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  ملخص 

تهدف هذه الأطروحة الى دراسة وجود وصقالة الحلول الضعيفة لفئة المعادلات 

المتجانسة في فضاء تابعي ذي أسس متغيرة. الناقصية غير الخطية و غير 

 ويعتمد بحثنا في هذا العمل على المسألة التالية: 

𝐵(𝑢) + 𝐹(𝑥, 𝑢) = 𝑓, 𝑥 ∈ ℝ𝑁, 𝑁 ≥ 2 

 حيث 

معرف كما يلي  𝐵(𝑢) و المؤثر 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑁) 

𝐵(𝑢) = − ∑ 𝐷(𝑑𝑖(𝑥, 𝑢)𝑎𝑖(𝑥, 𝑢, 𝐷𝑢))

𝑁

𝑖=1

 

 حيث

𝑎𝑖: ℝ𝑁 × ℝ × ℝ𝑁 → ℝ, 𝑑𝑖 : ℝ𝑁 × ℝ → ℝ 

توابع كاراتيدوري التي تحقق الشرطهي   

𝜂

(1 + |𝑢|)𝛾𝑖(𝑥)
≤ 𝑑𝑖(𝑥, 𝑢) ≤ 𝜇 

 

𝐵(𝑢) ليس ناقصيا عندما تكون قيم 𝑢 كبيرة جدا. ؤثرو الم  

تعتمد الخطوات الأساسية للإثبات على الحصول على تقديرات محلية مناسبة 

للمشكلات التقريبية، ثم المرور الى النهاية. تمثل النتائج المتحصل عليها تعميما 

 ’‘للنتائج المعروفة في حالة الأسس الثابتة. بالاضافة الى تعميم بعض النتائج 

.‘’12’’ الواردة في المرجع   

الحلول  معادلات متباينة الخواص، المفتاحية: المسائل الناقصية غير الخطية، الأسس المتغيرة ،الكلمات 

قابلة للتكامل محليا. توابع الضعيفة،  



Abstract

This work is devoted to establishing the existence of weak solutions for a certain class

of nonlinear anisotropic elliptic equations, where the involved exponents vary with po-

sition and the coercivity condition may degenerate. The equations under consideration

take the following general form

B(u) +H(x, u) = f, x ∈ RN , N ≥ 2

where f is locally integrable on RN and the operator

B(u) = −
N∑
i=1

Di(ei(x, u)bi(x, u,Du))

is properly defined between W 1,p(.)
0 (Ω), (Ω or RN )and its dual. Suppose that bi : RN ×R×

RN −→ R, are a Carathéodory functions.

The functions ei : RN × R −→ R are Carathéodory functions and satisfying the following

condition

η

(1 + |u|)γi(x)
≤ ei(x, u) ≤ µ,

where η, µ are strictly positeve real numbers and γi(x) ≥ 0, i = 1, ..., N are continuous

functions on RN . And H : RN × R −→ R be a Carathéodory functions. The differential

operetor B is not coercive if u is large.

The core strategy of the proof involves deriving local estimates for a sequence of appro-

priately constructed approximate problems, followed by a limiting process. The findings

presented here extend known results from the constant exponent framework and also

build upon certain results discussed in [12].

KEYWORDS: Anisotropic equations, Variable exponents, Nonlinear elliptic problem, Weak

solutions, Locally integrable data.



Résumé

Dans cette thèse, nous prouvons l’existece et la régularité de solutions faibles pour une

classe d’équations elliptiques anisotropes non linéaires à exposants variables et à coercivité

dégénérée. Nous considérons le problème (P) suivant:

B(u) +H(x, u) = f, x ∈ RN , N ≥ 2

où f est intégrable sur tout sous-ensemble compact de RN et l’opérateur

B(u) = −
N∑
i=1

Di(ei(x, u)bi(x, u,Du))

est bien défini comme une application entre l’espace de Sobolev à exposant variable

W
1,p(.)
0 (Ω), (Ω or RN ) et son espace dual. bi : RN × R × RN −→ R, est une fonetion

de Carathéodory, avec ei : RN × R −→ R est une fonction de Carathéodory satisfait la

condtion suivante

η

(1 + |u|)γi(x)
≤ ei(x, u) ≤ µ,

où η > 0, µ > 0 et γi(x) ≥ 0, i = 1, ..., N les fonctions continues RN . et H : RN ×R −→

R les fonctions Carathéodory. L’opérateur différentiel B n’est pas coercitif lorsque s est

grand. Les principales étapes de la démonstration consistent à établir des estimations lo-

cales pour des problémes approchés appropriés, puis à passer à la limite. Nos résultats

constituent des généralisations des résultats correspondants obtenus dans le certains ré-

sultats présentés dans [12].

MOTS-CLÉS: Équations anisotropes, Exposants variables, Problèmes elliptiques nonlinéaires,

Solutions faibles, Données localement intégrables.



Notations

• N: The collection comprising all natural numbers.

• RN : Real Euclidean space, the N -dimensional.

• Ω: open bounded from RN .

• ∂Ω: boundary of Ω.

• x = (x1, ..., xn) as a general element of the space RN .

• U ⊂⊂ Ω: means that the closure of U is compact and U ⊂ Ω.

• |E| or meas(E): represents the Lebesgue measure associated with the subset E.

• a.e. : stands for almot eveywhere

• V ′: represents the dual space corresponding to the Banach space V .

• 〈·, ·〉: the duality pairing between V and V ′.

• Di = ∂
∂xi

: corresponds to differentiation with respect to the i-th coordinate of x.

• Du = (D1u, ..., DNu): the gradient of u.

• ∆u =
∑N

i=1
∂2u
∂x2
i
: the Laplacian of u.

• div v =
∑N

i=1Divi: the divergence of the vector v = (v1, ..., vN).

• χE The function that takes the value 1 on E and 0 elsewhere (characteristic).

• supp(u) = {x ∈ Ω : s(x) 6= 0}: the supprt of a function u.



CONTENTS

• C(Ω): represent the collection of real-valued functions that are continuous on the

domain Ω.

• Ck(Ω), k ∈ N: represent the set of functions on Ω possessing continuous derivatives

of all orders up to k.

• Ck
0 (Ω): The space of k times differentiable on Ω with continuity, 0 on ∂Ω.

• C∞0 (Ω) or D(Ω): The smooth functions of compact support in Ω. D(Ω): the space of

smooth functions with compact support in Ω.

• D′(Ω): the dual space of D(Ω); space of real distributions on Ω.

• L∞(Ω) =
{
u : Ω→ R mesurable, esssup

Ω
(u) <∞

}
.

• C+

(
Ω
)

=

{
p ∈ C

(
Ω
)

: min
x∈Ω

h(x) > 1

}
.

• p+ = max
x∈Ω

p(x) and p− = min
x∈Ω

p(x) for p ∈ C0
+

(
Ω
)
.

• p′(·) = p(·)
p(·)−1

: the Hölder conjugate exponent of p ∈ C+

(
Ω
)

• p∗(·) =


Np(·)
N−p(·) , if 1 ≤ p(·) < N

∞, if p(·) ≥ N,
, the Sobolev critical exponent of p ∈ C

(
Ω
)
.

• Lp(·)(Ω) =
{
u : Ω→ R mesurable,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx <∞ for some λ > 0
}

• Mp(·)(Ω) =
{
u : Ω→ R mesurable, sup

λ>0
λ‖χ{|u|>λ}‖Lp(·)(Ω) <∞

}
.

• W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
where p ∈ C

(
Ω
)

and p ≥ 1.

• W
1,p(·)
0 (Ω): closure of C∞0 (Ω) with respect to W 1,p(·)(Ω) norm.

• W−1,p′(·)(Ω): the dual space of W 1,p(·)
0 (Ω).

ix



• For −→p (·) = (p1(·), ..., pN(·)) ∈ C
(
Ω
)
, we set

1

p(x)
=

1

N

N∑
i=1

1

pi(x)
.

p+(x) = max{p1(x), ..., pN(x)}, p−(x) = min{p1(x), ..., pN(x)}, x ∈ Ω.

p+
+ = max{p+

1 , . . . , p
+
N}, p

−
+ = max{p−1 , . . . , p−N}, and p−− = min{p−1 , . . . , p−N}.

• W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) : Diu ∈ Lpi(·)(Ω), for i = 1, ..., N

}
with−→p (·) ∈ (C+(Ω))N .

• W
1,−→p (·)
0 (Ω): the closure of C∞0 (Ω) in the norm of W 1,−→p (·)(Ω).

• D1,−→p (·)
0 (Ω): the completion of C∞0 (Ω) with respect to the norm

N∑
i=1

‖Diu‖Lpi(·)(Ω) .



Introduction

Nonlinear elliptic and parabolic equations play a crucial role in modern mathematical

analysis, especially when studied within the framework of variable exponent Lebesgue

Sobolev spaces, denoted by Lp(·)(Ω) and W
1,p(·)
0 (Ω). These spaces have attracted consid-

erable attention and have been extensively investigated in recent years, as they provide a

flexible and effective framework for analyzing such types of equations. They are partic-

ularly well-suited for modeling heterogeneous and anisotropic phenomena, making them

applicable to a wide range of complex physical and mathematical problems. For further

details, we refer to [2]. These function spaces have found applications in various fields,

including electro-rheological fluids and image processing (see [4], [3], [20], [27], and

[39]). This class of equations emerged from efforts to generalize the classical framework

of Laplace and Poisson equations by replacing fixed-exponent spaces such as Lp(Ω) and

W 1,p(Ω) with more flexible spaces of the form Lp(·)(Ω) and W 1,p(·)(Ω), in the case variable

exponents; which allow for the modeling of heterogeneous and anisotropic phenomena.

Moreover, these equations have found applications in digital image processing, partic-

ularly in image denoising and edge preservation, where it is essential to use coefficients

varying pointwise across the image. This naturally leads to PDEs of the p(.)-Laplacian

type. Key contributions by researchers such as [8], [27], [41] and have played a piv-

otal role in advancing the analytical theory of these equations, encompassing existence,

regularity, and compactness results.

This thesis focuses on investigating the existence and regularity of weak solutions,

showing that every weak solution is also a distributional solution for a class of nonlin-

ear in both cases isotropic and anisotropic elliptic equations characterized by variable

exponents involving non-regular data. Our approach using the compactness method that

1



Introduction

involves three steps which are: building the approximate problem, give some priori esti-

mats of the solutions, and passing to the limit via the approximate problem. We employ

new techniques that include compactness theorem with data belong to suitable Lebesgue

spaces.

Chapter one highlights a comprehensive summary of fundamental results in the field

of functional analysis, with an emphasis on key concepts and theories applied to nonlinear

partial differential equations. It provides some definitions, facts, and basic properties of

generalized Lebesgue-Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω), and W 1,p(·)
0 (Ω), whereΩ denotes

an open subset of RN , as well as some crucial convergence theorems and charactrazation

of anisotropic variable exponent Sobolev spaces W 1,pi(.)(Ω), more details loot at [5, 15,

16, 19, 22, 26, 32, 33].

The second chapter is devoted to establishing the existence and regularity of weak

solutions for a class of nonlinear isotropic elliptic equations with variable exponents in-

volving irregular data, within the framework of suitable variable exponent Sobolev spaces.

We suppose that the variable exponents m(·) : Ω → (1,+∞) and p(·) : Ω → (1,+∞) are

continuous functions and satisfy the following conditions:

1 +
1

m(x)
− 1

N
< p(x) < N, for all x ∈ Ω,

and

1 < m(x) <
Np(x)

Np(x)−N + p(x)
, Dm ∈ L∞(Ω), for all x ∈ Ω.

Here, we are intersted in studying the following boundary value problem: −div (â(x,Du)) = f, in Ω,

u = 0, on ∂Ω,
(1)

Where â : Ω×RN → RN is a Leray-Lions type operator. This operator is a Carathéodory

function that satisfies, for almost every x ∈ Ω and for all ξ, ξ′ ∈ RN , the following condi-

tions:

â(x, ξ) · ξ ≥ α|ξ|p(x), â(x, ξ) = (a1, . . . , aN),

|â(x, ξ)| ≤ β
(
h(x) + |ξ|p(x)−1

)
,

(â(x, ξ)− â(x, ξ′)) · (ξ − ξ′) > 0, for ξ 6= ξ′,

2
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Where α, β > 0 are constants, his a non-negative function in Lp
′(·)(Ω) p′(·) is the con-

jugate exponent of p(·), defined by 1
p(x)

+ 1
p′(x)

= 1.

These conditions ensure that the Leray-Lions type operator is well-defined and suitable

for analysis using the variational method; for instance, we refer to [44] for more details

about the approach and this work can be found in [1].

The nonlinearity of (1) is more complex than that of the p-Laplacian due to the depen-

dence of the exponent p(x) on the spatial variable x. In the constant case 2− 1
N
< p(·) = p,

the existence of a distributional solution u of (1) in the spaceW 1,q
0 (Ω) for all q ∈

[
1, N(p−1)

N−1

)
has been established in [18]. Therefore, the study of problem (1) represents a new and

interesting direction of research.

Inspired by [13], and [38], we first prove the existence of a weak solution for problem

(1) with a right-hand side in Lm(·)(Ω), where m(·) and p(·) satisfy the restrictions given in

previous conditions using the approximation method. The main steps of the proof involve

obtaining uniform estimates of suitable solutions for an approximate problems and then

passing to the limit. Second, we establish the existence of weak solutions for problem

(1) using the variational method which different from the results of [?]. Furthermore, the

strict monotonicity condition of the p(x)-Laplacian ensures the uniqueness of the solution.

Similar results can be found in [9], [46], and [47].

Third chapter studies the nonlinear anisotropic elliptic equation under Dirichlet bound-

ary conditions with degenerate coercivity in variable exponent Sobolev spaces Bu+H(x, u) = f in Ω,

u = 0 on ∂Ω,
(2)

where Ω is a smouth bounded open set of RN (N ≥ 2) with Lipschi boundary denoted

by ∂Ω, the function f belongs to the space L∞(Ω). And B is the oper ator given by

Bu = −Div(b̂(x, u,Du)) = −
N∑
i=1

∂

∂xi
(bi(x, u,Du)),

we suppose that for each b̂(x, u,Du) and H(x, u) are Carathéodory functions satisfying

3
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There exist constant α > 0, such that x ∈ Ω, ∀s ∈ R,∀ξ(ξ1, ..., ξN) and ξ′(ξ′1, ..., ξ
′
N) ∈

RN for all i = 1, ..., N the function b̂ : Ω× R× RN → RN satisfies the conditions:

b̂(x, u, ξ).ξ ≥ α
N∑
i=1

|ξi|li(x), b̂(.) = (b1(.), b2(.), ..., bN(.))

|bi(x, u, ξ)| ≤ g(x)

(
h(x) + |u|l

−
+

N∑
j=1

|ξj|lj(x)

)1− 1
li(x)

, l
−

= min
x∈Ω

l(x),

where α is strictly positive real number, and h(x) ∈ L1(Ω), g(x) ∈ L∞(Ω) are a given

positive functions, and the variable exponents pi : RN −→ (1,+∞) for all i = 1, ..., N are

continuus functios.

For all (x, u) ∈ Ω× R, we have

(bi(x, u, ξ)− bi(x, u, ξ′))(ξ − ξ′) > 0, ξ 6= ξ′.

Let H : Ω× R→ R be a Carathéodory function satisfying the following conditions:

sup
|u|≤τ
|H(x, u)| ∈ L1(Ω),∀τ > 0

H(x, u)sign(u) ≥ 0, a.e, x ∈ Ω, for allu ∈ R. (3)

For solve our problem (2), we emply the monotone theory operator that involves the

pseudomonotone techniques. Final chapter deals with the existence and regularity of

solutions for certain nonlinear anisotropic elliptic equations whose principal part exhibits

degenerate coercivity and whose data are only locally integrable function which is more

difficult comparing to the problem of the third chapter. As a prototype, we suppose that f

is a locally integrable funtion in RN and consider the following problem:

−
N∑
i=1

Di

g(x)
|u|
(
pi(x)−1

pi(x)

)
p−

+ |Diu|pi(x)−2Diu

(ln(1 + |u|))γi(x)

− |u|si(x)−1u

 = f, x ∈ RN , (4)

where si(·) ≥ pi(·) for all i = 1, ..., N ;Diu = ∂u
∂ui

, p1(·), p2(·), ..., pN(·).

More general of problem (4), we consider the nonlinear elliptic problem:

−
N∑
i=1

Di(ei(x, u)bi(x, u,Du)) +H(x, u) = f, x ∈ RN , N ≥ 2 (5)

4
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Suppose that bi : RN × RN −→ R, are a Carethéodory functions satisfying, a.e x ∈ RN

, ∀s ∈ R , ∀ξ(ξ1, ..., ξN) and ξ′(ξ′1, ..., ξ
′
N) ∈ RN for all i = 1, ..., N, the follwing conditions:

bi(x, u, ξ).ξi ≥ α|ξi|pi(x),

|bi(x, u, ξ)| ≤ g(x)

(
h(x) + |u|p− +

N∑
j=1

|ξj|pj(x)

)1− 1
pi(x)

, p− = min
x∈Ω

p(x),

(bi(x, u, ξ)− bi(x, u, ξ′))(ξ − ξ′) > 0, ξ 6= ξ′,
1

p(·)
=

1

N

N∑
i=1

1

pi(·)
,

where α is stritly positeve real numbers and

h(x) ∈ L1
loc(RN), g(x) ∈ L∞loc(RN)

are a given positve functios. The functions ei : RN × R −→ R are Carathéodory functions

and satisfying the following condition

η

(1 + |u|)γi(x)
≤ ei(x, u) ≤ µ,

where η, µ are strictly positive real numbers and γi(x) ≥ 0, i = 1, ..., N are continous

functions on RN .

The variable exponents pi : RN −→ (1,+∞) for all i = 1, ..., N are a continuous functions.

And H : RN × R −→ R be a Carathéodory functions satisfing the followng conditions

sup
|u|≤τ
|H(x, u)| ∈ L1

loc(RN),∀τ > 0

H(x, u)sign(u) ≥
N∑
i=1

|u|si(x), a.e, x ∈ RN ,

for all u ∈ R where si(·) > 0, i = 1, ..., N are a continuous functions on RN .

Under the validity of (4.5) the differential operator ceases to be coercive as ss in-

creases, thereby rendering the approach adopted in [36] ineffective.

If γi(·) = 0 the problem (5) has been studied in [36] with different method. In par-

ticular, If pi(·) = 2 and γi(·) = γ ∈ (0, 1
N−1

), the problem (5) has been investigated in

([17], Remark 1.18); remark here that in this case the assumption (4.10) is equivalent to

5
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that γ ∈ (0, 1
N−1

). In a bounded domain D and if pi(·) = p(·) and γi(·) = θ(p − 1) where

θ ∈ [0, 1), the problem (5) has been treated in [7], where the authors proved that the

solution s satisfied

Ds ∈Mq(Ω), q =
N(p− 1)(1− θ)
N − (1 + θ(p− 1))

,

this result is exactly what we mentioned in (5). In contrast to [11] where the regularity

result is established solely in relation to γ+, our analysis considers both γ+(·) and γ+

offering a more general framework. Furthermore, the gradient estimates we obtain are

novel when compared to those presented in [11, 40]. The regularity result in our work is

derived in terms of the more general functions γi(·) only i.e:

Diu ∈Mqi(·)
loc (RN)

such that

qi(·) =
Npi(·)(p(·)− 1− γi(·))
p(·)(N − 1− γi(·))

,

where γ+, γ+(·) repleced by γi(·) in (4.10) and in (4.14), this issue remains unresolved,

despite related results found in [11, 36, 37, 40, 39].

Our main goal is studying the existence and the regularity of the distributional solu-

tions. For this purpose, we construct an approximate solutions sequence for problem (5)

and establish some priori estimates under more restrictive assumptions on γi(·). Next, we

prove the strong convergence of the truncations of the approximate solutions. Finally, we

pass to the limit in the approximate equation to obtain the existence of a distributional

solution for problem (5).

Considering all aspects, the study of anisotropic problems with nonlinearities and vari-

able exponent coefficients is of great significance due to its wide range of applications

in various fields of modern applied sciences. These applications are particularly evident

in fluid dynamics within media characterized by directionally varying properties, where

the conductivity differs depending on the direction. It also contributes to the field of im-

age processing and restoration, in addition to its use in analyzing the behavior of elastic

materials. Readers may refer to specialized references for more detailed information.
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Chapter 1

Mathematical preliminaries

This chapter is meant to provide an overview of the real and functional analysis re-

sults that will be used afterwards. Moreover, we present some basic facts concerning the

necessary function spaces.

Unless otherwise required, in this chapter, Ω ⊂ RN is a bounded open set equipped

with N -dimensional Lebesgue measure. Note that the results in this chapter are not given

in full generality, these will be presented as needed in our study.

1.1 Classical Functional Spaces (Lebesgue and Sobolev)

This section provides a brief overview of fundamental concepts related to classical

Lebesgue, Marcinkiewicz, and Sobolev spaces, which will serve as essential tools through-

out the thesis. For more comprehensive discussions on these topics, the reader is referred

to the relevant literature [5, 19, 16, 15, 22, 26, 32, 33].

Let 1 ≤ p < ∞, the Banach space Lp(Ω) is the space of all measurable functons

u : Ω→ R, with bounded norm

‖u‖Lp(Ω) =

∫
Ω

|u|pdx

 1
p

.

When p = +∞, the space L∞(Ω) is defined as the set of all Lebesgue measurable

functions on Ω that are essentially bounded,i.e

7



Classical Functional Spaces (Lebesgue and Sobolev)

L∞(Ω) = {u : Ω→ R measurable, ∃M > 0 ; |u(x)| ≤M a.e.Ω}.

The norm of u in L∞(Ω) is defined by

‖u‖L∞(Ω) = inf{M > 0 ; |u(x)| ≤M a.e. x ∈ Ω}.

The space Lp(Ω), 1 ≤ p ≤ ∞, is a Banach space, is defined by the norm ‖ · ‖Lp(Ω), the

separable for 1 ≤ p < ∞ and reflexive for 1 < p < ∞. For all 1 ≤ p < ∞, the topological

dual space of Lp(Ω) is isometrically identified with Lp′(Ω) where p′ is the Hölder conjugate

exponent, i.e., 1
p
+ 1

p′
= 1 (being (L1(Ω))

′
= L∞(Ω)). On the other hand, (L∞(Ω))′ is strictly

bigger than L1(Ω).

For p = 2, the space L2(Ω) is a Hilbert space with the inner product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx.

For every u ∈ Lp(Ω), v ∈ Lp′(Ω) the Hölder inequality holds∫
Ω

uvdx ≤ ‖u‖Lp(Ω)‖v‖Lp′ (Ω)

For 1 ≤ p <∞, let us present the definition of the Sobolev space:

W 1,p(Ω) = {u ∈ Lp(Ω) : |Du| ∈ Lp(Ω)} ,

which is a Banach space for the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖Du‖Lp(Ω),

or

‖u‖W 1,∞(Ω) = max
(
‖u‖L∞(Ω) + ‖Du‖L∞(Ω)

)
if p =∞,

where by ‖u‖Lp(Ω) we understand ‖|Du|‖Lp(Ω). The space W 1,p(Ω) is separable for 1 ≤

p < ∞ and reflexive for 1 < p < ∞. Note that if Ω is sufficiently smooth, then W 1,∞(Ω)

identifies with the space of locally Lipschitz functions.

The space W 1,p
0 (Ω) is the closure of C∞0 (Ω) in the norm of W 1,p(Ω). An equivalent norm

of W 1,p
0 (Ω) is given by

8



Classical Functional Spaces (Lebesgue and Sobolev)

‖u‖W 1,p
0 (Ω) = ‖Du‖Lp(Ω),

For 1 ≤ p <∞, let us present the Poincaré inequality:

‖u‖Lp(Ω) ≤ C‖Du‖Lp(Ω), u ∈ W 1,p
0 (Ω)

for some C > 0 which depends on Ω and p.

Let 1 ≤ p ≤ ∞, we define

Lploc(Ω) = {u : Ω→ R;u ∈ Lp(U) for all open U ⊂⊂ Ω} .

Following the same reasoning, we define

W 1,p
loc (Ω) =

{
u : Ω→ R;u ∈ W 1,p(U) for all open U ⊂⊂ Ω

}
.

For all non-negative real numbers a, b and every 1 < p < ∞, the Young inequality

holds

ab ≤ ap

p
+
bp
′

p′
, p′ =

p

p− 1
,

which will be used in the folloing form: for every ε > 0, 1 < p <∞ and real non-negative

numbers a, b

ab ≤ εap + Cεb
p′ with Cε = ε

−1
p−1 . (1.1)

Theorem 1.1 (Stampacchia [33]) Let ϕ : R −→ R be a Lipschitz function, i.e

∀C > 0, such that |ϕ(s)− ϕ(t)| ≤ C |s− t| , ∀s, t ∈ R,

where ϕ(0) = 0 Then ∀u ∈ W 1,p
0 (Ω) with 1 ≤ p ≤ ∞ we have:

ϕ(u) ∈ W 1,p
0 (Ω) and Dϕ(u) = ϕ′(u)Du almost everywhere in Ω.

Theorem 1.2 (Rellich-Kondrachov [33]) Let Ω be a bounded open set of RN with 1 ≤ p <

∞,

If p < N then ∀q ∈ [1, p∗], the injection of W 1,p
0 (Ω) in Lq(Ω) is continuous.

And ∀q ∈ [1, p∗[, the injection is compact, that is bounded of W 1,p
0 (Ω) are relatively compact

in Lq(Ω).

9



Convergence theorems

1.2 Convergence theorems

Throughout this section, we recell some defintions and results concerning theorems of

convergence about sequences of measurable functions. For more dctails, we can refer to

[9, 14, 21, 22, 31, 32].

Definition 1.3 Let (un) and u be measurable functions in Ω.

1) We say (un) converges almost everywhere in Ω to u, and write un → u a.e. in Ω, if

meas {x ∈ Ω : un(x) does not converge to u(x)} = 0,

2) We say that the sequence (un) converges in measure on Ω to u if for every κ > 0

lim
n→+∞

meas {x ∈ Ω : |un(x)− u(x)| > κ} = 0.

3) We refer to the sequence as (un) is a Cauchy sequene if for every ε > 0 and every

κ > 0 there exists N ∈ N such that for all m,n ≥ N , then

meas {x ∈ Ω : |un(x)− um(x)| > κ} < ε.

The proposition below establishes a result concerning that for (sn) being a convergent

sequence in measure is a necessary and sufficiant condition of being a Cauchy in measure.

Proposition 1.4 ([32]) Let (un) be a sequence of measurable functions on Ω, then the fol-

lowing statemments are equivalent.

1) (un) is Cauchy in measure.

2) (un) converges in measure to a measurable function u.

There is a relationship between the different modes of convergences almost every-

where convergence in measure. This relationship is determined by the next proposition:

Proposition 1.5 ([22]) Let (un) be a sequence of measurable functions on Ω.

1) If un → u a.e. in Ω then un → u in measure (here Ω is bounded).

2) If un → u in measure, then ∃(unk) such that unk → u a.e. in Ω as k →∞.

10



Convergence theorems

We proceed to define a Carathéodory function.

Definition 1.6 Letm ≥ 1. A function a = a(x, ξ) : D×Rm → R is a Carathéodory function

if for all ξ ∈ Rm the function

f(·, ξ) : Ω→ R,

is measurable and for almost every x ∈ Ω the function

f(x, ·) : Rm → R,

is continuous.

Proposition 1.7 ([16]) Let a = a(x, ξ) : Ω× R → R is a Carathéodory function. Let un be

a sequence of functions and u be a measuable function such that un → u in measure. Then

a(x, un)→ a(x, u) in measure.

We frequently use the following convergence results.

Theorem 1.8 (Monotone convergence theorem [33] ) Let (un) be an increaing sequence

of non-negative measuable functions on Ω, which converges pointwise to u. Then∫
Ω

un dx −→
∫

Ω

u dx when n→∞.

Theorem 1.9 (Fatou’s Lemma [33] ) Let (un) be a sequence of non-negtive mesurable func-

tions on Ω. Then ∫
Ω

(
lim inf
n→∞

un

)
dx ≤ lim inf

n→∞

∫
Ω

un dx.

The next result is the analog of Fatou’s Lemma.

Theorem 1.10 (Lebesgue’s dominated convergence theorem [33]) Let the sequence (un)

of Lp(Ω) with 1 ≤ p < ∞, converges a.e. to u, and be dominated by v ∈ Lp(Ω), in the se-

quense that |un(x)| ≤ v(x) a.e. in Ω. Then un → u (strongly) in Lp(Ω), that is, u ∈ Lp(Ω)

and

‖un − u‖Lp(Ω) → 0 as n→∞.

Theorem 1.11 (Vitali’s convergence theorem [15]) Let (un) be a sequence of functions

in Lp(Ω) with 1 ≤ p <∞ such that

11



Convergence theorems

• un → u a.e. on Ω.

• (un) is equi-integrable, that is, for every ε > 0, there exists δ > 0 such that∫
E

|un(x)|p dx ≤ ε,

for all n and for every measurable set E ⊂ Ω with meas(E) ≤ δ.

Then un → u in Lp(Ω).

We remark that when Ω is bounded, the weak-? convergence of (un) in L∞(Ω) to some

u ∈ L∞(Ω) implies the weak convergence of (un) to u in any Lp(Ω), 1 ≤ p <∞.

It is imprtant to note that the above theorem is false when p = 1, since a bounded

sequence in L1(Ω) has in general no weak convergence property.

The following lemma shows the boundedness of weakly convergent sequences.

Proposition 1.12 ([26]) Let (un) be a sequence of functions in Lp(Ω) with 1 < p < ∞.

Assume that

• (un) is bounded in Lp(Ω);

• un → u a.e. in Ω.

Then un → u in Lq(Ω), for every 1 ≤ q < p and weakly in Lp(Ω), i.e,∫
Ω

unvdx −→
∫
Ω

uvdx, as n→∞,

for all v ∈ Lp′(Ω).

We have the following Charactization of the weak convergence in W 1,p(Ω).

Proposition 1.13 ([33]) A (un) weakly converges sequence to u in W 1,p(Ω), if and only

if there exist vi ∈ Lp(Ω) such that un ⇀ u weakly in Lp(Ω) and Diun ⇀ vi weakly in

Lp(Ω), i = 1, ..., N. In this case, vi = Diu.

Throughout this thesis, Tk denotes the truncation function at height k (k > 0), that is

Tk(s) =

 s, if |s| ≤ k,

k s
|s| , if |s| > k.

12
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s

Tk(s)

−k
k

−k

Ω

k

Note that Tk is a Lipschitz continuous functions satisfying |Tk(s)| ≤ k and |Tk(s)| ≤ |s| and

its primitive The superposition operator associated with Tk provides an approximation of

the identity in various spaces and this leads us to the next proposition

Proposition 1.14 ([33]) If u ∈ Lp(Ω), then Tk(u) → u in Lp(Ω) strongly when k → +∞.

If u ∈ W 1,p(Ω), then Tk(u)→ u in W 1,p(Ω) strongly.

The following results concerns the superposition operators.

1.3 Variable exponent Lebesgue spaces

In this section we recall some basic facts on Lebesgue spaces with variable exponent

that can be found, for example, in [6, 9, 19, 21, 24, 42].

Let p(·) : Ω→ [1,+∞) is a continuous function, called the variable exponent. In what

follows, we adopt the following notations:

C+

(
Ω
)

=
{
p ∈ C

(
Ω
)

: 1 < p− ≤ p+ <∞
}
,

and

p− = min
x∈Ω

p(x), p+ = max
x∈Ω

p(x).

We define the generalized Lebesgue space Lp(·)(Ω), also called the Lebesgue space

with variable exponent, as the set of continuons functions u : Ω −→ (1,+∞) for which

the convex modular

ρp(·)(u) =

∫
Ω

|u(x)|p(x) dx <∞,

13
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if p+ <∞, then the expression

‖u‖Lp(·)(Ω) = inf

{
λ > 0 |

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
,

defines a norm in Lp(·)(Ω), called the Luxembourg norm.

The space (Lp(·)(Ω); ‖ · ‖Lp(·)(Ω)) is a Banach space and D(Ω) is dense in (Lp(·)(Ω)).

Proposition 1.15 ([6, 19]) Let p ∈ C+

(
Ω
)
. Then for every u ∈ Lp(·)(Ω), one has

ρp(·)(u) < 1(> 1; = 1) if and only if ‖u‖Lp(·)(Ω) < 1(> 1; = 1); further,

if ‖u‖Lp(·)(Ω) < 1 then ‖u‖p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

−

Lp(·)(Ω)
, (1.2)

if ‖u‖Lp(·)(Ω) > 1 then ‖u‖p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

+

Lp(·)(Ω)
. (1.3)

The above proposition states that in qsestions related to convergence, ρp(·)(·) and ‖·‖Lp(·)(Ω)

are equivalent, that is to say, if un, u ∈ Lp(·)(Ω), then

‖un − u‖Lp(·)(Ω) → 0 if and only if ρp(·)(un − u)→ 0.

Henceforth, we denote

C+

(
Ω
)

=

{
p ∈ C

(
Ω
)

: min
x∈Ω

p(x) > 1

}
.

Whenever p ∈ C+

(
Ω
)
, the space Lp(·)(Ω) is refleive and its dual space can be identified

with Lp′(·)(Ω).

Let p, q ∈ C
(
Ω
)

with p ≥ 1, q ≥ 1, and r(·) defined by

1

r(·)
=

1

p(·)
+

1

q(·)
.

Then for all u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), fg ∈ Lr(·)(Ω) and the following generalised

Hölder inequality holds (see [19, 21])

‖u‖Lr(·)(Ω) ≤ C‖u‖Lp(·)(Ω)‖v‖Lq(·)(Ω), (1.4)

with C = max
Ω

r(x)

p(x)
+ max

Ω

r(x)

q(x)
.

Definition 1.16 ([6]) Let p ∈ C+(Ω). We say that a measurable function u : Ω → R

belongs to the Marcinkewicz spaceMp(·)(Ω) if

‖u‖Mp(·)(Ω) = sup
λ>0

λ‖χ{|u|>λ}‖Lp(·)(Ω) <∞, (1.5)

where χA denotes the charactirestic function of a measurable set A.
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The inequalities (1.2)-(1.3) imply that the requirement in Definition 1.16 is equivalent

to say that, ∃M > 0 such that∫
{|u|>λ}

λp(x)dx ≤M, for all λ > 0. (1.6)

If p, q ∈ C+

(
Ω
)

with q(·) ≤ p(·), then we have

Lp(·)(Ω) ⊂Mp(·)(Ω) ⊂Mq(·)(Ω).

We will need the following property.

Proposition 1.17 ([6]) If u ∈Mq(·)(Ω) with q− > 0, then

meas{|u| > k} ≤ M + |Ω|
kq−

, for all k > 0,

where M is the constnt appeared in (1.6). A direct result is that meas{|u| > k} → 0, as

k → +∞.

Proposition 1.18 Let p, q ∈ C+

(
Ω
)
. If (p− q)− > 0, then

Mp(·)(Ω) ⊂ Lq(·)(Ω).

1.4 Variable exponent Sobolev spaces

Based on theories of several variable exponents function spaces have been intensively

developed during the last two decades. Our goal in this section is to recall briefly some

basic concepts and definitions regarding variable exponent Sobolev Spaces. For an expo-

sition of these concepts, we refer to the books [21, 24] and the references therein.

Everywhere in this section, let Ω ⊂ RN , N ≥ 2, be a bounded open domain with

Lipschitz boundary.

Let p(·) : Ω → [1,+∞) be a continuous function. The (isotropic) Sobolev space with

variable exponent W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Diu ∈ Lp(·)(Ω), i = 1, ..., N

}
,

endowed with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖Du‖Lp(·)(Ω),
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where Diu, i ∈ {1, ..., N}, represent the partial derivatives of u with respect to xi in the

distributions sense.

We define W 1,p(·)
0 (Ω) as the completion of C∞0 (Ω) with respect to the above norm.

Whenever p ∈ C+(Ω), the spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are separable and reflexive

Banach spaces.

Definition 1.19 ([47]) We refer to a function as k : Ω → R is log-Hölder continuous on

Ω if and only if there ∃M > 0 such that

|k(x)− k(y)| ≤ M

− ln |x− y|
, for all x, y ∈ Ω, 0 < |x− y| ≤ 1/2. (1.7)

Nevertheless.

Proposition 1.20 ([8]) If p ∈ C+(Ω) satisfies (1.7), then C∞0 (Ω) is dense in W 1,p(·)
0 (Ω).

We recall the famous Poincaré inequality.

Proposition 1.21 ([24]) Let p ∈ C+(Ω), then there exists a finite constant C > 0 such that

for every u ∈ W 1,p(·)
0 (Ω).

‖u‖Lp(·)(Ω) ≤ C‖Du‖Lp(·)(Ω), (1.8)

for some constant C which depends on Ω and the function p.

Remark 1.22 ([24]) The following inequity∫
Ω

|u|p(x)dx ≤ C

∫
Ω

|Du|p(x)dx,

generally does not hold (see [29]). But by Proposition 1.15 and (1.10) we have∫
Ω

|u|p(x)dx ≤ C max{‖Du‖p
+

Lp(·)(Ω)
, ‖Du‖p

−

Lp(·)(Ω)
}. (1.9)

Let us denote by

p∗(x) =


Np(x)
N−p(x)

if p(x) < N,

any number from [1;∞[ if p(x) ≥ N.

the Sobolev conjugate exponent.

Sobolev-Poincaré inequality [[24]]

‖u‖Lp(·)(Ω) ≤ C‖Du‖Lp∗(·)(Ω), (1.10)
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for some constant C which depends on Ω and the function p.

An important embedding result is as follows:

Lemma 1.23 ([25]) Let Ω ⊂ RN be an open bounded set with Lipschitz boundary, and let

p : Ω → (1, N) satisfy the logarithm Hölder continuity condition (1.7). Then, we have the

following continuous embedding:

W 1,p(·)(Ω) ↪→ Lp
?(·)(Ω)

.

Lemma 1.24 ([24]) Given a set Ω and if p(·), q(·) ∈ C+(Ω) and p∗(·) > q(·) then there

exists a finite constant C > 0 such that for every u ∈ W 1,p(·)
0 (Ω).

‖u‖Lq(·)(Ω) ≤ C‖Du‖Lp(·)(Ω),

The embedding W 1,p(·)
0 (Ω) ↪→↪→ Lq(·)(Ω), is continuous and compact. In particular, we have

W
1,p(·)
0 (Ω) ↪→↪→ Lp(·)(Ω), is continuous and compact.

1.5 Anisotropic variable exponent Sobolev spaces

In this section, we outline some fundamental properties of the anisotropic variable

exponent Sobolev spaces to which the solutions of our main problem belong. For more

comprehensive discussions, one may refer, for instance, to [28, 29, 30].

Unless otherwise specified, in this section be a bounded open domain with Lipschitz

boundary. consider a bounded open domain Ω ⊂ RN , N ≥ 2, with a boundary of Lipschitz

type Let −→p (·) : Ω −→ RN defined by

−→p (·) = (p1(·), ..., pN(·)),

with pi ∈ C+(Ω) for all i ∈ {1, ..., N}.

Define

p+(x) = max (p1(x), ...., p1(x)) , ∀x ∈ Ω.
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The space W 1,−→p (·)(Ω) is defined by

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) : Diu ∈ Lpi(·)(Ω), for i = 1, ..., N

}
=
{
u ∈ L1

loc(Ω) : u ∈ Lpi(·)(Ω) Diu ∈ Lpi(·)(Ω), for i = 1, ..., N
}

endowed with the norm

‖u‖W 1,−→p (·)(Ω) = ‖u‖Lp+(·)(Ω) +
N∑
i=1

‖Diu‖Lpi(·)(Ω) . (1.11)

We denote by W 1,−→p (·)
0 (Ω) the closure of C∞0 (Ω) in the norm of W 1,−→p (·)(Ω). When equipped

with the norm introduced in (1.11) (see [28]), the spaces W 1,−→p (·)(Ω), W 1,−→p (·)
0 (Ω) exhibit

the structure of separable and reflexive Banach spaces. We put for all x ∈ Ω

p?(x) =


Np(x)
N−p(x)

, if p(x) < N,

+∞, if p(x) ≥ N.
where p(x) =

N
N∑
i=1

1
pi(x)

.

Theorem 1.25 ([28]) Let D ⊂ RN an open bounded domain and −→p (·) ∈ (C+(Ω))N . Sup-

pose that

∀x ∈ Ω, p+(x) < p?(x). (1.12)

Then

‖u‖Lp+(·)(Ω) ≤ C
N∑
i=1

‖Diu‖Lpi(·)(Ω), ∀u ∈ W
1,−→p (·)
0 (Ω), (1.13)

where C is a constante positve independante de u. Thus
∑N

i=1 ‖Diu‖Lpi(·)(Ω) is an equivalent

norm on W 1,−→p (·)
0 (Ω).

Proposition 1.26 ([28]) Let −→p (·) ∈
(
C+

(
D
))N

and (1.12) hold. Then D1,−→p (·)
0 (Ω) =

W
1,−→p (·)
0 (Ω).

Let us now recall some anisotropic Sobolev inequalities, proved in [43], that we will

use frequently in the sequel.

Theorem 1.27 Let αi are constante of α ≥ 1, i = 1, . . . , N , we put −→α = (α1, . . . , αN).

Suppose that u ∈ W 1,−→α
0 (Ω), and set

1

α
=

1

N

N∑
i=1

1

αi
, r =

 α∗ = Nα
N−α if α < N,

any number from [1,+∞) if α ≥ N.
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Then, ∃C > 0 dependant de N, p1, . . . , pN if α < N and also on r and meas(Ω) if α ≥ N ,

such that

‖u‖Lr(Ω) ≤ C
N∏
i=1

‖Diu‖
1
N

Lαi (Ω) . (1.14)

Theorem 1.28 Let Ω be a cabe of RN with faces parallel to the coordinate planes and αi ≥

1, i = 1, . . . , N . Suppose that u ∈ W 1,−→α (Q), and set

r =

 α∗ if α < N,

any number from [1,+∞) if α ≥ N.

Then, C depending on N,α1, . . . , αN if α < N and also on r and meas(Q) if α ≥ N , such

that

‖u‖Lr(Q) ≤ C
N∏
i=1

(
‖u‖Lαi (Q) + ‖Diu‖Lαi (Q)

) 1
N . (1.15)

We finish this brief review by introducing the following space:

T 1,−→p (·)
0 (Ω) = {u : Ω→ R measurable, Tk(u) ∈ D1,−→p (·)

0 (Ω) for all k > 0}.

It is worth noticing that T 1,−→p (·)
0 (Ω) is not contained in the Sobolev space W 1,1

0 (Ω). The

next proposition clarifies the meaning of the partial derivatives of u ∈ T 1,−→p (·)
0 (Ω).

Proposition 1.29 ([33]) Let u ∈ T 1,−→p (·)
0 (Ω), for i = 1, . . . , N, there exists a unique measur-

able function vi : Ω→ R such that

DiTk(u) = viχ{|u|≤k} a.e. in D, for any k > 0.

The functions vi are called the weak partial derivatives of u and are still denoted by Diu.

Moreover, if u belongs to W 1;1
0 (Ω), then vi coincides with the standard distributional deriva-

tives of u, that is vi = Diu.
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Chapter 2

Nonlinear Elliptic Equation with

Variable Exponents

In this chapter, we study a nonlinear anisotropic elliptic equation with variable ex-

ponents, non-regular data. We discuss the existence and regularity of weak solutions in

appropriate anisotropic variable exponent Sobolev spaces. The results presented here are

based on the work in [1].

2.1 Introduction

We will consider the following problem: −div
(
|Du|p(·)−2Du

)
= f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ RN is a bounded open domain with a smooth boundary ∂Ω, f belongs to

Lm(·)(Ω), with m(·) satisfying the conditions given in (2.7).

The equation (2.1) generalizes the classical p -Laplace equation, where the constant

p ∈ (1,+∞) is replaced by a variable exponent p(·). This problem has a variational struc-

ture, meaning that weak solutions can be obtained as critical points of the energy func-

tional

L(u) =

∫
Ω

1

p(x)
|Du|p(x)dx−

∫
Ω

fudx.
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Existence result of problem (2.2)

We consider a more general class of nonlinear elliptic equations with variable expo-

nents of the form

 −div (â(x,Du)) = f in Ω,

u = 0 on ∂Ω,
(2.2)

where ai : RN × RN −→ R, is a Carathéodory function that satisfies, for almost every

x ∈ Ω and for all ξ, ξ′ ∈ RN , the following conditions:

â(x, ξ) · ξ ≥ α|ξ|p(x), â(x, ξ) = (a1, . . . , aN), (2.3)

|â(x, ξ)| ≤ β
(
h(x) + |ξ|p(x)−1

)
, (2.4)

(â(x, ξ)− â(x, ξ′)) · (ξ − ξ′) > 0, for ξ 6= ξ′, (2.5)

where α, β are tow constants non-negative, h > 0 is a function in Lp′(·)(Ω) and p′(·) is the

conjugate exponent of p(·), defined by 1/p(x) + 1/p′(x) = 1.

We emphasize that the proof of existence of solutions to the problem relies on an

abstract surjectivity result.

2.2 Existence result of problem (2.2)

Definition 2.1 A function u is a weak solution of problem (2.2) if

u ∈ W 1,1
0 (Ω), â(x,Du) ∈ (L1(Ω))N ,

and ∫
Ω

â(x,Du)Dϕdx =

∫
Ω

fϕdx,

for all ϕ ∈ C∞0 (Ω), the C∞0 smooth functions of compact support in Ω.

Our main result is the following:

Theorem 2.2 Let f ∈ Lm(·)(Ω), the assumptions (2.3)-(2.5) and assume that (1.19) such

that

1 +
1

m(x)
− 1

N
< p(x) < N, for all x ∈ Ω, (2.6)
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The approximation method for problem (2.2)

and

1 < m(x) <
Np(x)

Np(x)−N + p(x)
, Dm ∈ L∞(Ω), for all x ∈ Ω. (2.7)

then the problem (2.2) has at least one weak solution u ∈ W 1,q(·)
0 (Ω), where q(·) is a contin-

uous function on Ω satisfying

1 ≤ q(x) <
Nm(x)(p(x)− 1)

N −m(x)
for all x ∈ Ω. (2.8)

2.3 The approximation method for problem (2.2)

In this part, we employ the approximation method to study the existence of weak so-

lutions for the problem (2.2).

Proof of Theorem 2.2 The proof needs three steps.

2.3.1 Approximate problem

Let (fn)n ⊂ C∞0 (Ω) be a sequence of bounded functions.

fn −→ f strongly in Lm(·)(Ω), as n −→∞.

such that

‖fn‖Lm(·)(Ω) ≤ ‖f‖Lm(·)(Ω), ∀n ≥ 1. (2.9)

The existence of the sequences un and fn smooth functions of compact support in Ω,

see for example. We approch the problem (2.2) by following problem

∫
Ω

â(x,Dun)Dϕdx =

∫
Ω

fnϕdx, ∀ϕ ∈ W 1,p(·)
0 (Ω), (2.10)

there exists at least one weak solution

un ∈ W 1,p(·)
0 (Ω)

(cf. J.L. Lions [34] , Theorem 2.7, page 180). Because
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The approximation method for problem (2.2)

For un ∈ W 1,p(·)
0 (Ω), we pst

Lun = −div (â(x,Dun)).

The operator L maps W 1,p(·)
0 (Ω) into

(
W

1,p(·)
0 (Ω)

)′
, thanks (2.5) A is monotone. The

growth condition (2.4) implies that A is hemicontinuous.

i.e., for all un, vn, wn ∈ W 1,p(·)
0 (Ω), the mapping R 3 λ 7→ 〈A(un + λvn), wn〉 is continuous.

By (2.3) and Lemma 2.2 [27], we can write

〈Lun, un〉
‖un‖W 1,p(·)

0 (Ω)

≥ α
ρp(·)(Dun)

‖un‖W 1,p(·)
0 (Ω)

≥ α

min

{
‖un‖p

+

W
1,p(·)
0 (Ω)

, ‖un‖p
−

W
1,p(·)
0 (Ω)

}
‖un‖W 1,p(·)

0 (Ω)

,

this prove that L is coercive. By (2.4), we get the operator L is bounded.

Thus, we get the desired result.

2.3.2 Uniform estimates

Lemma 2.3 Let p(·) as in (2.6), and m(·) as in (2.7) with m− = inf
x∈Ω

m(x) > 1. Then, for

any constant 0 < δ < 1, there exists a constant Cδ independent of n such that∫
Ω

|Dun|p(x)

(1 + |un|)δ
dx ≤ Cδ

(
1 +

( ∫
Ω

(1 + |un|)(1−δ) m−
m−−1 dx

)1− 1
m−

)
(2.11)

Proof: Let 0 < δ < 1, we define the function ψδ : R→ R by

ψδ(t) =

∫ t

0

du

(1 + |u|)δ
.

It’s clear that

ψδ(t) =
1

1− δ
((1 + |t|)1−δ − 1)sign(t),

we have ψδ is a continuous function satisfies ψδ(0) = 0, |ψ′δ(·)| ≤ 1, taking ψδ(un) as a test

function in (2.10), we obtain∫
Ω

â(x,Dun)Dψδ(un)dx =

∫
Ω

fnψδ(un)dx.

23



The approximation method for problem (2.2)

Using the from (2.3) and

Dψδ(un) = Dun.ψ
′
δ(un)

we get

α

∫
Ω

|Dun|p(x)

(1 + |un|)δ
dx ≤ 1

1− δ

∫
Ω

|f ||(1 + |t|)1−δ − 1|dx.

By application of Holder’s inequality, we find

α

∫
Ω

|Dun|p(x)

(1 + |un|)δ
dx ≤ 1

1− δ

(∫
Ω

|f |m−dx
)1/m−(∫

Ω

|(1 + |t|)1−δ − 1|m−/(m−−1)dx
)(m−−1)/m−

.

Since for any 0 < δ < 1 and

(a1 + a2)r ≤ max{1, 2r−1} (ar1 + ar2) , ai ≥ 0, r > 0,

we obtain ∫
Ω

|Dun|p(x)

(1 + |un|)δ
dx ≤ Cδ

(
1 +

( ∫
Ω

(1 + |un|)(1−δ) m−
m−−1 dx

)1− 1
m−

)
.

Lemma 2.4 Let p(·) as in (2.6), and m(·) as in (2.7), and f ∈ Lm(·)(Ω). Then there exists a

constant C1 such that

‖un‖W 1,q(·)
0 (Ω)

≤ C1,

for all continuous functions q(·) as in (2.8).

Remark 2.5 Note that the result given in Lemma 2.4 also holds for any measurable function

q : Ω→ R such that

ess inf
x∈Ω

(
Nm(x)(p(x)− 1)

N −m(x)
− q(x)

)
> 0.

Indeed, in both cases there exists a continuous function s : Ω→ R such that for almost every

x ∈ Ω:

q(x) ≤ s(x) ≤ Nm(x)(p(x)− 1)

N −m(x)
.

From Lemma 2.4, we deduce, in both cases, that (un)n is bounded in W
1,s(·)
0 (Ω). Finally, by

the continuous embedding

W
1,s(·)
0 (Ω) ↪→ W

1,q(·)
0 (Ω),

we have the desert result.
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Proof of Lemma 2.4 Firstly, note that since m(·) > 1 and p(·) is defined as in (2.6),

we get

1 <
Nm(x)(p(x)− 1)

N −m(x)
, for all x ∈ Ω.

Now, consider the following cases:

Case (a): Let q+ be a constant satisfying

q+ <
Nm−(p− − 1)

N −m−
. (2.12)

Note that the assumption (2.7) implies that

Nm−(p− − 1)

N −m−
< p−. (2.13)

Using Hölder’s inequality with (2.11), we obtain∫
Ω

|Dun|q
+

dx =

∫
Ω

|Dun|q
+

(1 + |un|)
δ q

+

p−

(1 + |un|)
δ q

+

p− dx

≤ C2

(
1 +

(∫
Ω

(1 + |un|)(1−δ) m−
m−−1 dx

))(1− 1
m− ) q

+

p−

.

(
1 +

(∫
Ω

(1 + |un|)
δ q+

p−−q+ dx
))1− q

+

p−

,

(2.14)

By (2.12) and (2.13) , we get

1−
(

Nq+

N − q+

)(m− − 1

m−

)
<

m−(p− − q+)

(m− − 1)q+ +m−(p− − q+)
< 1. (2.15)

Now, choose δ ∈ (0, 1) such that

δq+

p− − q+
<
m−(1− δ)
m− − 1

< q+? =
Nq+

N − q+
. (2.16)

Notice that (2.15) and (2.16) are respectively equivalent to

1−
(

Nq+

N − q+

)(m− − 1

m−

)
< δ <

m−(p− − q+)

(m− − 1)q+ +m−(p− − q+)
< 1. (2.17)

Therefore, by (2.14), (2.16) and using Sobolev inequality with q+?, we obtain∫
Ω

|Dun|q
+

dx ≤ C3

(
1 +

∫
Ω

|un|
m(1−δ)
m−−1 dx

)1− q+

m−p−

≤ C4

(
1 +

∫
Ω

|un|q
+?

dx

)1− q+

m−p−

≤ C5

(
1 +

∫
Ω

|Dun|q
+

dx

)( N
N−q+ )(1− q+

m−p− )

≤ C6 + C6

(∫
Ω

|Dun|q
+

dx

)( N
N−q+ )(1− q+

m−p− )

,

(2.18)
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The approximation method for problem (2.2)

By the fact that

m− <
Np−

Np− −N + p−
<
N

p−
, (2.19)

together with the assumption (2.12), this implies that

q+ < m−p− and 0 <
( N

N − q+

)(
1− q+

m−p−

)
< 1.

Hence, the estimate (2.18) imply that (Dun) is bounded in Lq+
(Ω).

Since |Dun|q(·) ≤ |Dun|q
+

+ 1, we obtain that (un) is bounded in W 1,q(·)
0 (Ω). This completes

the proof in Case (a).

Case (b): Let q be a continuous functions satisfying (2.8) and

q+ ≥ Nm−(p− − 1)

N −m−
.

By the continuity of p(·) and q(·) on Ω, there exists a constant η > 0 such that

max
y∈B(x,η)∩Ω

q(y) < min
y∈B(x,η)∩Ω

Nm−(p(y)− 1)

N −m−
for all x ∈ Ω.

Note that Ω is compact and therefore we can cover it with a finite number of balls

(Bi)i=1,...,k. Moreover, there exists a constant ρ > 0 such that

|Ωi| = meas(Ωi) > ρ, Ωi := Bi ∩ Ω, for all i = 1, . . . , k. (2.20)

We denote by q+
i the local maximum of q on Ωi (respectively p−i the local minimum of p

on Ωi), such that

q+
i <

Nm−(p−i − 1)

N −m−
for all i = 1, . . . , k. (2.21)

Using the same arguments as before locally, we obtain the similar estimate as in (2.18)

∫
Ωi

|Ωun|q
+
i dx ≤ C7

(
1 +

∫
Ωi

|un|q
+?
i dx

)1−
q+
i

m−p−
i , for all i = 1, . . . , k. (2.22)

On the other hand, the Poincaré-Wirtinger inequality gives

‖un − ũn‖
Lq

+
i
star

(Ωi)≤C8‖Dun‖
L
q+
i (Ωi)

,(2.23)

where ũn =
1

|Ωi|

∫
Ωi

un(x)dx, q+
i
?

=
Nq+

i

N − q+
i

.
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The approximation method for problem (2.2)

Moreover, note that the sequence (un)n is bounded in L1(Ω). So, from (2.20), we have

‖ũn‖L1(Ω) ≤ C8,

Therefore, by (2.23), we deduce that

‖un‖
Lq

+
i
?

(Ωi)
≤ ‖un − ũn‖

Lq
+
i
?

(Ωi)
+ ‖ũn‖

Lq
+
i (Ωi)

≤ C8‖Dun‖
Lq

+
i (Ωi)

+ C9, for all i = 1, ..., k.

Thus, using (2.22), we obtain

∫
Ωi

|Dun|q
+
i dx ≤ C10 + C10

(∫
Ωi

|Dun|q
+
i dx

)( N

N−q+
i

)(
1−

q+
i

m+p−
i

)
,

by (2.21) and arguing locally as in (2.19), we deduce

0 <
( N

N − q+
i

)(
1− q+

i

m−p−i

)
< 1,

so that ∫
Ωi

|Dun|q
+
i dx ≤ C11, for all i = 1, ..., k.

Recall that

q(x) ≤ q+
i , for all x ∈ Ωi and for all i = 1, ..., k.

So, we get ∫
Ωi

|Dun|q(x)dx ≤
∫

Ωi

|Dun|q
+
i dx+ |Ωi| ≤ C12.

Since Ω ⊂
N⋃
i=1

Ωi, for all i = 1, ..., k. we deduce that

∫
Ω

|Dun|q(x)dx ≤
k∑
i=1

∫
Ωi

|Dun|q(x)dx ≤ C13.

This finishes the proof of the Case(b).

Remark 2.6 Remark that in the constant case and f ∈ Lm(·)(Ω), we choose in (2.14)

δ =
pN −m−p−m−Np+m−N

N −m−p
∈ (0, 1),

to obtain

q =
m−N(p− 1)

N −m−
=⇒ (1− δ) m−

m− − 1
=

δq

p− q
=

Nq

N − q
,
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It is easy to check that, instead of the global estimate (2.18), we find∫
Ω

|Dun|qdx ≤ C + C

(∫
Ω

|Dun|qdx
)( N

N−q

)(
1− q

m−p

)
,

where 0 <
(

N
N−q

)(
1 − q

m−p

)
< 1. Then (2.2) has at least one weak solution u, possesses the

regularity u ∈ W 1,q
0 (Ω) far all q = Nm−(p−1)

N−m− .

2.3.3 Passage to the limit

From Lemma 2.4 together with the continuous embedding W 1,q(·)
0 (Ω) ↪→ W 1,q−

0 (Ω), we

have a subsequence (still denoted (un)n) such that

un ⇀ u weakly in W 1,q−

0 (Ω), (2.24)

un → u strongly in Lq
−

(Ω) (2.25)

un → u a.e in Ω. (2.26)

To complete the proof, we need the following lemmas:

Lemma 2.7 We have

Dun → Du a.e in Ω, (2.27)

Proof: In order to prove this lemma it is sufficient to show that:

Dun → Du in measure.

By (2.25),(2.24),(2.3),(2.4), (2.8) and using Lebesgue’s dominated convergence theorem,

we get the convergence of (Dun) to (Du) in measure, which proves the Lemma 2.7.

Lemma 2.8 We have

â(x,Dun)→ â(x,Du) strongly in Lq(·)(Ω), (2.28)

for some continuous function q(·) : Ω→ [1, Nm(·)
N−m(·)), where m(·) is a defined in (2.7).

Proof: To prove (2.28), we apply Vitali’s theorem with taking in consideration Lemma

2.4, (2.26), (2.27), (2.4) and (2.6).

Finally, for ϕ the space of smooth functions with compact support in Ω, we know∫
Ω

â(x,Dun)Dϕdx =

∫
Ω

fnϕdx. (2.29)
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Using (2.28), we can pass to the limit for n → +∞ in the weak formulation (2.29), we

obtain that u is a weak solution for (2.2).

Remark 2.9 Under the assumption f ∈ Lm(·)(Ω) in Theorem 2.2, we can deduce that f is

never in the dual space
(
W

1,p(·)
0 (Ω)

)′
, so that the result of this paper deals with irregular data.

If m(·) tends to be 1, then q(·) = Nm(·)(p(·)−1)
N−m(·) tends to be N(p(·)−1)

N−1
.

2.4 The Variational Method for Problem (2.1)

To prove that the problem (2.1) has a variational structure with f ∈ Lp′(·)(Ω), meaning

that weak solutions can be obtained as critical points of an energy functional, we need to

follow these steps:

2.4.1 The Energy Functional

The energy functional L : W
1,p(·)
0 (Ω)→ R associated with the problem (2.1) is typically

defined as:

L(u) =

∫
Ω

1

p(x)
|Du|p(x)dx−

∫
Ω

fudx.

Here

• The first term
∫

Ω
1

p(x)
|Du|p(x)dx represents the "energy" associated with the gradient

of u.

• The second term
∫

Ω
fudx represents the work done by the external force f .

2.4.2 The Gâteaux derivative

To show that weak solutions correspond to critical points of L, we compute the Gâteaux

derivative of L in the direction of a test function φ ∈ W 1,p(·)
0 (Ω). The Gâteaux derivative is

given by

〈L′(u), φ〉 = lim
t→0

L(u+ tφ)− L(u)

t
.
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For the functional L, this derivative can be computed explicitly as

〈L′(u), φ〉 =

∫
Ω

|Du|p(x)−2Du ·Dφdx−
∫

Ω

fφdx.

2.4.3 The Weak Formulation

A function u ∈ W 1,p(·)
0 (Ω) is a critical point of L if 〈L′(u), φ〉 = 0 for all φ ∈ W 1,p(·)

0 (Ω).

This condition is equivalent to the weak formulation of the problem:∫
Ω

|Du|p(x)−2Du ·Dφdx =

∫
Ω

fφdx for all φ ∈ W 1,p(·)
0 (Ω).

This is precisely the weak form of the equation:

−div
(
|Du|p(x)−2Du

)
= f in Ω,

with the Dirichlet boundary condition u = 0 on ∂Ω.

2.4.4 The Variational Structure

To confirm that the problem (2.1) has a variational structure, we need to ensure that:

1. The energy functional L is well-defined and differentiable on W 1,p(·)
0 (Ω).

2. The critical points of L correspond to weak solutions of the problem.

These properties follow from the conditions (2.3)-(2.4) of the p(x)-Laplacian operator

beside this, the continuity and differentiability of the functional L in the variable exponent

Sobolev space setting.

2.4.5 Existence of Critical Points

To prove the existence of critical points (and hence weak solutions) of the problem

(??), we can use (2.3)-(2.5) to show that L is bounded below and coercive, and then

apply the direct method to find a minimizer.
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2.4.6 The Uniqueness of The Solution

We prove the uniqueness of weak solutions of the problem (2.1) as follows:

Proof: Assume there exist two weak solutions u1, u2 ∈ W 1,q(·)
0 (Ω) to the problem. Then,

for all ϕ ∈ W 1,q(·)
0 (Ω), we have∫

Ω

â(x,Du1)Dϕdx =

∫
Ω

fϕdx,

∫
Ω

â(x,Du2)Dϕdx =

∫
Ω

fϕdx.

Subtracting the two equations, we obtain:∫
Ω

(â(x,Du1)− â(x,Du2))Dϕdx = 0, ∀ϕ ∈ W 1,q(·)
0 (Ω).

Let ϕ = u1 − u2. Since u1, u2 ∈ W 1,q(·)
0 (Ω), it follows that ϕ ∈ W 1,q(·)

0 (Ω). Substituting ϕ

into the equation, we get∫
Ω

(â(x,Du1)− â(x,Du2))D(u1 − u2)dx = 0.

By (2.5), we have:

(â(x,Du1)− â(x,Du2)) · (Du1 −Du2) ≥ 0,

with equality if and only if Du1 = Du2 almost everywhere in Ω.

From the integral equation:∫
Ω

(â(x,Du1)− â(x,Du2)) · (Du1 −Du2)dx = 0,

and (2.5), it follows that

Du1 = Du2 almost everywhere in Ω.

Since u1 and u2 have the same gradient Du1 = Du2 and both satisfy the Dirichlet

bosndary condition u1 = u2 = 0 on ∂Ω, we conclude:

u1 = u2 almost everywhere in Ω.

Thus, the weak solution u ∈ W 1,q(·)
0 (Ω) of the problem (??) is unique.
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Chapter 3

Anisotropic nonlinear elliptic equation

in bounded domain

3.1 Introduction

This chapter is devoted to the study the Dirichlet problem for the nonlinear anisotropic

elliptic equation in variable exponent. We focus particularly on the theory of monotone

and pseudo-monotone operators, which we will use later in the approximation framework

in Chapter 4. For that purpose, we introduce fundamental notions such as monotonicity,

hemicontinuity, coercivity, and pseudo-monotonicity, with simple illustrative examples for

each.

3.2 The Operators

3.2.1 Bounded Operators

Definition 3.1 Let V and V ′ be two Banach spaces, and let A : V −→ V ′ be an operator. We

say that A is bounded if it maps every bounded set in V to a bounded set in V ′ , i.e.,

∀ρ > 0,∃Cρ > 0 : A(BV (0, ρ)) ⊂ BV ′(0, Cρ)

where BV (0, ρ) denotes the open ball in V centered at 0 with radius ρ > 0, and BV ′(0, Cρ)

denotes the open ball in V ′ centered at 0 with radius Cρ > 0.

32



The Operators

Example The operator Au = −∆p is bounded from W 1,P
0 (Ω) in W−1,P ′

0 (Ω) From the

expression of the norm in a dual space, let ρ > 0, for u ∈ BV (0, ρ), we can write:

‖Au‖V ′ = sup
‖ϕ‖≤1

|〈Au, ϕ〉| = sup
‖ϕ‖≤1

|
∫
D

|Du|p−2DuDϕdx|.

So,

|
∫
D

|Du|p−2DuDϕdx| ≤
∫
D

|Du|p−1.|Dϕ|dx.

≤ (

∫
D

|Du|pdx)

1

p′ .(

∫
D

|Dϕ|pdx)

1

p .

≤ ‖u‖p−1
V .‖ϕ‖V

≤ ρp−1.

Hence ‖Au‖V ′ ≤ ρp−1 this shows that A(BV (0, ρ)) ⊂ BV ′(0, Cρ).

3.2.2 Monotone Operators

Definition 3.2 Let V be a reflxive Banach space. A single-valued operator A : V −→ V ′. We

say that:

A is monotone if:

∀u, v ∈ V, 〈Au− Av, u− v〉 ≥ 0

A is strictly monotone if:

∀u, v ∈ V, 〈Au− Av, u− v〉 > 0

Example Let Au = −∆u. The operator A maps H1
0 (Ω) into its dual H−1(Ω). It is mono-

tone because for all u, v ∈ H1
0 (Ω) :

〈Au− Av, u− v〉 =

∫
D

D(u− v)D(u− v)dx = ‖u− v‖H1
0 (Ω) ≥ 0.
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3.2.3 Hemicontinuous Operators

Definition 3.3 Let V be a reflxive Banach space. A single-valued operator A : V −→ V ′. We

say that A is said to be hemicontinuous if, for any fixed elements

u, v, w ∈ V, t −→ 〈A(u+ tv), w〉V ′×V

is continuous with respect to the real parameter.

Example Let Au = −∆u. The operator A maps H1
0 (Ω) into its dual H−1(Ω). It is hemi-

continuous. Indeed, for any u, v ∈ H1
0 (Ω) and t ∈ R, we have:

〈A(u+ tv), v〉 =

∫
D

DA(u+ tv)Dvdx.

Expanding the integral, we get:∫
D

Du+Dvdx+ t

∫
D

|Dv|2dx.

This shows that t −→ 〈A(u+ tv), v〉, is a linear function of t and hence continuous.

3.2.4 Coercive Operators

Definition 3.4 Let V be a reflxive Banach space. An operator A : V −→ V ′. is coercive if,

〈Av, v〉
‖v‖V

−→ +∞, as ‖v‖V −→ +∞.

Example Let Au = −∆u+ a(x)u, a(x) ≥ 0. The operator A maps H1
0 (Ω) into its dual

H−1(Ω). It is coercive. Indeed, we have

〈Av, v〉
‖v‖H1

0 (Ω)

=

∫
D

|Dv|2dx+
∫
D

a(x)v2dx

‖v‖H1
0 (Ω)

.

Since a(x) ≥ 0, we obtain:

〈Av, v〉
‖v‖H1

0 (Ω)

≥ α‖v‖H1
0 (Ω)as ‖v‖H1

0 (Ω) −→ +∞.
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3.2.5 Pseudo-monotone Operators

Definition 3.5 Let V be a reflexive Banach space. An operator A : V → V ′ is pseudomono-

tone if

1) A is bounded, that is, the image of a bounded subset of V is a bounded subset of V ′;

2) if uj ⇀ u weakly in V and if lim sup
j→+∞

〈Auj, uj − v〉 ≤ 0, then

lim inf
j→+∞

〈Auj, uj − v〉 ≥ 〈Au, u− v〉,

for every v in V , where 〈·, ·〉 refers to the duality product between V ′ and V .

Proposition 3.6 If A : V −→ V ′ be bounded, hemicontinuous and monotonic, then A is

pseudo-monotone.

Proof: Let (uj)j≥0 a sequence weakly converging to u in V . Suppose that

lim sup
j→+∞

〈Auj, uj − v〉 ≤ 0,

we have A is monotone, we obtain

lim
j→+∞

〈Auj, uj − v〉 = 0 (3.1)

Indeed, the monotonicity of A and the weak convergence of uj to wards u implies that

〈Auj, uj − v〉 ≥ 〈Au, uj − v〉 −→ 0 as j −→ +∞.

So

0 ≥ lim sup
j→+∞

〈Auj, uj − v〉 ≥ lim inf
j→+∞

〈Auj, uj − v〉 ≥ lim
j→+∞

〈Au, uj − v〉 = 0.

Hence (3.1).

On the other hand, for t ∈]0, 1[, let w = (1− t)u+ tv. We have 〈Auj −Aw, uj −w〉 ≥ 0

so that

t〈Auj, u− v〉 ≥ −〈Auj, uj − u〉+ 〈Aw, uj − u〉 − t〈Aw, v − u〉.

From which, thanks to a (3.1):

lim inf
j→+∞

t〈Auj, u− v〉 ≥ −t〈Aw, v − u〉,

35



An application to anisotropic elliptic equation with degenerate coercivity in variable
exponent

from which, dividing by t and taking into account (3.1):

lim inf
j→+∞

〈Auj, u− v〉 ≥ 〈Aw, u− v〉, (3.2)

w = (1− t)u+ tv, ∀t ∈]0, 1[

By making t tend to wards 0 in (3.2), and using hemicontinuity, we deduce

lim inf
j→+∞

〈Auj, u− v〉 ≥ 〈Au, u− v〉, ∀v ∈ V.

Which means that A is pseudo-monotonic.

The following theorem stemming form [14], provides a surjectivity result for pseu-

domonotone operators.

Theorem 3.7 Let V be a reflexive separable Banach space. Let A : V → V ′ be a pseu-

domonotone coercive operator. Then A is surjective, that is, for every f in V ′ there exists u in

V such that Au = f .

3.3 An application to anisotropic elliptic equation with

degenerate coercivity in variable exponent

We consider the following elliptic problem: −
∑N

i=1Di(ai(x, u,Du)) +H(x, u) = f in D,

u = 0 on ∂D,
(3.3)

where D is a smouth bounded open set of RN (N ≥ 2) with Lipschi boundary de-

noted by ∂D, the function f belongs to (W
1,−→p (·)
0 (Ω))′ the dual space of W 1,−→p (·)

0 (Ω). And we

suppose ai : D × R× RN → R is Carathéodory function satisfy the condictions:

For all x ∈ D, σ ∈ R and ξ ∈ RN

â(x, u, ξ).ξ ≥ α
N∑
i=1

|ξi|pi(x), â(.) = (a1(.), a2(.), ..., aN(.)) (3.4)

|ai(x, u, ξ)| ≤ g(x)

(
h(x) + |u|p

−
+

N∑
j=1

|ξj|pj(x)

)1− 1
pi(x)

, p− = min
x∈D

p(x), (3.5)
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(ai(x, u, ξ)− ai(x, u, ξ′))(ξ − ξ′) > 0, ξ 6= ξ′. (3.6)

Additionally, we assume that

sup
|u|≤τ
|H(x, u)| ∈ L1(Ω), ∀τ > 0 (3.7)

H(x, u)sign(u) ≥ 0, a.e, x ∈ D, ∀u ∈ R. (3.8)

where α, η and µ are strictly positive real numbers, and h(x) ∈ L1(Ω), g(x) ∈ L∞(Ω)

are a given positive functions, and the variable exponents pi : RN −→ (1,+∞) for all

i = 1, ..., N are continuus functios.

We define the following operator:

A : W
1,−→p (·)
0 (Ω) −→

(
W

1,−→p (·)
0 (Ω)

)′
u 7→ Au,

by

Au = −
N∑
i=1

Di(ai(x, u,Du)) +H(x, u) (3.9)

The proof is based on the assertion that the operator A is pseudo-monotone and coer-

cive.

3.3.1 The coercivity of the operator:

Let A defined by (3.9), we have

〈Au, v〉 =
N∑
i=1

∫
D

ai(x, u,Du)Divdx+

∫
D

H(x, u)vdx,

for any v ∈ W 1,−→p (·)
0 (Ω).

For any u = v, we get

〈Av, v〉 =
N∑
i=1

∫
D

ai(x, v,Dv)Divdx+

∫
D

H(x, v)vdx,

Using the assumptions (3.4) and (3.7), we find
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〈Ai(v), v〉 ≥
N∑
i=1

∫
D

ai(x, v,Div)Divdx (3.10)

≥ α
N∑
i=1

∫
D

|Div|pi(x)dx. (3.11)

In view of Proposition 1.15 , we obtain

〈Ai(v), v〉 ≥ α

N∑
i=1

min{‖Div‖
p−i
Lpi(·)(Ω)

, ‖Div‖
p+
i

Lpi(·)(Ω)
}

≥ α

N∑
i=1

‖Div‖λiLpi(·)(Ω)
,

where λi = p+
i if ‖Div‖Lpi(·)(Ω) ≤ 1 or λi = p−i if 1 ≤ ‖Div‖Lpi(·)(Ω) <∞.

So

〈Ai(v), v〉 ≥ α
N∑
i=1

‖Div‖λ
−

Lpi(·)(Ω)
− αN

≥ α

Nλ−
‖v‖λ−

W 1,−→p (·)(Ω)
− αN,

which implies
〈Av, v〉

‖v‖
W

1,−→p (·)
0 (Ω)

−→ +∞

as ‖v‖
W

1,−→p (·)
0 (Ω)

−→ +∞ since λ− > 1.

3.3.2 The pseudomonotonicity of the operator

(a) A is bounded. Indeed, let u be a bounded function in W 1,−→p (·)
0 (Ω) that is : let ρ > 0,

for u ∈ B(o, ρ), and for all v ∈ W 1,−→p (·)
0 (Ω), we have

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

= sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

|〈Aiu, v〉|,

then, we have

〈Au, v〉 =
N∑
i=1

∫
D

ai(x, u,Du)Divdx+

∫
D

H(x, u)vdx,

which implies

|〈Au, v〉| ≤
N∑
i=1

∫
D

|ai(x, u,Du)Div|dx+

∫
D

|H(x, u)v|dx,
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Since (3.5) and the fact that g ∈ L+∞(Ω), we have

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

= sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

|〈Aiu, v〉|

≤ sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

∫
D

|ai(x, u,Du)Div|dx+ sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

∫
D

|H(x, u)v|dx,

which implies

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

∫
D

|ai(x, u,Du)||Div|dx+ sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

|H(x, u)|
∫
D

|v|dx,

Using the Holder’s inequality (3.6) and (3.8) , we obtain

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ 2 sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

‖bi(x, u,Diu)‖
Lp
′
i
(.)(Ω)
‖Div‖Lpi(.)(Ω) +M,

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ 2 sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

‖ai(x, u,Diu)‖
Lp
′
i
(.)(Ω)
‖Div‖Lpi(.)(Ω) +M

≤ 2 sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1

‖ai(x, u,Diu)‖
Lp
′
i
(.)(Ω)

(‖Div‖Lpi(.)(Ω) + ‖v‖
Lp
−
i (Ω)

) +M

≤ 2‖ai(x, u,Diu)‖
Lp
′
i
(.)(Ω)

+M

≤ 2 max{(
∫
D

|ai(x, u,Diu)|p′i(.)dx)1/p+′
i , (

∫
D

|ai(x, u,Diu)|p′i(.)dx)1/p−′i }+M

≤ (

∫
D

|ai(x, u,Diu)|p′i(.)dx)1/p+′
i + (

∫
D

|ai(x, u,Diu)|p′i(.)dx)1/p−′i +M,

where M = sup
v∈W 1,pi(x)

0 (Ω),‖v‖≤1
|H(x, u)|

∫
D

|v|dx, because that p−′i ≥ p+′
i ⇒ 1/p−′i ≤

1/p+′
i and we recall that

∀a ≥ 0, α ≤ β ⇒ aα ≤ aβ + 1
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we obtain

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ C1

(∫
D

|ai(x, u,Diu)|p′i(.)dx
)1/p+′

i

+ 1

≤ C2

(∫
D

g(x)(h(x) + |u|p− +
N∑
j=1

|Dju|pj(x))dx

)1/p+′
i

+ 1

≤ C3

(
‖g(x)‖L∞(Ω)(‖h(x)‖L1(Ω) + ‖u‖p

−

L1(Ω) + 2
N∑
i=1

‖Dis‖
p+
i

Lpi(.)(D)
+N)

)1/p+′
i

+ 1

≤ C4

(
1 +

N∑
i=1

‖Diu‖
p+
i

Lpi(.)(D)

)1/p+′
i

+ 1,

where C4 = C3(max{‖g(x)‖L∞(Ω)(‖h(x)‖L1(Ω) + ‖u‖p
−

L1(Ω), 2})
1/p+′

i . Because p+
i ≤ p+

+ ⇒

1/p+′
i ≤ 1/p+′

+ , we find

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ C5

(
1 + ‖u‖

W
1,pi(.)
0 (D)

)p+
+−1

+ 1.

So,

‖Ai(u)‖
W−1,p′

i
(.)(Ω)

≤ C5 (1 + r)p
+
+−1 + 1 = r′.

Then Ai is bounded.

(b) If um ⇀ u weakly in W 1,−→p (·)
0 (Ω), as m→ +∞, and for any v ∈ W 1,−→p (·)

0 (Ω)

0 ≥ lim sup
m→+∞

〈Aum, um − v〉

= lim sup
m→+∞

 N∑
i=1

∫
D

ai(x, umDium)(um − v)dx

+

∫
D

H(x, um)(um − v)dx

 . (3.12)

Then,

lim inf
m→+∞

〈Aum, um − v〉 ≥ 〈Au, u− v〉.

Indeed, the compact embedding yields that um → u in Lq(·)(Ω) for a subsequence still

denoted as (um). Moreover, we assume that um → u a.e. in D.

Let us first prove that
N∑
i=1

∫
D

[ai(x, um, Dium)− ai(x, u,Diu)]Di(um − u)dx→ 0,
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We observe that
∫
D

H(x, um)(um − u)dx→ 0 since um → u in Lq(·)(Ω) and the sequence

(H(x, um))m is bounded in Lq
′(·)(Ω). By invoking (3.12) and using the fact that Diun ⇀

Diu weakly in Lp′i(·)(Ω) , we get

lim sup
m→+∞

N∑
i=1

∫
D

[ai(x, um, Dium)− ai(x, u,Diu)]Di(um − u)dx ≤ 0.

We have for all i = 1, ..., N

∫
D

[ai(x, um, Dium)− ai(x, u,Diu)]Di(um−u)dx ≥
∫
D

[ai(x, um, Diu)− ai(x, u,Diu)]Di(um−u)dx

Now, let us prove that

lim inf
m→+∞

〈Aum, um − v〉 ≥ 〈Au, u− v〉, ∀v ∈ W 1,−→p (·)
0 (Ω).

Because that, from (1.13), we deduce up to a subsequence

Dium → Diu a.e in D, i = 1, ..., N.

Therefore, for each i = 1, ..., N

ai(x, um, Dium) ⇀ ai(x, u,Diu),

weakly in Lp′i(·)(Ω) and a.e in D. Thus

lim
m→+∞

∫
D

ai(x, um, Dium)Divdx =

∫
D

ai(x, u,Diu)Divdx,

for all v ∈ W 1,−→p (·)
0 (Ω). By virtue of Fatou’s lemma and ai are Carathéodory, we get

lim inf
m→+∞

∫
D

ai(x, um, Dium)dx ≥
∫
D

ai(x, u,Diu)dx. (3.13)

On the other hand, we have∫
D

H(x, um)(um − v)dx→
∫
D

H(x, u)(u− v)dx, ∀v ∈ W 1,−→p (·)
0 (Ω). (3.14)
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Finally, combining , (3.13), and (3.14), we obtain

lim inf
m→+∞

〈Aum, um − v〉 ≥
N∑
i=1

∫
Ω

ai(x, um, Dium)Di(u− v)dx+

∫
Ω

H(x, u)(u− v)dx

= 〈Au, u− v〉.

Therefore A is pseudomonotone. Then, according to Theorem 3.7, there exists at least

one weak solution u ∈ W 1,−→p (·)
0 (Ω) to problem (3.3).
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Chapter 4

Nonlinear Anisotropic Degenerate

Elliptic Equation in RN with L1loc Data

In this chapter, we establish existence and regularity results for weak solutions to

a class of nonlinear anisotropic elliptic equations in RN , subject to pi(x) -type growth

conditions and locally integrable data, with principal part having degenerate coercivity

The results presented here are based on the work in [23].

4.1 Introduction

We consider the following nonlinear anisotropic elliptic equation:

−
N∑
i=1

Di(ei(x, u)bi(x, u,Du)) +H(x, u) = f, x ∈ RN , N ≥ 2 (4.1)

where the function f is locally integrable on RN . Suppose that bi : RN×R×RN −→ R,

ei : RN × R −→ R, are Carathéodory functions satisfying, for almost every x in RN , forall

, u ∈ R ,forall ξ(ξ1, ..., ξN), ξ′(ξ′1, ..., ξ
′
N) ∈ RN for all i = 1, ..., N , the following:

bi(x, u, ξ).ξi ≥ α|ξi|pi(x), (4.2)

|bi(x, v, ξ)| ≤ g(x)

(
h(x) + |v|p− +

N∑
j=1

|ξj|pj(x)

)1− 1
pi(x)

, p− = min
x∈Ω

p(x), (4.3)

(bi(x, u, ξ)− bi(x, u, ξ′))(ξ − ξ′) > 0, ξ 6= ξ′,
1

p(·)
=

1

N

N∑
i=1

1

pi(·)
, (4.4)
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η

(1 + |u|)γi(x)
≤ ei(x, u) ≤ µ, (4.5)

where α, η, µ are strictly positive real numbers, γi(x) ≥ 0, i = 1, ..., N are continuous

functions RN , h is locally integrable on RN , g is locally essentially bounded on RN are a

given positive functions.

Let H : RN × R −→ R be a Carathéodory function satisfying the conditions:

sup
|u|≤τ
|H(x, u)| ∈ L1

loc(RN), ∀τ > 0 (4.6)

H(x, u)sign(u) ≥
N∑
i=1

|u|ui(x), a.e, x ∈ RN , (4.7)

for all u ∈ R where si(·) > 0, i = 1, ..., N are continuous functions on RN .

Example: As a prototype example, we consider the model problem

−
N∑
i=1

Di

g(x)
|u|
(
pi(x)−1

pi(x)

)
p−

+ |Diu|pi(x)−2Diu

(ln(1 + |u|))γi(x)

− |u|si(x)−1u

 = f. (4.8)

where si(·) ≥ pi(·) for all i = 1, ..., N.

4.2 Statement of the problem

Definition 4.1 A function u is a weak solution of problem (P ) if

u ∈ W 1,1
loc (RN) ∩

(
L
s+(·)
loc (RN)

)
, bi(x, u,Du) ∈ L1

loc(RN), i = 1, ..., N,H(x, u) ∈ L1
loc(RN),

N∑
i=1

∫
RN
ei(x, u)bi(x, u,Du)Diϕdx+

∫
RN
H(x, u)ϕdx =

∫
RN
fϕdx, (4.9)

for all ϕ ∈ C1
c (RN), the C1

c functions of compect support.

The core contributions of this work are detailed below:

Theorem 4.2 Let f is locally integrable on RN and pi(·) satisfy (4.21), i = 1, ..., N. are

continous funtions on RN such that 1 + γ+
+ < p(x) < N, and for all i = 1, ..., N

p(x)(N − 1− γ+(x))−N(γ+
+ − γ+(x))

N(p(x)− 1− γ+
+)

< pi(x) <
p(x)(N − 1− γ+(x))−N(γ+

+ − γ+(x))

(1 + γ+(x))(N − p(x))
,

(4.10)
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for all x ∈ RN where

p(x) >
N(2 + γ+

+ + γ+(x))

N + 1 + γ+(x)
, for all i = 1, ..., N, (4.11)

0 ≤ γ+(x) < p′i(x)− 1, for all i = 1, ..., N, (4.12)

si(x) ≥ pi(x), for all i = 1, ..., N. (4.13)

Let bi be a functions satisfying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then the problem (4.1)

admits at least one weak solution u such that

u ∈Mq̃(·)
loc (RN), Diu ∈Mqi(·)

loc (RN),

where

qi(x) =
Npi(x)(p(x)− 1− γ+

+)

p(x)(N − 1− γi(x))−N(γ+
+ − γi(x))

, (4.14)

q̃(x) =
N(p(x)− 1− γ+

+)

N − p(x)
. (4.15)

Theorem 4.3 Let f ∈ L1
loc(RN) and assume that pi(·) > 1, (4.21), si(·) > 0, i = 1, ..., N are

continuous functions on RN such that

si(.) > (1 + γ+(.)) max
1≤i≤N

(
1

pi(.)− 1
; (pi(.)− 1)

)
, ∀x ∈ RN . (4.16)

s+(x) >
N(p(x)− 1− γ+

+)

N − p(x)
, ∀x ∈ RN . (4.17)

Let bi be a funtions satifying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then the problem (4.1)

admits at least one weak solution u such that

u ∈Mri(·)(RN), (4.18)

ri(x) =
pi(x)s+(x)

1 + s+(x) + γi(x)
. (4.19)

Remark 4.4 Let 0 ≤ γ+(x) < p′i(x)− 1 and si(x) ≥ pi(x) implies that for all x ∈ RN

si(x) > (1 + γ+(x))(pi(x)− 1).
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Proof of Results:

Under the assumption that p(·) < N, it is possble to obtain a sharper regularity result

for Du provided the contribution of the lower order term H(x, u) when s+(·) = max
1≤i≤N

si(·)

is large enough.

We emphasize that this result remains valid even when pi(·) > 1 as long as s+(·) > 1 is

sufficiently large. Indeed, assumption (4.17) ensures that

pi(·)s+(·)
1 + s+(·) + γi(·)

>
Npi(·)(p(·)− 1− γ+

+)

p(·)(N − 1− γi(·))−N(γ+
+ − γi(·))

.

for all i = 1, ..., N , so Theorem 4.3 improves Theorem 4.2.

Lemma 4.5 ([40]) Let pi(·), si(·), i = 1, ..., N in C+(Ω) with

si(·) ≥ pi(·), for all i = 1, ..., N. (4.20)

with

1 + γ+
+ < p(·) < N. (4.21)

and g be a non-negative function in W
1,−→p (·)
0 (Ω). Suppose that there exists a constant c such

that

‖g‖Ls+(·)(Ω) ≤ c, (4.22)

and
N∑
i=1

∫
{g≤k}

|Dig|pi(x)dx ≤ c(d+ 1)1+γ+
+ , ∀d > 0. (4.23)

Thzn there exits a constant C, depending on c such that∫
{f>d}

|d|h(x)dx ≤ C, ∀k > 0, h(x) =
N(p(x)− 1− γ+

+)

N − p(x)
, ∀x ∈ D. (4.24)

4.3 Proof of Results:

4.3.1 Proof of Theorem 4.2

Let R > 0 and BR = {x ∈ RN/|x| < R} be given. Our objective is to solve the equation

(4.1) in domain RN . Our approach begins by analyzing the case of (4.1) in the bells BR,

for an arbitrary but fixed R > 0, given a function fn which approximated f. If one can

derive estimates, which are independent of R and approximate fn, we can then pass to

the limits R −→ +∞ and fn → f to obtain a solution of the original problem.
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Proof of Results:

4.3.2 Approximate of Problem (4.1)

Let (fn), fn = Tn(f) and (un) are sequences of bounded defined on a set Bn = {x ∈

RN : |x| < n} which convege to f in L1
loc(RN), and which verfies the inequalities‖fn‖L

1
loc(RN ) ≤ ‖f‖L1

loc(RN ),

|fn| ≤ n, ∀n ≥ 1

‖un‖L1
loc(RN ) ≤ ‖u‖L1

loc(RN )

The existence of the sequences un and fn is traditional, see for example. We approch

the problem (4.1) by following problem:

−
N∑
i=1

Di(ei(x, Tn(un))bi(x, un, Dun)) +H(x, un) = fn, in RN (4.25)

There exists at least one weak solution

un ∈
N⋂
i=1

(
W

1,pi(·)
0 (Bn) ∩ Lsi(·)(Bn)

)
, W

1,−→p (·)
0 (Bn) =

N⋂
i=1

W
1,pi(·)
0 (Bn)

indeed one has H(x, un) ∈ L1(Bn) and

N∑
i=1

∫
Bn

ei(x, Tn(un))bi(x, un, Dun)Diϕdx+

∫
Bn

H(x, un)ϕdx =

∫
Bn

fnϕdx, (4.26)

for all ϕ ∈
⋂N
i=1W

1,pi(·)
0 (Bn) ∩ L∞(Bn). Note that by (4.5) and (4.2) we have

ei(x, Tn(un)) ≥ η

(1 + |Tn(un)|)γi(x)
≥ η

(1 + n)γ
+
+

.

In such a manner that the operator

B : v →
N∑
i=1

Di(ei(x, Tn(v))bi(x, v,Dv))

is coercive. Thus, chapter 3 provedes a rigorous proof of the existence of the approximate

solution un.
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Proof of Results:

4.3.3 Uniform estimates

We assume that un be a solution of (4.35), (4.2)-(4.4) and (4.6)-(4.7) hold, r such

that 0 < 2r < n, an Br = {x ∈ RN : |x| < r}.

Lemma 4.6 Let u+(·) ≥ pi(·), i = 1, ..., N, consider a redius R = n and let 0 < 2r < n.

Thare exists a constant C, indepzndent of n, such that

||un)||Ls+(·)(Br)
≤ C, s+(·) = max

1≤i≤N
si(·) (4.27)

||H(x, un)||L1(Br) ≤ C. (4.28)

Morever, for every δ > 1 there exists a constant Cδ, depending on δ, such that

N∑
i=1

∫
Br

|Diun|pi(·)

(1 + |un|)δ+γi(x)
dx ≤ Cδ. (4.29)

Proof: We fixed δ > 1 such that

δ ∈ (1, k), k = min
1≤i≤N,x∈B2r

(
ui(x)

pi(x)− 1
− γ+(x)

)
, (4.30)

we define the function ψ : R −→ R by

ψ(σ) = (1− δ)ψδ(σ) = (1− δ)
∫ σ

0

dt

(1 + |t|)δ
dt, ∀δ > 1 (4.31)

It’s apparent that

ψ(σ) = ((1 + |σ|)1−δ − 1)sign(σ), (4.32)

We know |ψ| ≤ 1 and |ψ′| ≤ δ − 1. Taking

ψ(un)θα (4.33)

as test function in (4.35), where α is a number such that

α > max
1≤i≤N,x∈B2r

(
si(x)pi(x)

si(x)− (δ + γ+(x))(pi(x)− 1)
) > 0, (4.34)

θ is a smooth with compact support in B2r, such that 0 ≤ θ ≤ 1 and θ ≡ 1 on Br and

|Dθ| ≤ 2
r
. We obtain

N∑
i=1

∫
BR

ei(x, Tn(un))bi(x, un, Dun)Di(ψ(un)θα)dx+

∫
BR

H(x, un)ψ(un)θαdx =

∫
BR

fnψ(un)θαdx,

(4.35)
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Proof of Results:

Using the form (4.2), (4.5) and

Di(ψ(un)θα) = Diunψ
′(un)θα + αψ(un)θα−1Diθ, i = 1, ..., N,

we obtain

βη
N∑
i=1

∫
B2r

|Dun|pi(x)

(1 + |un|)γi(x)
ψ′(un)θαdx+

∫
B2r

H(x, un)ψ(un)θαdx

≤ ||fn||L1(B2r) − α
N∑
i=1

∫
B2r

bi(x, un, Dun)ψ(un)θα−1Diθdx

≤ ||f ||L1(B2r) + C1

N∑
i=1

∫
B2r

(h(x) + |un|p
−

+
N∑
j=1

|Djun|pj(x))
1− 1

pi(x)ψ(un)θα−1|Diθ|dx

≤ C2 + C3

N∑
i=1

∫
B2r

(h(x) + |un|p
−

+
N∑
j=1

|Djun|pj(x))
1− 1

pi(x) θα−1dx.

(4.36)

By Youeng’s inequality, we find

I = (h(·)+ |un|p
−

+
N∑
j=1

|Djun|pj(·))1− 1
pi(·) θα−1

= ε(·)
1

p′
i
(·) (h(·)+|un|p

−
+

N∑
j=1

|Djun|pj(·))1− 1
pi(·) (1+|un|)

−γ+(·)
p′
i
(·) ψ

′ 1
p′
i
(·) θ

α
p′
i
(·) ε(·)

−1
p′
i
(·) (1+|un|)

γ+(·)
p′
i
(·) ψ

′ −1
p′
i
(·) θ

α
pi(·)
−1

≤ ε(·)
p′i(·)

(h(·)+|un|p
−

+
N∑
j=1

|Djun|pj(·))(1+|un|)−γ+(·)ψ′(un)θα+
(δ − 1)θα−pi(·)

pi(·)ε(·)pi(·)−1
(1+|un|)(δ+γ+(·))(pi(·)−1),

then

I ≤ ε(·)
p′i(·)

(
h(·) +

|un|p
−

(1 + |un|)γ+(·) +

∑N
j=1 |Djun|pj(·)

(1 + |un|)γ+(·)

)
ψ′(un)θα

+
(δ − 1)θα−pi(·)

pi(·)ε(·)pi(·)−1
(1 + |un|)(δ+γ+(·))(pi(·)−1),

so

I ≤ ε(·)
p′i(·)

(
h(·) +

|un|p
−

(1 + |un|)δ+γ+(·) +
N∑
j=1

|Djun|pj(·)

(1 + |un|)δ+γj(·)

)
θα

+ Cδθ
α−pi(·)(1 + |un|)(δ+γ+(·))(pi(·)−1), (4.37)
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Proof of Results:

where ε : R→ (0,+∞) anyposetive function, and p′i(·) = pi(·)/(pi(·)− 1), i = 1, ..., N .

Choosing ε(·) = β/(2C2

∑N
i=1(1/p′i(·))) and Cδ = (δ−1)

1−p−−

p−−
, the fact that

ψ′(un) = (δ − 1)(1 + |un|)−δ.

Using (4.36),(4.37), we obtain

βη(δ − 1)

2

N∑
i=1

∫
B2r

|Diun|pi(x)

(1 + |un|)δ+γi(x)
θαdx+

∫
B2r

H(x, un)ψ(un)θαdx

≤ C4 + C5

N∑
i=1

∫
B2r

(
(1 + |un|)(δ+γ+(x))(pi(x)−1)θα−pi(x) + |un|p

−
θα
)
dx

≤ C6 + C7

N∑
i=1

∫
B2r

(
(1 + |un|)(δ+γ+(x))(pi(x)−1)θα−pi(x) + |un|s+(x)θα

)
dx. (4.38)

Using Young inequality, we can write

J = |un|(δ+γ+(·))(pi(·)−1)θα−pi(·)

≤ (δ + γ+(·))(pi(·)− 1)

si(·)
θα|un|si(·) + C8θ

α− pi(·)si(·)
si(·)−(δ+γ+(·))(pi(·)−1)

≤ (δ + γ+(·))(pi(·)− 1)

si(·)
θα|un|s+(·) + C9

By thisinequality, (4.38) , we have

N∑
i=1

∫
B2r

|Diun|pi(x)

(1 + |un|)δ+γi(x)
θαdx+

∫
B2r

H(x, un)ψ(un)θαdx

≤ C10 + C11

∫
B2r

|un|s+(x)θαdx. (4.39)

Now, from the assumption (4.7), we get

H(x, σ)ψ(σ) ≥ α0ψ(1)
N∑
i=1

|σ|si(x), ∀|σ| ≥ 1 and a.e. x ∈ RN ,

so we have
N∑
i=1

|σ|si(x) ≤ 1

α0ψ(1)
H(x, σ)ψ(σ) +N, ∀σ ∈ R and a.e. x ∈ RN . (4.40)
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Proof of Results:

We combine (4.39) and (4.40), we can write

N∑
i=1

∫
B2r

|Diun|pi(x)

(1 + |un|)δ+γi(x)
θαdx+

∫
B2r

H(x, un)ψ(un)θαdx ≤ C12+C13ς

∫
B2r

H(x, un)ψ(un)θαdx.

Using thes inequality and satting ς = 1/(2C13), weobtain

N∑
i=1

∫
B2r

|Diun|pi(x)

(1 + |un|)δ+γi(x)
θαdx+

1

2

∫
B2r

H(x, un)ψ(un)θαdx ≤ C12. (4.41)

Aftar dropping the nonnegative term, we derive∫
B2r

H(x, un)ψ(un)θαdx ≤ 2C12, (4.42)

estimate (4.27) is then direct consequence of (4.42). By (4.6), (4.42), and the definition

of ψ we obtain∫
Br

|H(x, un)|dx ≤
∫
Br
⋂
{|un|≤1}

|H(x, un)|dx+
1

ψ(1)

∫
Br

H(x, un)ψ(un)dx ≤ C.

Finally by (4.41), we deduce that

N∑
i=1

∫
Br

|Diun|pi(x)

(1 + |un|)δ+γi(x)
dx ≤ C12, ∀δ ∈ (1, k). (4.43)

so that
N∑
i=1

∫
Br

|Diun|pi(x)

(1 + |un|)δ+γi(x)
dx ≤ C, ∀δ > 1. (4.44)

This completes the proof of Lemma 4.6

Lemma 4.7 There exist a conestant Ck depeendent of k such that∫
Br

|DiTk(un)|pi(x)dx ≤ Ck, i = 1, ..., N. (4.45)

Proof: Let δ > 1 and By the estimmate (4.29), we obtain∫
Br

|DiTk(un)|pi(x)dx =

∫
Br

|DiTk(un)|pi(x)

(1 + |un|)δ+γi(x)
(1 + |un|)δ+γi(x)dx

≤ (1 + k)δ+γ
+
+

∫
Br

|DiTk(un)|pi(x)

(1 + |un|)δ+γi(x)
dx

≤ C(1 + k)δ+γ
+
+ ,
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Proof of Results:

so that ∫
Br

|DiTk(un)|pi(x)dx ≤ Ck, i = 1, ..., N.

this finishes the proof of Lemma (4.7)

Lemma 4.8 Under the assumptions of Theorem 4.2, there exists tow constants C1, C2 (inde-

pendent of n) such that∫
{|un|>k}

kh(x)dx ≤ C1, ∀k > 0, h(x) =
N(p(x)− 1− γ+

+)

N − p(x)
, (4.46)

and∫
{|Diun|>k}

khi(x)dx ≤ C2, ∀k > 0, hi(x) =
Npi(x)(p(x)− 1− γ+

+)

p(x)(N − 1− γi(x))−N(γ+
+ − γi(x))

.

(4.47)

Proof: The inequality in Lemma (4.6), we have

||un)||Ls+(·)(Br)
≤ C, s+(·) = max

1≤i≤N
si(·),

s+(·) ≥ pi(·),

and |Di|un|| ≤ |Diun| yield∫
{|un|≤k}

|Diun|pi(x)dx ≤ Ck, i = 1, ..., N,

we obtain (4.46). For the estimate (4.47), setting αδi (·) = pi(·)
δ+h(·)+γi(·) , i = 1, ..., N, then for

k ≥ 1, and from (4.46) we deduce∫
{|Diun|α

δ
i
(x)>k}

kh(x)dx ≤
∫
{|Diun|α

δ
i
(x)>k}∩{|un|≤k}

kh(x)dx+

∫
{|un|>k}

kh(x)dx

≤
∫
{|un|≤k}

kh(x)

(
|Diun|α

δ
i (x)

k

) pi(x)

αδ
i
(x)

dx+ C

≤
∫
{|un|≤k}

k−δ−γi(x)|Diun|pi(x)dx+ C.

≤
∫
{|un|≤k}

2δ+γ
+
+ (1 + k)−δ−γi(x)|Diun|pi(x)dx+ C.

≤ 2δ+γ
+
+

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)δ+γi(x)
dx+ C.
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Proof of Results:

By (4.29), we obtain ∫
{|Diun|α

δ
i
(x)>k}

kh(x)dx ≤ Cδ, ∀k ≥ 1.

If k ∈ (0, 1), we have ∫
{|Diun|α

δ
i
(x)>k}

kh(x)dx ≤
∫
Br

kh(x) ≤ Cδ.

Therefore ∫
{|Diun|α

δ
i
(x)>k}

kh(x)dx ≤ C ′δ, ∀k > 0.

This shows that, for all i = 1, ..., N, (Diun) is bounded inMh(·)αδi (·)(Br) where

h(·)αδi (·) =
pi(·)h(·)

δ + h(·) + γi(·)
<

pi(·)h(·)
1 + h(·) + γi(·)

=
Npi(x)(p(x)− 1− γ+

+)

p(x)(N − 1− γi(x))−N(γ+
+ − γi(x))

.

So that g : RN → R such that

g(·) < pi(·)h(·)
1 + h(·) + γi(·)

,

we have (Diun) is bounded inMg(·)(Br).

Finally suppese that hi(x) =
Npi(x)(p(x)−1−γ+

+)

p(x)(N−1−γi(x))−N(γ+
+−γi(x))

and let ε ∈ (0, h−−). Then we have∫
{|Diun|α

δ
i
(x)>k}

khi(x)−εdx ≤ C, ∀k > 0.

Letting ε go to zero, the proof of lemma 4.8 is completed.

Lemma 4.9 Under the assemptions of Theorem 4.3. Then, sequence (un) is bounded in

Mri(·)(Br), such that ri(·) = pi(·)s+(·)
1+s+(·)+γ+(·) .

Proof: Let s+(·) > 0 and s+(·) ≥ pi(·), we have

∫
Br

|un|s+(·) ≤ C, s+(·) = max
1≤i≤N

si(·)

we obtain ∫
|un|>k

ks+(x)dx ≤ C, ∀k > 0.

By applying the same technique used in the proof of Lemma, along with the aforemen-

tioned estimate, we deduce that sequence un is bounded in Mτi(·)s+(·)(Br) such that

τi(·) = pi(·)
1+s+(·)+γ+(·) .
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Passage to the limit

4.4 Passage to the limit

In light of the previously obtained estimates, which ensures that for any fixed r > 0 the

sequence (un)n>2r is uniformly bounded inW 1,q−−(Br) , with q−− = mini=1,...,N min{qi(x)/x ∈

Br} and q1(·), ..., qN(·) are restricted as in Lemma 4.6 or Lemma 4.8. It is therefore possible

to extract a subsequence, still denoted by (un), such that

un → u a.e. in D and strongly in Lq
−
−(Br). (4.48)

Lemma 4.10 Let f ∈ L1
loc(RN) and let ei, bi, H be Caratheodory functions, where ai are

satisfying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then

H(x, un)→ H(x, u) strongly in L1
loc(RN), ∀r > 0. (4.49)

Proof: Let λ > 0, r > 0 and We shallfirst obtain local-integrability of (H(x, un)) on Br.

We define φλ : R→ R such that

φλ(σ) =


φ(σ − λ) , σ ≥ λ,

0 ,|σ| < λ,

φ(σ + λ) , σ ≤ −λ,

Let α > 0. We choose φγ(un)θα as test function, where θ be a cutoff function as in (4.35),

we have
N∑
i=1

∫
D

ei(x, Tn(un))bi(x,Dun)Diunφ
′
λ(un)θαdx+

∫
D

Hn(x, un)φλ(un)θαdx

=

∫
D

fφλ(un)θαdx,

working as in (4.36), we obtain

N∑
i=1

∫
D

ei(x, Tn(un))bi(x,Dun)Diunφ
′
λ(un)θαdx+

∫
D

Hn(x, un)φλ(un)θαdx

≤ C2 + C3

N∑
i=1

∫
B2r

(h(x) + |un|p
−

+
N∑
j=1

|Djun|pj(x))
1− 1

pi(x) θα−1dx.

Then

N∑
i=1

∫
B2r

|Diun|pi(x)φ′γ(un)θαdx+
1

2

∫
B2r

H(x, un)φγ(un)θαdx
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Passage to the limit

≤ C17

∫
B2r∩{|un|≥γ}

(|f |+ |h|+ |un|p
−

)dx+ C17|B2r ∩ {|un| ≥ γ}|.

Sincethe sequence (un) is bounded in L1(B2r) for any n > 2r. and f, h ∈ L1
loc(RN), we

deduce form the above inequality that

Using the properties of the function θ, φλ, and the fact that H(x, σ)σ ≥ 0, we get∫
B2r

⋂
{|un|≥2γ}

|H(x, un)|dx ≤ 1

φγ(2γ)

∫
B2r

H(x, un)φλ(un)θαdx→ 0 as λ→ +∞.

This inequality and the assumption (6) give equi-integrable of (H(x, un)) on (Br). Form

this (54), and Vitali’s theorem we obtain the result.

H(x, un)→ H(x, u) a.e. in RN . (4.50)

By the assumption (4.6), (4.28), (4.50), and with the help of techniques used in [37], we

get (4.49).

Taking ukn = Tk(un) and uk = Tk(u), The result obtained is as follows.

Lemma 4.11 For all k > 0, we have there exists a function θk such that for all ε,

we have

lim sup
n

∫
{|un−uk|≤ε}

θ(x)ei(x, Tn(un))bi(x, un, Diun)(Diun −Diu
k)dx ≤ lk(ε),

with for all i = 1, ..., N and limε→0 lk(ε) = 0.

Proof: The proof of Lemma 4.11 is similar to that of Lemma 2.16 of [35].

Proposition 4.12 Let bi be a function satisfying (4.2)-(4.4). Then

θ(x)ei(x, Tn(un))bi(x, un, Du
k) −→ θ(x)ei(x, u)ai(x, u,Du

k) strongly in Lp
′
i(·)(B2r)

(4.51)

for all i = 1, ..., N and l′i(·) =
pi(·)

pi(·)− 1
.

Proof: we have (4.48), implies that

θ(x)ei(x, Tn(un))bi(x, un, Du
k) −→ θ(x)ei(x, u)bi(x, u,Du

k) a.e. in B2r. (4.52)

and in the fact

|θ(x)ei(x, Tn(un))bi(x, un, Du
k)| ≤ C|bi(x, u,Duk)| ∈ Lp

′
i(·)(B2r) (4.53)

according to Lebesgue’s dominoated convergence theorem, we have (4.51).
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Passage to the limit

Lemma 4.13 There exists a subsequence ( still denoted (un) ) such that

Dun → Du, a.e. in RN . (4.54)

Proof: We write for all ε ∈ (0, 1)

Ani(ε) =

∫
{|un−uk|≤ε}

θ(x)ei(x, Tn(un))(bi(x, un, Dun)− bi(x, un, Duk))(Diun −Diu
k)dx

= A1
ni(ε)− A2

ni(ε),

with

A1
ni(ε) =

∫
{|un−uk|≤ε}

θ(x)ei(x, Tn(un))bi(x, un, Dun)(Diun −Diu
k)dx

and

A2
ni(ε) =

∫
{|un−uk|≤ε}

θ(x)ei(x, Tn(un))bi(x, un, Du
k)(Diun −Diu

k)dx

=

∫
{|un−uk|≤ε}

θ(x)ei(x, Tn(un))bi(x, u
k+1
n , Duk)(Diu

k+1
n −Diu

k)dx.

By (4.49) and Lebesgue’s dominated convergence theorem we have

θ(x)ei(x, Tn(un))bi(x, un, Du
k)→ θ(x)ei(x, u)bi(x, u,Du

k) strongly in L
p′i(x)

loc (RN).

Therefore, by Lemma 4.7, we can write

lim
n→+∞

A2
ni(ε) =

∫
{|u|>k,|u−uk|≤ε}

θ(x)ei(x, u)bi(x, u,Du
k)(Diu

k+1 −Diu
k)dx.

Consequently

lim
ε→0

lim
n→+∞

A2
ni(ε) = 0.

By Lemma 4.11, we get

lim
ε→0

lim
n→+∞

Ani(ε) = 0. (4.55)

We put for all i = 1, ..., N

Li(un, u) = ei(x, Tn(un)){(bi(x, un, Dun)− bi(x, un, Du)).Di(un − u)}1/p+
+ ≥ 0.

From (4.3) and Young inequality’s, we derive

Li(un, u) ≤ C

(
h(x) + |u|+

N∑
j=1

|Djun|+
N∑
j=1

|Dju|

)
. (4.56)
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Passage to the limit

Let us write∫
B2r

θ(x)Li(un, u)dx =

∫
{|u|≤k}

θ(x)Li(un, u)dx+

∫
{|u|>k}

θ(x)Li(un, u)dx. (4.57)

By (4.56), the L1(B2r) -bound on h(x) and Lqi(·)(Br) -bound onDiun for qi(·) satisfy (4.14),

we have for i = 1, ..., N∫
B2r

|Li(un, u)|q
−
−dx ≤ C, q−− = min

1≤i≤N
min
x∈B2r

qi(x). (4.58)

So, we have∫
{|u|>k}

θ(x)Li(un, u)dx ≤ C|{|u| > k}|1−1/q−− = o(1)(as k → +∞). (4.59)

For the first integral in (4.57), we decompose it as∫
{|u|≤k}

θ(x)Li(un, u)dx =

∫
{|un−uk|≤ε,|u|≤k}

θ(x)Li(un, u)dx

+

∫
{|un−uk|>ε,|u|≤k}

θ(x)Li(un, u)dx. (4.60)

By (4.55), we get

lim
n→+∞

∫
{|un−uk|≤ε,|u|≤k}

θ(x)Li(un, u)dx ≤ o(1)(as ε→ 0) + o(1)(as n→ +∞). (4.61)

Arguing as in (4.59), we obtain∫
{|un−uk|>ε,|u|≤k}

θ(x)Li(un, u)dx ≤ C|{|un − u| > ε}|1−1/q−− = o(1)(as n→ +∞). (4.62)

We combine (4.57), (4.59), (4.61) and (4.62) to obtain

lim sup
n→+∞

∫
B2r

θ(x)Li(un, u)dx = 0. (4.63)

Since the integralfunction in (4.63) is nonnegative and θ = 1 on Br, this implies that

ei(x, Tn(un))(bi(x, un, Dun)− bi(x, u,Du))(Diun −Diu)dx→ 0, strongly in L1(Br).

Thus, up to subsequence still denoted by un

ei(x, Tn(un))(bi(x, un, Dun)− bi(x, un, Du))(Diun −Diu)dx→ 0, a.e x ∈ Br. (4.64)

Let x ∈ Br be such that un(x) converges to u(x), that |s(x)| < +∞, and that (4.25) hol

Du true. Due to (4.49), the set of x ∈ Br such that at least one of the above properties
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Passage to the limit

does not hold has zero measure. Since |s(x)| < +∞, one has |sn(x)| ≤ |s(x)| + 1 ≤ n for

n large enough, so that (4.64) becomes

ei(x, un)(bi(x, un, Dun)− bi(x, un, Du))(Diun −Diu)dx→ 0, a.e x ∈ Br. (4.65)

Adopting the approach of [34], we obtain the desert result.

Lemma 4.14 Let bi be a function satisfying (4.2)-(4.4) and H let satisfy (4.6)-(4.7),

for all i = 1, ..., N, Then

ei(x, Tn(un))bi(x, un, Dun)→ ei(x, u)bi(x, u,Du), strongly in L1
loc(RN). (4.66)

Proof: Let mi(·) > 1 are continuous functions on RN such that

1

pi(·)− 1
≤ mi(·) <

Npi(·)
pi(·)− 1

(
p(·)− 1− γ+

+

p(·)(N − 1− γ+(·))−N(γ+
+ − γ+(·))

)
,

this is possible since we have (4.10). Let σ : RN → (0, 1) be a continuous function such

that

mi(·)
pi(·)− 1

pi(·)
< σ(·) < N

(
p(·)− 1− γ+

+

p(·)(N − 1− γ+(·))−N(γ+
+ − γ+(·))

)
< 1,

mi(·)(pi(·)− 1) ≤ σ(·)pi(·) < Npi(·)
(

p(·)− 1− γ+
+

p(·)(N − 1− γ+(·))−N(γ+
+ − γ+(·))

)
. (4.67)

Using the fact that

|bi(., un, Diun)|mi(·) ≤

(
h+ |un|p

−
+

N∑
j=1

|Djun|pj(·)
)mi(·)

pi(·)−1

pi(·)

,

≤

(
hσ(·) + |un|σ(·)p− +

N∑
j=1

|Djun|σ(·)pj(·)

)mi(·)
pi(·)−1

σ(·)pi(·)

. (4.68)

By (4.54), (4.67), (4.68), (4.47), and Vitali’s Theorem, we derive

ei(x, Tn(un))bi(x, un, Dun)→ ei(x, u)bi(x, u,Du), strongly in Lmi(·)(Br). (4.69)

This finishes the proof of Lemma 4.14.

Using the convergence (4.49) and (4.66), we conclude that the function u is weak

solution of equation (4.1). The Theorem 4.2 is so proved.
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Passage to the limit

Remark 4.15 If we replace the hypothesis (4.3) by

|ai(x, u, ξ)| ≤ g(x)
(
h(x) + |u|p− + |ξi|pi(x)

)1− 1
pi(x)

,

we can prove the same regularity reported in Theorem 4.2 but the exponent pi(·) satisfies a

better condition

p(x)(N − 1− γ+(x))−N(γ+
+ − γi(x))

N(p(x)− 1− γ+
+)

< pi(x) <
p(x)(N − 1− γi(x))−N(γ+

+ − γi(x))

(1 + γi(x))(N − p(x))
,

compared to (4.10). Indeed, it suffices to substitute σ(·) in (4.67) by σi(·) such that

mi(·)
pi(·)− 1

pi(·)
< σi(·) < N

(
p(·)− 1− γ+

+

p(·)(N − 1− γi(·))−N(γ+
+ − γi(·))

)
< 1.

4.4.1 Proof of Theorem (4.3)

By applying Lemma (4.14) where ri(·) > 0 such that

1 < ri(·) <
pi(x)s+(x)

1 + s+(x) + γi(x)(pi(x)− 1)
.

Hence, by

H(x, un)→ H(x, u) strongly in L1
loc(RN), ∀r > 0.

and

ei(x, Tn(un))bi(x, un, Dun)→ ei(x, u)bi(x, u,Du), strongly in L1
loc(RN).

we conclude that the limit function u is a weak solution of equation possessing the regu-

larity stated in (4.18) this finishes the proof of Theorem 4.3.
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Conclusions and Future Research

This work focuses on the study of nonlinear elliptic equations with variable exponents,

which represent a natural generalization of classical elliptic problems with constant expo-

nents. The main objective is to prove the existence of weak solutions, even in cases where

standard assumptions, such as coercivity, may fail. These equations arise in various physi-

cal and engineering models, particularly when the properties of the medium change from

point to point. The proof strategy relies on constructing approximate problems, obtaining

a priori estimates, and applying a limiting process, which allows us to extend classical

results to a more general framework.

In future research, several directions can be explored:

Regularity: studying the smoothness and uniqueness of weak solutions.

Parabolic Extensions: extending the analysis to time-dependent problems with variable

exponents.

Applications: applying the theoretical results to real-world models such as heat conduc-

tion and fluid flow in non-homogeneous materials.

Numerical Approaches: developing efficient numerical methods to approximate weak so-

lutions and analyze their convergence.
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