödinger equation is solved 

by considering the wave functions as a 

variable basic. 

 Depended on the theory of the mean field 

theory (MFT). 

 Calculates wave functions and 

eigenvalue energy to obtain ground state 

energy. 

 Depend on the large number of variables, 

which makes the equation very 

complicated and time consuming. 

 The wave functions obtained as solutions 

for the Schrödinger equation have no 

physical meaning. 

 Does not take into account the 

correlation terms. 

 Principle: Solving the Schrödinger 

equation by considering the electron 

density as a variable basic. 

 Based on the two Hohenburg – Sham 

theorems and shifting from the 

Schrödinger equation to the Kohn-

Sham equations to find the solution. 

 Use electron density which has 

physical meaning. 

 Reduce the number of variables 

which makes the equation simpler 

and faster compared to the HF 

method. 

 Used to treat the correlation terms. 
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4-1 Formalism of Density Functional Theory (DFT) 

Density Functional Theory (DFT) is based on the principle of representing the total energy 

of a system comprising multiple interacting electrons in terms of the electronic density 

instead of the wave function. The electronic density is mathematically defined by the 

following equation: 

𝜌(𝑟 ) = ∑ |𝛹𝑖(𝑟 )|
2𝑁

𝑖=1       (I.12) 

This approach simplifies the problem by focusing on the spatial distribution of electrons 

rather than dealing with the complexity of the many-electron wave function. 

I. Hohenburg and Kohn Theorems : 

The foundation of Density Functional Theory (DFT) is based on two fundamental 

theorems introduced by Hohenberg and Kohn. These theorems establish that the total 

energy of an electronic system within an external potential V (r ) can be expressed as a 

functional of the electronic density. By determining this density, all properties of the 

system can be derived: 

E[(r )] = F[(r )] + ∫V (r )(r )dr3      (I.13) 

Here F[(r )]   is a universal functional of the electronic density that accounts for the 

contributions of the kinetic energy and the electron-electron interactions  [10,15]. This 

functional is mathematically represented to describe how different energy contributions, 

such as kinetic energy and electron interactions, are incorporated into the overall electronic 

density of the system:  

𝐹[𝜌] =  𝑇[𝜌] + 𝑈[𝜌]       (I.14) 

The external potential generated by the nuclei is expressed as: 

𝑉𝑒𝑥𝑡(𝑟𝑖⃗⃗ ) =  −∑
𝑍𝐴

𝑟𝑖𝐴
𝐴          (I.15) 

 

in the context of Density Functional Theory specifies the conditions for obtaining the total 

energy of the electronic system in its ground state. This is achieved by identifying the 

electronic density that minimizes the energy functional, ensuring that the energy functional 

reaches its lowest value: 
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𝐸(𝜌0(r )) ≤ E [ρ(r )]      (I.16) 

 

𝐸(𝜌0) =  𝑀𝑖𝑛𝐸(𝜌) 𝑙𝑖𝑚
𝜌→𝑁

⟨𝛹|𝑇̂ + ∑ 𝑉𝑒𝑥𝑡𝑖 + 𝑉𝑒𝑒|𝛹 ⟩       (I.17) 

 

To find the electronic density corresponding to the ground state, the principle of variation 

is used  [16] . This principle involves differentiating the total energy with respect to the 

electronic density and applying the following mathematical relationship, which depends on 

the universal functional F[(r )]and the external potential V(r)  [10] . 

𝑑F [ρ(r)]

𝑑ρ(r)
+ V(r) = 0      (I.18) 

II. The Kohn - Sham equation: 

One of the primary challenges in studying many-electron 

systems is the difficulty in analytically expressing the 

kinetic energy and electron-electron interactions as 

functions of the electron density. In 1965, Kohn and Sham 

introduced a revolutionary approach to address this issue. 

They proposed replacing the real electronic system with a fictitious system in which 

electrons are considered to move independently, unaffected by one another, except through 

an effective potential. This effective potential, known as the Kohn-Sham potential, 

accounts for both the external potential generated by the nuclei and the potential arising 

from interactions with the other electrons in the system [3,17,18].  

The Kohn-Sham fictitious system is defined by the following principles: 

Kohn-Sham orbitals: These are single-electron wavefunctions that are solutions of the 

Schrödinger equation in this independent-electron framework. 

Density equivalence: The fictitious system is constructed to ensure that its electronic 

density matches that of the real system. 

Kinetic energy decomposition: The kinetic energy of the fictitious system Tf  represents 

the kinetic energy of non-interacting electrons, while the kinetic energy of the real system 
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𝑇R is expressed as the sum of Tf and a correction term  Tc that accounts for correlation 

effects[3]: 

𝑇𝑅 = 𝑇𝑓 + 𝑇𝑐       (I.19) 

𝑇𝑐 = ⟨𝛹|𝑇|𝛹⟩ − ⟨𝜑|𝑇𝑠|𝜑⟩       (I.20) 

Additionally, the electron-electron interaction energy in the real system (𝑉ee) is 

decomposed as: 

⟨𝛹|𝑉𝑒𝑒 |𝛹⟩ = 𝑈𝐻 + 𝑈𝑥 + 𝑈𝑐        (I.21) 

where: 

UH: The electronic Coulomb (Hartree potential) 

Ux: The exchange energy. 

Uc: The correlation energy between the electrons. 

Components of the Kohn-Sham Equation 

The Kohn-Sham equation for an electronic system is derived by considering contributions 

from the kinetic energy, the external potential, the Hartree interaction, and the exchange-

correlation energy. The terms are detailed as follows: 

 -Kinetic energy of the fictitious system: 

𝑇𝑠[𝜌] =  ⟨𝜑𝑖|−
ℏ2

2m
∆|𝜑𝑖 ⟩ =  −

ℏ2

2m
∑ ∫𝜑𝑖∇

2
i 𝜑𝑖

∗𝑑𝑟𝑖       (I.22) 

 External potential (nucleus-electron interaction): 

𝑉𝑁𝐸[𝜌] = −∫∑
𝑍𝐼𝜌(𝑟 )

|𝑅⃗ I
0
−𝑟 |

𝐼,𝑖 𝑑𝑟        (I.23) 

 3-Hartree potential (electron-electron Coulomb interaction): 

𝑈[𝜌] =
1

2
∫
𝜌(𝑟 )𝜌(𝑟′⃗⃗⃗⃗ )

|𝑟 −𝑟′⃗⃗⃗⃗ |
𝑑𝑟𝑑𝑟′      (I.24) 

 4-Exchange-correlation energy: 
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The exchange-correlation energy is the sum of the exchange (Ex) and correlation (Ec ) 

contributions. While its exact expression is unknown, it is approximated in practical 

calculations: 

𝐸𝑥𝑐[𝜌] = 𝐸𝑥[𝜌] + 𝐸𝑐[𝜌]       (I.25) 

The Kohn-Sham equation is finally expressed as[19–21]: 

𝐻𝐾𝑆𝜑𝑖(𝑟 ) = [𝑇𝑠[𝜌] + 𝑉𝐾𝑆(𝑟 )]𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆𝜑𝑖(𝑟 )         (I.26) 

where the Kohn-Sham potential 𝑉𝐾𝑆(𝑟 )  includes contributions from: 

𝑉𝐾𝑆(𝑟 ) = 𝑉𝑒𝑥𝑡(𝑟 ) + 𝑉𝐻(𝑟 ) + +𝑉𝑋𝐶(𝑟 )      (I.27) 

The total energy of the system is given by: 

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉𝑁𝐸[𝜌] + 𝑈𝐻[𝜌] + 𝐸𝑥𝑐[𝜌]      (I.28) 

B-1) Solution of the Kohn - Sham Equation 

The solution of the Kohn-Sham equation involves two fundamental steps: 

 Defining the terms of the effective Kohn-Sham potential: 

A critical aspect of this step is determining the exchange-correlation potential,Exc . Unlike 

other components of the Kohn-Sham potential, Exc does not have a closed-form analytical 

expression and must instead be approximated using suitable models or computational 

techniques. 

 Finding the wave functions (Kohn-Sham orbitals): 

The Kohn-Sham orbitals,  

 represent the solutions to the Kohn-Sham equation and can be expressed as a linear 

combination of basis functions[3]: 

𝜑𝐾𝑆(𝑟 ) = ∑ 𝐶𝑖𝑗𝑗 𝜑𝑗(𝑟 )       (I.29) 

Here, 𝜑𝐾𝑆(𝑟 ) are the basis functions, and 𝐶𝑖𝑗 are the expansion coefficients. The equation 

is solved in the form: 
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∑ 𝐶𝑖𝑗𝑗 𝐻𝐾𝑆|𝜑𝑗⟩ = ∑ 𝐶𝑖𝑗𝜀𝐾𝑆𝑗 |𝜑𝑗⟩        (I.30) 

⟨𝜑𝑘|∑ 𝐶𝑖𝑗𝑗 𝐻𝐾𝑆|𝜑𝑗⟩ = ⟨𝜑𝑘| ∑ 𝐶𝑖𝑗𝜀𝐾𝑆𝑗 |𝜑𝑗⟩        (I.31) 

By projecting onto the basis set, the equation can be reformulated as: 

∑𝑗 (〈𝜑𝑘|𝐻𝐾𝑆|𝜑𝑗〉 − 𝜀𝐾𝑆〈𝜑𝑘|𝜑𝑗〉)𝐶𝑖𝑗 = 0       (I.32) 

The solution requires determining the expansion coefficients 𝐶𝑖j 

 Iterative Solution Procedure 

The Kohn-Sham equation is solved iteratively using the self-consistent field (SCF) method. 

The process is illustrated in Figure (1.I) and proceeds as follows: 

 Initialization: 

Begin with an initial guess for the electron density, 𝜌in, typically derived from a 

superposition of atomic densities. 

 Constructing the Kohn-Sham matrix: 

Using the initial density, solve the Kohn-Sham equation to compute the Kohn-Sham 

orbitals, 𝜑𝐾𝑆(𝑟 ) , and calculate the Kohn-Sham Hamiltonian matrix elements. 

 Calculating the new density: 

Compute the new electron density, 𝜌out , based on the obtained Kohn-Sham orbitals. 

 Checking convergence: 

Compare the new density 𝜌out with the initial density 𝜌in . If the change in density or energy 

satisfies the convergence criterion, the solution is complete. 

 Density mixing: 

If convergence is not achieved, mix the input and output densities to create an updated 

density for the next iteration: 

𝜌𝑖𝑛
𝑖+1 = (1 − 𝛼)𝜌𝑖𝑛

𝑖 + 𝜌𝑜𝑢𝑡
𝑖          (I.33) 

 Here, 𝛼 is a mixing parameter that controls the convergence speed. 
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 Repeating the process: 

Iterate the procedure until the convergence condition is met, indicating self-consistency 

between the density and the Kohn-Sham potential. 

This iterative process ensures that the Kohn-Sham orbitals and the electron density are 

refined at each step, ultimately leading to an accurate solution of the Kohn-Sham equation. 
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Figure (I. 1): Self-consistent calculation flowchart. 
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5- The Different Types of Approximation of 𝑬𝒙𝒄[𝝆] 

Since there is no exact analytical expression for the exchange-correlation potential between 

electrons, various methods have been developed to approximate its values. The accuracy of 

the obtained results primarily depends on the mathematical formulation used for this 

potential [3]. 

5-1 Local Density Approximation (LSDA) 

The Local Density Approximation (LSDA) was first introduced by Kohn and Sham in 

1964 [22], where an inhomogeneous electronic system is approximated as a locally 

homogeneous electronic system by dividing the Brillouin zone into small regions. The 

exchange-correlation energy is then expressed by the following relation: 

𝐸𝑋𝐶
𝐿𝑆𝐷𝐴 = ∫𝜌(𝑟 ) 𝐸𝑥𝑐[𝜌(𝑟 )]𝑑𝑟       (I.34) 

 

𝑉𝑥𝑐 =
𝑑𝐸𝑋𝐶

𝐿𝐷𝐴[𝜌]

𝑑𝜌
= 𝜀𝑋𝐶

𝐿𝐷𝐴 + 𝜌(𝑟 )
𝑑𝜀𝑋𝐶

𝐿𝐷𝐴

𝑑𝜌
     (I.35) 

      For each spin up or down magnetic order, the total electron density becomes the sum of 

the two electron densities 

𝜌(𝑟 ) = 𝜌↑(𝑟 ) + 𝜌↓(𝑟 )     (I.36) 

The Kohn-Sham equation for the two spins in the form  [3]: 

{
 
 

 
 (

−ℏ2

2𝑚
𝛻2 + 𝑉𝑒𝑓𝑓

↑ (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
↑ 𝜑𝑖(𝑟 )

(
−ℏ2

2𝑚
𝛻2 + 𝑉𝑒𝑓𝑓

↓ (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
↓ 𝜑𝑖(𝑟 )

     (I.37) 

5-2 The Generalized Gradient Approximation (GGA) 

The Generalized Gradient Approximation (GGA) is an advanced method developed to 

improve upon previous approximations by considering the non-homogeneity of the 

electron density. Unlike the Local Density Approximation (LDA), GGA accounts for 

variations in the electron density across different spatial regions. In this approach, the total 

energy of the electron system depends not only on the electron density ρ (r )but also on its 

gradient ∇ρ (r ). This relationship is mathematically expressed as [23]: 
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EXC
GGA[ρ(r )] =   ∫ d3r ρ(r )εXC [ρ (r ),∇ρ (r )]       (I.38) 

5-3 The mBJ Approximation (modified Becke–Johnson) : 

        The modified Becke–Johnson (mBJ) potential is an improved exchange potential 

introduced by Tran and Blaha in 2009, aiming to provide more accurate calculations of the 

electronic band gap within the framework of Density Functional Theory (DFT). 

While traditional approximations such as the Local Density Approximation (LDA) and the 

Generalized Gradient Approximation (GGA) are effective for predicting structural and 

mechanical properties, they notoriously underestimate the band gap of semiconductors and 

insulators. The mBJ approximation addresses this limitation by offering a more realistic 

description of the exchange potential that better reflects the true electronic behavior of 

materials. 

       Unlike LDA or GGA, the mBJ potential is not an energy functional but rather a semi-

local exchange potential that depends on the local electronic density and its gradient, as 

well as the kinetic energy density. This allows the mBJ approximation to better reproduce 

the position of the conduction band and hence the band gap.  

6- Full-Potential Linearized Augmented Plane-Wave Method (FP-LAPW) 

The development of methods for solving the Kohn-Sham equations became essential for 

accurately determining the wave functions of electron systems. After extensive research, 

several approaches were introduced, including the OPW (Orthogonalized Plane Wave) 

method proposed by Herring in 1940 [24], the LMTO (Linear Muffin-Tin Orbital) method 

[25], and the FP-LAPW (Full-Potential Linearized Augmented Plane-Wave) method. The 

accuracy of these methods strongly depends on the quality of the effective potential 

employed. 

6-1 The Augmented Plane Wave (APW) Method 

The Augmented Plane Wave (APW) method, introduced by Slater [26], is based on the 

Muffin-Tin (MT) approximation [27] (see Figure I.2). In this approach, the crystal space is 

divided into two distinct regions: 

 Muffin-Tin Spheres: Non-overlapping spheres of radius 𝑅0  centered around atomic 

nuclei, where core electrons are localized. 
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 Interstitial Region: The space between these spheres, where free electrons move 

and interact with a nearly constant potential 

 

Figure (I. 2): Diagram of the distribution of the elementary cell in atomic spheres and in 

interstitial region. 

Potential Distribution According to the MT approximation, the potential within the atomic 

spheres is assumed to be spherically symmetric, while in the interstitial region, it remains 

constant [3]. This can be expressed mathematically as : 

V(r ) = {
V(r)                              r ≤  R0
0                                    r > R0

       (I.39) 

Wave Function Representation 

Since the electronic environment differs between the two regions, the wave functions that 

describe electron behavior are also distinct. 

 Inside the Muffin-Tin Spheres: The wave function is expressed as a sum of radial 

functions multiplied by spherical harmonics. 

 In the Interstitial Region: The wave function is represented using plane waves. 

The total wave function can be written as: 

φ(r ) =  

{
  
 

  
 ∑∑𝐴𝑙𝑚𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟)

𝑚

−𝑚

∞

l=0

                  𝑟 ≤  𝑅0

                                                                                                   (I. 40)
1

√𝛺
∑𝐶𝐺
𝐺

𝑒𝑖(𝐾⃗⃗ +𝐺 )𝑟                              𝑟 > 𝑅0

 

Where: 

Ω is the unit cell volume. 

R0 
The MT 
Spheres 

interstitial 

region 
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𝑌𝑙𝑚are the spherical harmonics. 

𝐴𝑙𝑚 are expansion coefficients. 

𝑈𝑙 is the regular solution of the Schrödinger equation, given by [28]: 

(−
𝑑2

𝑑𝑟2
+

𝑙(𝑙+1)

𝑟2
𝑉(𝑟 )) r𝑈𝑙 = 𝐸𝑙𝑈𝑙      (I. 41) 

where 𝐸𝑙 is an energy parameter. 

6-2 The Linearized Augmented Plane Wave Method (FP-LAPW) 

One of the main drawbacks of the APW method is its computational inefficiency, primarily 

due to the dependence on the common radial function 𝑈𝑙(𝑟). Additionally, determining the 

radial function for each energy value 𝐸𝑙 is challenging. 

To overcome these limitations, Anderson [29] introduced an improvement to the APW 

method ]30[ by employing a Taylor series expansion to express the radial functions 𝑈𝑙(𝑟) in 

the following form: 

𝑈𝑙(𝑟, 𝐸) =  𝑈𝑙(𝑟, 𝐸𝑙) + (𝐸𝑙 − 𝐸)
𝑑𝑈𝑙(𝑟,𝐸)

𝑑𝐸
|
𝐸=𝐸𝑙

+ 𝒪(𝐸𝑙 − 𝐸)
2       (I.42) 

Where the term  𝒪(𝐸 − 𝐸𝑙) 
2represents the quadratic error. 

After several simplifications, he has got the expression of potential inside and outside of 

Muffin-Tin balls as follows: 

𝑉(𝑟) =  

{
 
 

 
 ∑𝑉𝑙𝑚(𝑟)𝑌𝑙𝑚

𝑚

𝑙𝑚

                                    𝑟 ≤  𝑅0

∑𝑉𝑘(𝑟)𝑒
𝑖𝑘𝑟

𝑚

𝑙𝑚

                                    𝑟 > 𝑅0

     (I. 43) 

As well as the wave functions inside the spheres in terms of radial functions and their 

derivatives. Where the wave functions are written as follows [31,32]: 

𝛷𝐾⃗⃗ +𝐺 (𝑟 ) =  

{
 
 

 
 
∑(𝐴𝑙𝑚𝑈𝑙(𝑟) + 𝐵𝑙𝑚𝑈̇𝑙(𝑟))𝑌𝑙𝑚(𝑟)

𝑙𝑚

            𝑟 ≤  𝑅0

1

√𝛺
∑𝐶𝐺
𝐺

𝑒𝑖(𝐾⃗⃗ +𝐺 )𝑟                                               𝑟 > 𝑅0

       (I. 44) 



1
ST

 CHAPTER                                                                                        THEORETICAL PART 
 

 
 

23 
 

Where : 

𝐾⃗⃗ : represents the wave vector. 

𝐺  : is the vector of the reciprocal lattice. 

𝐴𝑙𝑚:: are coefficients corresponding to the function  𝑈𝑙. 

𝐵𝑙𝑚: are coefficients corresponding to the function  𝑈𝑙. 

We can determine the coefficients 𝐴𝑙𝑚 and 𝐵𝑙𝑚, for each wave vector, and for each atom 

by applying the conditions of continuity of the basic functions in the vicinity of the limit of 

the spheres. After some simplifications we find the coefficient formula 𝐴𝑙𝑚 and 𝐵𝑙𝑚 in the 

following forms: 

𝐴𝑙𝑚 = 
4𝜋𝑟0

2𝑖𝐿

√𝛺
𝑌∗𝑙𝑚(𝐾 + 𝐺)𝑎𝑙(𝐾 + 𝐺)            (I. 45) 

𝐵𝑙𝑚 =  
4𝜋𝑟0

2𝑖𝐿

√𝛺
𝑌∗𝑙𝑚(𝐾 + 𝐺)𝑏𝑙(𝐾 + 𝐺)           (I. 46) 

7. WIEN2K Software 

WIEN2K is a comprehensive computational package composed of multiple Fortran-based 

subprograms. These subprograms serve as algorithms that numerically solve the equations 

governing crystalline systems within the framework of density functional theory (DFT). 

The software employs the full-potential linearized augmented plane wave (FP-LAPW) 

method, one of the most accurate techniques for calculating electronic and structural 

properties of materials [10] . 

The key subprograms within WIEN2K [33] and their specific roles are outlined in Figure 

I.3 and described as follows [10] : 

 NN: Determines the distances between nearest-neighbor atoms up to a predefined 

limit, aiding in the calculation of the atomic sphere radius. 

 SGROUP: Identifies the space group of the given compound. 

 SYMMETRY: Computes the symmetry number and defines symmetry operations 

corresponding to the space group of the material. 

 LSTART: Calculates electron densities for free atoms and determines the treatment 

of different orbitals in band structure calculations. 
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 KGEN: Generates a K-point mesh in the irreducible Brillouin zone (BZ), 

specifying the total number of K-points in the first BZ. 

 DSTART: Constructs an initial electron density for the self-consistent field (SCF) 

cycle by superimposing atomic densities obtained from the LSTART step. 

Following these preparatory steps, the program enters a self-consistency loop (SCF cycle), 

involving the following five key calculations: 

 LAPW0 (POTENTIAL): Computes the Coulomb and exchange-correlation 

potentials (Hartree-Fock potential) using the total electron density. Additionally, it 

partitions space into muffin-tin (MT) spheres and the interstitial region. 

 LAPW1 (BANDS): Solves the Kohn-Sham equation to determine eigenvalues and 

wave functions for valence electrons. 

 LAPW2 (RHO): Derives the valence electron density based on the results from 

LAPW1. 

 LCORE: Computes core electron eigenvalues and wave functions to determine core 

electron densities. 

 MIXER: Combines the obtained electron densities to generate an updated self-

consistent density for the next iteration. 
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Figure (I.3): The flowchart of the Wien2k code subroutines [3] . 
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1) Introduction 

Using a theoretical framework, the study examined the structural, elastic, electrical, and 

thermodynamic characteristics of the MAX phase compounds V2SnC and V2SnN. Lattice 

constants and bulk modulus were used to evaluate the structural stability. Fundamental 

elastic constants and derived parameters were used to assess the elastic characteristics. 

Band structure and density of states computations were used to investigate the electronic 

behavior. In order to evaluate their possible performance in high-temperature and high-

pressure settings, the thermodynamic properties—such as heat capacity, entropy, thermal 

expansion coefficient, Debye temperature, and bulk modulus—were investigated under 

various temperature and pressure cases. 

2)  Calculation Details 

 Structural, elastic and electronic properties have been estimated using the full-

potential linearized augmented plane wave method (FP-LAPW) implemented in the 

WIEN2k program [1]. The structural properties have been calculated with both generalized 

gradient approximation (GGA) [2] to achieve the exchange-correlation potential. Whereas 

modified Becke-Johnson potential (mBJ) [3] has been used to improve the electronic 

behavior of all the studied compounds. To study the core and valence electrons separately; 

the Muffin-Tin approximation is applied where the core electrons are modelled by 

spherical harmonic functions with angular momentum up to lmax = 10 and Gaussian factor 

Gmax equal to 12, whereas the valence electrons are depicted by plane wave functions, 

which are located outside the atomic spheres (interstitial region). The cutoffs of RMT*Kmax 

used in our calculation are equal to 8 for all compounds, where Kmax is the largest 

reciprocal lattice vector used in the plane wave expansion and RMT represents the smallest 

MT sphere radii. For Brillouin zone (BZ) integration; a mesh of (17×17×3) special k-points 

were used for all MAX phase compounds in the irreducible wedge to minimize the total 

energy for all compounds. The criteria of convergence in the self-consistent were achieved 

when the difference in energy between two consecutive cycles is less than 10-4 Ry. The 

optimized atomic positions are obtained for minimization of the internal forces to vales less 

than 10-3 Ry/a.u. GIBBS2 [4,5] code was employed to obtain the thermal which is based on 

semi-classical Boltzmann theory and the quasi-harmonic Debye model. 
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3) Results and discussions 

3-1) Structural properties 

Both compounds V2SnN and V2SnC exhibit a hexagonal crystalline architecture 

characterized by the space group (194) P63/mmc. As illustrated in Figure (II-1), the unit 

cell of these materials comprises eight atoms, with the atomic positions delineated in 

fractional coordinates presented in TABLE (II-1). 

SnN compounds2SnC and V2Crystal structure of V 1):-FIGURE( II 

 

SnN compounds2V SnC and2V forAtomic positions   : 1)-TABLE(II 

 

 

V2SnN V2SnC 

Position Atome Position Atome 

(0.66667;0.33333;0.25000) Sn (0.66667;0.33333;0.25000) Sn 

(0.33333;0.66667;0.75000) Sn (0.33333;0.66667;0.75000) Sn 

(0.00000;0.00000;0.00000) N (0.00000;0.00000;0.00000) C 

(0.00000;0.00000;0.50000) N (0.00000;0.00000;0.50000) C 

(0.33333;0.66667;0.07087) V (0.33333;0.66667;0.07506) V 

(0.66667;0.33333;0.92913) V (0.66667;0.33333;0.92494) V 

(0.66667;0.33333;0.57087) V (0.66667;0.33333;0.57506) V 

(0.33333;0.66667;0.42913) V (0.33333;0.66667;0.42494) V 
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To find the equilibrium structural properties of V2SnC and V2SnN, we performed GGA 

approximation calculations to determine how the total energy of their unit cells changed 

with varying volumes. The resulting energy-volume data was then plotted and fitted using 

the Murnaghan equation[6] 

E(V) = E0 +
B

B′(B′−1)
ቈV (

V0

V
)
B′

− V0቉ +
B

B′
(V − V0)          ( II-1) 

Where the parameters represent: 

- V0 : The volume of the cell at equilibrium. 

-  E0: The total energy of the primitive cell at equilibrium. 

-  B: Bulk modulus. 

- B': Pressure derivative of the bulk modulus. 

The expression for the bulk modulus is given by the equation: 

B =  −V
∂P

∂V
= V

∂2E

∂V2
      ( II-2) 

 

Using the data presented in FIGURE (II-2) and FIGURE (II-3), we first identified the 

minimum energy volumes for V₂SnN and V₂SnC. From these, we proceeded to calculate 

their respective lattice constants 'a' (Å) and bulk moduli, as detailed in TABLE (II-2). 

A key observation is that V₂SnC possesses a higher bulk modulus compared to V₂SnN. 

Given that the bulk modulus quantifies a material's resistance to deformation under 

pressure, this implies V₂SnC is more mechanically robust. This difference serves as a 

valuable indicator of the high mechanical stability of both V₂SnC and V₂SnN under 

pressure. Additionally, our analysis of the volume change as a function of pressure reveals 

a nearly linear decrease in crystal volume with increasing pressure, providing clear 

evidence of no structural collapse within the tested pressure range. 
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SnC2V nNS2V 

716.5291 3(a.u)0V 710.7055 3(a.u)0V 

195.2101 B(GPa) 200.0260 B(GPa) 

5.0806 B’(GPa) 5.5966 B’(GPa) 

-32444.064094 (Ry)0E -32510.675985 (Ry)0E 

3.092 )0a(A 3.084 )0a(A 

12.808 )0C(A 12.773 )0c(A 

 

TABLE(II-2) : Values of the structural parameters  obained for V2SnC and V2SnN 

compounds and calculated by GGA approximation 

 

calculated  SnN2Vpressure Curvesof -Volume and volume-Total Energy2) : -FIGURE( II

using GGA-sol approximations. 
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SnN calculated 2of  Vpressure Curves -Volume and volume-Total Energy3): -(IIFIGURE 

using GGA-sol approximations 
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. 3-2) Electronic Properties: 

 Studying the electronic properties is essential for identifying the potential electronic 

or electrical applications of materials. In this work, we investigated the electronic band 

structure to determine whether the studied compounds exhibit insulating, metallic, or 

semiconducting behavior. Additionally, we analyzed the density of states to identify the 

atomic orbitals contributing to each band, thereby deepening our understanding of the 

bonding characteristics within the material. 

3-2-1)  Energy Bands: 

 The energy bands for both compounds, V₂SnC and V₂SnN, were studied in their 

stable hexagonal structure within the first Brillouin zone. High-symmetry points were 

traced along the path (Γ→ M→ K → Γ →A). Through analyzing the energy band 

diagrams, which were calculated using mBJ approximations. As evident from  FIGURE 

(II-5), which presents the band structure spectra of V₂SnC and V₂SnN, we observed a 

significant overlap between the valence and conduction bands. This finding unequivocally 

indicates the metallic nature of both compounds. 

 

 

FIGURE (II-4):The hexagonal Brillouin zone 
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FIGURE (II-5): band structure spectra for both compounds V2SnC and V2SnN 
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3-2-2) Total Density of States (TDOS) Partial Density of States (PDOS): 

To identify the atomic orbits contributing to the formation of both conduction and valence 

bands, the total and partial density of states (DOS) using mBJ method for for both 

compounds.  

The distribution curves of atomic orbital contributions to the formation of valence and 

conduction bands are organized as follows: 

1. The presence of electronic states at the Fermi level in both compounds confirms 

their metallic nature, as there is no energy gap separating the valence and 

conduction bands. 

2. The density of states (DOS) profiles of V₂SnN and V₂SnC exhibit notable 

differences, highlighting the impact of substituting the nitrogen atom with carbon 

on the energy distribution and the involvement of different atomic orbitals. 

The energy-resolved contributions of atomic orbitals, as illustrated in FIGURE (II-6) for 

V₂SnN and FIGURE (II-7) for V₂SnC, can be categorized into the following regions: 

➤ For V₂SnN FIGURE (II-6): 

 [-7 eV to -5 eV]: Predominantly derived from the s-orbital electrons of the Sn 

atom. 

 [-5 eV to 5 eV]: Major contributions from the d and p orbitals of V, as well as the p 

orbitals of N. 

➤ For V₂SnC FIGURE (II-7): 

 [-8 eV to -5 eV]: Dominated by the s orbitals of Sn, with minor contributions from 

the s orbitals of C. 

 [-5 eV to 5 eV]: Strong contributions from the p orbitals of both C and Sn, along 

with significant d-orbital contributions from V. 
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V₂SnN Total and partial density of states of): 6-FIGURE( II 
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FIGURE( II-7): Total and partial density of states of V₂SnC 
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4) Thermodynamic Properties 

First-principles calculations were performed using the WIEN2k package at zero Kelvin, 

where atomic vibrational effects were neglected in the Hamiltonian by applying the Born–

Oppenheimer approximation. To investigate the temperature-dependent thermodynamic 

behavior, we employed the quasi-harmonic approximation (QHA) as implemented in the 

GIBBS2 code [4,5]. The thermodynamic stability of a solid under given pressure and 

temperature conditions is governed by the Gibbs free energy, which is defined as: 

G∗(x, V; P, T) = Esta(x, V) + PV + A
∗
vib(x, V; T) + Fel

∗  (x, V; T)      ( II − 3) 

Here, 𝐸𝑠𝑡𝑎  represents  the total  static  energy, PV accounts  for  hydrostatic  pressure,  and 

A∗vib  and Fel
∗  correspond to the non-equilibrium  vibrational  and  electronic free  energy  

terms,  respectively. The vibrational  energy  contribution A∗vib is evaluated  based  on  

the Debye model,  using the phonon  density  of  states g(): 

A∗vib = ∫ [
ω

2
+ kBT Ln (1 − e

−
ω
kBT)]

∞

0

 g(ω)dω      ( II − 4) 

F∗(x, V; T) = Esta(x, V) + A
∗
vib(x, V; T)              ( II − 5) 

in this equation, n is the number of atoms per unit volume, D (θ / T) represents the Debye 

integral, which is given by: 

D(x) =  
3

x3
∫

y3e−y

1 − e−y

x

0

 dy        ( II − 6) 

The equilibrium state (for pressure (P) and a temperature (T) given) is obtained by the 

minimization of: 

(
∂G∗(V, P, T)

∂V
)
P,T

= 0       ( II − 7) 

Once  equilibrium  is  established,  other  thermodynamic  quantities such as  entropy S, 

heat capacity at constant volume Cv , and  thermal  expansion  coefficient α  can be derived 

 as follows: 

S =  − 3nkB ln(1 − e
−ΘD T⁄ ) + 4nkBD(ΘD T⁄ )        ( II − 8)   

∁v= 12nkBD(ΘD T⁄ ) −  
9nkB ΘD T⁄  

eΘD T⁄ − 1
       ( II − 9) 

α = −
1

V
(
∂V

∂T
)
P
= 
γ ∁v  

V BT
      ( II − 10) 
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In this section, we investigate the thermodynamic properties of the compounds V₂SnC and 

V₂SnN under the influence of pressure and temperature. The properties studied include the 

heat capacity at constant volume (Cv), entropy (S), thermal expansion coefficient (α), bulk 

modulus (B), Debye temperature (θD), and volume (u.a3). The pressure range considered is 

from 0 to 40 GPa, while the temperature range extends from 0 K to 1200 K.   

4-1) Heat Capacity Cv  

Heat capacity reflects a material's ability to absorb thermal energy, generally 

increasing with the number of atomic vibrational degrees of freedom. On a microscopic 

level, entropy quantifies disorder within a system, corresponding to the number of 

accessible microstates. As temperature rises, atoms vibrate more vigorously, enabling new 

vibrational configurations to emerge  [7]. 

Figures (II.8) and (II.9) for V₂SnC and V₂SnN compounds illustrate that the constant-

volume heat capacity (Cv) follows the Dulong–Petit law [8] above 700 K, plateauing at 

approximately 100 J/mol·K. At low temperatures (below 200 K), Cv increases 

proportionally to T3. Additionally, we observed that Cv decreases as pressure increases 

(from 0 to 40 GPa). 
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FIGURE (II-8):  variation of the heat capacity "Cv" of the compound V2SnC 
 as a function of temperature  

 

FIGURE( II-9) : variation of the heat capacity "Cv" of the compound V₂SnN  as a 

function of temperature 
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4-2) Entropy S : 

Entropy is a multifaceted concept, utilized across various disciplines and viewpoints. From 

a thermodynamic perspective, it can be defined at two levels: microscopically, entropy 

serves as a measure of a system's disorder (chaos and randomness), representing the 

number of possible states the system can occupy. This is expressed as S=k Ln Ω, where Ω 

represents the number of possibilities or arrangements that a compound can occupy, while 

k represents the Boltzmann constant. On the macroscopic level, entropy is the amount of 

internal energy of a substance that cannot be converted into useful work and can be 

considered as unusable energy for obtaining work[4,5]. 

According to the obtained results, the entropy of both compounds increases almost linearly 

with increasing temperature, while it decreases with increasing pressure. 

 

FIGURE( II-10): variation of the entropy (S) as function of temperature of V₂SnC 
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FIGURE (II-11): variation of the entropy (S) as function of temperature of V₂SnN 

4-3) Thermal Expansion Coefficient α  :  

The thermal behavior of solid-state materials plays a crucial role in the design and 

reliability of electronic devices, especially those that generate significant heat during 

operation. One of the most critical thermal properties of these materials is the thermal 

expansion coefficient. This property is important because excessive expansion can cause 

mechanical failure, damage to device components, or induce stress that may negatively 

affect the electronic performance of the system [4,5]. 

From the curves below, it is observed that both compounds exhibit a moderate thermal 

expansion coefficient. This coefficient is influenced by both temperature and pressure, 

increasing with rising temperature and decreasing with increasing pressure 
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FIGURE (II-12): variation of the thermal expansion coefficient (α) as function of 

temperature of V₂SnC 

 

FIGURE (II-13): variation of the thermal expansion coefficient (α) as function of 

temperature of V₂SnN 
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4.5 The Debye temperature θD : 

The Debye temperature, θD, is a characteristic temperature that reflects the highest normal‐

mode vibration (phonon) frequency in a crystalline solid. The data extracted from FIGURE 

(II-14), which illustrates the variation of the Debye temperature as a function of both 

pressure and temperature, show that the Debye temperature decreases linearly with 

increasing temperature at constant pressure, while it increases with rising pressure. 

 

FIGURE (II-14): variation of The Debye temperature θD as function of temperature of 

V₂SnC 
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FIGURE (II-15): variation of The Debye temperature θD as function of temperature of 

V₂SnN 
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5) The elastic Properties : 

The elastic constants 𝐶𝑖𝑗 for the V₂SnC and V₂SnN compounds were obtained using 

the second-order derivatives of the fitted polynomials of the total energy with respect to 

volume-conserving strains that break the symmetry of the hexagonal crystal structure. 

These constants allow us to explore the mechanical behavior of the materials and the 

influence of the constituent atoms V, Sn, and either C or N on the mechanical stability and 

elasticity. 

The obtained results such as bulk (B),shear modulus (G), Young’s modulus (Y), 

anisotropy (A), and Poisson’s ratio (υ) are listed in Table 2, which calculated as a function 

of elastic constants Cij using the following formulas [9,10]: 

𝐵 =
2

9
(𝐶11 +  𝐶12 + 2 𝐶13 +

𝐶33
2
)      ( 𝐼𝐼 − 11) 

𝐺 =
1

15
(2 𝐶11 +  𝐶33 −  𝐶12 −  2 𝐶13) +

1

5
(2 𝐶44 +

1

2
( 𝐶11 −  𝐶12))    ( 𝐼𝐼 − 12) 

𝑌 =
9 B G

3 B +  G
        ( II − 13) 

𝜐 =
3 B − 2 G

2 (3B + G)
     ( II − 14) 

𝐴 =
2 𝐶44

𝐶11 −  𝐶12
      ( II − 15) 

𝑓 =
𝐶11 +  𝐶12 − 2 𝐶13

𝐶33 −  𝐶13
       ( II − 16) 

The values of the elastic constants (Table 2) confirm that both V₂SnC and V₂SnN 

satisfy the Born-Huang mechanical stability criteria for hexagonal crystals: 

(𝐶11 > |𝐶12|, 𝐶44 > 0, and (𝐶11 + 𝐶12)𝐶33 >  2𝐶13
2 ) [11]. 

            The Bulk modulus (B) of the studied compounds; which expresses the 

response of these materials against any uniform compression they undergo; was calculated 

again depending on the elastic constants, shows comparable values for both V₂SnC (134.13 

GPa) and V₂SnN (133.15 GPa), indicating similar volumetric incompressibility. In 

contrast, the shear modulus (G), indicative of resistance to shape change, is significantly 
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higher for V₂SnC (83.38 GPa) than V₂SnN (55.26 GPa), revealing a greater ability of 

V₂SnC to resist shear deformation. 

             Using the three values B, G, and C₄₄, we can estimate the brittleness/ductility and 

machinability of the studied materials by calculating the ductility factor 𝑈𝑑 = 𝐵/𝐺[38] and 

the machinability factor 𝑈𝑀 = 𝐵/𝐶44[12]. The values obtained are 1.61 for V₂SnC and 

2.41 for V₂SnN. According to the Pugh criterion, materials with B/G>1.75 are ductile, 

while those with lower values are brittle. Thus, V₂SnN exhibits ductile behavior, whereas 

V₂SnC lies on the borderline between brittleness and ductility , the machinability factor  

𝑈𝑀 = 𝐵/𝐶44 indicates better machinability for V₂SnN (2.32) compared to V₂SnC (1.43). 

The G/B ratio is often used to evaluate the dominant bonding nature: ionic compounds tend 

to have G/B ≈ 0.6, while covalent compounds approach 1.1 [13]. The calculated values 

(0.62 for V₂SnC and 0.42 for V₂SnN) imply that both compounds are dominantly ionic, 

with V₂SnN having a more pronounced ionic character. 

               Young’s modulus (Y), which measures stiffness under uniaxial stress, is 

significantly higher for V₂SnC (207.21 GPa) than for V₂SnN (145.64 GPa), indicating that 

V₂SnC is stiffer.  

The Poisson’s ratio (υ) values (0.24 for V₂SnC and 0.32 for V₂SnN) suggest that V₂SnC is 

more covalent in nature, while V₂SnN tends toward metallic bonding characteristics 

[14,15]. 

                The anisotropy factor (A) shows both materials are anisotropic, with A = 1.13 for 

V₂SnC and A = 1.14 for V₂SnN. Neither compound is isotropic, as their A values deviate 

from unity. 
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TABLE (II-3) : Elastic constants (Cij), Young's modulus Y, Poisson’s ration (υ), 

Anisotropy(A), Bulk (B) and Shear modulus (G), G/B ratio, f-index , ductility 𝑈𝑑 and 

machinability 𝑈𝑀 factors of M2AX phases (M= V , A=  Sn,  X = C or N) 

 

 

 

 

 

 

 

 

 

 V2SnC V2SnN 

C11 227.993591 179.528599 

C12 61.202004 78.971341 

C13 97.572322 100.629289 

C33 250.543246 253.604417 

C44 93.887426 57.499368 

B(GPa) 134.12982 133.152012 

G(GPa) 83.383508 55.263718 

G/B 0.62166271 0.4150423 

Y 207.207422 145.635595 

υ 0.24250 0.31764 

A 1.12580529 1,14361447 

Ud 1.608589 2.4093929 

UM 1.428623 2.315712 



2ND CHAPTER:                               RESULTS AND DISCUSSION 

 

 
50 

 
 

References 

[1] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, Wien2k, (2001). 

[2] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made 

Simple, Phys. Rev. Lett. 77 (1996) 3865–3868. 

https://doi.org/10.1103/physrevlett.77.3865. 

[3] A.D. Becke, E.R. Johnson, A simple effective potential for exchange, J. Chem. Phys. 

124 (2006) 221101. https://doi.org/10.1063/1.2213970. 

[4] V.L. A. Otero-de-la-Roza, D. Abbasi-Pérez, Gibbs2: A new version of the 

quasiharmonic model code. II. Models for solid-state thermodynamics, features and 

implementation, Comput. Phys. Commun. 182(10) (2011) 2232–2248. 

[5] V.L. A. Otero-de-la-Roza, Gibbs2: A new version of the quasi-harmonic model code. 

I. Robust treatment of the static data, Comput. Phys. Commun. 182(8) (2011) 1708–

1720. 

[6] F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. 

Acad. Sci. U. S. A. 30 (1944) 244. 

[7] S.S. Essaoud, A.S. Jbara, First-principles calculation of magnetic, structural, dynamic, 

electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z= Al, Si) 

Heusler alloys, J. Magn. Magn. Mater. (2021) 167984. 

[8] P.L. Dulong, A.-T. Petit, Recherches sur quelques points importans de la theorie de la 

Chaleur, 1819. 

[9] M. Jamal, S. Jalali Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Elastic constants 

of cubic crystals, Comput. Mater. Sci. 95 (2014) 592–599. 

https://doi.org/10.1016/j.commatsci.2014.08.027. 

[10] I.R. Shein, A.L. Ivanovskii, Elastic properties of superconducting MAX phases 

from first-principles calculations, Phys. Status Solidi B 248 (2011) 228–232. 

[11] M. Born, K. Huang, Theory of Crystal Lattices, Clarendon, Oxford, 1956. 

[12] M.F. Cover, O. Warschkow, M.M.M. Bilek, D.R. McKenzie, A comprehensive 

survey of M2AX phase elastic properties, J. Phys. Condens. Matter 21 (2009) 305403. 

[13] G. Surucu, A. Candan, A. Gencer, M. Isik, First-principle investigation for the 

hydrogen storage properties of NaXH3 (X= Mn, Fe, Co) perovskite type hydrides, Int. 

J. Hydrog. Energy 44 (2019) 30218–30225. 

[14] S.N. Tripathi, V. Srivastava, S.P. Sanyal, First Principle Mechanical and 

Thermodynamic Properties of Some TbX (X= S, Se) Compounds, J. Supercond. Nov. 

Magn. 32 (2019) 2931–2938. 

[15] S.N. Tripathi, V. Srivastava, H. Pawar, S.P. Sanyal, First-principles investigation of 

structural, electronic and mechanical properties of some Dysprosium chalcogenides, 

DyX (X= S, Se and Te), Indian J. Phys. 94 (2020) 1195–1201. 
 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

CONCLUSION



Conclusion 

 
51 

 
 

Conclusion 

 Our analysis in this work involved a thorough verification of the properties of 

V₂SnC and V₂SnN, from which we obtained the following results: 

۩ Both V₂SnC and V₂SnN share a hexagonal crystal structure (P6₃/mmc space 

group) and exhibit metallic behavior due to overlapping valence and conduction 

bands. 

۩ V₂SnC generally shows higher mechanical resistance (larger lattice constant, bulk 

modulus, and stiffness) compared to V₂SnN, which is softer and more machinable. 

۩ Electronic contributions differ: V₂SnN primarily involves V-d and N-p orbitals, 

while V₂SnC involves C-p and V-d orbitals. Bonding analysis suggests 

predominantly ionic bonding for both (more so in V₂SnN), with V₂SnC showing 

more covalent character and V₂SnN more metallic character. 

۩ Both compounds display anisotropic behavior. 

۩ Their thermodynamic properties (heat capacity, entropy, thermal expansion 

coefficient, and Debye temperature) were studied, showing expected trends with 

temperature and pressure. For instance, heat capacity follows the Dulong–Petit law 

at high temperatures and decreases with pressure, while entropy increases with 

temperature and decreases with pressure. 

۩ Mechanical stability for both compounds is confirmed by calculated elastic 

constants meeting Born-Huang criteria. 
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In this work, we carried out a theoretical study to investigate the structural, electronic, 

elastic, and thermodynamic properties of the compounds V2SnC and V2SnN using the 

GGA-PBEsol approximation within the framework of Density Functional Theory (DFT). 

For the structural properties, we calculated the lattice constants, bulk modulus, and its first 

pressure derivative. To understand the electronic behavior of both compounds, we 

analyzed the electronic band structure and the total and partial density of states (DOS). 

Subsequently, the elastic properties were evaluated by calculating the fundamental elastic 

constants, along with derived parameters such as the shear modulus, Young’s modulus, 

and Poisson’s ratio. 

Finally, the thermodynamic properties were studied, including heat capacity, entropy, 

thermal expansion coefficient, Debye temperature, and bulk modulus under varying 

temperature and pressure conditions. 

     روب يييييا،   لا كتروب ييييافييييي ا هذيييين  ييييية  ق ذيييين ب ا خييييا بنرييييييا    يييين     يييي       ذ  ييييييا ،    

 GGA-  تي ا     م ي    بنخيتم نل قرريي وذ ي     SnN2Vو  SnC2V  ه يرب    و  ترم ديذنم ك يا  

PBEsolاهى بنريا د   ا   كثنفا     مت  ة(DFT) ،   ذ  ييا ق ذين ب  ين  تنبي   ي ص  نف          

   ييه ا  لا كتروبييي  كيي   و فهيي  ، و   شييترا  لو ييى  ييس بن ذ ي ا  ه ييي    شي كا ، ممنمييلا  لابنين  ييا ، 

 DOSلإ كتـيـروب ا    رب    ق ذن بت ه ـلا بذ ـا اصنبنت   طنقا  لإ كـتروب ا وأ  ـنف   كثنفيا    ينلات  

، ل ح يين    ث  بيي     ربييا  لخنخيي ا بميي  ذ يي ، قيي  قر يي      يي       ربييا ميي   يي .  كه ييا و   ئية ييا 

ق ذين   لا  يرو فيي  بنلإضنفا إ ى    مينم ت    شيترا مثيلا ممنميلا   ريص، ممنميلا ي بية، وب ي ا ب  خي  

، ممنميلا   ت ي د    ير اد، دا يا ب ا خا           ر ايا، ب ين فيي ذ ي     يما    ر اييا،  لإبتروب ين

 .حر اة دي ند، وممنملا  لاب ين  ا ق   قأت ر دا نت حر اة وضي   م تهفا
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