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Abstract
Research was conducted to alter vermiculite by introducing linear octadecylammonium (ODA) cations into the interlayer 
spaces of the clay at different concentrations, ranging from 0.25 to 3 times the cation exchange capacity (CEC), to pre-
pare organo-vermiculites (ODA-Vmt). This study aims to reveal a crucial mechanism of effective interaction between the 
surfactant and clay platelets, a detail overlooked in prior studies. The objective was to study the structural and property 
changes in vermiculite upon ODA cation intercalation. Characterization of the obtained ODA-Vmt was done using structural, 
morphology, elemental, thermal and bonding analysis. The elemental analysis confirmed successful cation exchange and 
surfactant intercalation, resulting in a hydrophobic surface. Morphologies revealed rougher textures in organo-vermiculite 
compared to raw vermiculite. The structural showed increased interlayer spacing with ODA loading, reaching saturation 
at 2CEC. Bonding analysis indicated strong interaction between ODA and clay, increasing hydrophobicity and thermal 
analysis showed decreased water-related mass loss and increased surfactant decomposition with higher ODA loading. The 
thermal analysis also shows that intercalation levels are higher at lower surfactant (≤ 1CEC) concentrations, while surfactant 
adsorption increases at higher concentrations (≥ 1CEC). This study provides valuable insights into the structure–property 
relationships of organo-vermiculite materials, highlighting their potential applications in pollutant remediation and advanced 
nanocomposite development.
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Introduction

Organoclays (OCs) have received considerable attention 
recently due to their wide range of applications across 
various industries, such as fillers in clay-based polymer 
nanocomposites, rheological agents, starting materials in 

photophysical films, as well as organic pollutant adsorbents 
for water environments and soils [1, 2].

The OCs exhibited notably enhanced adsorption capa-
bility for organic contaminants compared to the pristine 
clay minerals [3]. Clay-polymer nanocomposites dem-
onstrated heightened durability and heat resilience [4]. 
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OCs are typically produced by incorporating cationic sur-
factants into the interlayer space of clay minerals through 
the exchange of existing interlayer cations. The montmo-
rillonite stands out as the most commonly employed clay 
mineral for crafting organoclays [5, 6]. Several studies 
have shown that the basal spacing of organo-montmoril-
lonites expands as the quantity of loaded surfactant rises. 
The maximum basal spacing can be achieved when the 
loaded surfactant quantity exceeds one times the clay min-
eral’s cation exchange capacity (CEC) [5, 7]. In such case, 
both the surfactant cation and molecule (ion-pair) can be 
inserted into the interlayer space, leading to notable altera-
tions in the structure and characteristics of the resulting 
organomontmorillonite [8]. In montmorillonite-ammo-
nium organoclays, surfactants exist in three environments: 
(1) intercalated into interlayer spaces and electrostatically 
bound, (2) physically adsorbed on the external surface, and 
(3) situated within the interlayer spaces [9].

The distribution of surfactants within organo-clays, par-
ticularly the specific percentages in distinct regions, is cru-
cial for understanding the intercalation process, which has 
not been well explained in the literature. The preparation 
of organo-vermiculite remains limited as well. Vermiculite, 
a trioctahedral clay mineral with a 2:1 mica-type layered 
structure, contains octahedrally coordinated cations (Al(III), 
Mg(II), Fe(II)) and tetrahedrally coordinated cations (Si(IV), 
Al(III)). The substitution of central cations by lower valence 
cations creates a negative layer charge, balanced by inter-
layer hydrated cations like Mg(II), Ca(II), Na(I), and K(I) 
[10, 11]. The porous nature and low cost of vermiculite 
make it a potential replacement for conventional adsor-
bents [12]. Natural abundance, structure, chemical adapt-
ability, recyclability, and high adsorption capability render 
it suitable for agricultural, industrial, and environmental 
applications. Current research focuses on the adsorption of 
dyes, heavy metals, antibiotic residues, and phenols using 
organo-vermiculite [3, 13–15]. Organo-vermiculites have 
shown potential for removing contaminants from water, but 
adsorption tests are beyond the scope of this study and will 
be explored in future work.

This study aims to synthesize organo-vermiculites charac-
terized by both expanded basal spacing and hydrophobic sur-
face properties. Furthermore, the percentages of surfactant 
distribution within the clay matrix are quantified. Vermicu-
lite was used with higher layer charge density (˃ 0.6 eq./for-
mula unit) than Montmorillonite (< 0.6 eq./formula unit) and 
high CEC (128 mmol/100 g) to prepare organo-vermiculite. 
The organo-vermiculite (Org-Vmt) was created by purifying 
raw clay, sodifying, and intercalating with octadecylammo-
nium (ODA) salts with different surfactant loadings. A com-
prehensive array of characterization methods was employed 
to scrutinize the structure, thermal stability, and hydropho-
bicity of the resulting organo-vermiculites.

Materials and methods

Materials

The experimental protocol included purifying raw clay, 
exchanging clay with sodium cations, and intercalating 
ODA onto sodic clay. Vermiculite adsorbent from CMMP 
(Paris, France) with a CEC of 128 mmol/100 g was used. 
The exchange process involved Ba2+ ions, and electrical 
conductivity curves were recorded to determine the equiva-
lence point. Octadecylamine (ODA), CH3(CH2)17NH2, with 
a melting point of 55–57 °C (Sigma-Aldrich).

Purification of raw clay

The raw clay washed several times with distilled water and 
dried at 70 °C for 72 h. Retsch GmbH-Allee1-542,781 Haan, 
Germany, Type PM 100 planetary ball mill was used to grind 
the vermiculite before sieving. Every milling was done using 
a 10 g sample for 2h (30 min grinding with 10 min resting) 
in a 100 cm3 Wolfram carbide mill chamber with 5 grinding 
balls (11 g), (2 cm diameter) and 320 rpm of rotation speed. 
The clay was sieved into granules of less than 90 μm. The 
obtained sample was denoted as raw Vmt and characterized 
by elemental analysis XRF, FTIR, XRD, MEB, EDX and 
TGA.

Sodification of vermiculite

The purified vermiculite sample (50 g) was immersed in a 
0.128 M NaCl solution and heated at 70 °C with stirring for 
8 h. The suspension was centrifuged (4000 rpm, 20 min) 
until no chloride ion was detected using a 0.1 M AgNO3 test, 
confirmed by the absence of white precipitate. The precipi-
tate was dried at 80°C for 24 h in a vacuum oven, milled, and 
sieved through 90 µm for further use. The treated sodium 
vermiculite, designated as Na-Vmt, was then characterized.

Organo‑vermiculites preparation

Org-Vmts were prepared by cationic exchange between 
sodium vermiculite (Na-Vmt) and octadecylamine (ODA) 
in an aqueous solution. The process involved dispersing 7 g 
of Na-Vmt in 100 mL of hot distilled water (80 °C) with 
stirring for 1 h (mixture A). Separately, ODA was slowly 
dissolved in 250 mL of distilled water and hydrochloric 
acid (36%) at 80°C with stirring for 3 h (mixture B). The 
ODA amounts were adjusted to 0.25, 0.5, 0.75, 1.0, 2.0, 
and 3.0 CEC of Vmt. Mixtures A and B were combined and 
stirred at 80 °C for 5 h and left for 24 h. Organo-vermiculites 
were washed free of chloride anions with distilled water at 
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80 °C using AgNO3 tests. The precipitates were centrifuged 
(4000 rpm, 20 min) and dried in an oven (80 °C, 24 h) to 
obtain modified vermiculites (Vmt-ODA). The intercalation 
process is shown in Fig. 1.

Characterizations

The obtained samples were characterized using various 
conventional techniques. Elemental analysis was performed 
using X-ray flurorecsence (XRF) (S2 PUMA, BRUKER). 
X-ray diffraction (XRD) data were analyzed using an X’Pert 
PRO MPD diffractometer. Fourier transform infrared spec-
troscopy (FTIR) measurements were conducted using a 
SHIMADZU IRSpirit QATR-S spectrometer. Scanning 
Electron Microscopy and Energy Dispersive X-ray Spec-
troscopy (SEM/EDS) images and data were acquired with a 
Quattro ESEM system. Thermogravimetric analysis (TGA)
(SDT Q 600, TATGA) was performed under a nitrogen flow 
rate of 10 mL min−1, with a heating rate of 10 °C min−1, and 
a temperature range of 25–800 °C.

Results and discussion

Morphology and elements analysis

Firstly, the chemical composition (in mass percent) of raw 
Vmt, Vmt-Na, and Org-Vmts with different ODA loadings 
was determined using XRF. The analysis revealed that the 
interlayer cations are primarily potassium, calcium, and 
titanium ions, while the skeletal components (silicon, mag-
nesium, aluminum, and iron) constitute 81.91% (Table 1). 
Comparison between raw clay and sodic vermiculite after 
sodification showed a decrease in Mg, Ca, and Co ratios, 
indicating replacement by Na+ cations through cationic 
exchange [16]. Conversely, an increase in sodium was 
observed by EDS. Comparison between sodic vermiculite 
and Vmt-ODA showed the disappearance of sodium and 
a decrease in all components (SiO2, MgO, Al2O3, Fe2O3, 
K2O, TiO2, CaO, Rb2O, CoO, MnO), with a notable increase 
in loss on ignition as the CEC loadings increased. This 
decrease in mineral components in Vmt-ODA is attributed to 

Fig. 1   a Vmt, b Na+-Vmt with 
Na ions are designated by pur-
ple atoms, c structure of ODA 
surfactant, and d intercalation of 
ODA surfactant into interlayer 
spacing of Vmt, Structures, 
molecules and layers were 
constructed using the Materials 
Visualizer as implemented in 
the Materials Studio environ-
ment
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Table 1   XRF results of raw Vmt, Na-Vmt and Vmt-ODA

Mass ratio/% Raw Vmt Na – Vmt Vmt -ODA 
(0.25CEC)

Vmt -ODA 
(0.5CEC)

Vmt -ODA 
(0.75CEC)

Vmt -ODA 
(1CEC)

Vmt -ODA 2CEC Vmt 
-ODA 
(3CEC)

SiO2 36.14 36.84 35.20 32.25 30.02 28.71 24.57 21.27
MgO 26.64 26.59 22.96 20.21 18.84 17.96 14.48 11.91
Al2O3 9.64 9.68 9.48 8.62 7.97 7.57 6.24 5.27
Fe2O3 9.49 9.92 9.27 7.78 7.44 7.22 5.58 4.97
K2O 6.00 6.09 5.04 4.32 3.63 3.11 2.40 2.82
TiO2 1.14 1.20 1.09 0.93 0.90 0.74 0.71 0.65
Cl 0.06 0.87 0.89 1.45 1.49 1.86 1.77 4.81
CaO 0.28 0.26 0.16 0.06 0.06 0.04 0.03 0.04
Rb2O 0.08 0.08 0.08 0.06 0.06 0.06 0.04 0.04
CoO 0.06 0.05 0.05 0.04 0.05 0.01 0.01 0.01
MnO 0.04 0.05 0.04 0.03 0.03 0.03 0.02 0.02
Loss Fire 10.00 8.00 15.58 24.01 29.41 32.5 44.10 47.98
∑ 99.57 99.63 99.84 99.76 99.90 99.81 99.95 99.79
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the modification process, where sodium cations are replaced 
by ODA salt cations. 

EDS was employed to identify the chemical elements in 
the samples and quantify their relative abundance. Sodium 
content increased by 1.63% in the Na-Vmt sample com-
pared to the raw Vmt sample (Fig. 2), indicating efficient 
incorporation of sodium into the vermiculite structure [17, 
18]. Comparing Na-Vmt to Vmt-ODA, sodium was absent, 
and carbon content increased from 15.59% for 0.25CEC 
to 60.69% for 3CEC. Additionally, there was a decrease in 
mineral proportions (Fig. 3), indicating that sodium cations 
were replaced by ODA salt cations during modification. This 
successful surfactant insertion into the vermiculite structure 
is further confirmed by XRF results.

SEM analysis was utilized to examine the morphology 
and surface textures of particles before and after organo-
modification. The raw-Vmt morphology (Fig. 2a) reveals a 

uniform layered silicate structure with a relatively smooth 
surface, along with fragments and flakes [19]. In Na-Vmt 
(Fig. 2b), sodium ions replace other cations (Mg2+, Ca2⁺) 
in the raw-Vmt interlayer, maintaining a lamellar struc-
ture as confirmed by XRF and EDS results (Fig. 3a–h). 
Na-Vmt exhibits a smooth surface covered by small frag-
ments, typical of a clay layered structure. In contrast, 
ODA-Vmts (Fig. 2c–h) display a rougher, more uneven 
surface and a looser, more layered structure compared to 
Na-Vmt, indicating successful intercalation of surfactants 
into the Na-Vmt layer. Additionally, the darker color of 
the clay suggests increased thickness, highlighting vari-
ations in clay thickness after modification [20]. To better 
quantify the surface roughness and porosity of the modi-
fied and unmodified vermiculite samples, further analysis 
using surface profilometry or gas adsorption–desorption 
(BET) methods is recommended in future work.

(a) (b)
(c)

(d) (e)
(f)

(g) (h)
(i)

(g)

Fig. 2   Morphological observation for: a raw Vmt and b Na-Vmt; Vmt at various amounts of ODA surfactant: c 0.25CEC, d 0.5CEC, e 
0.75CEC, f 1CEC, g 2CEC, h 3CEC, and i ODA
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Phase analysis

The X-ray spectra for ODA surfactant, raw Vmt, Na-Vmt, 
and Vmt-ODA are shown in Fig. 4. The basal spacing was 
determined using Bragg’s equation. The peak for raw Vmt at 
2θ = 7.49° indicates a basal spacing of d002 = 11.78 Å. In con-
trast, Na-Vmt shows a lower basal spacing of d002 = 11.01 Å 
at 8.02°, indicating that Na+ cations have replaced K+, Ca2+, 
and Mg2+ cations, confirming Na+ intercalation in the Vmt 
interlayer [21].

Upon modification with ODA, significant changes are 
observed compared to unmodified Vmt. At lower ODA con-
centrations (≤ 1 CEC), there are no discernible reflections 
from the ODA salt in the Vmt-ODA samples, suggesting 
the absence of a physical mixture between the vermiculite 
and surfactant. The intensity of the Vmt reflection (11.01 Å) 
decreases until it disappears in Vmt-ODA (1 CEC), indicat-
ing effective modification through intercalation.

The XRD patterns of Vmt-ODA (2 CEC and 3 CEC) 
exhibit distinct reflections at 35 Å and 17.56–18.19 Å. The 
intercalation of ODA + cations into the interlayer space is 
confirmed by the shift of the Na-Vmt 002 peaks towards a 
lower 2θ following ion-exchange operations [15, 22]. The 
reaction can be represented as:

The basal spacing (d002) of organo-vermiculite increases 
to a maximum of 35 Å for Vmt-ODA (2 CEC) and stabi-
lizes for Vmt-ODA (3 CEC), indicating ODA saturation at 
2 CEC concentration. Alkylammonium cations, known for 
intercalating in monolayer, bilayer, pseudo-trilayer, or paraf-
fin structures within vermiculite sheets [23, 24], are regu-
larly distributed in the interlayer space. This is evidenced 
by the high-intensity peak in the Org-Vmt XRD pattern at 
2θ = 2.52° (d = 35 Å). Subtracting the Vmt platelet thickness 

Na
+
− Vermiculite + ODA → ODA

+
− Vermiculite + Na

+
.

Fig. 3   EDS results of a raw Vmt, b Na-Vmt;Vmt at various amounts of ODA surfactant: c 0.25CEC, d 0.5CEC, e 0.75CEC, f 1CEC, g 2CEC, h 
3CEC, and i ODA
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(~ 9.6 Å) from the d-spacing gives an interlayer distance of 
25.36 Å, indicating that the ODA + cations formed a tilting 
paraffin-type bilayer configuration in the interlayer space 
(> 22 Å) [25–27].

Bonding analysis

Figure 5 shows the FTIR findings for vermiculite samples 
(raw-Vmt, Vmt-Na, and Vmt-ODA) within the vermicu-
lite diagnostic ranges of 400–4000 cm–1. The presence of 
hydroxyl groups in vermiculite is evidenced by the 3668 
cm−1 band [15, [22]. Main bands appeared in raw Vmt, Na-
Vmt and Vmt-ODA samples from FTIR spectra with their 
attributions are summarized in Table 2. The intercalation of 
Na+ cations leads to an increase in the intensity of OH bands 
in Vmt-Na spectra, thereby creating a more hydrophilic sur-
face [28]. This morphology corresponds to the distinctive 
bands of Na-Vmt that emerge in the presence of adsorbed 
water [19].

For Vmt-ODA, the interaction between Na-Vmt and 
surfactant cations resulted in the appearance of two peaks 
at 2850  cm−1 (symmetric) and 2919  cm−1 (antisym-
metric) stretching vibrations of CH2 in the alkyl chain 
[29]. These bands were confirmed by bending vibrations 
within the range of 1330–1423 cm−1 from CH2 groups 
[30]. The removal of interlayer hydrated cations during 
ion exchange with alkylammonium groups decreased the 
intensity of OH bands at 3420 cm−1 and 1647 cm−1, indi-
cating a more hydrophobic surface compared to Na-Vmt 
[15, 29]. Increasing surfactant concentration strengthened 
the peaks for the alkyl chains. ODA exhibited a char-
acteristic NH2 peak at 3332 cm−1 (stretching), with the 
N–H bond vibrating at 1470 cm−1 [31], and a C–N bond 

stretching at 1507 cm−1 [32]. Higher surfactant concen-
trations shifted the Si–O band from 941 to 979  cm−1, 
indicating bonding of ODA surfactant molecules with 
Si–O molecules through weak hydrogen bonds, confirm-
ing effective interaction between the surfactant and clay 
platelets.

Thermal analysis

TGA analysis investigates the thermodynamic stabilities of 
vermiculite compounds (raw Vmt, Na- Vmt, and Vmt-ODA). 
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Table 2   Main bands appeared in raw Vmt, Na-Vmt and Vmt-ODA 
samples from FTIR spectra with their attributions

ν/cm−1 Attributions

431 Bending vibrations of Si–O–Si
672 Bending vibrations of Si–O-M (octahedral 

cation) (M = Al, Fe, Mg)
941 Si–O stretching vibration
1508 CN
1472 NH
1647 Bending vibrations of interlayer water O–H
1338–1392 CH bending vibrations
2850 Antisymmetric stretching vibrations of CH2

2919 Symmetric stretching vibrations of CH2

3332 NH stretching vibration
3420 Stretching vibrations of interlayer water O–H
3668 hydroxyl group
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Figure 6 reveals temperature and mass loss associations. It 
shows three steps of modified vermiculite degradation:

Step 1, from 26 to 200 °C: involves the loss of water mol-
ecules either dissociated or adsorbed within particles inter-
layers [12, 33]. For raw Vmt, the mass loss is 5.76%, with 
DTG peaks at 75 °C and 180 °C, indicating the elimination 

of surface-adsorbed water and interlayer water associated 
with interlayer cations (Fig.  6a) [34]. Na-Vmt shows a 
slightly higher mass loss due to the more hydrated Na+ cati-
ons, confirming the homoionization of vermiculite by Na+ 
cations (Table 3, Fig. 6a–h). In this temperature range, the 
mass loss of Vmt-ODA decreases with increasing surfactant 
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loading, suggesting enhanced hydrophobicity of the Na-Vmt 
surface following surfactant modification [35].

Step 2, from 200 to 500 °C: corresponds to the decom-
position of the surfactant[5, 13]. The TG curve of the 
ODA sample shows a high mass loss (98%) at tempera-
tures below 300 °C, with a maximum at 240 °C. Table 3 
summarizes the mass loss values indicated by DTG peaks 
at various temperatures. During this step, Vmt-ODA 
decomposes in three phases: surface-adsorbed molecules 
decompose at about 220 °C, interlayer molecules at about 
300 °C, and intercalated molecules at temperatures above 
400 °C [1]. At surfactant loading levels of 1CEC or less, 
the mass loss related to intercalated surfactant is high 
(0.25 CEC: 85%, 0.5 CEC: 78%, 0.75 CEC: 74%, 1CEC: 
69%), indicating intercalation as the primary interaction 
mechanism between the clay and surfactant. For ODA 
loading exceeding 1CEC, the mass loss related to inter-
calated surfactant decreases (2CEC: 50%, 3CEC: 25%) 
(Fig. 7a), while the mass loss associated with adsorbed 
and interlayer surfactants increases. Organo-vermiculite 

with high surfactant amounts (e.g., 3CEC) exhibits weak 
contact with the Vmt surface due to alkyl chain orienta-
tion and van der Waals force interaction (Fig. 7b) [36, 
37]. The mass loss of Vmt-ODA within 200–500 °C indi-
cates the quantity of surfactant in the samples, which can 
be compared with the amount added during preparation 
(Table 4). Below 1.0 CEC, the loaded surfactant amounts 
closely match those added, but they decrease beyond 1.0 
CEC, with maximum loading occurring at concentrations 
above 2CEC.

Step 3, from 500 to 800 °C: involves the dihydroxyla-
tion of OH units in Vmt and the combustion of organic 
carbon and inorganic oxygen substances at temperatures 
above 700 °C for OVmt (Fig. 6a–h)[5, 38, 39].Table 3 
summarizes the mass loss values indicated by DTG peaks 
at various temperatures. When ODA surfactant loading 
is ≤ 1CEC, the mass loss increases due to more carbon 
combusting with inorganic oxygen substances. Con-
versely, for ODA surfactant loading ≥ 1CEC, the mass loss 
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Table 3   TG/DTG results of 
raw Vmt, Na-Vmt, Vmt-ODA 
(0.25CEC, 0.5CEC, 0.75CEC, 
1CEC, 2CEC, 3CEC), and ODA

Step 1 Ambiant-200 °C Step 2 200–500°C Step 3 500-800°C

WL% T max/°C WL% T max/°C WL% T max/°C

Raw Vmt 5.16 75 1.64 1.02 182 1.53 698
0.62 456

Na-Vmt 6.23 39 1.52 449 1.62 690
74

Vmt-ODA (0.25 CEC) 3.94 83 8.09 1.37 225 1.93 712
6.72 425

Vmt-ODA (0.5 CEC) 2.44 63 12.57 2.69 232 3.16 718
9.88 399

Vmt-ODA (0.75 CEC) 1.94 80 20.49 3.06 237 2.95 730
2.78 289
1.84 338

12.81 423
Vmt-ODA (1 CEC) 1.84 84 22.98 4.84 245 3.73 730

3.64 291
14.5 415

Vmt-ODA (2 CEC) 1.3 79 29.05 11.93 249 2.9 732
3.2 332

13.92 426
Vmt-ODA (3 CEC) 2.93 53 37.99 12.93 222 2.01 735

16.4 315
9.62 426

ODA Ambiante-300 °C – –
WL% 98 T max/°C 230
98 230
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decreases because the surfactant adsorbed on the external 
clay decomposes at lower temperatures.

Conclusions

This study demonstrates the successful synthesis of 
organo-vermiculite (Vmt-ODA) with varying surfactant 
loadings, aimed at enhancing its basal spacing and hydro-
phobicity for applications in pollutant adsorption and 
polymer/organoclay nanocomposites. Main findings are:

	 i.	 Purification, Modification, and Chemical Compo-
sition: Raw vermiculite was purified, sodified, and 
intercalated with octadecylammonium (ODA) salts. 
XRF and EDS analyses confirmed successful cation 
exchange and surfactant intercalation, resulting in a 
hydrophobic surface.

	 ii.	 Interlayer Spacing, Chemical Bonding, and Surface 
Morphology: XRD analysis revealed expanded inter-
layer spacing with increasing ODA loading, indicating 
successful intercalation and formation of a paraffin-
type bilayer configuration. FTIR spectroscopy showed 
the emergence of characteristic peaks corresponding 
to alkyl chain vibrations and a decrease in hydroxyl 
group intensities, confirming enhanced hydrophobic-
ity. SEM analysis revealed rougher textures in organo-
vermiculite samples compared to raw vermiculite, fur-
ther confirming surfactant intercalation.

	 iii.	 Thermal Stability: TGA analysis showed a decrease 
in mass loss associated with water removal and an 
increase in surfactant decomposition as ODA loading 
increased. The thermal analysis indicates also higher 
degrees of intercalation at lower surfactant concen-
trations and enhanced surfactant adsorption at higher 
concentrations.
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