
 

Prepared By 

Associate Professor at Department of Electronics 
Faculty of Technology, University of M’Sila 

Dr. Mohamed SAHED 

N
ovem

ber 25, 2025 

Electrical & Electronic 
Measurements  

Department of Electronics, University of M’Sila 

For Second-Year Undergraduate Students Majoring in Electronics, Automation & Telecommunications 

© All Rights Reserved. 



43tl) 4glla94!l 44\3/\ 3334-9l
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

,-dl) <al/ s ,Ill4lill s3/j3
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

MOHAMED BOUDIAF UNIVERSITY OF M'SILA
FACULTY OF TECHNOLOGY
DEPARTMENT OF ELECTRONICS

~I - '-"'W::09'~ fu>.o~
UniVet"sHe Moh<1n'H~·d Boudiar- M'$ila

1,,>.-_,lp ::lla,,IS'

.!.l..iJ~1' ~

t:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::t

2025/12/16: <J a.l.:-1 1 2025/1.J/.do..,: r-tJI

«gilall ,ldlli) el=el el_gsll sl l LJA,oj)_,11 ~4-/11 ..>.ul£ill u1:, t)Ua)'I ~
-~ ·bl 4.ii':11. , -.J ~ _,

r'L-c ~j )..►.. •~- . ;] Lue 4al>..)_J_J---"'-' (.).II • •

~1-w~~~~4-
«ball - slay! la=a 4al

11111 • I • •_alas 2isl

11111 • I • •_a'aa 2lil

:ulfai..:..i..:..:i(~I

Electrical and Electronic Measurements

all +#)



 

 

 

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

 

UNIVERSITY MOHAMED BOUDIAF – M’SILA 

FACULTY OF TECHNOLOGY 

DEPARTMENT OF ELECTRONICS 

 

Lecture notes 

Course intended for 2nd-year Bachelor’s degree students (S4), Specializations: Electronics, Automation & Telecommunications 

 

Prepared by: 

Dr. Mohamed SAHED 

Associate Professor at the Department of Electronics  

(Maître de Conférences A) 

 

 

 

 

Academic year 2024/2025

ELECTRICAL AND ELECTRONIC MEASUREMENTS 



 

 



 

i 

PREAMBULE 

This course is designed for second-year LMD students specializing in Electronics, Automation, 

and Telecommunications. It provides a comprehensive introduction to the fundamentals of 

electrical and electronic measurements, essential for the students’ academic and professional 

development. The course combines a strong theoretical foundation with practical, real-world 

applications, ensuring a balanced learning experience. Students will explore new definitions 

and concepts in electrical measurement, gain insights into various measurement techniques, and 

learn about the operation and use of key measurement instruments. 

Each chapter is structured to include: 

 A concise theoretical overview, enriched with illustrative examples and practical 

applications. 

 Exercises accompanied by detailed solutions to reinforce understanding and problem-

solving skills. 

OBJECTIVES 

Educational Objectives: The primary educational goals of this course are to: 

 Introduce and explain the core measurement techniques for electrical and electronic 

quantities. 

 Develop proficiency in using both analog and digital measurement instruments and ensure 

proper connection and operation. 

 Provide hands-on experience through laboratory experiments spanning various domains of 

electricity and electronics. 

Specific Objectives: Upon completing this course, students will be able to: 

 Solve basic measurement problems involving electrical and electronic quantities, such as 

current, voltage, resistance, impedance, and power. 

 Perform measurements and calibrations using common instruments, including ammeters, 

voltmeters, ohmmeters, and oscilloscopes. 

 Select the most appropriate measurement instrument for a given task, optimizing for 

accuracy and efficiency. 

 Analyze and interpret measurement results effectively. 

 Adhere to safety protocols to ensure secure and reliable electrical measurements. 
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PREREQUISITES 

To succeed in this course, students are expected to have prior knowledge in the following areas: 

 Fundamental Physics: Understanding of basic physical laws and principles. 

 Electrical Foundations: Mastery of core electrical concepts, including circuit analysis and 

the characteristics of electrical components. 

 Mathematical Skills: Familiarity with key mathematical tools, such as: 

 Analysis of real functions, 

 Differential and integral calculus, 

 Complex numbers. 

TARGETED SKILLS 

This course aims to develop the following competencies: 

 Knowledge and Expertise: 

 Mastery of electrical and electronic measurement methods. 

 Understanding the limitations and applications of different measurement techniques. 

 Practical Proficiency: 

 Ability to perform accurate and precise electrical measurements. 

 Skill in analyzing and improving measurement procedures. 

 Instrumentation Skills: 

 Familiarity with the operating principles of key measurement instruments. 

 Ability to select the right instrument for specific measurement tasks. 

 Analytical Abilities: 

 Awareness of factors influencing electrical measurements. 

 Competence in calculating and interpreting measurement uncertainties. 

 Safety Awareness: 

 Adherence to safety standards and best practices during electrical measurements. 
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By the end of this chapter, the student will be able to: 

 Differentiate key terms and vocabulary related to measurement. 

 Classify units of measurement into fundamental units, derived units, and supplementary units. 

 Understand the dimensions of different physical quantities. 

 Describe various systems of units and their applications. 

 Identify different types of errors and uncertainties in measurements. 

 Explore general methods and techniques used in measurement. 

 

 

 

 

Measuring a physical quantity means comparing it to another reference quantity of the same 

nature, known as a unit of measurement. Electrical measurements, in particular, are renowned for 

their precision and reliability, making them one of the most accurate methods for quantifying 

physical, mechanical, thermal, and other quantities. 

To facilitate measurement, many physical quantities are first converted into electrical 

quantities, which can then be easily compared and analyzed. Electrical measurement technology plays 

a crucial role in solving significant problems, such as:  

  Transmitting measurement results over long distances. 

  Performing calculations on measured quantities. 

  Directly controlling machines and devices using measurement data. 



These capabilities not only enhance our understanding of the world but also open doors to 

discovering its hidden secrets and wonders. Through electrical measurements, we gain the tools to 

progress technologically and improve our quality of life. 

 

  A physical quantity is any property of nature that can be quantified by 

measurement or calculation. It is expressed as a numerical value accompanied by a unit of 

measurement.  

 Time, length, mass.  

  A unit of measurement is a specific quantity, defined by convention, 

used as a reference to express quantitatively other quantities of the same nature. 

 This refers to the set of operations aimed at determining the value of a 

quantity. 

  It is the evaluation of a quantity by comparing it with another quantity of the 

same nature taken as a unit. 

 A length of 2 meters, a mass of 400 grams.  

  It is a parameter that characterizes the dispersion of values that 

could be attributed to the quantity being measured. 

  A measurement standard is a reference quantity used to define or 

materialize a unit of measurement. It must be precise, accurate, reproducible, and universal.  

 The “meter” is the measurement standard for length.  

  It is the operation of comparing the measurement results of a standard or an 

instrument against a more precise reference standard or instrument (1). This process determines the 

accuracy of a standard or an instrument, by identifying their relative measurement errors and/or 

quantifying their associated measurement uncertainties. 

 

A system of units is defined by a conventional selection of fundamental (or base) quantities, 

each associated with a specific unit. These systems provide a standardized framework for measuring 

physical quantities consistently and accurately. 



  Length, mass, time.  

  Centimeter (cm), gram (g), second (s).  

                                                           
(1) The reference instrument (or standard), often referred to as a calibrator, must itself be calibrated in a traceable manner.  





  Length, mass, time, electric current.  

  meter (m), kilogram (kg), second (s), ampere (A).  



  Length, mass, time, electric current, thermodynamic 

temperature, amount of substance, luminous intensity.  

  Meter (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), candela 

(cd).  

 

The International System of Units (abbreviated SI), inspired by the metric system, is the most 

widely used system of measurement worldwide. It is a decimal-based system, meaning that multiples 

and submultiples of units are related by powers of 10. 

The SI is built on seven fundamental quantities, which are considered independent by 

convention. These fundamental quantities and their corresponding units serve as the foundation for 

all other quantities in the system. 

 

The seven fundamental units of the SI are defined using reproducible physical phenomena or 

fundamental constants of nature. This means that the units are tied to unchanging, universal properties 

that can be observed and measured consistently anywhere in the world. For example: 

 The meter is defined using the speed of light in a vacuum. 

 The second is defined based on the frequency of a specific transition in a cesium atom. 

 The kilogram is now defined using the Planck constant. 

By linking the units to physical constants, the SI ensures that measurements are accurate, 

consistent, and universally reproducible. These units are summarized in Table 1-1 below. 

 

 

Table 1-1: The seven fundamental units defining the SI 

Base quantities Units Symbols 

Mass Kilogram (kg) m 

Length Meter (m) l, x, r, etc.  

Time Second (s) t 

Electric Current Intensity Ampere (A) I, i 

Temperature Kelvin (K) T 

Amount of substance Mole (mol) n 

Luminous Intensity Candela (cd) Iv 
 

 

 

 



 

The derived units in the SI are formed by combining the fundamental units through algebraic 

relationships that define the corresponding derived quantities. These units are essential for expressing 

more complex physical quantities. 

Table 1-2 provides examples of derived quantities and their corresponding units. As science 

and technology advance, new derived quantities and units can be introduced by combining the base 

units in meaningful ways. 

 

Table 1-2: Derived Units 

Quantities Units Symbols 

Area (S) square meter m2 

Volume (V) cubic meter m3 

Volume Density ()  kg.m–3 

Velocity ()  m.s–1 

Acceleration (a)  m·s–2 

Frequency (f) Hertz Hz 

Force (F) Newton N 

Pressure (P) Pascal Pa 

Energy (E) Joule J 

Power (P) Watt W 

Electric Charge (q) Coulomb C 

Electrical Voltage (U) Volt V 

Electric Field (𝐸⃗⃗ )  V.m–1 

Capacitance (C) Farad F 

Resistance (R) Ohm Ω 

Magnetic Field (𝐵⃗⃗ ) Tesla T 

Inductance (L) Henry H 

Molar Concentration (c)  mol.L–1 

Specific Heat Capacity (c)  J.kg–1 

 

 

 

The SI also includes two supplementary units for measuring angles:  

 It is the unit of plane angle, which is defined as the angle subtended at the 

center of a circle by an arc equal in length to the radius. 

 It is the unit of solid angle, which is defined as the solid angle subtended at 

the center of a sphere by an area on its surface equal to the square of the radius. 

These supplementary units are considered dimensionless and may be used in the expressions of 

derived units when appropriate. 



 

Decimal multiples and submultiples of SI units can be expressed using SI prefixes, which are 

listed in Table 1-3. These prefixes represent powers of 10 and are used to simplify the expression of 

very large or very small quantities. 

Table 1-3: SI Prefixes 

10–15 10–12 10–9 10–6 10–3 10–2 10–1 1 101 102 103 106 109 1012 1015 

femto pico nano micro milli centi deci unit Deca Hecto Kilo Mega Giga Tera Peta 

f p n  m c d ∅ da h k M G T P 

Note: The distinction between uppercase and lowercase is important. . For example, “m” stands for 

milli (10−3), while “M” stands for mega (106). 

 

 

 

Physical quantities are organized according to a system of dimensions. Each of the seven SI 

fundamental quantities has its own dimension, represented symbolically by a single uppercase sans-

serif Roman letter. The symbols for fundamental quantities and their dimensions are shown in Table 

1-4. 

Table 1-4: Fundamental quantities and dimensions 

Base Quantity Symbol of the quantity Dimension Symbol 

Mass m 𝑀 

Length l, x, r, etc.  𝐿 

Time t 𝑇 

Electric Current Intensity I, i 𝐼 

Temperature T  

Amount of substance n 𝑁 

Luminous Intensity Iv 𝐽 

 

Note: Some quantities, such as counting-based quantities, are considered dimensionless and have 

the unit 1 (Example: 1 mole of a substance contains exactly 6.02214076×10²³ atoms (Avogadro’s 

number). This is a counting-based quantity.). 

All other quantities are derived quantities, which can be expressed in terms of the fundamental  

quantities using physical equations. The dimension of a derived quantity 𝑄 is written as follows: 

𝑑𝑖𝑚 (𝑄)  =  [𝑄]  =  𝐿𝑀𝑇𝐼𝛩𝑁𝜁𝐽𝜂  

where , , , , , 𝜁 and 𝜂 are dimensional exponents (typically small integers, positive, negative, or 

zero).  



The dimension of a derived quantity provides the same information as its SI unit, which is 

expressed as a product of powers of the base units. 

 

 Symbols for Quantities and Dimensions: Symbols representing physical quantities are 

always written in italics. However, symbols representing dimensions are written in uppercase 

sans-serif Roman letters (sometimes enclosed in square brackets, e.g., [L], [M], [T]). 

 Recommended vs. Mandatory Symbols: The symbols provided for physical quantities are 

recommended but not strictly mandatory. However, the symbols for units, as well as their 

style and form (e.g., uppercase/lowercase, italics), must be used as specified in this course. 

 Algebraic Treatment of Dimensions: Dimension symbols and exponents follow the ordinary 

rules of algebra. 

         Examples: 

- The dimension for area is written as 𝐿2. 

- The dimension for velocity is written as 𝐿𝑇−1. 

- The dimension for force is written as 𝑀𝐿𝑇−2. 

 

A dimensional equation symbolically expresses the relationship between physical quantities. It 

is used to check the consistency of formulas or equations. For an equation to be valid, both sides must 

have the same dimension. 

To ensure that an equation is homogeneous, it is sufficient to verify that both sides of the 

equation have the same dimension.  

Example: 𝐴 = 𝐵 ⟹  [𝐴] = [𝐵]. This equation is therefore homogeneous.  

If the dimensions in both sides differ, the equation is invalid. 

1. Sum and difference: The dimension of the sum (or difference) of two physical quantities 𝐴 and 

𝐵 is equal to the dimension of 𝐴 (and to the dimension of 𝐵): 

[𝐴 + 𝐵] = [𝐴] = [𝐵] 

2. Product: The dimension of the product of two physical quantities 𝐴 and 𝐵 is equal to the product 

of the dimensions of 𝐴 and 𝐵: 

[𝐴 × 𝐵] = [𝐴] × [𝐵] 

 The operator [] is therefore multiplicative.  

3. Division: The dimension of the quotient of two physical quantities 𝐴 and 𝐵 is equal to the quotient 

of the dimensions of 𝐴 and 𝐵: 

[
𝐴

𝐵
] =

[𝐴]

[𝐵]
= [𝐴] × [𝐵]−1 



4. The dimension of the n-th power: The dimension of the n-th power of a physical quantity 𝐴 is 

equal to the n-th power of the dimension of 𝐴: 

[𝐴𝑛
] = [𝐴]𝑛 

5. The dimension of the n-th derivative: The dimension of the n-th derivative of a physical quantity 

𝐴 with respect to 𝐵 has the dimension: 

[
𝑑𝑛𝐴

𝑑𝐵𝑛] =
[𝐴]

[𝐵]𝑛
= [𝐴] × [𝐵]−𝑛 

6. The dimension of the integral: The dimension of the integral of a physical quantity 𝐴 with respect 

to 𝐵 has the dimension: 

[∫𝐴 𝑑𝐵] = [𝐴] × [𝐵] 

7. Transcendental functions: The arguments of transcendental functions cosine, sine, tangent, 

exponential, logarithm, ... have no dimension (they are said to be dimensionless). In these cases, 

[𝐴] = 1. The same is true for a constant.  

Example: Determine the dimension of velocity, acceleration, force, energy, power, potential 𝑈 and 

resistance  𝑅.  

 Velocity: 

𝜐 =
𝑑𝑥

𝑑𝑡
      ⟹         [𝜐] =

[𝑥]

[𝑡]
= LT−1 

 Acceleration: In the case of rectilinear motion 

𝑎 =
𝑑2𝑥

𝑑𝑡2
      ⟹         [𝑎] =

[𝑥]

[𝑡]2
= LT−2 

 Force: 

𝐹⃗⃗ = 𝑚 × 𝑎⃗⃗       ⟹        [𝐹] = [𝑚] × [𝑎] = MLT−2
 

 Energy: 

𝐸 =
1

2
𝑚𝜐2       ⟹         [𝐸] =

1

2
[𝑚] × [𝜐]2 = ML2T−2 

 Power: is energy per unit of time 

𝑃 =
𝐸

𝑡
           ⟹         [𝑃] =

[𝐸]

[𝑡]
= ML2T−3 

 Potential: 

𝑃 = 𝑈 × 𝐼         ⟹         𝑈 =
𝑃

𝐼
          ⟹         [𝑈] =

[𝑃]

[𝐼]
= ML2T−3I−1 

 Resistance: According to Ohm’s law 

𝑈 = 𝑅 × 𝐼          ⟹         𝑅 =
𝑈

𝐼
         ⟹         [𝑅] =

[𝑈]

[𝐼]
= ML2T−3I−2 

 

 



 

 

A measuring instrument (or device) is a device that transforms a physical quantity (2) into usable 

information that can be estimated and/or visualized.  

 

In general, two different types of instruments are distinguished: 

 Analog instruments: Also called needle or deflection instruments, they indicate a value 

exactly proportional to the value of the quantity to be measured.  Their principle is to give a 

needle deflection on a graduated scale.  

 Digital instruments: they give a value representing the quantity to be measured to the nearest 

quantization step.  This value is given in the form of a number (digital display).  

These two types will be discussed in detail in the last chapter.  

In the electrical and electronic field, the measuring instruments used are: 

- the voltmeter to measure voltages, 

- the ammeter to measure currents, 

- the wattmeter to measure power, 

- the ohmmeter to measure resistances, 

- the frequency meter for measuring frequency, period and time 

- the oscilloscope to visualize the shape of a wave and to obtain various information (amplitude, 

period...).  

The voltmeter, ammeter, and ohmmeter are often combined into a single device called a “multimeter”.  

 

The basic structure includes at least three stages (See Figure 1-1): 

 A sensor: it is sensitive to variations in a physical quantity and translates its value to be 

measured into an electrical, optical or mechanical signal that is easier to manipulate and 

quantify.  

 A signal conditioner: transforms the output signal from the sensor (by amplifying its 

amplitude or filtering it) to make it compatible with the display and/or utilization module.  

 A display and/or utilization unit: allows the measurement to be displayed and/or used.  

This basic structure is found in all instruments and measurement chains, regardless of their 

complexity and nature.  Nowadays, almost all measuring instruments are electronic chains.  

                                                           
(2)This quantity (or this magnitude) concerns a physical phenomenon inaccessible (or difficultly accessible) to our senses.  



 

Figure 1-1: Structure of a measuring instrument 

 

In reality, there is no perfect measuring instrument.  Therefore, the applicability and quality of 

the measurements taken depend mainly on the characteristics of the measuring instrument used.  The 

main characteristics of measuring instruments are: 

 Accuracy or precision: This is the set of values of the measurand for which a measuring 

instrument is supposed to provide a correct measurement.  

 Fidelity: This is the quality of the device to provide the same indication when several 

measurements are made for the same measured quantity (even if these measurements are distant 

in time).  

 Measurement Range: This is the set of values of the measurand for which a measuring 

instrument is supposed to provide a correct measurement.  

 Measurement Span: corresponds to the difference between the maximum and minimum values 

of the measurement range.  For devices with an adjustable measurement range, the maximum 

value of the measurement span is called “full scale” (See Figure 1-2).  

 

Figure 1-2: Measurement scale 

 Calibration Curve: It is specific to each device (sensor or measuring instrument).  It allows the 

raw measurement to be transformed into a corrected measurement.  Calibrating an instrument 

consists of applying a known value to the input of the measurement system to verify that the 

output corresponds to the expected value; if this is not the case, the device’s setting is corrected.  

Example: a standard weight is weighed, and the position of the needle is corrected so that it 

indicates the correct value.  This is the so-called single-point calibration.  

 Sensitivity: This is the smallest variation of a physical quantity that can be measured by a 

measuring instrument.  Let 𝑥 be the quantity to be measured and 𝑦 the signal provided by the 

Sensor 
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Conditioner 

Display and/or 
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Quantity to 

be measured Measure

ment 
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measurable 
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measurement 
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𝑿 



measuring device.  To all values of  𝑥, belonging to the measurement span, corresponds a value 

of 𝑦 = 𝑓(𝑥).  The sensitivity around a value of 𝑥 is the quotient 𝐾: 

𝐾(𝑥) =
𝑑𝑥

𝑑𝑦
 

If the function is linear, the sensitivity of the device is constant: 

𝐾(𝑥) =
∆𝑥

∆𝑦
 

 Repeatability: A measurement is repeatable when the closeness of agreement between the 

results of successive measurements of the same measurand, carried out under the same conditions 

of measurement, is verified: same measurement procedure, same observer, same instrument, 

same location, and repetition over a short period of time.  

The dispersion of the results allows the repeatability to be quantified.  

 Reproducibility: A measurement is reproducible when the closeness of agreement between the 

results of measurements of the same measurand, carried out under different measurement 

conditions – to be defined on a case-by-case basis – is verified.  

 Accuracy Class: Value as a percentage of the ratio between the largest possible error and the 

measurement range. For an analog measuring instrument, the accuracy class (Cl) is defined as 

follows: 

 

Cl(%) =
Largest possible error

Measurement range
× 100 

 

The C42-100 standard defines the following class values: 

 Calibration instruments: class 0.1, 0.2, and 0.5 (used in laboratories).  

 Control instruments: class 0.5 and 1 (used for inspection and verification).  

 Industrial instruments: class 1.5 and 2.5.  

 Indicators: class 5.  

 Resolution: For digital measuring instruments, the resolution is defined by: 

 

Resolution =  
Measurement range

Number of measurement points
 

 

 Sensitivity: It qualifies the influence of the measuring instrument on the phenomenon being 

measured. It is high when the device minimally disturbs the quantity being measured.  



 Speed, Response Time: This is the ability of an instrument to follow sudden variations in the 

measurand. The main criterion for evaluating the speed of a measuring instrument is its N% 

response time, denoted TrN% (often the 5% response time).  

Knowing this response time is essential when performing measurements. It allows one to 

determine how long, after a sudden change in the measurand, the value provided by the 

instrument is actually representative of the measurand.  

Example: For a step change in the sensed quantity leading to an increase in the measurement, 

the 5% response time (Tr5%) is defined as the time required for the measurement to reach its 

equilibrium value, which is the exact value, from its initial value to remain between 95% and 

105% of its total variation.  

 
Figure 1-3: Step response 

 Bandwidth: Frequency band for which the instrument’s gain is greater than or equal to the 

maximum gain.  

 Influence Quantity and Compensation: An influence quantity is any physical quantity other 

than the quantity being measured. Generally, temperature is the most frequently encountered 

influence quantity.  

 

The main measurement methods are: 

 Direct Methods: The measurement method is said to be direct when the measuring instrument 

directly provides the value of the measurand.  

Example: measurement of current intensity with an ammeter.  

 Indirect methods: The measurement method is said to be indirect if the measurement is 

obtained from the values of other quantities by applying physical laws.  

Example: Calculation of the value of a resistance, by applying Ohm’s law, by measuring the 

values of the current flowing through it and the voltage across its terminals.  

Measurement methods can also be classified according to the procedures used in the measurement: 
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 Deflection methods: in this type of method, the value read, during the deflection of the 

measuring instrument, is used in the calculations (for example, the determination of a 

resistance using an ohmmeter).  

 Null methods: when the adjustment is complete, no current flows in the measuring 

instrument, and the measured quantity can then be determined by an appropriate relationship 

(the typical example is the measurement of resistance using a Wheatstone bridge).  

 False null methods: when the adjustment is complete, the same current flows in the 

measuring instrument when the circuit of a branch of the circuit is opened or closed.  We 

simply observe that the deflection of the measuring instrument does not change, without 

measuring it.  

 Opposition methods: an e. m.f. is opposed. m. or a potential difference to that existing across 

a variable resistor through which a current flows (precise measurement of voltages).  

 Potentiometric methods: these are opposition methods for which the numerical value of the 

adjustable resistance is a multiple of the voltage to be measured.  

 

A measurement operation is, in general, inaccurate, limited, and has imperfections that cause 

errors in the measurement result.  

 

When measuring any quantity, an exact value can never be obtained. Error is the difference 

between the measured value and the exact value of the quantity being measured.  

An error is the inaccuracy due to the imperfection of the measuring instruments and possibly the 

reading of the measurements. Errors can be minimized and/or compensated for by making a good 

choice of instruments and measurement methods.  

 

There are three types of errors: 

 Random errors: These are errors that likely arise from unpredictable temporal and spatial 

variations in influencing quantities.  

They must be treated statistically or probabilistically. They cannot therefore be eliminated, but can 

be minimized by increasing the number of measurements or observations.  

 Systematic errors: These are reproducible errors in each measurement that generally arise from 

defects in the construction of the measuring instruments. They can be eliminated by appropriate 

corrections.  

There are many sources of systematic errors: 

- Accuracy errors of the measuring instrument (poor calibration, zero offset...).  



- Disturbance due to the presence of a measuring instrument (connecting a measuring 

instrument modifies the quantity that one wishes to measure).  

- Effect of influence quantities (temperature, pressure...).  

A systematic error can be considered as a constant error (a bias) that affects each of the 

measurements.  

It cannot be reduced by increasing the number of measurements but can be compensated for by 

applying a correction.  

It can be detected and quantified by measuring the same quantity with different instruments or 

methods.  

 Accidental errors: These result from an incorrect procedure, misuse, or malfunction of the 

measuring instrument. They are generally not taken into account in determining the measurement.  

But since the exact value is unknown, the error made cannot be known. The result is therefore always 

uncertain. This is referred to as measurement uncertainty.  

Note: The concept of error is theoretical and errors cannot be known exactly.  

 

Measurement uncertainty, often denoted as  ∆𝑋, is a parameter, associated with the result of the 

measurement, which characterizes the dispersion of the values that could reasonably be attributed to 

the measurand. It provides access to an interval around the measured value in which the exact value 

is assumed to belong. In practice, uncertainty can only be estimated.  

The three causes of uncertainties are: 

- The imperfection of the measuring instrument.  

- Defect in the measurement method.  

- The operator’s limitations when reading analog devices.  

Note: It is necessary to distinguish the terms "error" and "uncertainty". They are not synonymous but 

represent completely different concepts. They should not be confused or misused for one another.  

There are two types of uncertainty: 

 Absolute uncertainty ∆𝑋, which has the same unit as the measured quantity.  

The quantity 𝑋 being measured directly, we denote 𝑋𝑖 the value found at the i-th measurement. 

After repeating the measurement 𝑛 times, the average value of 𝑋 is: 

𝑋̅ =
𝑋1 + 𝑋2 + ⋯+ 𝑋𝑛

𝑛
 

The absolute uncertainty on 𝑋 is the largest of the differences between 𝑋 and its average 𝑋̅: 

∆𝑋 = 𝑠𝑢𝑝|𝑋 − 𝑋̅| 



 Relative uncertainty  
∆𝑋

𝑋
, which is expressed as a percentage.  

The result of a measurement is never a single value; it is always given as a range of probable 

values of the measurand 𝑋 = 𝑥 ± ∆𝑋 associated with a confidence level.  The exact value necessarily 

lies within this interval [𝑥 − ∆𝑋, 𝑥 + ∆𝑋].  The result can therefore be expressed in two ways: 

𝑋 = 𝑥 ± ∆𝑋 [𝑢𝑛𝑖𝑡] 

Either 

𝑋 = 𝑥 [𝑢𝑛𝑖𝑡] ±
∆𝑋

𝑋
[%] 

Example: The measured value of a resistance 𝑅 = 10Ω ± 5[%] or𝑅 = (10 ± 0.5)Ω. 

 

 Measurement Uncertainties of Analog Devices: The value measured by an analog measuring 

device is determined by a direct reading of the device’s deflection and is given by the following 

relationship: 

𝑋 =
𝑅 × 𝑀𝑅

𝑆
[𝑢𝑛𝑖𝑡] 

where 𝑅 is the reading (number of graduations read on the scale), 𝑀𝑅 is the measurement range 

(caliber), and 𝑆 is the scale (total number of graduations on the scale).  

Analog measuring devices generally have two types of uncertainties. One is instrumental 

uncertainty (or class) related to the device itself, and the other is reading uncertainty, related to the 

operator.  

Class uncertainty: It is a function of the device’s precision and is expressed as follows: 

∆𝑋𝐶 =
Class × 𝑀𝑅

100
 

Reading uncertainty: This is due either to poor eyesight or to poor reading conditions.  If 

we denote by ∆𝑅 the fraction of a graduation error made (also called the estimated fraction of 

division during measurement or reading error), the reading uncertainty will be given by the 

following relationship: 

∆𝑋𝑅 =
∆𝑅 × 𝑀𝑅

𝑆
 

The total uncertainty in a measurement using an analog device will be the sum of the class 

uncertainty and the reading uncertainty: 

∆𝑋 = ∆𝑋𝐶 + ∆𝑋𝑅 

If the measurement method is also a source of uncertainty to be evaluated (denoted ∆𝑋𝑀𝑒𝑡ℎ𝑜𝑑), 

the total uncertainty is then given by: 



∆𝑋 = ∆𝑋𝐶 + ∆𝑋𝑅 + ∆𝑋𝑀𝑒𝑡ℎ𝑜𝑑 

Example: We want to measure the voltage across a resistor using an analog voltmeter with the 

following characteristics: Accuracy Class: 𝐶𝑙 = 1.5, Total number of divisions: 𝑁 = 100.  For 

a measurement range of 𝑀𝑅 = 30𝑉, the reading is 𝑅 = 80, and for 𝑀𝑅 = 300𝑉, the value read 

on the same scale is 𝑅 = 8.  Assuming the operator makes a reading error of ∆𝑅 = 0.25, calculate 

for each range: 

1. The voltage 𝑈.  

2. The absolute uncertainty ∆𝑈.  

3. Which range is appropriate?  

Solution: 

a) For 𝑀𝑅 = 30𝑉, we have 𝑅 = 80 

1. Voltage Calculation 𝑈 

𝑈 =
𝑅 × 𝑀𝑅

𝑁
=

80 × 30

100
= 24𝑉 

2. Calculation of the absolute uncertainty ∆𝑈  

By definition, we have: ∆𝑈 = ∆𝑈𝐶 + ∆𝑈𝑅 

where ∆𝑈𝐶 =
Cl×𝑀𝑅

100
  is the instrumental (or class) uncertainty 

and ∆𝑈𝑅 =
∆𝑅×𝑀𝑅

𝑁
 is the reading uncertainty.  

∆𝑈 =
𝐶𝑙×𝑀𝑅

100
+

∆𝑅×𝑀𝑅

𝑁
=

1.5×30

100
+

0.25×30

100
= 0.45 + 0.075 = 0.525𝑉. 

Given a relative uncertainty: 
∆𝑈

𝑈
=

0.525

24
= 0.021875 ≈ 2.19%.  

b) For 𝑀𝑅 = 300𝑉 the value read is 𝑅 = 8 

1. Voltage Calculation 𝑈 

𝑈 =
𝑅 × 𝑀𝑅

𝑁
=

8 × 300

100
= 24𝑉 

2. Calculation of the absolute uncertainty ∆𝑈  

∆𝑈 =
𝐶𝑙×𝑀𝑅

100
+

∆𝑅×𝑀𝑅

𝑁
=

1.5×300

100
+

0.25×300

100
= 4.5 + 0.75 = 5.25𝑉. 

Given a relative uncertainty: 
∆𝑈

𝑈
=

5.25

24
= 0.21875 ≈ 21.87%.  

3. Therefore, for the voltage measurement 𝑈, we must choose the range 𝑀𝑅 = 30𝑉 for which 

the absolute and relative uncertainties are less than those obtained for the range 𝑀𝑅 =

300𝑉.  



 Measurement Uncertainties of Digital Devices: For digital display devices, the concept of class 

is not defined, but manufacturers provide an indication under the name of accuracy that allows the 

calculation of the total uncertainty on the measurement.  

This accuracy is very often given as a percentage of the reading plus or minus a constant expressed 

in units or points (digits) in the following way: 

∆𝑋 = ±(𝑥% 𝑜𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑛 𝑐𝑜𝑢𝑛𝑡𝑠) 

where 𝑥% is given by the manufacturer and 𝑛 is the number of error points committed by the 

device.  

In this case, the uncertainty is calculated according to the following relationship: 

∆𝑋 = 𝑥%𝑅 +
𝑛. 𝐺

𝑁
=

𝑥. 𝐿

100
+

𝑛. 𝐺

𝑁
 

With 𝐺 being the range used [unit] and 𝑅 being the reading displayed directly on the device’s 

display and N being the total number of points of the device. 

The accuracy of digital devices can be expressed in another way, as follows: 

∆𝑋 = ±(𝑥% 𝑜𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑦% 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒) 

The uncertainty is calculated, this time, by: 

∆𝑋 =
𝑥. 𝑅

100
+

𝑦. 𝐺

100
 

Example 1: We want to measure the voltage 𝑈 across an ohmic conductor, connected in a circuit, 

using a digital voltmeter with three displays and having 300 points and presenting an accuracy of 

(0.2% ± 1unité).  The measurement is made on the 30𝑉 range, the reading taken is 𝑅 = 24𝑉.  

Solution: On range 30𝑉, the resolution of the device is:1 unit ⟹
G

𝑁
=

30

300
= 0.1𝑉. 

The absolute uncertainty ∆𝑈 due to the device error is given by: 

∆𝑈 =
𝑥. 𝑅

100
+

𝑛. 𝐺

𝑁
=

0.2 × 24𝑉

100
+

1 × 30

300
≈ 0.15𝑉 

The corresponding relative uncertainty is therefore: 

∆𝑈

𝑈
=

0.15

24
≈ 0.006 ≈ 0.6% 

In the expression of ∆𝑈, the second term is generally the most important and as it is in the form 

(
G

𝑁
) it is advantageous, when making a measurement, to choose the smallest possible range.  

Example 2: We measured a voltage (𝑈 = 1𝑉) in a circuit with a digital voltmeter with a resolution 

of 1mV on its 2V range.  The indicated accuracy is: ∆𝑈 = ±0,1%𝑅 ± 2𝑑 , (With: 𝑅: reading; 𝑑: 

digit or unit).  Calculate the absolute uncertainty for a reading of 𝑅 = 1𝑉.  



Solution: The absolute uncertainty ∆𝑈 due to the device error is given by: 

∆𝑋 =
𝑥. 𝑅

100
+

𝑛. 𝐺

𝑁
=

0.1 × 1𝑉

100
+ 2 × 1𝑚𝑉 = 3𝑚𝑉 

Example 3: We measured a current (𝐼 = 2.5𝐴) in an electrical circuit with a 300-point digital 

ammeter, on its 4𝐴 range, whose accuracy indicated on the device’s instructions is 

±(0.1% 𝑜𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 0.01% 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒).  Calculate the absolute uncertainty for this 

measurement.  

Solution: The absolute uncertainty ∆𝑈 due to the device error is given by: 

∆𝑋 =
𝑥. 𝑅

100
+

𝑦. 𝐺

100
=

0.1 × 2.5

100
+

0.01 × 4

100
= 0.0025 + 0.0004 = 0.0029𝐴 

Note: For digital display devices, it is not required to calculate the uncertainty on the reading due to 

the operator, this uncertainty is already taken into account in the device’s accuracy.  

 

Suppose that the value of the quantity to be measured 𝑋𝑒 is obtained by the following 

mathematical relationship: 𝑋𝑒 = 𝑓(𝑎1, 𝑎2, … , 𝑎𝑛), with 𝑓 being a function of 𝑛 independent variables.  

Differential calculus can then be used to determine the uncertainties.  

The absolute uncertainty is expressed as follows: 

∆𝑋 = |
𝜕𝑓

𝜕𝑎1
| ∆𝑎1 + |

𝜕𝑓

𝜕𝑎2
| ∆𝑎2 + ⋯+ |

𝜕𝑓

𝜕𝑎𝑛
| ∆𝑎𝑛 

The corresponding relative uncertainty is given as follows: 

∆𝑋

𝑋
= |

𝜕𝑓

𝜕𝑎1
|
∆𝑎1

𝑋
+ |

𝜕𝑓

𝜕𝑎2
|
∆𝑎2

𝑋
+ ⋯+ |

𝜕𝑓

𝜕𝑎𝑛
|
∆𝑎𝑛

𝑋
 

Example 1: Determine the absolute and relative uncertainties when measuring a combination of 

two resistors in series: 𝑅 = 𝑅1 + 𝑅2.  

Solution: By applying the preceding formulas, we obtain: 

∆𝑅 = ∆𝑅1 + ∆𝑅2   or     
∆𝑅

𝑅
=

∆𝑅1+∆𝑅2

𝑅1+𝑅2
 

Example 2: Determine the absolute and relative uncertainties when measuring an electric current 

intensity given by: 𝐼 = 𝐼1 − 𝐼2 (the difference between two currents 𝐼1 and 𝐼2).  

Solution: Similarly, by applying the preceding formulas, we obtain: 

∆𝐼 = ∆𝐼1 + ∆𝐼2     or even   
∆𝐼

𝐼
=

∆𝐼1+∆𝐼2
𝑅1−𝑅2

 

Example 3: Determine the absolute and relative uncertainties in the case of energy given by: 𝑊 =

𝑈 × 𝐼 × 𝑡 (product of three variables) 

Solution: ∆𝑊 = 𝐼𝑡∆𝑈 + 𝑈𝑡∆𝐼 + 𝑈𝐼∆𝑡  or    
∆𝑊

𝑊
=

∆𝑈

𝑈
+

∆𝐼

𝐼
+

∆𝑡

𝑡
 

Example 4: Determine the absolute and relative uncertainties of the following quotient: =
𝑃

𝐼
 .  



Solution:  ∆𝑈 =
1

𝐼
∆𝑃 +

𝑃

𝐼2
∆𝐼  or  

∆𝑈

𝑈
=

∆𝑃

𝑃
+

∆𝐼

𝐼
 

We can then conclude that: 

- In the case of a sum or a difference, the absolute uncertainties are added.  

- In the case of a product or a quotient, the relative uncertainties are added.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

An ideal electromotive force generator 𝐸 supplies a series circuit consisting of a capacitor with 

capacitance 𝐶 and a resistance 𝑅.  The temporal evolution of the charge 𝑞(𝑡) of the initially discharged 

capacitor is 

𝑞(𝑡) = 𝐶𝐸(1 − 𝑒−𝑡/𝜏)           avec       𝜏 = 𝑅𝐶 

 Determine the dimension of the parameter 𝜏.  

 Verify the homogeneity of the relationship.  

We want to measure the value of a resistance using an ammeter and a voltmeter, using a long shunt 

(upstream arrangement) or a short shunt (downstream arrangement).  These two arrangements are 

represented in the figure below.  

We will denote 𝑟𝐴 the internal resistance of the ammeter and 𝑟𝑉 the internal resistance of the 

voltmeter.  

 Which of these two arrangements gives the true value of the resistance 𝑅?  Explain.  

 Calculate the corrections to be made to the results (
𝑉𝑚

𝑖𝑚
) in the upstream arrangement and (

𝑉𝑚

𝑖𝑅
) in 

the downstream arrangement to obtain the resistance value 𝑅.  

Numerical Application: Upstream arrangement: 𝑉𝑚 = 10𝑉, 𝑖𝑚 = 10𝑚𝐴, 𝑟𝐴 = 124Ω.  

Downstream arrangement: 𝑉𝑚 = 8.72𝑉, 𝑖𝑅 = 10𝑚𝐴, 𝑟𝑉 = 200kΩ.  

 

We have two resistances with respective values 𝑅1 = (10.7 ± 0.2) Ω  and 𝑅2 = (26.5 ± 0.5) Ω.  

 Give the value of the equivalent resistance 𝑅 and its absolute uncertainty ∆𝑅 when these two 

resistances are connected in series.  

 Same question as before in the case where they are connected in parallel.  

A circuit element subjected to a voltage 𝑈 is traversed by a current 𝐼.  The experimental study gave 

𝑈 = (120 ± 2) 𝑉  and 𝐼 = 24.2𝐴 ± 1.65%.  
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 Calculate the absolute uncertainty on the power consumed by this circuit element.  

 What is the corresponding relative error?  

 Express the result in two ways.  

 

 

 

 

 Using the voltage-current relationships for a resistor and a capacitor, we have 

𝑢𝑅 = 𝑅𝑖    and     𝑖 = 𝐶
𝑑𝑢𝑐

𝑑𝑡
 

Thus 

[𝑅𝐶] = [𝑅][𝐶] = [
𝑢𝑅

𝑖
] [

𝑖

𝑑𝑢𝑐
𝑑𝑡

] =
[𝑢𝑅]

[𝑖]

[𝑖][𝑡]

[𝑢𝑡]
= [𝑡] = T 

Therefore, the constant 𝜏 is homogeneous to a time.  

 By definition, the current intensity 𝑖 is equal to the derivative of the electric charge 𝑞 with respect 

to time 𝑡.  Then we have 

𝑖 =
𝑑𝑞

𝑑𝑡
    ⟹     [𝑖] = [

𝑑𝑞

𝑑𝑡
] =

[𝑞]

[𝑡]
=

[𝑞]

T
= I 

Therefore 

[𝑞] = IT 

Similarly, and taking into account that the argument of the exponential function is dimensionless, 

we have 

[𝐶𝐸(1 − 𝑒−𝑡/𝜏)] = [𝐶][𝐸][(1 − 𝑒−𝑡/𝜏)] = [𝐶][𝐸][1] = [𝐶][𝐸] 

From the previous question, we saw that the intensity of the current flowing through a capacitor 

is equal to the product of the capacitance 𝐶 and the time derivative of the voltage 𝑢𝑐.  Therefore 

[𝑖] = I = [𝐶
𝑑𝑢𝑐

𝑑𝑡
] = [𝐶]

[𝑢𝑐]

[𝑡]
= [𝐶]

[𝑢𝑐]

T
      ⟹      [𝐶][𝑢𝑐]  = IT = [𝐶][𝐸] 

We then deduce that 

[𝐶𝐸(1 − 𝑒−𝑡/𝜏)] =  IT 

Both sides have the same dimension.  The equation is therefore homogeneous.  

 

 

 

 



 

1.  Upstream assembly case: 

1.1 Expression of the exact value 𝑹𝒙 as a function of 𝑹𝑨 and 

𝑹𝒎 :  

The measured potential difference 𝑉𝑚 is the sum of the potential 

difference 𝑉𝑅 across the resistor 𝑅𝑥 and the potential difference 𝑉𝐴 

across the ammeter: 

𝑉𝑚 = 𝑉𝑅 + 𝑉𝐴 

From the figure opposite, we can find: 𝑉𝑚 = 𝑅𝑚𝐼𝑚, 𝑉𝑅 = 𝑅𝑥  𝐼𝑚 and 𝑉𝐴 = 𝑅𝐴𝐼𝑚 .  

Therefore, 

𝑅𝑚𝐼𝑚 = 𝑅𝑥  𝐼𝑚 + 𝑉𝐴𝐼𝑚 ⟹ 𝑅𝑚 = 𝑅𝑥  + 𝑅𝐴 

This will give: 

𝑹𝒙 = 𝑹𝒎 − 𝑹𝑨. 

1.2 Determination of the absolute uncertainty of the upstream method: 

The absolute uncertainty of this method is the difference between the measured value 𝑅𝑚 and the 

exact value 𝑅𝑥 assumed to be known.  According to the previous result, the absolute uncertainty is 

then given by: 

∆𝑅𝑥 = |𝑅𝑚 − 𝑅𝑥| ⟹ ∆𝑹𝒙 = 𝑹𝑨 

1.3 Derivation of the Relative Uncertainty of the Upstream 

Method: 

The relative uncertainty of this method is expressed for the case of 

an upstream setup by: 

∆𝑹𝒙

𝑹𝒙
=

𝑹𝑨

𝑹𝒙
 

Interpretation of Result: The relative uncertainty of the upstream 

method is lower if the resistance to be measured is much larger than the internal resistance of the 

ammeter (𝑅𝑥 ≫ 𝑅𝐴).  Thus, since the internal resistance of the ammeter is very small, the upstream 

setup is better suited for measuring large resistances.  

2.  Downstream Setup Case: 

2.1 Expression of the Exact Value 𝑹𝒙 as a Function of 𝑹𝑽 and 𝑹𝒎 : 
In this case, the measured current 𝐼𝑚 is the sum of the current 𝐼𝑅 flowing through the resistance 𝑅𝑥 

and the current 𝐼𝑉 flowing through the voltmeter: 

𝐼𝑚 = 𝐼𝑅 + 𝐼𝑉 

According to the figure opposite, we have: 𝐼𝑚 =
𝑉𝑚

𝑅𝑚
, 𝐼𝑅 =

𝑉𝑚

𝑅𝑥
  and 𝐼𝑉 =

𝑉𝑚

𝑅𝑉
.  

Substituting into the previous expression, we have: 

𝑉𝑚
𝑅𝑚

=
𝑉𝑚
𝑅𝑥

+
𝑉𝑚
𝑅𝑉

⟹
1

𝑅𝑚
=

1

𝑅𝑥
+

1

𝑅𝑉
⟹ 𝑅𝑚 =

𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉
 

A 

V 

𝑅𝑥 

𝑉𝑚  

𝐼𝑅
  

𝐼𝑉 

  

𝐼𝑚 

  

Downstream Assembly 

A 

V 

𝑅𝑥  

VR V
A
 

𝐼𝑚 

 

Upstream Assembly 

𝑉𝑚  



It then follows that 

𝑹𝒙 =
𝑹𝒙𝑹𝑽

𝑹𝑽 − 𝑹𝒙
 

2.2 Determination of the Absolute Uncertainty of the Downstream Method: 
The absolute uncertainty of this method is given by: 

∆𝑅𝑥 = |𝑅𝑚 − 𝑅𝑥| = |
𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉

− 𝑅𝑥| = |
𝑅𝑥𝑅𝑉

− 𝑅𝑥
2 − 𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉

| ⟹ ∆𝑹𝒙 = 
𝑹𝒙

𝟐

𝑹𝒙 + 𝑹𝑽

 

2.3 Derivation of the Relative Uncertainty of the Downstream Method for 𝑹𝒙 ≪ 𝑹𝑽: 
The relative uncertainty is expressed in this case by: 

∆𝑅𝑥

𝑅𝑥
=

𝑅𝑥

𝑅𝑥 + 𝑅𝑉
=

𝑅𝑥

𝑅𝑥 (1 +
𝑅𝑉
𝑅𝑥

)
=

1

1 +
𝑅𝑉
𝑅𝑥

 

Since 𝑅𝑥 ≪ 𝑅𝑉 ⟺
𝑅𝑉

𝑅𝑥
≫ 1 ⟹ 1 +

𝑅𝑉

𝑅𝑥
≈

𝑅𝑉

𝑅𝑥
, it follows that: 

∆𝑹𝒙

𝑹𝒙
=

𝑹𝒙

𝑹𝑽
 

Interpretation of Result: The relative uncertainty of the downstream method is lower if the 

resistance to be measured is much smaller than the internal resistance of the voltmeter (𝑅𝑥 ≪ 𝑅𝑉).  

Thus, since the internal resistance of the voltmeter is very large, this setup is better suited for 

measuring small resistances.  

3. Plotting the Curves of the Function 𝒇(𝑹𝒙) =
∆𝑹𝒙

𝑹𝒙
 for Each Setup: 

Curve of the Relative Uncertainty 𝒇(𝑹𝒙) =
∆𝑹𝒙

𝑹𝒙
 of Both Upstream and Downstream Setups.  

 

4. Choosing the Appropriate Setup to Measure Each of the Three 𝑹𝒎𝟏, 𝑹𝒎𝟐 and 𝑹𝒎𝟑: 

From the curves in the previous figure, we can draw the following conclusions: 

 If 𝑹𝒙 < √𝑹𝑨𝑹𝑽 ⟹ we use the downstream configuration;  

 If 𝑹𝒙 > √𝑹𝑨𝑹𝑽 ⟹ we use the upstream configuration;  

 If 𝑹𝒙 = √𝑹𝑨𝑹𝑽 ⟹ both configurations are equivalent in terms of precision;  

In our case, √𝑅𝐴𝑅𝑉 = 2kΩ, it follows from the previous statements that: 

𝒇(𝑹𝒙) =
∆𝑹𝒙

𝑹𝒙

 

𝑹𝒙 

𝒇(𝑹𝒙) =
𝑹𝑨

𝑹𝒙
  

√𝑹𝑨𝑹𝑽 

ඨ
𝑹𝑨

𝑹𝑽
 

Upstream Setup 

Downstream Setup 



 We use the downstream configuration to measure 𝑅𝑚1  since 𝑹𝒎𝟏 = 𝟐𝟓𝛀 < √𝑹𝑨𝑹𝑽 ;  

 We can use both configurations to measure 𝑅𝑚2 since 𝑹𝒎𝟐 = 𝟐𝐤𝛀 = √𝑹𝑨𝑹𝑽 ;  

 We use the upstream configuration to measure 𝑅𝑚3 since 𝑹𝒎𝟑 = 𝟏𝟓𝐤𝛀 > √𝑹𝑨𝑹𝑽.  

 Series Configuration: 

𝑅 = 𝑅1 + 𝑅2 = 10.7 + 26.5 = 37.2Ω 

∆𝑅 = ∆𝑅1 + ∆𝑅2 = 0.2 + 0.5 = 0.7Ω 

Therefore,𝑅 = 37.2 ± 0.7Ω 

 Parallel Configuration: 

𝑅 =
𝑅1𝑅2

𝑅1 + 𝑅2
= 7.62231Ω 

Δ𝑅 = |
𝜕𝑅

𝜕𝑅1
| ∆𝑅1 + |

𝜕𝑅

𝜕𝑅2
| ∆𝑅2 =

𝑅2(𝑅1 + 𝑅2) − 𝑅1𝑅2

(𝑅1 + 𝑅2)2
∆𝑅1 +

𝑅1(𝑅1 + 𝑅2) − 𝑅1𝑅2

(𝑅1 + 𝑅2)2
∆𝑅2 

After simplifications, we will have 

Δ𝑅 = 𝑅 (
∆𝑅1

𝑅1
+

∆𝑅2

𝑅2
−

∆𝑅1 + ∆𝑅2

𝑅1 + 𝑅2
) 

Δ𝑅 = 7.62231 × (0.018691 + 0.018868 − 0.018817) = 7.62231 × 0.018742 = 0.143 

Therefore, Δ𝑅 = 0.143 = 0.1 and 𝑅 = 7.6 ± 0.1Ω.  

We have 𝑈 = (120 ± 2)[𝑉] and 𝐼 = 24.2[𝐴] ± 1.65%.  

 Calculation of the absolute uncertainty on the power consumed 

𝑃 = 𝑈. 𝐼 = 120 × 24.2 = 2904W 

Power is a function of 𝑈 and 𝐼, 𝑃 = 𝑓(𝑈, 𝐼), therefore 

𝑑𝑃 =
𝜕𝑃

𝜕𝑈
𝑑𝑈 +

𝜕𝑃

𝜕𝐼
𝑑𝐼 

Or 

∆𝑃 = |
𝜕𝑃

𝜕𝑈
| ∆𝑈 + |

𝜕𝑃

𝜕𝐼
| ∆𝐼 

with 
𝜕𝑃

𝜕𝑈
= 𝐼 and

𝜕𝑃

𝜕𝐼
= 𝑈 ⇒ ∆𝑃 = 𝐼∆𝑈 + 𝑈∆𝐼 

where ∆𝑈 = 2𝑉 and
∆𝐼

𝐼
= 0.0165 ⇒ ∆𝐼 = 𝐼 × 0.0165 = 24.2 × 0.0165 

                                                      ⇒ ∆𝐼 ≈ 0.4𝐴 

Then 

∆𝑃 = 𝐼∆𝑈 + 𝑈∆𝐼 = 24.2 × 2 + 120 × 0.4 = 48.4 + 48 ⇒ ∆𝑃 = 96.4W 



 Calculation of the corresponding relative error 

(
∆𝑃

𝑃
)

%

= 100 ×
∆𝑃

𝑃
= 100 ×

96.4

2904
⇒ (

∆𝑃

𝑃
)

%

≈ 3.32% 

 Result Expressions 

1st way:𝑃 = (𝑃𝑚 ± ∆𝑃)[W] = (2904 ± 96.4)[W] 

2nd way: 𝑃 = 𝑃𝑚[W] ± (
∆𝑃

𝑃
)
%

= 2904[W] ± 3.32%.  

 

 



 

 

 

 

 

 

 
  

 

 

 

 

At the end of Chapter 2, the student will be able to: 

 Classify measurement methods, such as direct methods and indirect methods.  

 Understand the different methods of measuring current, voltage, and power in direct current 

(DC) and alternating current (AC) circuits.  

 Knowing how to measure resistance, capacitance, inductance, phase, and frequency using 

different methods.  

 Knowing how to calculate the uncertainty of different measurement techniques. 

 

 

 

 

In this chapter, we will explore the different basic classical measurement methods: determination of 

voltages, current intensities, resistances, inductances, capacitances, phase shifts, and frequencies.  

 

 

A direct or alternating voltage can be measured directly using an indicating device: deflection 

voltmeter, digital display voltmeter, oscilloscope, etc.  The accuracy of the results depends on the 

class of the devices used and the systematic error due to the respective resistances of the circuit to be 

measured and the voltmeter.  

Example: Let’s measure the potential difference (p.d.) between the two points A and B of the circuit 

in Figure 2-1.  Thevenin’s theorem allows us to represent the equivalent diagram with: 



𝑈𝐴𝐵 =
𝑅2

𝑅1 + 𝑅2
𝐸 

𝑅𝑖 =
𝑅1𝑅2

𝑅1 + 𝑅2
 

where 𝑈𝐴𝐵 is the open-circuit voltage and 𝑅𝑖  is the resistance measured from terminals A and B when 

the source is short-circuited.  

 

Figure 2-1: Direct voltage measurement 

In this case, the voltage measured 𝑈𝑚 by the voltmeter is given by 

𝑈𝑚 =
𝑅𝑉

𝑅𝑖 + 𝑅𝑉
𝑈𝐴𝐵 

with 𝑅𝑉 being the internal resistance of the voltmeter.  

For 𝑈𝑚  to be approximately equal to  𝑈𝐴𝐵, 𝑅𝑉  must be much greater than  𝑅𝑖.  

The direct method is used in direct current and alternating current in all cases where high 

measurement accuracy is not required.  For laboratory measurements, more refined methods are used.  

 

In alternating current, the effective value of the measured signal is often needed, also called the RMS 

value (Root Mean Square).  For this, a ferromagnetic or moving-coil voltmeter with a rectifier can be 

used when the measured signal is sinusoidal, or a digital voltmeter can be used.  

For TRMS (True Root Mean Square) digital voltmeters, there are two coupling modes: 

DC Mode: In this mode, the voltmeter displays the RMS value of the measured signal according 

to the algorithm shown in Figure 2-2.  

AC Mode: In this mode, the voltmeter indicates the RMS value of the AC component of the signal 

to be measured. That is, it first eliminates the DC component of the signal, then displays the RMS 

value of the AC component according to the algorithm presented in Figure 2-3.  

 

Figure 2-2: Diagram of a TRMS voltmeter in DC mode 

 

𝑅1 

𝑅𝑉 

𝐸 
A 

𝑅2 

B 

∫𝑈2 𝑈(𝑡) 𝑈2 √⬚ Display 



 

Figure 2-3: Diagram of a TRMS voltmeter in AC mode 

 

This method, also called the potentiometric method, is used in direct current and allows for the 

determination of a potential difference or an electromotive force (emf) with very high precision.  The 

setup for this method is shown in Figure 2-4.  There are three main circuits: 

 A calibrated circuit, also called a potentiometer, consisting of two resistors 𝑅1 and 𝑅2 whose 

sum remains constant and a calibration resistor  𝑅𝑇.  

 A calibration circuit consisting of a standard cell  𝐸0.  

 A voltage measurement circuit  𝑈𝑥.  

 

Figure 2-4: Voltage Measurement Circuit by Opposition Method 

 Practical Analysis of the Method: The two resistors 𝑅1 and 𝑅2 are adjustable resistance boxes 

whose sum always remains constant.  

The switch in position H allows the current 𝐼0  in the circuit to be adjusted using the resistor 𝑅𝑇.  

At galvanometer equilibrium: 

𝐸0 = 𝐼0 ∙ 𝑅1 ⟹ 𝐼0 =
𝐸0

𝑅1
 

After calibration, 𝑅𝑇  should no longer be adjusted.  

The switch in position B allows the measurement of 𝑈𝑥  by adjusting 𝑅1 and 𝑅2.  At galvanometer 

equilibrium, let 𝑅1
′
 and 𝑅2

′
 be the new values of 𝑅1 and 𝑅2 with 𝑅1 + 𝑅2 = 𝑅1

′ + 𝑅2
′
.  

Since the current 𝐼0  has not changed: 

𝑈𝑥 = 𝑅1
′ ∙ 𝐼0 =

𝑅1
′

𝑅1
𝐸0 

∫𝑈2 𝑈(𝑡) 𝑈2 √⬚ Display 
High-pass 

Filter 

𝑅1 

𝐸0 

𝐸 

A 

𝑅2 

𝑅𝑇 

B 

B 

H 

𝑅𝑝 
𝐼0 𝐼𝐺 

𝑈𝑥 



Generally, the current 𝐼0 is chosen such that it has a simple value, a power of 10 for example.  It 

should not be too high (difficulty of adjustment), it should not be too low (appearance of parasitic 

contact resistances).  It is customary to set 𝐼0 such that 

10−5A ≤ 𝐼0 ≤ 10−3A 

The source resistance 𝑅𝑝 is a protective resistor limiting the battery’s current flow.  It is short-

circuited when close to equilibrium. 𝑅𝑝 = 1MΩ. 

 

 

A direct or alternating current intensity can be measured directly using an indicating instrument.  As 

with voltage measurement, the accuracy depends on the class error of the instruments and the 

systematic error.  The latter appears because the insertion of the ammeter into the circuit modifies its 

resistance (Figure 2-5).  

The systematic error is negligible if 𝑅𝐴 ≤
∑|𝑅|

100
A.  This condition is met in most cases.  Indeed, an 

ammeter generally has a very low internal resistance.  

 

Figure 2-5: Direct Current Measurement 

 

 

 

The opposition method is used in direct current and amounts to determining the voltage developed 

across a standard resistor 𝑅 by the current to be measured 𝐼𝑥.  The resistor 𝑅 is of the shunt type and 

is equipped with four terminals: two current terminals, used to bring in the current; the other two 

terminals, called voltage terminals, are used to sample the voltage and define the terminals of the 

standard itself (This type of resistor will be discussed in detail in sub-paragraph 2.4.3).  The two other 

standard resistors 𝑅1 and 𝑅2 of the setup maintain their constant sum during the measurements.  

𝑅𝐴 

𝑅 𝐸 



 

Figure 2-6: Current measurement circuit by opposition method 

The switch is in position 1, at equilibrium, we will have 

𝐼0 =
𝐸0

𝑅1
 

The switch is in position 2, at equilibrium, 

𝑈𝑥 = 𝑅1
′ ∙ 𝐼0 =

𝑅1
′

𝑅1
𝐸0 

And since 

𝑈𝑥 = 𝑅 ∙ 𝐼𝑥 

We then obtain 

𝐼𝑥 =
𝑅1

′

𝑅 ∙ 𝑅1
𝐸0 

 

A shunt is a calibrated resistor designed for current measurement.  To do this, the voltage across it is 

measured using a voltmeter connected in parallel.  Using Ohm’s law, the current flowing through the 

shunt can be deduced.  It can measure currents of several kiloamperes (𝑘𝐴).  

In order to limit the voltage drop caused by its use and to limit losses due to the Joule effect in the 

shunt, it must have a very low resistance value, on the order of a few 𝑚Ω.  However, it should not be 

too small so that the voltage can be transmitted and measured without auxiliary disturbance.  

Shunts are used for measuring direct and alternating currents, whether low or high frequency.  

 

The degree of opposition to the flow of electric current in a circuit defines the electrical resistance of 

that circuit.  Their values vary over a very wide range from 10−8Ω up to  1015Ω.  From a measurement 

perspective, there are three main types of resistances according to their values.  

 

To allow for the selection of measurement methods, resistances can be classified, according to their 

values, into three main categories: 

𝑅1 

𝐸0 

𝐸 

𝑅2 

𝑅𝑇 

 

𝑅𝑝 

𝐼0 𝐼𝐺 

𝑈𝑥 

𝑅ℎ 

𝑅 𝐼𝑥 

 



  all resistances less than or equal to 1Ω.  

  all resistances ranging from  1Ωup to 100kΩ. 

  all resistances greater than 100kΩ. 

Practically, it is impossible to have a single method or a single instrument that can measure all these 

ranges of values.  

 

There are several methods for measuring medium resistances.  In this course, we will discuss the 

following methods: Volt-ammeter method, Substitution method, and Wheatstone Bridge method.  

  This is the simplest method for measuring medium resistances in 

laboratories. It consists of measuring the value of an unknown resistance by applying Ohm’s law.  𝑅𝑥  

𝑅𝑥 =
𝑉

𝐼
 

where 𝑉 is the measured voltage and 𝐼  is the measured current.  

To measure these two electrical quantities, we simply use an ammeter and a voltmeter.  

Depending on the position of the voltmeter (before or after the ammeter), there are two possible 

setups: the upstream setup (long shunt) and the downstream setup (short shunt).  

 Upstream setup: The diagram of this setup is shown in Figure 2-7.  Here, the ammeter measures 

the true value of the current flowing through the resistance to be measured  𝑅𝑥.  On the other hand, 

the voltmeter measures the voltage across the resistance and ammeter assembly.  

 

Figure 2-7: Upstream setup 

According to this setup, the measured resistance,  𝑅𝑚, is given by 

𝑅𝑚 =
𝑉

𝐼
=

𝑉𝑥 + 𝑉𝐴

𝐼
=

𝐼 ∙ 𝑅𝑥 + 𝐼 ∙ 𝑅𝐴

𝐼
= 𝑅𝑥 + 𝑅𝐴 

Therefore 

𝑅𝑥 = 𝑅𝑚 − 𝑅𝐴 

where 𝑅𝑚 is the measured resistance,  𝑉𝑥 is the potential difference across the resistance 𝑅𝑥, 𝑉𝐴 is 

the voltage across the ammeter, and 𝑅𝐴 is the internal resistance of the ammeter.  

The absolute uncertainty associated with the upstream setup is ∆𝑅𝑥 = |𝑅𝑚 − 𝑅𝑥| = 𝑅𝐴.  

The relative uncertainty will therefore be  
∆𝑅𝑥

𝑅𝑥
=

𝑅𝐴

𝑅𝑥
.  

𝑅𝑥 𝑉𝑥 
𝑉 

𝐼 



It is clear that the relative uncertainty is all the lower if the value of the resistance to be measured 

is sufficiently large compared to the internal resistance of the ammeter (𝑅𝑥 ≫ 𝑅𝐴).  

Consequently, the upstream setup is better suited for measuring high-value resistances.  

 Downstream setup: In this setup, the voltmeter measures the true value of the voltage across the 

resistance to be measured 𝑅𝑥, and the ammeter measures, this time, the sum of the currents flowing 

through the resistance 𝑅𝑥 and through the voltmeter.  The diagram of this setup is presented in the 

following figure.  

 

Figure 2-8: Downstream Setup 

According to the circuit above, we have 

𝐼 = 𝐼𝑥 + 𝐼𝑉 =
𝑉

𝑅𝑥
+

𝑉

𝑅𝑉
 

Where 𝐼𝑥 is the current flowing through the resistor 𝑅𝑥, 𝐼𝑉 is the current flowing in the voltmeter 

branch, and 𝑅𝑉 is the internal resistance of the voltmeter.  

The measured resistance, 𝑅𝑚, is therefore given by 

𝑅𝑚 =
𝑉

𝐼
=

𝑉
𝑉
𝑅𝑥

+
𝑉
𝑅𝑉

=
𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉
 

Therefore 

𝑅𝑥 + 𝑅𝑉 =
𝑅𝑥𝑅𝑉

𝑅𝑚
⟺ 𝑅𝑥 [1 −

𝑅𝑉

𝑅𝑚
] = −𝑅𝑉 

𝑅𝑥 =
−𝑅𝑚𝑅𝑉

𝑅𝑚 − 𝑅𝑉
= 𝑅𝑚 (

1

1 −
𝑅𝑚
𝑅𝑉

) 

The absolute uncertainty related to the downstream setup is 

∆𝑅𝑥 = |𝑅𝑚 − 𝑅𝑥| = |
𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉
− 𝑅𝑥| = |

𝑅𝑥𝑅𝑉 − 𝑅𝑥
2 − 𝑅𝑥𝑅𝑉

𝑅𝑥 + 𝑅𝑉
| =

𝑅𝑥
2

𝑅𝑥 + 𝑅𝑉
 

The corresponding relative uncertainty will therefore be 

  
∆𝑅𝑥

𝑅𝑥
=

𝑅𝑥

𝑅𝑥 + 𝑅𝑉
=

1

1 +
𝑅𝑉

𝑅𝑥

 

This time, the relative uncertainty is even lower if the value of the resistance to be measured is 

sufficiently smaller than the internal resistance of the voltmeter (𝑅𝑥 ≪ 𝑅𝑉).  

Consequently, the downstream setup is better suited for measuring low-value resistances.  

𝑅𝑥 
𝑉 

𝐼 𝐼𝑉 𝐼𝑥 



Example 1: 

A resistance 𝑅  is measured with the downstream setup of Figure 2-2.  The measured current is 0.5𝐴 

and the value read on the voltmeter is 500𝑉.  If the internal resistance of the ammeter is 𝑅𝑎 = 10Ω 

and the sensitivity of the voltmeter for the voltage range 1000𝑉 is 10kΩ/𝑉.  Calculate the value of 

the resistance 𝑅.  

Substitution Method: The setup for this method is shown in Figure 2-9.  It consists of a known 

standard resistor , a rheostat  to adjust the current intensity in the circuit, and the resistance to be 

measured.  The setup is powered by an electromotive force (emf) generator . 𝑅𝑅ℎ  𝑅𝑥𝐸 

Initially, the switch is set to position 1 (it is then connected to the resistance 𝑅𝑥).  In this case, the 

current 𝐼1  measured by the ammeter is given by 

𝐼1 =
𝐸

𝑅𝑥
 

 

Figure 2-9: Substitution Method Setup 

Subsequently, the switch is set to position 2 (it is now connected to the known resistance 𝑅).  This 

time, the current, denoted 𝐼2 , is given as follows 

𝐼2 =
𝐸

𝑅
 

By dividing the two equations, we obtain 

𝑅𝑥 = 𝑅 ∙
𝐼2
𝐼1

 

Wheatstone Bridge Method: The Wheatstone bridge is the most suitable circuit for measuring 

medium resistances. It consists of two fixed, calibrated, and known resistances  𝑅1 and 𝑅3, a 

known variable (adjustable) resistance 𝑅2, the resistance to be measured 𝑅𝑥, a detector which is 

generally a galvanometer G and a DC power source (see Figure 2-10). 

𝑅𝑥 

𝑅 

𝐸 

1 

2 

𝑅ℎ 



 

Figure 2-10: Wheatstone Bridge 

The bridge is balanced when the potential difference between the two nodes C and D is zero (i.e., 

𝑉𝐶 = 𝑉𝐷).  This can be achieved by simply adjusting the resistances 𝑅1, 𝑅2 and 𝑅3 so as to cancel 

the current 𝐼G  in the branch CD (the galvanometer needle does not deflect).  

Indeed, at bridge equilibrium (i.e., if 𝐼G = 0), we can write 

𝐼1 = 𝐼2       and       𝐼3 = 𝐼𝑥 

𝑈𝐴𝐶 = 𝑈𝐴𝐷       and       𝑈𝐶𝐵 = 𝑈𝐷𝐵 

𝑈𝐶𝐵 = 𝑉𝐶 = 𝑈𝐷𝐵 = 𝑉𝐷 

With 𝑈𝐶𝐵 = 𝑉𝐶 − 𝑉𝐵 = 𝑉𝐶 and 𝑈𝐷𝐵 = 𝑉𝐷 − 𝑉𝐵 = 𝑉𝐷 (The reference potential 𝑉𝐵 is considered 

zero).  

The potentials of the two points C and D are obtained using the voltage divider bridge and are 

equal to 

𝑉𝐶 =
𝑅2

𝑅1+𝑅2
𝐸        and        𝑉𝐷 =

𝑅𝑥

𝑅𝑥+𝑅3
𝐸 

By equating the two potentials 𝑉𝐶 and 𝑉𝐷 calculated previously, we find 

𝑉𝐶 = 𝑉𝐷 ⟺
𝑅2

𝑅1 + 𝑅2
=

𝑅𝑥

𝑅𝑥 + 𝑅3
 

After simplification, the value of 𝑅𝑥 is therefore 

𝑅𝑥 = 𝑅2 ∙
𝑅3

𝑅1
 

Practically, finding the balance in a Wheatstone bridge consists of giving the ratio,  
𝑅3

𝑅1
 , a certain 

value and then varying 𝑅2 until the detector remains at zero.  

The sensitivity of the bridge is defined by the smallest variation of the adjustment branch 𝑅2  that 

causes a perceptible imbalance of the bridge.  We define the voltage that appears across the 

galvanometer at equilibrium by: 

 𝑈 = 𝑉𝐶 − 𝑉𝐷 = [
𝑅2

𝑅1+𝑅2
−

𝑅𝑥

𝑅𝑥+𝑅3
] 𝐸 = [

𝑅2𝑅3−𝑅1𝑅𝑥

(𝑅1+𝑅2)(𝑅𝑥+𝑅3)
] 𝐸 = 0 

𝑅𝑥 

𝐸 

A 

𝐼1 

𝐼𝑥 

B 

C D 

𝐼3 

𝐼2 

𝑅1 𝑅3 

𝑅2 

𝐼G 



For a small variation ∆𝑅2  of the adjustment branch, an imbalance voltage ∆𝑈  is detected.  It 

follows: 

∆𝑈 = [
(𝑅2 + ∆𝑅2)𝑅3 − 𝑅1𝑅𝑥

(𝑅1 + 𝑅2 + ∆𝑅2)(𝑅𝑥 + 𝑅3)
] 𝐸 

If we neglect ∆𝑅2  compared to (𝑅
1
+ 𝑅2), and considering that 𝑅2𝑅3 = 𝑅1𝑅𝑥, we obtain: 

∆𝑈 = [
𝑅3∆𝑅2

(𝑅1 + 𝑅2)(𝑅𝑥 + 𝑅3)
] 𝐸 = [

∆𝑅2

𝑅2

(
𝑅1

𝑅2
+ 1) (

𝑅𝑥

𝑅3
+ 1)

]𝐸 

By calling 𝑥  the two ratios  
𝑅1

𝑅2
  and 

𝑅3

𝑅𝑥
 , this last relationship is then written as follows: 

∆𝑈 = [
𝑥

∆𝑅2

𝑅2

(𝑥 + 1)2
] 𝐸 

The sensitivity of the bridge is then defined by 

𝜎 =
∆𝑈

∆𝑅2

𝑅2

=
𝑥

(𝑥 + 1)2
𝐸 

This function goes through a maximum for  𝑥 =
𝑅3

𝑅𝑥
= 1.  We can conclude by emphasizing that 

the sensitivity of a bridge increases with the supply voltage and is maximum when the equality of 

resistances 𝑅𝑥 and 𝑅3  is achieved.  

The sensitivity error, denoted  𝜀, is defined by the ratio 
∆𝑅2

𝑅2
  destroying the equilibrium.  

𝜀𝑠% = 100 ×
∆𝑅2

𝑅2
 

Experimentally, it is determined by varying 𝑅2 by ∆𝑅2 to cause a perceptible deflection  ∆𝛼 around 

zero on the galvanometer.  This error is considered negligible if it obeys the inequality: 

𝜀𝑠 ≤
𝜀𝑒

10
 

where 𝜀𝑒 is the construction error of the resistance  𝑅2.  

Example 1: 

Consider a Wheatstone bridge (like the one in Figure 2-4), with  𝑅1 = 7k and  𝑅3 = 3.5k.  The 

bridge is balanced when  𝑅2 = 5.51k.  

1. Calculate the value of the unknown resistance  𝑅𝑥.  

2. Determine the resistance measurement range for this bridge if  𝑅2 is adjustable from 1k up 

to8k. 

Solution: 

1. Calculation of the unknown resistance  𝑅𝑥 : 

We have 



𝑅𝑥 = 𝑅2

𝑅3

𝑅1
= 5.51k×

3.5k

7k
⇒ 𝑅𝑥 = 2.755k 

2. If 𝑅2 = 1k : 

𝑅𝑥 = 𝑅2

𝑅3

𝑅1
= 1k×

3.5k

7k
⇒ 𝑅𝑥 = 500 

If 𝑅2 = 8k : 

𝑅𝑥 = 𝑅2

𝑅3

𝑅1
= 8k×

3.5k

7k
⇒ 𝑅𝑥 = 4k 

Then the measurement range of the bridge is[500, 4k ] 

 

When the resistance to be measured is less than  1Ω, the previous methods often give inaccurate 

results, because of the contact resistance that establishes the connection of the resistance to be 

measured with the others.  These contacts can introduce errors of the same order of magnitude as the 

quantity to be measured.  It is then necessary to use special methods designed to eliminate these 

contacts, or at least to make them negligible.  We will mention here the following three methods: 

Volt-ampere method, Kelvin bridge method and Kelvin double bridge method.  

Low ohmic value resistors or “shunts” are very common in practice for measuring and 

controlling currents (ammeter shunt, dynamo armature sections, connection cables or wires, etc.). The 

equivalent diagram in Figure 2-11 (a) shows that the electrical connection wire can modify the value 

of a resistance 𝑅𝑥.  The actual resistance between the two connection points N and M is 𝑅𝑥 + 2𝑟 and 

not  𝑅𝑥.  It is therefore important to make the contact resistance 𝑟 negligible compared to  𝑅𝑥.  

Indeed, measuring a small resistance with proper accuracy involves the use of four-terminal 

resistors, in order to eliminate the influence of contact resistances (Figure 2-11 (b)). The two terminals 

N-M, called the current terminals of the resistor, are used to supply the current; the other two 

terminals, called voltage terminals, always located between the N-M terminals, are used to measure 

the voltage and define the terminals of the standard itself. A device for measuring small resistances 

must therefore also have four terminals: two terminals supplying the current 𝐼 and two others allowing 

the measurement of the potential difference  𝑈.  The resistance 𝑅𝑥 is then calibrated between the two 

voltage terminals with 𝑅𝑥 =
𝑈

𝐼
 and the contact resistances are then eliminated.  

 
Figure 2-11:  (a) Equivalent diagram of a real resistor  (b) Four-terminal resistor 

We will now discuss all these methods in detail in the following pages.  

𝑟 𝑅𝑥 

 

𝐼 
N M 

𝑟 𝑟 𝑅𝑥 

𝐼 
N M 

𝑟 

𝑈 

(a) (b) 



Voltammetric Method: This method has already been discussed in Section 2.4.2. It can also be 

used to measure resistances of low ohmic values.  

Kelvin Bridge Method: This method offers high precision in the measurement of low 

resistances. The Wheatstone bridge cannot be used because the resistances of contacts and 

connecting cables are no longer negligible compared to the resistances to be measured, which 

introduces errors in the measurement of small resistance values. To overcome this drawback, it is 

necessary to use the Kelvin bridge, which is just a modified version of the Wheatstone bridge 

(Figure 2-12).  

The resistance 𝑟 represents the resistance of the connecting lead connecting the two resistances 

𝑅3  and  𝑅𝑥.  The resistance 𝑅𝑥  being the unknown resistance to be measured.  The galvanometer 

can be connected either at point a or at point c.  When it is connected at point a, the resistance 𝑟 

of the connecting lead is added to the unknown resistance  𝑅𝑥.  The measured value of the 

resistance 𝑅𝑥  is therefore too high compared to the true value.  And if it is connected at point c, 

the resistance 𝑟 of the connecting lead is added to the known resistance  𝑅3.  The value of 𝑅3 

therefore becomes greater than its true value and the measured value of  𝑅𝑥  becomes lower than 

the desired value.  

 
Figure 2-12: Kelvin Bridge 

Now, instead of using one of the two connection points a and c which introduce errors in the 

measurement result, the galvanometer is connected, this time, to any intermediate point b, between 

the two points a and c, so that the following condition is verified, 

𝑟1

𝑟2
=

𝑅1

𝑅2
 

In this case, the bridge balance equation is then given by the relation, 

𝑅𝑥 + 𝑟1

𝑅3 + 𝑟2
=

𝑅1

𝑅2
⟺ 𝑅𝑥 + 𝑟1 = (𝑅3 + 𝑟2)

𝑅1

𝑅2
 

Taking into account that 𝑟 = 𝑟1 + 𝑟2 and 
𝑟1

𝑟2
=

𝑅1

𝑅2
, then, the two resistances 𝑟1 and 𝑟2 can be 

calculated as follows, 

𝑅𝑥 

𝐸 

a 

c 

𝑅1 𝑅3 

𝑅2 

b 𝑟Ω 
𝑟1Ω 

𝑟2Ω 



𝑟1

𝑟2
+ 𝟏 =

𝑅1

𝑅2
+ 𝟏 ⟺

𝑟1 + 𝑟2

𝑟2
=

𝑅1 + 𝑅2

𝑅2
 

𝑟

𝑟2
=

𝑅1 + 𝑅2

𝑅2
 

The resistance 𝑟2 is therefore 

𝑟2 = 𝑟
𝑅2

𝑅1 + 𝑅2
 

Similarly, the resistance 𝑟1 is given by 

𝑟1 = 𝑟 − 𝑟2 = 𝑟 − 𝑟
𝑅2

𝑅1 + 𝑅2
 

𝑟1 = 𝑟
𝑅1

𝑅1 + 𝑅2
 

By substituting the two expressions of  𝑟1 and 𝑟2 in the bridge balance equation, we will have 

𝑅𝑥 + 𝑟1 = (𝑅3 + 𝑟2)
𝑅1

𝑅2
⟺ 𝑅𝑥 + 𝑟

𝑅1

𝑅1 + 𝑅2
= (𝑅3 + 𝑟

𝑅2

𝑅1 + 𝑅2
)
𝑅1

𝑅2
 

⟺ 𝑅𝑥 + 𝑟
𝑅1

𝑅1 + 𝑅2
= 𝑅3

𝑅1

𝑅2
+ 𝑟

𝑅2

𝑅1 + 𝑅2

𝑅1

𝑅2
 

𝑅𝑥 = 𝑅3

𝑅1

𝑅2
 

Then, the standard bridge balance equation does not depend on the resistance 𝑟.  The effect of this 

resistance is completely eliminated by connecting the galvanometer to the intermediate position b.  

The process described above is obviously not a practical way to achieve the desired measurement 

result, as it is certainly difficult to determine the proper bridge balance point.  

Kelvin Double Bridge Method(3): The purpose of this bridge arrangement is to eliminate the 

influence of contact resistances by allowing them to be neglected. The method consists of 

implementing the circuit shown in Figure 2-13. The unknown resistance 𝑅𝑥  and the comparison 

resistance 𝑅3 are four-terminal resistors and are connected in series using an intermediate 

resistance 𝑟.  The four other resistances  𝑅1, 𝑅2,  𝑅1
′
and 𝑅2

′
 are arranged as shown in the figure and 

are connected by a galvanometer G.     

                                                           
(3)The Kelvin double bridge is also called the Thomson bridge.  



 

Figure 2-13: Kelvin Double Bridge 

The setup and operating principle of the Kelvin double bridge are similar to those of the 

Wheatstone bridge, except that the former has additional resistances.  The Kelvin double bridge 

uses a second pair of ratio arms, hence the name double bridge.  

Bridge balance can be achieved by a suitable adjustment of the resistances 𝑅1, 𝑅2, 𝑅1
′  and 𝑅2

′
, such 

that the ratio of the resistances of the first arm 
𝑅1

𝑅2
 is equal to that of the resistances of the second 

arm  
 𝑅1

′  

𝑅2
′ .  

Under balanced conditions, no current flows in the galvanometer, which means that the voltage 

drop between A and C, 𝑈𝐴𝐶, is equal to the voltage drop 𝑈𝐴𝑀𝐷 between A and D.  

Now, 

𝑈𝐴𝐶 =
𝑅1

𝑅1 + 𝑅2

 𝑈𝐴𝐵 

with 

𝑈𝐴𝐵 = (𝑅𝑥 + 𝑅3 +
( 𝑅1

′ +  𝑅2
′ ) 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼  

and 

𝑈𝐴𝑀𝐷 = 𝑅𝑥𝐼 +  𝑅1
′ 𝑖′ = 𝑅𝑥𝐼 +  𝑅1

′  (
𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼  

or 

𝑈𝐴𝑀𝐷 = (𝑅𝑥 + 
 𝑅1

′ 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼 = (𝑅𝑥 + 

 𝑅1
′

 𝑅1
′ +  𝑅2

′
×

( 𝑅1
′ +  𝑅2

′ ) 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼  

At equilibrium, we have𝑈𝐴𝐶 = 𝑈𝐴𝑀𝐷 

𝑅1

𝑅1 + 𝑅2

 (𝑅𝑥 + 𝑅3 +
( 𝑅1

′ +  𝑅2
′
) 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼 = (𝑅𝑥 + 

 𝑅1
′

 𝑅1
′ +  𝑅2

′
×

( 𝑅1
′ +  𝑅2

′
) 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
) 𝐼 

𝑅3 

𝐸 

M N 

𝑅1 

𝑅𝑥 

𝑅2 

𝑟 

𝑅ℎ 

𝑅1
′  𝑅2

′  

A B 

C 

D 

𝐼 𝐼 

𝑖′ 𝑖′ 

𝑖 𝑖 



After some algebraic simplifications, we will have 

𝑅𝑥 =
𝑅1

𝑅2
𝑅3 + 

 𝑅2
′ 𝑟

 𝑅1
′ +  𝑅2

′ + 𝑟
(
𝑅1

𝑅2
−

 𝑅1
′

 𝑅2
′
) 

Now, if 
𝑅1

𝑅2
=

 𝑅1
′

 𝑅2
′ , the value of 𝑅𝑥 is then 

𝑅𝑥 =
𝑅1

𝑅2
𝑅3 

 

There are several methods for measuring high resistances.  Here, we will only discuss the voltage 

drop method.  

Voltage Drop Method: The electrical circuit for this method is shown in Figure 2-14. The 

unknown resistanceis connected in parallel with a capacitor and an electrostatic voltmeter. The 

capacitor is initially charged by means of a battery, and then it discharges through the resistance 

following an exponential law.  𝑅𝑥  𝐶 𝑅𝑥 

 

Figure 2-14: Voltage Drop Method 

The voltage across the capacitor, at time t, is 

𝑢 = 𝐸𝑒
−

𝑡
𝐶𝑅𝑥 

The unknown resistance 𝑅𝑥 is then given by 

𝑅𝑥 =
𝑡

𝐶 ln (
𝐸
𝑢)

 

Knowing 𝐸, 𝑢, 𝐶 and 𝑡 and the unknown resistance 𝑅𝑥 can then be easily calculated.  

Series Voltmeter Method: This method is also used for the measurement of high resistances. 

The setup for this method is shown in Figure 2-15. It consists of a voltmeter with internal 

resistance, 𝑅𝑉 the resistance to be measured 𝑅𝑥, and a DC voltage generator 𝐸. 

 

Figure 2-15: Series Voltmeter Method 

By applying Ohm’s law, the resistance 𝑅𝑥 is then given by 

𝐸 𝑅𝑥 𝐶 𝑢 

𝐸 𝑅𝑥 

𝑢 
𝑖 



𝑅𝑥 =
𝐸 − 𝑢

𝑖
 

And since, 𝑢 = 𝑅𝑉𝑖, then the resistance 𝑅𝑥  is expressed as follows: 

𝑅𝑥 = (
𝐸

𝑢
− 1)𝑅𝑉 

 

 

In general, the voltammetric method (upstream and downstream setups) allows for the measurement 

of impedance 𝑍 at the industrial frequency.  

An electrical capacitor is defined by its capacitance, that is, the ratio of its electric charge to its 

potential difference.  The unit of capacitance is the farad.  A capacitor is an open switch in direct 

current.  In alternating current, it presents a complex impedance 

𝑍𝐶
̅̅̅̅ =

1

𝑗𝜔𝐶
 

and shifts the current by 
𝜋

2
 ahead of the voltage.  

with 𝜔 = 2𝜋𝑓 and 𝑓  the frequency given in Hz.  

In reality, a real capacitor is never perfect, and capacitor losses are referred to as the active energy 

dissipated as a result of insulation leakage and losses due to dielectric hysteresis.  

Two electrical equivalences allow for the representation of a real capacitor.  

 Parallel Equivalence: The parallel resistance represents the losses (Figure 2-16 ).  The current 

diagram allows for the definition of the loss angle 𝛼  of the capacitor (Figure 2-16 ).  

tan(𝛼) =
𝐼𝑅
𝐼𝐶

=

𝑈
𝑅

𝑈𝐶𝜔
⇒ tan(𝛼) =

1

𝑅𝐶𝜔
 

The current-voltage phase shift is not 
𝜋

2
 but rather (

𝜋

2
− 𝛼).  

 Series Equivalence: The losses are represented here by a series resistance (Figure 2-16 ).  The 

loss angle 𝛼  of the capacitor in this case is defined by 

tan(𝛼) = 𝑟𝐶𝜔 

Remark: These two equivalences will find application in the study of AC bridges.  

 
Figure 2-16: Equivalent Diagrams of a Capacitor 

𝐶 

𝐼𝑅 

𝐼𝐶  

𝑅 

𝑅 𝐶 

𝑈 

𝐼𝐶  

 

𝐼𝑅 

𝐼 
𝛼 

   



In most cases, the impedance of the capacitor is quite high (𝑍𝐶 ≫ 𝑍𝑉).  The upstream setup is therefore 

the most suitable.  

 

Figure 2-17: Impedance Measurement of a Capacitor by Upstream Setup 

This method only allows for the determination of the impedance of a capacitor at low frequencies 

(LF) and the value of its capacitance.  The loss angle, very small at industrial frequencies, cannot be 

measured; therefore, it only requires a single measurement in alternating current.  

The impedance of the capacitor is measured by: 

𝑍𝐶 =
𝑈𝐴𝐶

𝐼𝐴𝐶
=

1

𝐶𝜔
⇒ 𝐶 =

1

𝑍𝐶𝜔
 

This method is used, in the low frequency (LF) domain, for its speed and ease of implementation.  It 

only applies to non-polarized capacitors.  The accuracy of the results is approximately 1%.  

Remark: The capacitance of a capacitor can be measured directly using a capacitance meter.  

 
 

A coil traversed by a variable current is the seat of a self-induced electromotive force (emf).  This 

emf is all the higher as the coefficient of self-induction, or inductance 𝑍𝐿, is large.  Depending on 

whether the coil has an iron core or not, the electrical equivalent is different (See Figure 2-18  and 

).  

 
Figure 2-18: Equivalent diagrams of a coil 

Here, we assume a coil without an iron core, so the equivalent diagram that represents a series 

arrangement (the ohmic resistance 𝑅 and the inductance 𝐿 of the winding) will be adopted.  The 

complex impedance of such a coil is defined by the relationship: 

𝑍𝐿
̅̅ ̅ = 𝑅 + 𝑗𝜔𝐿 

For the case of a coil, two measurements are necessary.  

DC Measurement: This allows for the definition of the resistance value.𝑅  The methods used 

have already been discussed in the previous section 2.4.  

AC Measurement: This allows for defining the impedance  𝑍𝐿 magnitude of the coil.  The value 

𝑍𝑉 

𝑍𝐶 =
1

𝐶𝜔
 𝑈𝐴𝐶  

𝐼𝐴𝐶  
𝑍𝐴 

𝐿 𝑅 𝑅 
𝐿 

  
𝑅𝑓 



of  𝑍𝐿determines the type of circuit to use.  Generally, the impedance of a coil 𝑍𝐿 is low (𝑍𝐿 ≪ 𝑍𝑉).  

The downstream circuit is therefore the most suitable.  

 
Figure 2-19: Impedance measurement of a capacitor using a downstream setup 

Depending on the setup, the real impedance 𝑍𝐿 of the coil is given by 

𝑍𝐿 =
𝑈𝐴𝐶

𝐼𝐴𝐶
 

Its modulus is therefore 

𝑍𝐿 = √𝑅2 + 𝜔2𝐿2 

The inductance of the coil is then given by 

𝐿 =
1

𝜔
√𝑍𝐿

2−𝑅2 

 

This method is very commonly used in industry because it only requires widely available 

measuring instruments and its operating procedure is simple and quick to implement.  

It leads to sufficiently accurate results in many cases (accuracy of 4 to 5%).  However, it 

cannot be used for iron-core coils in saturated mode.  

Note: the inductance of a coil can be measured directly using an henrymeter.  

 

The precise measurement of an impedance requires the use of a null method.  The setups used are 

derived from the Wheatstone bridge.  

The general form of an AC bridge under equilibrium conditions is presented in the following figure.  

The four branches of the bridge 𝑍1, 𝑍2, 𝑍3 and 𝑍4 are impedances.  The diagonal AB is powered from 

a BF generator.  The diagonal CD is connected to a detector which can be a telephone receiver or an 

oscilloscope.  

𝑍𝑉 𝑍𝐿 𝑈𝐴𝐶  

𝐼𝐴𝐶  
𝑍𝐴 



 
Figure 2-20: AC bridge under equilibrium conditions 

At bridge equilibrium, we have 

𝐸AC = 𝐸AD 

𝐼1𝑍1 = 𝐼2𝑍2 

where 

𝐼1 =
𝑉

𝑍1 + 𝑍3
  

and 

𝐼2 =
𝑉

𝑍2 + 𝑍4
 

The equilibrium conditions in complex notation and in sinusoidal alternating current are: 

𝑍1
̅̅ ̅ × 𝑍4

̅̅ ̅ = 𝑍2
̅̅ ̅ × 𝑍3

̅̅ ̅ ⇔ 𝑍1𝑍4∠𝜃1 + ∠𝜃4 = 𝑍2𝑍3∠𝜃2 + ∠𝜃3 

It follows : 𝑍1𝑍4 = 𝑍2𝑍3 and 𝜃1 + 𝜃4 = 𝜃2 + 𝜃3 

This equilibrium can be achieved in an infinite number of ways, but for convenient manipulation, the 

number of parameters is reduced by constituting two of the bridge branches with pure resistances 

identified as P and Q.  

P/Q bridges allow the measurement of capacitive impedances, while P.Q bridges allow the 

measurement of inductive impedances.  

P/Q Bridges: When the unknown impedance  𝑍4is capacitive, the expression  𝑍4 = 𝑍3
𝑃

𝑄
 shows 

that balance can be achieved if P and Q are pure resistances and 𝑍3, the adjustment element, is a 

capacitive impedance.  Indeed, both sides of the equation have negative arguments.  

𝑍1 

𝑣(𝑡) 

𝑍4 

𝑍2 

𝑍3 

C D 

A 

B 



 
Figure 2-21: P/Q AC bridge 

P.Q Bridges: If the unknown impedance  𝑍4is inductive, the expression  𝑍4 =
𝑃.𝑄

𝑍1
 shows that 

balance can be achieved if P and Q are pure resistances and ,𝑍1 the adjusting element, is a capacitive 

impedance.  Indeed, the argument of  is negative and the argument of the term  is positive 𝑍1  
𝑃.𝑄

𝑍1
. 

Regardless of the impedance to be measured, the adjustment branch is a capacitive impedance (C, R).  

It is technologically easier to construct capacitors with sufficient precision than impedances.  

 
Figure 2-22: AC P.Q Bridge 

With rare exceptions, all AC bridges are of the P.Q or P/Q type.  For a systematic approach to 

manipulation, the terms P and Q will no longer be used, but will be noted in the order 

𝑍1, 𝑍2, 𝑍3 and 𝑍4 the constituent impedances of the bridge.  The impedance 𝑍4 will always be the 

unknown branch.  If 𝑍4 is formed by an inductance and a resistance, the notations will be 𝐿4 and 𝑅4.  

The two branches 𝑍1and 𝑍3 are most often the adjustment branches.  When 𝑍1 is constituted of a 

capacitance and a resistance, the notations will be 𝐶1 and 𝑅1.  

Now, we will present two examples of bridges used to measure capacitances and inductances, 

respectively.  

 

This bridge is suitable for the measurement of very high-quality capacitance.  At equilibrium, the two 

points C and D have the same potential. So 

𝑄 

𝑣(𝑡) 

𝑍4 

 

𝑃 

𝑍3 

 

C D 

A 

B 

𝑍1 

 

𝑣(𝑡) 

𝑍4 

 

𝑃 

𝑄 

 

C D 

A 

B 



𝐼1𝑅1 = 𝐼2𝑅2 

and 

−
𝑗

𝜔𝐶4

𝐼1 = −
𝑗

𝜔𝐶3

𝐼2 

The conditions for balancing this bridge are therefore 

𝐶4 = 𝐶3

𝑅1

𝑅2
 

The bridge has maximum sensitivity when 𝐶4 = 𝐶3.  The method based on the De Sauty bridge is 

simple to implement and use, but perfect balance is difficult to achieve if the capacitors have dielectric 

losses.  

 
Figure 2-23: De Sauty Bridge 

This bridge is used to measure unknown inductances with a small argument (𝐿𝜔 < 𝑅) in terms of 

adjustable resistances and capacitances.  

The balance conditions for this bridge are: 

(𝑅4 + 𝑗𝜔𝐿4) (
𝑅1

1 + 𝑗𝜔𝑅1𝐶1
) = 𝑅2𝑅3 

Which gives after simplification 

𝑅4 = 𝑅3

𝑅2

𝑅1
 

And 

𝐿4 = 𝑅2𝑅3𝐶1 

𝑅1 

 

𝑣(𝑡) 

𝐶4 

 

C D 

A 

B 

𝑅2 

  

𝐶3 

 



 
Figure 2-24: Maxwell Bridge 

 

 

The power absorbed by any receiver is given by: 

𝑃 = 𝑈 ∙ 𝐼 

There are two methods for measuring DC power: the voltammeter method and the electrodynamic 

wattmeter method.  

Voltammetric Method: The measurement of voltage 𝑈 and current 𝐼 allows the calculation of 

power 𝑃. To measure these two electrical quantities, we simply use an ammeter and a voltmeter. 

Depending on the voltmeter’s position (before or after the ammeter), there are two possible setups: 

the upstream setup (long shunt) and the downstream setup (short shunt).  

 Upstream configuration: The diagram of this configuration is shown in Figure 2-25.  The 

ammeter here measures the true value of the current flowing through the resistive receiver 𝑅.  On 

the other hand, the voltmeter measures the voltage across the receiver and ammeter assembly.  

 
Figure 2-25: Upstream Configuration 

We can easily have 

𝑈1 = 𝑈 − 𝑅𝐴 ∙ 𝐼 

By multiplying both sides of the equation by 𝐼, the power absorbed by the receiver  𝑅 can be 

expressed as follows 

𝑃 = 𝑈1 × 𝐼 = 𝑈 × 𝐼 − 𝑅𝐴 × 𝐼2 

𝑅3 

 

𝑣(𝑡) 

𝐿4 

 

C D 

A 

B 

𝑅2 

  

𝐶1 

 

𝑅4 

 

𝑅1 

 

𝑅 𝑈1 
𝑈 

𝐼 
𝑅𝐴 



The measurement introduces a systematic error by excess, 𝑅𝐴𝐼
2
, which represents the consumption 

of the ammeter.  

 Downstream configuration: In this configuration, the voltmeter measures the true voltage value 

across the receiver 𝑅 and the ammeter measures, this time, the sum of the currents flowing through 

the resistor 𝑅 and the voltmeter (see Figure 2-26).  

 

Figure 2-26: Downstream Configuration 

The current flowing in 𝑅 is 

𝐼1 = 𝐼 − 𝐼𝑉 

Now, by multiplying both sides of this equation by the voltage 𝑈, the power absorbed by the 

receiver  𝑅 can be given this time by 

𝑃 = 𝑈 × 𝐼1 = 𝑈 × 𝐼 − 𝑈 × 𝐼𝑉 

With𝐼𝑉 =
𝑈

𝑅𝑉
 

The absorbed power becomes: 

𝑃 = 𝑈𝐼 −
𝑈2

𝑅𝑉
 

The measurement introduces a systematic error by excess, 
𝑈2

𝑅𝑉
, which represents the voltmeter’s 

consumption.  

Electrodynamic Wattmeter Method: The measurement of power uses an electrodynamic 

instrument, which is the wattmeter.  

A Wattmeter Is a Measuring Device Intended to Indicate the Electrical Power (Expressed in Watts) 

Consumed by the Receiver.  

 One coil, used for current measurement, called the “current circuit” or thick wire, 

comparable to an ammeter with internal resistance 𝑅𝐴 ;  

 One coil, used for voltage measurement, called the “voltage circuit” or thin wire, 

comparable to a voltmeter with internal resistance 𝑅𝑉.  

On the dial of a wattmeter, one finds: 

 The accuracy class, 

 The type of current: AC or DC.  

 The scale (in the general case, a single scale usable in AC and DC).  

 The current consumption of the voltage circuit.  

𝑅 
𝑈 

𝐼 𝐼𝑉 𝐼1 

𝑅𝑉 



The wattmeter is an astatic device (insensitive to external fields); it essentially consists of: 

 A current circuit: there are two direct ranges in a ratio of 1 to 2 (example: 0.5A and 1A or 

1.25A and 2.5A).  

 A voltage circuit: there are many ranges (from 15 V to 600 V).  

 A scale with regular graduations.  

The consumption of the voltage circuit allows the determination of the resistance of the voltage 

circuit.  The wattmeter constant is defined by 

𝐾 =
Range 𝑈 × Range 𝐼

Scale
 

This constant represents the power per division of the scale.  

The Current Circuit Is Connected in Series and the Voltage Circuit Is Connected in Parallel in Two 

Different Modes: Upstream Connection and Downstream Connection (See Figure 2.27 and 2.28 

Respectively).  

 
Figure 2-27: Connection diagram of a wattmeter.  

Schematic diagram of a wattmeter  Upstream connection  Downstream connection 

The Downstream Connection Is Chosen Here (See Figure 2.28). The Voltmeter and Ammeter Only 

Have an Indicative Role to Avoid Exceeding the Range Values of the Wattmeter.  

In this case, the measured power is expressed by 

𝑃Exact = 𝑃Lue − (
𝑈2

𝑅𝑊
+

𝑈2

𝑅𝑉
) 

 
Figure 2-28: Downstream connection of the wattmeter method 
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The average power absorbed by a receiver subjected to a periodic voltage is: 

𝑃 =
1

𝑇
∫ 𝑢 ∙ 𝑖 𝑑𝑡

𝑇

0

 

If 𝑢 and 𝑖 are instantaneous sinusoidal quantities: 

𝑢(𝑡) = √2 𝑈 cos(𝜔𝑡) 

𝑖(𝑡) = √2 𝐼 cos(𝜔𝑡 + 𝜑) 

Note: 𝑈 and 𝐼 are effective (RMS) values.  

Instantaneous Power: is the voltage-current product at any instant: 

𝑃(𝑡) = 𝑢(𝑡) ∙  𝑖(𝑡) = 2 𝑈 𝐼 cos(𝜔𝑡) cos(𝜔𝑡 + 𝜑) 

After simplifying the product, we find: 

𝑃(𝑡) = 𝑈 𝐼 cos(𝜑) +𝑈 𝐼 cos(2𝜔𝑡 + 𝜑) 

Fluctuating Power: is the variable part of the instantaneous power: 

𝑃𝑓(𝑡) = 𝑈 𝐼 cos(2𝜔𝑡 + 𝜑) 

Active Power or Average Power: is the average value of the instantaneous power over a period 𝑇 =

2𝜋 and is expressed as follows 

𝑃 = 𝑈 𝐼 cos (𝜑) 

This is the power that corresponds to actual physical work; its unit is the Watt (W).  

Apparent Power: is the product of the effective (RMS) values: 

𝑆 = 𝑈 𝐼 

This power is often called “sizing power”; it is the characteristic quantity for the insulation and cross-

section of conductors, i.e., the dimensions of the equipment. Its unit is the Volt-Ampere (VA).  

Reactive Power: is the power with no physical effect in terms of work, corresponding to the 

“reactive” part of the current. It is only defined in sinusoidal conditions and is written as: 

𝑄 = 𝑈 𝐼 sin (𝜑) 

Its unit is the Volt-Ampere-Reactive (VAR).  

Once these powers are defined, it is imperative to memorize the definitions and relationships 

summarized in Figure 2-29.  

Complex Apparent Power: to analytically determine the various powers, we form the complex 

apparent power: 

𝑆 = 𝑈 𝐼∗ 

where 𝐼∗  is the complex conjugate of 𝐼.  

It can be shown that and that: 

𝑆 = 𝑃 + 𝑗 ∙ 𝑄 



and that 

|𝑆| = 𝑆 = √𝑃2 + 𝑄2 

This power is only a computational expression intended for the raw determination of the various 

powers by identifying the real and imaginary parts.  

 

Figure 2-29: Power in sinusoidal conditions 

As an example, the complex apparent power is used in Figure 2-30, which synthetically shows the 

expressions of the active and reactive powers of the most common dipoles encountered in electrical 

engineering. It is imperative to perfectly master the data in this box and, at worst, to know how to 

find it easily.  

Im 

𝑈 

𝜑 > 0 

𝐼 

Receiving 

Dipole 

𝑈 

𝐼 

Re 

Active Power: 𝑃 = 𝑈 𝐼 cos(𝜑) (W) 

Reactive Power: 𝑄 = 𝑈 𝐼 sin(𝜑) (VAR) 

Apparent Power: 𝑆 = 𝑈 𝐼 (VA) 

𝑈 = 𝑈𝑒𝑓𝑓 =
𝑈𝑚𝑎𝑥

√2
, 𝐼 = 𝐼𝑒𝑓𝑓 =

𝐼𝑚𝑎𝑥

√2
 

Relationship: 𝑆2 = 𝑃2 + 𝑄2 

Power factor :𝑘 =
𝑃

𝑆
= cos(𝜑) 

tan(𝜑) =
𝑄

𝑃
 



 

Figure 2-30: Powers associated with common dipoles 

There are several methods for measuring active power in single-phase systems.  In this 

paragraph, we will discuss the following methods: Three-ammeter method, three-voltmeter method, 

and electrodynamic wattmeter method.  

Three-Ammeter Method: The setup for this method is shown in Figure 2.31. We can write in 

instantaneous values.  

𝑝 = 𝑢 ∙ 𝑖 
and 

𝑖2 =
𝑢

𝑅2
 

where 𝑅2 is a standard resistor that includes the resistance of the ammeter A2.  

According to Kirchhoff’s current law (KCL): 

𝑖1 = 𝑖 + 𝑖2 
We can also have 

𝑖1
2 = 𝑖2 + 𝑖2

2 + 2 ∙ 𝑖 ∙ 𝑖2

      = 𝑖2 + 𝑖2
2 + 2 ∙ 𝑖 ∙

𝑢

𝑅2

  = 𝑖2 + 𝑖2
2 +

2

𝑅2
∙ 𝑝

 

Then, the instantaneous power is expressed as follows 



𝑝 =
𝑅2

2
(𝑖1

2 − 𝑖2
2−𝑖2) 

By considering the RMS values of the currents, the average power is given by: 

𝑃 =
𝑅2

2
(𝐼1

2−𝐼2
2 − 𝐼2) 

An excess error (consumption of the ammeter A) is introduced: it can be taken into account for the 

calculation of the exact absorbed power.  

𝑃Exact =
𝑅2

2
(𝐼1

2−𝐼2
2 − 𝐼

2
) − 𝑅𝐴 ∙ 𝐼2

2
 

 

Figure 2-31: Three-ammeter method setup 

Three-Voltmeter Method: The setup for this method is shown in Figure 2.32. Assuming 

negligible voltmeter consumption, if  is a standard resistor, we can write in instantaneous values𝑅 

𝑢1 = 𝑢2 + 𝑢 
With𝑢2 = 𝑅 ∙ 𝑖 

We can also have: 

𝑢1
2 = 𝑢2

2 + 𝑢2 + 2 ∙ 𝑢2 ∙ 𝑢 ⇔ 𝑢1
2 = 𝑢2

2 + 𝑢2 + 2 ∙ 𝑅 ∙ 𝑖 ∙ 𝑢 

Then 

𝑝 = 𝑢 ∙ 𝑖 =
𝑢1

2 − 𝑢2
2 − 𝑢2

2 𝑅
 

 

Figure 2-32: Three-voltmeter method setup 

By considering the RMS values of the voltages, the average power is given by: 

𝑃 =
𝑈1

2 − 𝑈2
2 − 𝑈2

2 𝑅
 

Receiver,𝑍 
𝑢1 

𝑖2 

𝑢 

𝑅2 

𝑖1 

𝑅𝐴 

𝑖 

Receiver,𝑍 𝑢1 

𝑅 

𝑢 

𝑢2 

𝑖 



Electrodynamic Wattmeter Method: Neglecting the self-inductance of the wattmeter’s fine wire, 

the measured power is: 

 Upstream assembly:𝑃1 = 𝑈 𝐼 cos(𝜑) + 𝑟𝐴 ∙ 𝐼2 

where 𝑟𝐴 is the resistance of the ammeter and wattmeter current circuit.  

If 𝑃  is the power absorbed by the receiver, then: 

𝑃 = 𝑃1 − 𝑟𝐴 ∙ 𝐼2 

 Downstream Setup33. In this case, 

𝑃1 = 𝑈 𝐼 cos(𝜑) +
𝑈2

𝑅𝑉
+

𝑈2

𝑅𝑊
 

𝑅𝑉and 𝑅𝑊 being the respective resistances of the voltmeter and the voltage circuit of the 

wattmeter.  

If 𝑃  is the power absorbed by the receiver, then: 

𝑃 = 𝑃1 − (
𝑈2

𝑅𝑉
+

𝑈2

𝑅𝑊
) 

 

Figure 2-33: Downstream connection of the wattmeter method in AC 

The Following Analysis Concerns Only Networks Operating in Sinusoidal Mode and Constituting a 

Balanced Voltage System (Equal Component Voltages and Phase-Shifted by 2𝜋/3, See the Diagram 

in Figure 2.34).  

The voltages supplied by a three-phase generator whose neutral point is called point 0 are: 

Single-phase voltages: 𝑉10
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑉20

⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑉30
⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

Compound Stresses : 𝑈12
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑉10

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑉20
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑈23

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑉20
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑉30

⃗⃗ ⃗⃗ ⃗⃗  ⃗ and𝑈31
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑉30

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑉10
⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

With 𝑉10
⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑉20

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑉30
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 and𝑈12

⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑈23
⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑈31

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0 

The single-phase voltages across the terminals of the receiver whose neutral point is called point N 

are: 𝑉1N
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑉2N

⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑉3N
⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

Receiver 

𝑅𝐴 

𝑅𝑊 

𝑅𝑉 



Figure 2-34: Voltage diagram 

Conventions: They allow, without risk of error, to consider all the artifices of wattmeter 

connection.  

 Measuring the voltage 𝑉10 amounts to defining the potential difference (p.d.) of phase 1 with 

respect to point 0.  

 Measuring the current 𝐼2 specifies that the ammeter is placed in series on phase 2.  

 Measuring the power, 𝑃10−2, defines the power considered, and explains the connection of 

the wattmeter.  The first two indices, 1 and 0, specify the connection of the voltage circuit: 

Input at 1, and output at 0.  The last index, 2, specifies that the current circuit is in series on 

phase 2.  

Example: See the Example in Figure 2.35. The Wattmeter Measures the Power. 𝑃13−1 

 

Figure 2-35 : Power Measurement 𝑃13−1 

Procedure: The rational use of wattmeters for the determination of active and reactive powers in 

three-phase systems involves certain preliminary measurements: 

 The phase sequence of the distribution network must be known.  

 Before use, the inputs and outputs of the wattmeter windings must be checked so that a 

positive power corresponds to a positive deflection.  To do this, we measure a single-phase 

power which, by definition, is always active.  We can measure, for example, 𝑃10−1  or 𝑃1N−1, 

the wattmeter deflection must be positive: We deduce the input of the voltage winding, it is 

index 1; if the deflection is negative, the input will be index 0.  The connection order thus 

obtained must be absolutely respected during subsequent measurements.  
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 To define a negative deflection, it is sufficient to temporarily cross two voltage wires, take 

the reading and assign it a minus sign.  

 It is recommended to have an ammeter and a voltmeter in the circuit so as to check at any time 

whether the wattmeter range is suitable.  

 A total active power is always positive.  On the other hand, reactive power can be positive or 

negative.  

Now, we will discuss the methods of measuring active power in three-phase systems.  

Three-wattmeter method 

 4-Wire Distribution (3 Phases + Neutral): The Setup for This Configuration Is Shown in 

Figure 2.36. The System Can Be Considered as a Set of Three Single-Phase Distributions, the 

Neutral Wire Being the Common Return.  

 

Figure 2-36: Setup of the three-wattmeter method for a 4-wire distribution 

The total active power is equal to the sum of the active powers per phase.  

𝑃 =
1

𝑇
∫ (𝑣1N ∙ 𝑖1 + 𝑣2N ∙ 𝑖2 + 𝑣3N ∙ 𝑖3) 𝑑𝑡

𝑇

0

 

The voltages 𝑣1N, 𝑣2N and 𝑣3N are the voltages between phase and neutral of the receiver.  

The sum of the readings of the three wattmeters gives the total active power 𝑃.  

𝑃 = 𝑃1N−1 + 𝑃2N−2 + 𝑃3N−3 

It is an arithmetic sum because the active powers per phase are always positive.  

The neutral N of the receiver being at potential 0, we deduce: 

𝑣1N = 𝑣10
𝑣2N = 𝑣20

𝑣3N = 𝑣30

} ⇒ 𝑃 =
1

𝑇
∫ (𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ 𝑖3) 𝑑𝑡

𝑇

0
 

Or even 

𝑃 = 𝑃10−1 + 𝑃20−2 + 𝑃30−3 

If the system is current-balanced, a single wattmeter is sufficient since the powers per phase are 

equal.  In this case, 

𝑃 = 3 ∙ 𝑃10−1 

𝑍1  

 

 

 

𝑍2 

𝑍3 

N 



 3-wire distribution without neutral: The distribution of currents in the line wires is such 

that, at any time: 

𝑖1 + 𝑖2 + 𝑖3 = 0 

 Star-Connected Receiver: A Star-Connected Receiver Is Shown in Figure 2.37. The 

Instantaneous Power Is as in 4-Wire 

𝑝 = 𝑣1N ∙ 𝑖1 + 𝑣2N ∙ 𝑖2 + 𝑣3N ∙ 𝑖3 

Since{
𝑣1N = 𝑣10 + 𝑣0N

𝑣2N = 𝑣20 + 𝑣0N

𝑣3N = 𝑣30 + 𝑣0N

 

𝑝 = (𝑣10 + 𝑣0N) ∙ 𝑖1 + (𝑣20 + 𝑣0N) ∙ 𝑖2 + (𝑣30 + 𝑣0N) ∙ 𝑖3 

𝑝 = 𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ 𝑖3 + 𝑣0N(𝑖1 + 𝑖2 + 𝑖3) 

and since 𝑖1 + 𝑖2 + 𝑖3 = 0, then 

𝑝 = 𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ 𝑖3 

If the receiver’s neutral is accessible, we measure:𝑃 = 𝑃1N−1 + 𝑃2N−2 + 𝑃3N−3 

If the 0 point of the network is accessible, we measure:𝑃 = 𝑃10−1 + 𝑃20−2 + 𝑃30−3 

If the receiver is balanced, the measurement of 𝑃1N−1 or 𝑃10−1 is sufficient.  

 
Figure 2-37: Star-connected receiver 

 Delta-Connected Receiver: A Delta-Connected Receiver Is Shown in Figure 2.38. The 

Total Power Absorbed Is the Sum of the Powers per Phase: 

𝑝 = 𝑢12 ∙ 𝑖12 + 𝑢23 ∙ 𝑖23 + 𝑢31 ∙ 𝑖31 

By hypothesis: 

𝑢12 = 𝑣10 − 𝑣20 

𝑢23 = 𝑣20 − 𝑣30 

𝑢31 = 𝑣30 − 𝑣10 

from which 

𝑝 = (𝑣10 − 𝑣20) ∙ 𝑖12 + (𝑣20 − 𝑣30) ∙ 𝑖23 + (𝑣30 − 𝑣10) ∙ 𝑖31 

𝑝 = 𝑣10(𝑖12 − 𝑖31) + 𝑣20(𝑖23 − 𝑖12) + 𝑣30(𝑖31 − 𝑖23) 

𝑝 = 𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ 𝑖3 

So 

𝑍1  

 

 

 

𝑍2 

𝑍3 

N 



𝑃 = 𝑃10−1 + 𝑃20−2 + 𝑃30−3 

 
Figure 2-38: Delta-Connected Receiver 

Conclusion: In a 3-wire distribution with a balanced or unbalanced receiver, connected in delta or 

star, the three-wattmeter method is always valid.  

Two-Wattmeter Method: The setup for this configuration is shown in Figure 2.39.  

The principle of this method is simple.  

 

Figure 2-39: Two-Wattmeter Method Setup for a 3-Wire Distribution 

Let’s revisit the relationship 

𝑝 = 𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ 𝑖3 

and since 

𝑖1 + 𝑖2 + 𝑖3 = 0 ⇒ 𝑖3 = −𝑖1 − 𝑖2 

It follows that 

𝑝 = 𝑣10 ∙ 𝑖1 + 𝑣20 ∙ 𝑖2 + 𝑣30 ∙ (−𝑖1 − 𝑖2) 

therefore 

𝑝 = (𝑣10 − 𝑣30) ∙ 𝑖1 + (𝑣20 − 𝑣30) ∙ 𝑖2 

𝑝 = 𝑢13 ∙ 𝑖1 + 𝑢23 ∙ 𝑖2 

Using the RMS values of voltages and currents, the active power is given by: 

𝑃 = 𝑈13 ∙ 𝐼1 + 𝑈23 ∙ 𝐼2 

Which gives 

𝑃 = 𝑃13−1 + 𝑃23−2 

𝑖1 
 

 

 

𝑖2 

𝑖3 

𝑖12 

𝑖23 

𝑖31 

 

 

 
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Conclusion: The two-wattmeter method allows for the measurement, in a 3-phase 3-wire system, of 

the active power absorbed by a balanced or unbalanced receiver.  

There are generally two methods for measuring reactive power (whether in single-phase or three-

phase): Direct measurement method and indirect measurement method.  

The reactive power involved in a single-phase receiver is (see paragraph 2.6.2.1): 

𝑄 = 𝑈 𝐼 sin (𝜑) 

Direct Measurement Method: Measurements are made using a varmeter, a device whose driving 

torque is of the form: 𝐶𝑀 = 𝑘 𝑈 𝐼 sin (𝜑). In this case, the measurement methods are identical to the 

active power measurements using a wattmeter.  

Example: A wattmeter measures 𝑃10−1, and a varmeter measures 𝑄10−1.  

Indirect Measurement Method: These methods utilize wattmeters and are applied to polyphase 

networks. The connections are made such that the deflections no longer define an active power but 

rather a reactive power.  

Their Principle Is as Follows. The Voltage Circuit of the Wattmeter Is Supplied by a Voltage, Phase-

Shifted with Respect to the Initial Voltage by a Lagging Angle (See Figure 2.40). 𝑈′𝑈𝜋/2 

In this case, the active power is given by 

𝑃 = 𝑈′ 𝐼 cos (
𝜋

2
+ 𝜑) 

If |𝑈| = |𝑈′| then 

𝑃 = 𝑄 = −𝑈 𝐼 sin(𝜑) 

Capacitive circuit: 𝜑 > 0 then 𝑄 < 0.  

Inductive circuit: 𝜑 < 0 then 𝑄 > 0.  

Figure 2-40: Single-Phase Voltage/Current Diagram 

Single-Phase Distribution: The measurements of 𝑃, 𝑈, and 𝐼 allow for the calculation of: 

Apparent Power:𝑆 = 𝑈𝐼 

Reactive Power:𝑄 = √𝑆2 − 𝑃2 

4-wire three-phase distribution (3 phases + neutral): The total reactive power is equal to the 

algebraic sum of the reactive powers involved in each phase.  

Points N and 0 being at the same potential, it follows: 

𝜑 

𝑈 

𝑈′ 

𝐼 



𝑄 = 𝑉1N 𝐼1 sin(𝜑1) + 𝑉2N 𝐼2 sin(𝜑2) + 𝑉3N 𝐼3 sin(𝜑3) 

𝑄 = 𝑉10 𝐼1 sin(𝜑1) + 𝑉20 𝐼2 sin(𝜑2) + 𝑉30 𝐼3 sin(𝜑3) 

And Since, the Diagram in Figure 2.41 Shows:sin(𝜑) = cos (
𝜋

2
− 𝜑) 

𝑉1N 𝐼1 sin(𝜑1) = 𝑈23 𝐼1 sin(𝜑1)/√3 

𝑉2N 𝐼2 sin(𝜑2) = 𝑈31 𝐼2 sin(𝜑2)/√3 

𝑉3N 𝐼3 sin(𝜑3) = 𝑈12 𝐼3 sin(𝜑3)/√3 

Figure 2-41: Three-Phase Voltage/Current Diagram 

Finally, 

𝑄 =
𝑈23 𝐼1 sin(𝜑1) + 𝑈31 𝐼2 sin(𝜑2) + 𝑈12 𝐼3 sin(𝜑3)

√3
 

This Relationship Allows for the Establishment of the Three-Wattmeter Connection Diagram Shown 

in Figure 2.42.  

The wattmeter W1 indicates the power 𝑃23−1 which is the image of the reactive power 𝑄1N−1.  We 

have 

𝑄1N−1 =
𝑃23−1

√3
 

The other two wattmeters W2 and W3 respectively indicate the powers 𝑃31−2 and 𝑃12−3 images of 

𝑄2N−2 and 𝑄3N−3, hence 

𝑄2N−2 =
𝑃31−2

√3
 

and 

𝑄3N−3 =
𝑃12−3

√3
 

So 

𝑄 =
𝑃23−1 + 𝑃31−2 + 𝑃12−3

√3
 

If the receiver is balanced, the reading of a single wattmeter is sufficient.  

𝑄 = √3 𝑃23−1 

1 

𝑉1N 

𝑉2N 𝑉3N 

𝑈12 
𝑈31 

𝑈23 
2 3 

0 𝑈23 

𝐼1 
𝜑

1
 

N 



 

Figure 2-42: Setup of the indirect three-wattmeter method for measuring reactive power (Case of a 

4-wire three-phase distribution) 

 

The phase shift existing between two sinusoidal quantities of the same frequency specifies the angular 

displacement of one of the quantities relative to the other. This phase shift angle is conventionally 

called 𝜑, with the trigonometric convention allowing us to specify whether it is positive or negative.  

 

Phasemeter Method: The phasemeter allows, through direct reading, the determination of the 

phase shift angle.𝜑 Its connection in a circuit is shown in Figure 2.43.  

 

Figure 2-43: Setup of the phase meter method 

Wattmeter Method: In this method, we use the relationship 𝑃 = 𝑈 𝐼 cos (𝜑).  The measurement 

of ,  and  allows the calculation of  and of . 𝑃𝑈𝐼cos (𝜑)𝜑 

 

Voltmeter Method 

The two voltages have a common point: We successively measure the voltages: 𝑈1 = 𝑈13, 𝑈2 =

𝑈23, and 𝑈3 = 𝑈12 and a graphical construction allows us to deduce 𝜑 (See Figure 2.44).  

Graphical construction: Using the chosen scale and starting from the two ends of 𝑈1, arcs of length 

𝑈2 and 𝑈3 should be drawn.  The intersection point of the two arcs allows for the drawing of 𝑈2 and 

𝑈3.  

 

𝑍1  

 

 

 

𝑍2 

𝑍3 

N 

𝑍 

𝐼 

𝑈 



 

Figure 2-44: Phase shift measurement using the voltmeter method 

The Diagram in Figure 2.45 Allows Us to Establish: 

𝑈3
2 = 𝑈1

2 + 𝑈2
2 − 2 𝑈1 𝑈2 cos(𝜑) 

It follows that 

cos(𝜑) =
𝑈1

2 + 𝑈2
2 − 𝑈3

2

2 𝑈1 𝑈2
 

Note: the voltmeter method does not allow the determination of the sign of the phase shift.  

Figure 2-45: Diagram for calculating the phase shift between two voltages 

The two voltages have no common point: In this case, two isolation transformers with a ratio of 

1 are used (See Figure 2.46). The input and output voltages at the transformer terminals must remain 

in phase, which requires prior marking of the terminals. The graphical construction is identical to the 

previous case.  

Figure 2-46: Diagram for calculating the phase shift between two voltages 

Oscilloscope Method 

The two voltages have a common point:The oscilloscope is in Lissajous mode. The  input 

(horizontal deflection) is driven by the  voltage whose instantaneous value is.  The  input (vertical 

deflection) is driven by the  voltage whose instantaneous value is. 𝑋𝑉𝑣 = 𝑉𝑀 sin(𝜔𝑡) 𝑌𝑈𝑢 =

𝑈𝑀 sin(𝜔𝑡 + 𝜑) 

 

 

 

𝜑 

𝑈1 

𝑈2 

𝑈3 

𝑈1 𝑈2 

𝑈3 

𝑉1 𝑉2 
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𝑺 
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𝒆 

𝒔 

𝒆 

𝒔 



Figure 2-47: Phase shift measurement using an oscilloscope 
(Case where the two voltages have a common point) 

With proper gain adjustment, an ellipse appears on the screen.  

If 𝑣 = 0, sin(𝜔𝑡) = 0 therefore𝑢 = 𝑈𝑀 sin(𝜑) 

and then 

sin(𝜑) =
𝑢

𝑈𝑀
 

𝑣 = 0, when the spot is on the axis of 𝑌.  We can therefore define  and . 𝑢𝑈𝑀 

Graphical Determination: According to Figure 2.48, We Can Have 

sin(𝜑) =
𝑙

𝐿
=

2 𝑢

2 𝑈𝑀
=

𝑢

𝑈𝑀
 

Figure 2-48: Graphical determination of phase shift using an oscilloscope 

It is necessary that before the measurement, the spot is adjusted to the center of the screen.  

Some Examples of Lissajous Curves Are Shown in Figure 2.49.  

Figure 2-49: Special cases of Lissajous curves 

These correspond to the following particular cases:  

If the vertices of the ellipse are located in quadrants 1 and 3, then 0 < 𝜑 <
𝜋

2
.  

If the vertices of the ellipse are located in quadrants 2 and 4, then
𝜋

2
< 𝜑 < 𝜋.  

The ellipse is reduced to an inclined line: 𝜑 = 0 or 𝜑 = 𝜋.  

𝑈 𝑌 

𝑉 

𝑋 

𝐿 

𝑌 

𝑙 
𝑋 

𝑈 

𝑉 

𝜑 = 0 𝜑 = 𝜋 0 < 𝜑 <
𝜋

2
 

𝜋

2
< 𝜑 < 𝜋 𝜑 =

𝜋

2
 



The ellipse has its axes aligned with those of the screen,𝜑 =
𝜋

2
.  If the amplitudes of the traces are 

equal, the figure is then a circle.  

Dual-trace oscilloscope: 

A Dual-Trace Cathode-Ray Oscilloscope and or One Equipped with an Electronic Switch Allows the 

Comparison of Two Voltages by the Simultaneous Display and Superposition of Their Representative 

Curves (See Figure 2.50). 𝑌1𝑌2𝑣1(𝑡)𝑣2(𝑡) 

The two voltages with a phase difference of 𝜑 are applied to the terminals of 𝑌1 and 𝑌2.  With their 

traces centered, their amplitudes are adjusted to be equal.  The phase shift is given by the relationship: 

𝜑 = 360
𝑋

𝑎
 

Or can be obtained by the following relationships: 

cos(𝜑) =
𝐵

𝐴
 

or 

tan (
𝜑

2
) = ඨ(

𝐴

𝐵
)

2

− 1 

Figure 2-50: Phase shift measurement by simultaneous display of two voltages on an oscilloscope 

The two voltages have no common point: As with the voltmeter method, two isolation 

transformers with a ratio of 1 are used.  

 

The frequency of a periodic electrical quantity with period 𝑇 is defined by the following relationship: 

𝑓 =
1

𝑇
 

The unit of frequency is the Hertz (Hz).  

The angular frequency is given by 

𝜔 = 2𝜋𝑓 

Its unit is radians/second (rad/s).  

𝐴 

𝑎 

𝐵 𝐶 

𝑣2(𝑡) 

𝑣1(𝑡) 

𝑃 

𝑄 

𝑋 



Now, we will discuss the following methods of frequency measurement: Direct deflection method, 

Resonance method, and Lissajous curves method.  

Direct deflection method: A frequency is commonly measured using a frequency meter.  We 

distinguish vibrating blade, deflection, and digital display frequency meters.  

Resonance Method: A fixed inductor 𝐿 and a variable capacitor𝐶 are used as shown in Figure 

2.51.  Adjusting the capacitance allows for obtaining, at resonance, a maximum deflection on the 

ammeter.  

Figure 2-51: Frequency measurement by the resonance method 

From the circuit above, we have 

𝐼 =
𝑈

𝑅
 

with 

𝐿𝜔 =
1

𝐶𝜔
⇒ 𝜔2 =

1

𝐿𝐶
 

The frequency is then given by 

𝑓 =
1

2𝜋√𝐿𝐶
 

Lissajous Curve Method: This is a comparison method that uses an oscilloscope. Its wiring 

diagram is shown in Figure 2.52.  

The standard frequency 𝑓𝐸 is delivered by the network, and 𝑓𝑥 is the frequency to be measured.  If 

𝑓𝑥 = 2 ∙ 𝑓𝐸, the rate of change of the frequency 𝑓𝑥 is twice as fast as that of the frequency 𝑓𝐸 : there 

will be two points of tangency with the 𝑌 axis and only one point of tangency with the 𝑋 axis.  

The above shows that the points of tangency are in the ratio of the frequencies.  

To 𝑓𝑥, corresponds 𝑦 points of tangency with the 𝑌 axis.  

To 𝑓𝐸, corresponds 𝑥 points of tangency with the 𝑋 axis.  

𝑓
𝑥

𝑓𝐸

=
𝑦

𝑥
⇒ 𝑓𝑥 =

𝑦

𝑥
𝑓𝐸 

The horizontal deflection plates are isolated from the time base and connected to the input 𝑋 

(Lissajous position).  

𝐿 

𝑅 

𝐶 

𝑈 

𝐼 



Consider two signals: 𝑓𝑥 connected to input 𝑋, 𝑓𝐸 connected to input 𝑌.  Whenever the displayed 

curve is closed, we can assert that the frequencies are in a commensurable ratio.  

Figure 2-52: Frequency measurement by the comparison method 

Examples: With a frequency 𝑓𝐸 = 50Hz, we obtain: 

Figure 2.53  : {
𝑦 = 1
𝑥 = 2

} ⇒ 𝑓𝑥 = 25Hz.  

Figure 2.53  : {
𝑦 = 2
𝑥 = 4

} ⇒ 𝑓𝑥 = 25Hz.  

Figure 2.53  : {
𝑦 = 2
𝑥 = 3

} ⇒ 𝑓𝑥 = 33Hz.  

Figure 2.53  : {
𝑦 = 4
𝑥 = 2

} ⇒ 𝑓𝑥 = 100Hz.  

Figure 2-53: Lissajous curves 
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                         ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
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Exercise 2.1 Wheatstone Bridge 
 

We have a Wheatstone bridge whose ratio of proportion is equal to 
𝑅3

𝑅1
  with 𝑅3 = 100Ω  and 𝑅1 = 1000Ω  

on decades of 0,2%, the variable resistance 𝑅2  is constituted by a combination of four decade boxes (× 1, 

× 10, × 100, × 1000) of precision 0,2%.  The value of 𝑅2 is 3528Ω.  

1. Represent the diagram illustrating this measurement method.  

2. Give the expression and the value of the unknown resistance 𝑅𝑥.  

3. Calculate ∆𝑅𝑎, ∆𝑅𝑏, ∆𝑅𝑐 and ∆𝑅𝑑, then deduce 
∆𝑅2

𝑅2
.  

4. Determine the relative uncertainty 
∆𝑅𝑥

𝑅𝑥
  then the absolute uncertainty ∆𝑅𝑥.  

Indication:𝑅2 = 𝑅𝑑 + 𝑅𝑐 + 𝑅𝑏 + 𝑅𝑎 = 𝑟1000 + 𝑟100 + 𝑟10 + 𝑅1 (décades) 

  ∆𝑅2 = ∆𝑅𝑑 + ∆𝑅𝑐 + ∆𝑅𝑏 + ∆𝑅𝑎 

Exercise 2.2  
 

To measure the resistance of a motor winding, the following setup was used: 

 

We close 𝐾 and measure the current 𝐼0.  

i𝐾s opened and  i𝑅s varied until a current  f𝐼 =
𝐼0

2
lows in the circuit.  

We are given 𝑅 = 529 ± 21Ω.  

1. Find the expression and the value of 𝑅𝑥.  

2. Calculate the relative uncertainty 
∆𝑅𝑥

𝑅𝑥
.  
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At the end of Chapter 3, the student will be able to: 

 Indicating instruments 

 Moving coil instruments 

 Electrodynamometer type 

 Moving iron instruments 

 Classification of instruments 

 

 

 

A measuring device is a system that translates a physical phenomenon that is not, or is difficult for 

our senses to access, into another phenomenon that can be visualized and estimated.  

There are two main classes of devices: 

 Deviation or analog devices: by their operating principle, theoretically give a value of the 

measured quantity exactly proportional to this quantity.  

 Digital or logical measuring devices: they give a value representing the measured quantity to 

the nearest quantization step.  This value is given in the form of a number (digital display).  

 

A measuring device generally includes one or more fixed inductors (permanent magnet or 

electromagnet) acting on a moving coil assembly around a fixed axis. The internal technology of 

these devices is based on three elements: 

 The suspension of the moving assembly;  



 The reading device, which can be a needle or a light spot;  

 The damping device, which can be magnetic or by air.  

According to their terminology, there are several types of analog devices, namely: 

 Ratiometers (electric balance);  

 Integrating devices (meter, fluxmeter);  

 Electronic devices;  

 Analog devices with digital display;  

 Deviation devices.  

 

The usual classification of deviation devices uses the nature of the physical phenomenon that 

governs the operation of the device.  There are several types of devices, the main types being: 

 Magneto-electric Devices: The fixed inductor is a fixed U-shaped magnet, the deflection of 

the needle is proportional to the average current flowing through a coil placed inside the 

magnetic field created by the fixed magnet.  

Symbol:  

 Ferromagnetic Devices: The operating principle of a ferromagnetic device is based on the 

action of a field created by a circuit carrying a current on one or more soft iron parts, some of 

which are mobile. There are two types of devices: attraction or repulsion type. 

For the attraction type device, the principle used is the magnetic action produced by a fixed 

coil carrying a current on a soft iron vane (moving element) mounted on two pivots. This 

moving assembly is equipped with a needle and a damping device. For the repulsion type 

device, the magnetic field created by the fixed coil acts on two vanes placed in this field which 

undergo magnetization in the same direction. The repulsion of the two vanes deflects the 

needle. A ferromagnetic device is very simple to construct, robust, usable in direct and 

alternating current. The graduation of its scale is non-linear.  

Symbol:  

 Electrodynamic Devices: An electrodynamic device is formed mainly by a fixed circuit 

(generally two half-coils) creating a magnetic field inside which a moving frame of low inertia 

mounted on two pivots and driving a needle moves. Electrodynamic devices are non-

polarized. They are usable in direct and alternating current. They are generally used for the 

manufacture of wattmeters.  

Symbol: 
 



 Electrostatic Devices: This type of device is characterized by a force exerted by the fixed 

armature of a capacitor on its moving armature. This type of device is always used as a 

voltmeter. When a voltage is applied between the two plates of this device, one becomes 

positively charged and the other negatively charged, which produces an attractive force that 

tends to rotate the moving plate which is integral with a needle. They are usable in direct and 

alternating current and have a non-linear scale.  

Symbol:  

 Thermal Devices: The operating principle of this type of device is based on the expansion of 

a conductive wire that heats up when an electric current of intensity passes through it. This 

effect is the direct consequence of the power dissipated by the Joule effect in the expansion 

wire. The expansion wire used is generally made of bronze or a platinum and silver alloy. 

Thermal devices are non-polarized, usable in direct current and alternating current.  

Symbol: 
 

 

 

They consists of a rectangular frame abed on which N turns of a fine copper wire are wound. The 

ends of this winding are soldered to two very fine wires 𝑓 and 𝑓’) which serve as: 

 Suspension wires for the frame;  

 Connection wires;  

 Torsion wires, exerting a restoring torque on the frame, which tends to bring the frame back to 

the equilibrium position it occupies when no current flows through it.  

Figure 3-1 : Magneto-Electric Galvanometer. 

 

Frame Mirror 



The frame can move in the air gap of a U-shaped magnet equipped with two hollowed pole pieces 

so as to leave a cylindrical cavity between them; in this cavity, a soft iron cylinder is placed which 

channels the lines of induction. Between the pole pieces and the cylinder, the lines of induction are 

directed along the radii of the two coaxial cylinders: the field is radial.  

Therefore, whatever the position of the frame in the air gap: 

 The magnetic induction vectors 𝐵⃗  at all points of the vertical sides 𝑎𝑏 and 𝑒𝑑 of the frame are 

always perpendicular to these sides and contained in the plane of the coils;  

 The intensity 𝐵 of these magnetic induction vectors is practically constant.  

Finally, a mirror 𝑀, attached to the frame, allows small rotations of the moving part to be observed 

by the optical method known as the Poggendorff method.  

A. Frame Equilibrium Equation: If no current flows through the frame, it takes an equilibrium 

position corresponding to zero torsion of the suspension wires. When a current flows through the 

frame, it rotates and stops in an equilibrium position defined by the equality of two moments: 

- 𝐶𝑀: The moment of the electromagnetic torque (motor torque);  

- 𝐶𝑟: The moment of the torsion torque (resisting torque = restoring torque).  

 Electromagnetic torque 

- The horizontal sides 𝑎𝑑 and 𝑏𝑐, of length 𝑙’, are subjected to a substantially horizontal 

induction, therefore to Laplace forces 𝐹 1 and 𝐹 2 which are almost vertical which have no 

rotational effect on the frame.  

- The vertical sides 𝑏𝑎 and 𝑐𝑑, of length 𝑙, being perpendicular to the lines of induction are 

subjected to Laplace forces 𝐹 3 and 𝐹 4 normal to the plane of the coils, in opposite 

directions and having a common intensity: 

𝐹 =  𝐹3  =  𝐹4  = 𝐼 × 𝐵 ×  𝑙                                                         (3.1) 

where 𝐼 is the current intensity. 

These two forces therefore form a couple of moment: 

𝐶𝑀  =  𝐹 ×  𝑙’ = 𝐼 × 𝐵 × 𝑙 × 𝑙’ = 𝐼 × 𝐵 × 𝑆                              (3.2) 

where 𝑆 =  𝑙 × 𝑙’ : denotes the cross-section of the moving frame. 

Since the frame comprises 𝑁 identical turns, the moment of the resulting electromagnetic 

torque is written: 

𝐶𝑀  =  𝑁 × 𝐼 × 𝐵 × 𝑆 ≜ 𝑁 × 𝐼 × 𝜙0                                                         (3.3) 

where 𝜙0 is the flux that crosses the moving frame, 𝐶𝑀 in meter-newton; 𝐼 in amperes; 𝑆 in 

square meters and 𝐵 in tesla. 

 

 



  Torsion Torque 

The electromagnetic torque rotates the frame in the direction of the forces 𝐹 3 and 𝐹 4. During 

this rotation, the suspension wires are twisted by an angle 𝛼 and exert a restoring torque 

(torsion torque) proportional to this angle. The moment of this opposite torque is: 

𝐶𝑟  =  𝐾 × 𝑎                                                    (3.4) 

where 𝐶𝑟 is in meter-newton; 𝐾 is torsion constant in meter-newton per radian and 𝛼 in radian.  

 Equilibrium 

At equilibrium, we have 

𝐶𝑀  =  𝐶𝑟                                                     (3.5) 

From this equality, we deduce the expression for the deflection 𝛼 of the coil, which 

corresponds to the current of intensity 𝐼: 

𝛼 =  
𝑁𝜙0

𝐾
𝐼                                                            (3.6) 

where 𝐾 represents the specific resisting torque of the spring, it is expressed in 𝐽/𝑟𝑎𝑑.  

We notice that the coil rotates by an angle proportional to the current intensity.  

 Angle Reading 

The rotation of the coil is measured by the method of Poggendorff. The coil is surmounted by 

a small mirror 𝑀 which gives, from a thin illuminated slit, a light beam, the spot, on a 

translucent graduated ruler. If the coil rotates by an angle 𝛼, the reflected ray rotates by an 

angle 2𝛼 and the spot then moves from 𝐹’ to 𝐹’’. We therefore have, if the angle 𝛼 is small, 

tan 𝛼 ≈  2𝛼 radians and, consequently: 

𝛼 ≈  
𝑑

2𝐷
                                                                 (3.7) 

 

Figure 3-2: The Reading Device of a Magneto-Electric Galvanometer. 
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Now, equation (3.6) becomes: 

𝐼 =  
𝐾

𝑁𝜙0

𝑑

2𝐷
                                                                 (3.8) 

B. Sensitivity 

The galvanometer is all the more sensitive as, for the same intensity 𝐼, the angle of rotation a is larger: 

𝑆𝑖  =  
𝛼

𝐼
                                                                      (3.9) 

where 𝑆𝑖 is the current sensitivity of the moving element. From the relationship giving 𝛼, we deduce 

that  

𝑆𝑖  =  
𝑁𝜙0

𝐾
                                                                      (3.10) 

To improve sensitivity, it will be necessary to increase 𝐵, 𝑁, 𝑆 and decrease 𝐾.  

 

A multi-range meter consists of the moving element, resistors, and a battery. For resistance 

measurement, it will therefore have several resistors depending on the desired ranges. For a moving 

element of the moving coil to measure a voltage, it is sufficient to mount a multiplier resistor with it 

(additional resistor). When measuring a current, a shunt must be mounted across its terminals (resistor 

placed in parallel). In both cases, the resistors serve to limit the current passing through the moving 

element to the maximum it can withstand.  

 

Figure 3-3: Passive multimeter for voltage measurement 

Figure 3-4: Passive multimeter for current measurement 

 

 

Multiplier 

resistor 

Moving 

element 

Voltage 

source 

S
h

u
n

t 

Moving 

element 
Voltage 

source 

https://commons.wikimedia.org/wiki/File:Inductor_h_wikisch.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Resistor_h_wikisch.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Inductor_h_wikisch.svg?uselang=fr
https://commons.wikimedia.org/wiki/File:Resistor_h_wikisch.svg?uselang=fr


A. Multi-range Ammeter 

The current range of a d.c. ammeter may be further extended by a number of shunts, selected by a 

range switch. Such meter is called a multi-range ammeter. Figure 3.5 shows a schematic diagram of 

Multi-range ammeter. The circuit has four shunts 𝑅𝑆ℎ1
, 𝑅𝑆ℎ2

, 𝑅𝑆ℎ3
 and 𝑅𝑆ℎ4

, which can be put in 

parallel with the meter movement to give four different current ranges 𝐼1, 𝐼2, 𝐼3 and 𝐼4.  

Figure 3-5: Multi-range ammeter. 

Let 𝑚1, 𝑚2, 𝑚3 and 𝑚4, be the shunt multiplying powers for currents 𝐼1, 𝐼2, 𝐼3 and 𝐼4, respectively, 

so 

𝑅𝑆ℎ1
=

𝑅𝑚

𝑚1 − 1
 

𝑅𝑆ℎ2
=

𝑅𝑚

𝑚2 − 1
 

𝑅𝑆ℎ3
=

𝑅𝑚

𝑚3 − 1
 

𝑅𝑆ℎ3
=

𝑅𝑚

𝑚3 − 1
 

Low range ammeters use a multi-position make-before-break switch provided on the case of the 

instrument. This type of switch is essential in order that the meter movement is not damaged when 

changing from the current range one to another. If we provide an ordinary switch, the meter remains 

without a shunt and as such is unprotected and therefore can be damaged when the range is changed. 

Multi-range ammeters are used for ranges from 1mA to 50A. When using a multi-range ammeter, 

first use the highest current range, then decrease the current range until good upscale reading is 

obtained. 

Remark: For an ammeter, we note that the higher the range, the lower the internal resistance value. 

An ammeter must therefore have the lowest possible resistance. 

B. Multi-range Voltmeter 

In a multirange voltmeter, different full scale voltage ranges may be obtained by the use of individual 

multiplier resistors or by a potential divider arrangement. 

We can obtain different voltage ranges by connecting different values of multiplier resistors in series 

with the meter. The number of these resistors is equal to the number of ranges required. Figure 3.6 



shows multiplier resistors 𝑅𝑆1
, 𝑅𝑆2

, 𝑅𝑆3
 and 𝑅𝑆4

, which can be connected in series with the meter by 

a range selector switch. Consider that the ranges desired are 𝑉1, 𝑉2, 𝑉3 and 𝑉4, then the corresponding 

multiplier resistances can be obtained as follows: 

𝑅𝑆1
= (𝑚1 − 1)𝑅𝑚 

𝑅𝑆2
= (𝑚2 − 1)𝑅𝑚 

𝑅𝑆3
= (𝑚3 − 1)𝑅𝑚 

𝑅𝑆3
= (𝑚4 − 1)𝑅𝑚 

where 𝑚1 = 𝑉1 𝑣⁄ , 𝑚2 = 𝑉2 𝑣⁄ , 𝑚3 = 𝑉3 𝑣⁄ , and 𝑚4 = 𝑉4 𝑣⁄ . 

 

Digital measuring devices are increasingly used thanks to their reliability, precision, and ease of 

reading. It is necessary for users of digital devices to understand the language adopted by the 

manufacturers of these devices.  

The principle is to convert an analog quantity into a numerical value that can be displayed. For 

this, it is necessary to use electronic circuits, the main ones being: analog-to-digital converters, the 

oscillator, the counter, and the display.  

 

There are two types of analog-to-digital converters: 

 Single-slope ADCs. 

 Dual-slope ADCs. 

The former are used (reserved) for applications where high precision is not required. The operating 

principle of ADCs is based on the charging and discharging of a capacitor 𝐶 with a constant current.  

 

Figure 3-6: Capacitor charging circuits. 

 

In the first circuit shown on Figure 3.6 (a), the capacitor charges exponentially according to the 

following equation.  

𝑉𝐶 = 𝐸 (1 − 𝑒−𝑡/𝜏)                                                      (3. 13) 

where 𝜏 = 𝑅𝐶. 

(a) (b) 



In the second circuit shown on Figure 3.6 (b), the capacitor has a linear charging (See equation 

below).  

𝑉𝐶 =
𝑖 × 𝑡

𝐶
                                                      (3. 14) 

where 𝑖 = 𝑑𝑞/𝑑𝑡. 

We note that the charging time is directly proportional to the current or the voltage. This means 

that these circuits will be used to transform a current or a voltage into a time. This important property 

will help us understand the operation of the ADC.  

A. Single-Slope Analog-to-Digital Converter 

The ADC converter includes a comparator to which the capacitor charging voltage is applied to 

the inverting input, and the unknown voltage to be measured is applied to the non-inverting input, an 

AND logic gate to which the oscillator signal is applied, the frequency of which can be changed 

according to the chosen range, and the comparator output signal, and finally a decade counter and 

displays.  

 

Figure 3-7: Single-Slope Analog-to-Digital Converter Circuit. 

 

The capacitor charging voltage is compared to a voltage 𝑈𝑥 to be measured. The AOP compares 

the voltage 𝑉− at the inverting terminal and the voltage 𝑉+  at the non-inverting terminal, therefore: 

 If 𝑉+ > 𝑉− ⟹ 𝑉𝑠 > 0Volt ⟹ 1 Logic. 

 If 𝑉+ < 𝑉− ⟹ 𝑉𝑠 < 0Volt ⟹ 0 Logic. 

At the beginning, we assume that the comparator is at the high level (1 logic), both switches 𝑆1 

and 𝑆2 are open. In this case, the capacitor is fully charged when 𝑈𝐶 > 𝑈𝑥  ⟹ 𝑉− > 𝑉+, a logical 

"0" is introduced, therefore the "𝐴𝑁𝐷" gate closes ⟹ the measurement is finished.  

The role of switch 𝑆2 is to activate the timer including the oscillator, the counter, the displays and 

the AND gate.  
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Figure 3-8: Oscillogram of the Single-Slope Analog-to-Digital Converter. 

 

B. Dual-slope analog-to-digital circuit 

 

Figure 3-9: Dual-Slope Analog-to-Digital Converter Circuit. 

 

The role of the integrator is to charge the capacitor linearly. Compared to the single-slope ADC, 

we observe that it has an electronic switch and a flip-flop to control this switch.  We also note the 

presence of an integrator which serves to charge the capacitor linearly. The input of the integrator is 

alternately subjected to two continuous voltages, one a fixed reference, and the other, the unknown 

voltage to be measured, is of negative sign.  

The charging (or discharging) is done through the resistor 𝑅 with a constant current of value: 
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𝐼 =  
𝑉

𝑅
     or       𝑉 = {

−𝑈𝑥

𝑉𝑟𝑒𝑓
   

At the beginning of the measurement, the voltage −𝑈𝑥 will charge the capacitor for a very specific 

time 𝑇1.  The voltage at the comparator input will exceed 0𝑉, and consequently, the comparator output 

will switch to the high state. This comparator signal and the signal delivered by the clock are applied 

to an AND gate, whose output drives a counter. During the time 𝑇1, 𝑛 pulses would have passed, the 

(𝑛 +  1)𝑡ℎ pulse, which is an overflow signal, is received that will switch the position of the switch 

to 𝑉𝑟𝑒𝑓 and start the counting.  

At this moment, the second slope of the measurement is initiated, meaning that the current 

produced by 𝑉𝑟𝑒𝑓 will discharge the capacitor during the time 𝑇2 until the voltage across 𝐶 is zero 

due to the change of the comparator state to low, consequently the counting is stopped, and the result 

is displayed.  

 

Figure 3-10: Oscillogram of the Dual-Slope Analog-to-Digital Converter.  
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 𝑈𝑥 = 𝑉𝑟𝑒𝑓
𝑇2

𝑇1
                                                       (3.35) 

 We note that the voltage to be measured depends only on 𝑉𝑟𝑒𝑓 and of the report 𝑇2 𝑇1⁄ . According to 

the relationship found, we can say that the calibration can be done by changing the reference voltage 

because when 𝑉𝑟𝑒𝑓 ↗⟹  
𝑈𝑥

𝑉𝑟𝑒𝑓
↘, 

𝑇2

𝑇1
↘ ⟹ 𝑇2 decreases (𝑇1 remains unchanged).  

It depends on the oscillation frequency and the counter, therefore the number of pulses will decrease 

but this will be remedied by setting the appropriate (necessary) scale.  

 Accuracy: According to the given relationship, we note that the voltage to be measured 

depends on the voltage 𝑉𝑟𝑒𝑓 and the ratio 𝑇2 𝑇1⁄ , therefore, neither the oscillator frequency 

nor the value of the capacitance, nor the offset voltage, and we can conclude that by this 

method, the main cause of error in the single-slope ADC has been eliminated.  

 

A. The multimeter 

The Digital Multimeter, shown in Figure 3.11, is built around a digital voltmeter and includes at 

least a current-to-voltage converter allowing it to function as an ammeter and a constant current 

generator to function as an ohmmeter.  

 

Figure 3-11: Digital Multimeter. 

 

The choice of measurement type (of the instrument), the range or measurement scale is generally 

made using a rotary switch; push buttons can control additional functions. The most recent 

multimeters, often the easiest to use, automatically choose the correct mode and range. Other 

measurement functions may be available depending on the sophistication of the multimeter: 

 Continuity test with or without beeper;  

 Amplification to measure very low voltages and high resistances;  

 Measurement of the capacitance of a capacitor or a capacitive circuit;  

 Measurement of the inductance of a coil or an inductive circuit (self);  
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 Temperature measurement, with the help of an external probe;  

 Discrete semiconductor tests: diodes, transistor gain (ℎfe);  

 Measurement of electrical signal frequency;  

 Measurement of voltage peaks (high and low) (peak ℎold).  

 

A. The oscilloscope 

Unlike analog models, the signal to be displayed is first digitized by an analog-to-digital converter. 

The ability of the device to display a high-frequency signal without distortion depends on the quality 

of this interface. The main characteristics to consider are: 

 The resolution of the analog-to-digital converter.  

 The sampling frequency in MS/s (mega samples per second) or GS/s (giga samples per 

second).  

 The memory depth.  

The device is coupled to memories allowing these signals to be stored and to a number of analysis 

and processing units that allow many characteristics of the observed signal to be obtained: 

 Measurement of signal characteristics: peak value, RMS value, period, frequency, etc.  

 Fast Fourier transform which allows the signal spectrum to be obtained.  

 Sophisticated filters which, applied to this digital signal, allow the visibility of details to be 

increased.  

The result is increasingly displayed on a liquid crystal screen, which makes these devices easy to 

move and much less energy-consuming. Digital oscilloscopes have now completely supplanted their 

analog predecessors, thanks to their greater portability, greater ease of use and, above all, their 

reduced cost.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Consider the magneto-electric motor element.  

 Find the expression of the force applied to the sides of the moving frame.  

 Give the expression of the motor torque exerted on the frame.  

An AC voltmeter is equipped with the magneto-electric motor element with a full-wave rectifier and 

is graduated in RMS values with the following values from 0 to 100 with a step of 10.  

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. 

 Re-graduate this voltmeter in average value.  

 

A milliammeter with a range of 0.1mA and an internal resistance of 1kΩ is available.  

 Calculate the voltage across its terminals when the needle deflection is maximum.  

 With the previous milliammeter, we can create an ammeter with a caliber of 0.1A and 1A, what is 

the necessary shunt resistance in this case?  

Using the milliammeter of the previous exercise, we want to create a voltmeter with the following 

calibers: 15V, 30V, 150V.  Calculate: 

 The values of the additional resistances r1, r2, r3 corresponding to the different calibers.  

 The internal resistances of a voltmeter in each case.  

Consider the AC circuit equipped with a full-wave rectifier bridge and a magneto-electric motor 

element whose calibration is given in average value.  

 

 

Mobile equipment 



 Calculate 𝑟𝑚 and 𝑟𝑠 of the moving coil as well as the resistances of the different calibers.  

 Assuming that the diodes are ideal and must have a full-scale current of 100µ𝐴. Recalibrate this 

voltmeter in peak values.  

Consider the analog-to-digital converter given by the following figure: 

 

 Explain the operating principle of this converter.  

 If 𝑓0 = 10 𝑘𝐻𝑧, the charging time 𝑇1 = 2𝑠, the 𝑉𝑟𝑒𝑓 = 10𝑉, we want to measure the unknown 

voltage 𝑈𝑥 which causes a discharge time of the capacitor 𝐶, 𝑇2 = 1𝑠. Calculate the unknown 

voltage 𝑈𝑥 and the number of counted pulses corresponding to the measurement.  

 Assuming that the frequency of the oscillator drifts due to the rapid rise in ambient temperature 

𝑓0 = 12.5 𝑘𝐻𝑧.  Calculate the new voltage to be measured 𝑈𝑥. 
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