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Abstract

This work is devoted to establishing the existence of weak solutions for a certain class
of nonlinear anisotropic elliptic equations, where the involved exponents vary with po-
sition and the coercivity condition may degenerate. The equations under consideration

take the following general form

B(u)+ H(z,u)=f, z€RY N>2

where f is locally integrable on R" and the operator

N

B(u) = =Y _ Dj(ei(x, u)bi(x, u, Du))

=1
is properly defined between W, ") (Q), (Q or R )and its dual. Suppose that b; : RN x R x
RY — R, are a Carathéodory functions.

The functions e; : RY x R — R are Carathéodory functions and satisfying the following

condition

n
T <
(1 [ul)y =

where 7, i are strictly positeve real numbers and ~;(x) > 0,7 = 1, ..., N are continuous

ei(x7u) < 2

functions on RY. And H : RY x R — R be a Carathéodory functions. The differential
operetor B is not coercive if u is large.

The core strategy of the proof involves deriving local estimates for a sequence of appro-
priately constructed approximate problems, followed by a limiting process. The findings
presented here extend known results from the constant exponent framework and also

build upon certain results discussed in [12].

KEYWORDS: Anisotropic equations, Variable exponents, Nonlinear elliptic problem, Weak

solutions, Locally integrable data.



Résumé

Dans cette these, nous prouvons l'existece et la régularité de solutions faibles pour une
classe d’équations elliptiques anisotropes non linéaires a exposants variables et a coercivité

dégénérée. Nous considérons le probleme (P) suivant:

B(u)+ H(r,u)=f, z€RY N>2

ou f est intégrable sur tout sous-ensemble compact de RY et 'opérateur

B(u) = =Y Dj(ei(x, u)bi(x, u, Du))

=1
est bien défini comme une application entre I'espace de Sobolev a exposant variable
WoPY(Q), (Q or RY ) et son espace dual. b; : RY x R x R¥Y — R, est une fonetion
de Carathéodory, avec ¢; : RV x R — R est une fonction de Carathéodory satisfait la

condtion suivante

n
<
(1 + [uly+@ =

oun>0,u>0etvy(x)>0,i=1,.. N les fonctions continues R. et H : RY x R —

ei(x,u) < p,

R les fonctions Carathéodory. L'opérateur différentiel B n’est pas coercitif lorsque s est
grand. Les principales étapes de la démonstration consistent a établir des estimations lo-
cales pour des problémes approchés appropriés, puis a passer a la limite. Nos résultats
constituent des généralisations des résultats correspondants obtenus dans le certains ré-

sultats présentés dans [12].

MoOTS-CLES: Equations anisotropes, Exposants variables, Problémes elliptiques nonlinéaires,

Solutions faibles, Données localement intégrables.



Notations

N: The collection comprising all natural numbers.

RY: Real Euclidean space, the N-dimensional.

Q: open bounded from RY.

0€2: boundary of (.

r = (x1,...,1,) as a general element of the space R”.

U CcC €: means that the closure of U is compact and U C .

|E| or meas(E): represents the Lebesgue measure associated with the subset E.
a.e. : stands for almot eveywhere

V': represents the dual space corresponding to the Banach space V.

(-,-): the duality pairing between V' and V".

D, = a%: corresponds to differentiation with respect to the i-th coordinate of x.
Du = (Dyu, ..., Dyu): the gradient of u.

Au=Y"N, 327%‘: the Laplacian of w.

dive = Zi]\il D,v;: the divergence of the vector v = (vy, ..., vn).

xr The function that takes the value 1 on £ and 0 elsewhere (characteristic).

supp(u) = {x € Q: s(z) # 0}: the supprt of a function .



CONTENTS

e C(f): represent the collection of real-valued functions that are continuous on the

domain .

e C*(Q), k € N: represent the set of functions on {2 possessing continuous derivatives

of all orders up to k.
* CF(Q): The space of k times differentiable on 2 with continuity, 0 on 9.

e C5°(2) or D(R2): The smooth functions of compact support in 2. D(Q2): the space of

smooth functions with compact support in 2.
e D'(2): the dual space of D({2); space of real distributions on (2.

e L>®(Q) = {u : Q@ — R mesurable, essgup(u) < oo}.

. 0, (@) = {p € C (@) : minh(z) > 1}.

z€Q

* p* =maxp(z) and p~ = minp(x) for p € CY (Q) .
e

€

* P() =30 g'_)lz the Holder conjugate exponent of p € Cy (Q)

MO if1 < p(-) < N
o p*<) _ N-p(")

, the Sobolev critical exponent of p € C (Q).
oo,  ifp(-) =N,

(x)
o LPV(Q) = {u : Q — R mesurable, / ‘% "4 < oo for some \ > 0}
Q

o« MPO(Q) = {u : © — R mesurable, sup Al[x{jusxllzoo o) < oo}.
A>0

e WPO(Q) = {u e LPO(Q) : |Vu| € Lp(.)(Q)} where p € C () and p > 1.
« WSPY(Q): closure of C°(€) with respect to W0 (Q) norm.

o W12 ()(Q): the dual space of Wol’p(')(Q).

ix



 For P(-) = (pi(), ., pv(+)) € C (Q), we set
1 1< 1
P(r) ngxx)'

p () = max{py (z), .., py ()}, p—(2) = min{pi(2), ..., p (@)}, 2 € .

3l

pi =max{p{,...,p4}, p; = max{py,...,py}, and p~ = min{p;,...,py}.

FOQ) = {ue LP0(Q) : D e LPFO(Q), fori=1,..,N} with T (-) € (C(Q)V.
« W7O(Q): the closure of C5°(Q) in the norm of Wh70)(Q).

N
. Dé’?(')(Q): the completion of C§°(£2) with respect to the norm ; | Dsul| s q) -



Introduction

Nonlinear elliptic and parabolic equations play a crucial role in modern mathematical
analysis, especially when studied within the framework of variable exponent Lebesgue
Sobolev spaces, denoted by L*()(Q) and W, * (')(Q). These spaces have attracted consid-
erable attention and have been extensively investigated in recent years, as they provide a
flexible and effective framework for analyzing such types of equations. They are partic-
ularly well-suited for modeling heterogeneous and anisotropic phenomena, making them
applicable to a wide range of complex physical and mathematical problems. For further
details, we refer to [2]. These function spaces have found applications in various fields,
including electro-rheological fluids and image processing (see [4], [3], [20], [27], and
[39]). This class of equations emerged from efforts to generalize the classical framework
of Laplace and Poisson equations by replacing fixed-exponent spaces such as L”({2) and
WLP(Q) with more flexible spaces of the form LP1)(Q)) and W'?1)(Q), in the case variable
exponents; which allow for the modeling of heterogeneous and anisotropic phenomena.

Moreover, these equations have found applications in digital image processing, partic-
ularly in image denoising and edge preservation, where it is essential to use coefficients
varying pointwise across the image. This naturally leads to PDEs of the p(.)-Laplacian
type. Key contributions by researchers such as [8], [27], [41] and have played a piv-
otal role in advancing the analytical theory of these equations, encompassing existence,
regularity, and compactness results.

This thesis focuses on investigating the existence and regularity of weak solutions,
showing that every weak solution is also a distributional solution for a class of nonlin-
ear in both cases isotropic and anisotropic elliptic equations characterized by variable

exponents involving non-regular data. Our approach using the compactness method that
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involves three steps which are: building the approximate problem, give some priori esti-
mats of the solutions, and passing to the limit via the approximate problem. We employ
new techniques that include compactness theorem with data belong to suitable Lebesgue
spaces.

Chapter one highlights a comprehensive summary of fundamental results in the field
of functional analysis, with an emphasis on key concepts and theories applied to nonlinear
partial differential equations. It provides some definitions, facts, and basic properties of
generalized Lebesgue-Sobolev spaces L70) (), W10 (Q), and W, " (€2), where() denotes
an open subset of R, as well as some crucial convergence theorems and charactrazation
of anisotropic variable exponent Sobolev spaces 1W'?:()(Q), more details loot at [5, 15,
16, 19, 22, 26, 32, 33].

The second chapter is devoted to establishing the existence and regularity of weak
solutions for a class of nonlinear isotropic elliptic equations with variable exponents in-
volving irregular data, within the framework of suitable variable exponent Sobolev spaces.
We suppose that the variable exponents m(-) : Q — (1,400) and p(-) : Q — (1, 400) are

continuous functions and satisfy the following conditions:

1 1 _
1+M—N<p<l’><N, for all x € €,
and
Np(z)

1 <m(x) < Dm € L™(Q), forallx € Q.

Np(z) — N + p(z)’
Here, we are intersted in studying the following boundary value problem:
—div (a(x, Du)) = f, in Q,

u =0, on 0,

(1)

Wherea : QxRY — RY is a Leray-Lions type operator. This operator is a Carathéodory
function that satisfies, for almost every x € Q and for all £, ¢ € RY, the following condi-

tions:

a(z,8) - & > al¢P™, a(x,€) = (a1, .., an),
a(z,&)| < B (h(z) + [P,
(a(l’,é) _a<x7£/>> : (5 - £/> > O? for g 7& 5/7
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Where «a, 3 > 0 are constants, his a non-negative function in L*'*)(Q) p/(-) is the con-
jugate exponent of p(-), defined by zﬁ + ]ﬁ =1.

These conditions ensure that the Leray-Lions type operator is well-defined and suitable
for analysis using the variational method; for instance, we refer to [44] for more details
about the approach and this work can be found in [1].

The nonlinearity of (1) is more complex than that of the p-Laplacian due to the depen-
dence of the exponent p(x) on the spatial variable z. In the constant case 2— + < p(:) = p,
the existence of a distributional solution  of (1) in the space W, () forall ¢ € [1, %)
has been established in [18]. Therefore, the study of problem (1) represents a new and
interesting direction of research.

Inspired by [13], and [38], we first prove the existence of a weak solution for problem
(1) with a right-hand side in L™)(Q2), where m(-) and p(-) satisfy the restrictions given in
previous conditions using the approximation method. The main steps of the proof involve
obtaining uniform estimates of suitable solutions for an approximate problems and then
passing to the limit. Second, we establish the existence of weak solutions for problem
(1) using the variational method which different from the results of [?]. Furthermore, the
strict monotonicity condition of the p(x)-Laplacian ensures the uniqueness of the solution.
Similar results can be found in [9], [46], and [47].

Third chapter studies the nonlinear anisotropic elliptic equation under Dirichlet bound-

ary conditions with degenerate coercivity in variable exponent Sobolev spaces

Bu+ H(xz,u) = f inQ,
u=>0 on 0f),

(2)

where  is a smouth bounded open set of R (N > 2) with Lipschi boundary denoted

by 012, the function f belongs to the space L>°(2). And B is the oper ator given by

N
Bu = —Div(b(z,u, Du)) = — Z 88 (bi(x, u, Du)),
im1 It

we suppose that for each b(x, u, Du) and H (x, u) are Carathéodory functions satisfying
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There exist constant o > 0, such that z € Q,Vs € R,V{(&y, ..., &) and (&, ..., &N) €

RY foralli =1,..., N the function b : 2 x R x RY — RY satisfies the conditions:

L@ B() = (br(), ba(.), ooy by ()

N
l;(x,u,§)§ > ozz |&;
i=1

N -5
[bi(,u, €)| < g(x) <h(x) +Ju + ; \Ej![j(”“’)) . [ =mini(z),
where « is strictly positive real number, and h(z) € L'(Q2),g(z) € L>*(f2) are a given
positive functions, and the variable exponents p; : RN — (1, +00) for alli = 1,..., N are
continuus functios.

For all (z,u) € 2 x R, we have

(bl(xvuag) —bl(x,u,fl))(f'—f') > Oa 57&5/
Let H : 2 x R — R be a Carathéodory function satisfying the following conditions:

sup |H(z,u)| € L'(Q),Y7 > 0

lul<T
H(z,u)sign(u) >0, a.e,x €, for allu € R. 3)

For solve our problem (2), we emply the monotone theory operator that involves the
pseudomonotone techniques. Final chapter deals with the existence and regularity of
solutions for certain nonlinear anisotropic elliptic equations whose principal part exhibits
degenerate coercivity and whose data are only locally integrable function which is more
difficult comparing to the problem of the third chapter. As a prototype, we suppose that f
is a locally integrable funtion in R and consider the following problem:

pi(z)—1

3 ) 57 4| D@2 Dy
B Z D; | g(z) o
i=1 (In(1 + |u]))™

— @ty | = f, zeRY, @

where s;(-) > p;(+) foralli =1, ..., N; Diu = %, p1(+), 2(+), ooy ().
More general of problem (4), we consider the nonlinear elliptic problem:

N
—ZDi(ei(:c,u)bi(x,u,Du))—i—H(:c,u) =/ xeRNa N=>2 (5)

=1
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Suppose that b; : RY x RY — R, are a Carethéodory functions satisfying, a.e z € RV

,Vs € R, VE(&, ..., &) and €'(&], ..., &) € RN for all i = 1, ..., N, the follwing conditions:

pi(z)

bi(w,u,8).& > al§

N lI-o@
|bi(@, u,§)| < g(x) (h(l’) + P+ |€j!pj(””)> , 7 =minp(x),
j=1

z€Q

N
(bl(x,u,f’) - bl(x,u,ﬁl))(f _6/) > O’ 57& 5’ (- 1 ijt

where « is stritly positeve real numbers and
h(z) € Li(RY), g(x) € L5 (RY)

are a given positve functios. The functions e¢; : RY x R — R are Carathéodory functions

and satisfying the following condition

n
T <
(T )@ =

where 7, . are strictly positive real numbers and ~;(x) > 0,7 = 1,..., N are continous

62'(1', U) S My

functions on R".
The variable exponents p; : RN — (1, +o0) for alli = 1, ..., N are a continuous functions.
And H : RY x R — R be a Carathéodory functions satisfing the followng conditions

sup [H(x,u)| € Li, (RY),v7 > 0

lul<T

H(z,u)sign(u) > Z ||, a.e,xcRY,

for all v € R where s;(-) > 0,7 = 1,..., N are a continuous functions on R.

Under the validity of (4.5) the differential operator ceases to be coercive as ss in-

creases, thereby rendering the approach adopted in [36] ineffective.

If ~v;(-) = 0 the problem (5) has been studied in [36] with different method. In par-

ticular, If p;(-) = 2 and ;(-) = v € (0, ), the problem (5) has been investigated in

([17], Remark 1.18); remark here that in this case the assumption (4.10) is equivalent to
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that v € (0, v=). In a bounded domain D and if p;(-) = p(-) and ;(-) = 6(p — 1) where
6 € [0,1), the problem (5) has been treated in [7], where the authors proved that the

solution s satisfied
N(p—1)(1-0)
N—-(1+6(p-1))

this result is exactly what we mentioned in (5). In contrast to [11] where the regularity

Ds e M1(Q),q=

result is established solely in relation to 4", our analysis considers both ~,(-) and +*
offering a more general framework. Furthermore, the gradient estimates we obtain are
novel when compared to those presented in [11, 40]. The regularity result in our work is

derived in terms of the more general functions ;(-) only i.e:

Diu € qu'(') (RN)

loc

such that
o) = NpOE0) ~1=70)
PN =1 =7%())
where 7, v, (-) repleced by v;(-) in (4.10) and in (4.14), this issue remains unresolved,

despite related results found in [11, 36, 37, 40, 39].

Our main goal is studying the existence and the regularity of the distributional solu-
tions. For this purpose, we construct an approximate solutions sequence for problem (5)
and establish some priori estimates under more restrictive assumptions on ;(-). Next, we
prove the strong convergence of the truncations of the approximate solutions. Finally, we
pass to the limit in the approximate equation to obtain the existence of a distributional

solution for problem (5).

Considering all aspects, the study of anisotropic problems with nonlinearities and vari-
able exponent coefficients is of great significance due to its wide range of applications
in various fields of modern applied sciences. These applications are particularly evident
in fluid dynamics within media characterized by directionally varying properties, where
the conductivity differs depending on the direction. It also contributes to the field of im-
age processing and restoration, in addition to its use in analyzing the behavior of elastic

materials. Readers may refer to specialized references for more detailed information.



Chapter 1

Mathematical preliminaries

This chapter is meant to provide an overview of the real and functional analysis re-
sults that will be used afterwards. Moreover, we present some basic facts concerning the
necessary function spaces.

Unless otherwise required, in this chapter, Q C R" is a bounded open set equipped
with NV-dimensional Lebesgue measure. Note that the results in this chapter are not given

in full generality, these will be presented as needed in our study:.

1.1 Classical Functional Spaces (Lebesgue and Sobolev)

This section provides a brief overview of fundamental concepts related to classical
Lebesgue, Marcinkiewicz, and Sobolev spaces, which will serve as essential tools through-
out the thesis. For more comprehensive discussions on these topics, the reader is referred
to the relevant literature [5, 19, 16, 15, 22, 26, 32, 33].

Let 1 < p < oo, the Banach space L?(f2) is the space of all measurable functons

u: Q2 — R, with bounded norm

||u||Lp(Q) = (/updx) .

Q

When p = +oo, the space L>((2) is defined as the set of all Lebesgue measurable

functions on {2 that are essentially bounded,i.e
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L>*(Q) ={u:Q — R measurable,3M > 0 ;|u(z)] < M a.e.Q}.

The norm of w in L>°((2) is defined by
lull L) = inf{M > 0; |u(z)| < M a.e. xcQ}.

The space L”(2), 1 < p < oo, is a Banach space, is defined by the norm | - || .»(), the
separable for 1 < p < oo and reflexive for 1 < p < co. For all 1 < p < oo, the topological
dual space of L?(f2) is isometrically identified with L” (2) where p/ is the Hélder conjugate
exponent, i.e., .+, =1 (being (L'(Q))" = L>®(Q)). On the other hand, (L>=(Q))’ is strictly
bigger than L'(f2).

For p = 2, the space L*(Q) is a Hilbert space with the inner product

(u,v)2(0) = /u(x)v(:c)d:c
0
For every u € LP(2),v € L¥ (Q) the Holder inequality holds

/uvdﬁc < HUHLP(Q)HUHLP'(Q)
Q

For 1 < p < o0, let us present the definition of the Sobolev space:
WP (Q) = {u € LP(Q) : |Du| € LP(Q)},
which is a Banach space for the norm

ullwir) = lullze@) + [[Dull ey,
or
[ullwre (@) = max ([|ul| o) + | Dul| () if p = oo,

where by |lu||») we understand |||Dul||z»(). The space W'?(Q) is separable for 1 <
p < oo and reflexive for 1 < p < oco. Note that if Q is sufficiently smooth, then W1 ()

identifies with the space of locally Lipschitz functions.

The space W, *(Q) is the closure of C;°(Q2) in the norm of W'?(Q2). An equivalent norm
of W, *() is given by
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el oy = I Dull oo,

For 1 < p < o0, let us present the Poincaré inequality:

for some C' > 0 which depends on {2 and p.

Let 1 < p < o0, we define

Lp

loc

(Q)={u:Q—Ryue LP(U) for all open U CC Q}.
Following the same reasoning, we define

WEP(Q) = {u: Q — Ryu € WH(U) for all open U cC Q} .

loc

For all non-negative real numbers a, b and every 1 < p < oo, the Young inequality

holds

/

PP
abga_+_,7 p/:L7
p P p—1
which will be used in the folloing form: for every ¢ > 0, 1 < p < oo and real non-negative
numbers a, b

ab < ea” + C.bP with C. = 71, 1.1
Theorem 1.1 (Stampacchia [33]) Let ¢ : R — R be a Lipschitz function, i.e
VC >0, suchthat |p(s)—pt)|<Cls—t|, Vs, teR,
where ©(0) = 0 Then Yu € W, (Q) with 1 < p < oo we have:
o(u) € WP(Q) and De(u) = ¢'(u)Du  almost everywhere in Q.

Theorem 1.2 (Rellich-Kondrachov [33]) Let 2 be a bounded open set of RN with 1 < p <
0%,

If p < N then Yq € [1, p*], the injection of W, *(Q) in L9(Q) is continuous.

And Yq € [1,p*[, the injection is compact, that is bounded of W," () are relatively compact
in L1(Q).



Convergence theorems

1.2 Convergence theorems

Throughout this section, we recell some defintions and results concerning theorems of
convergence about sequences of measurable functions. For more dctails, we can refer to

[9, 14, 21, 22, 31, 32].
Definition 1.3 Let (u,) and u be measurable functions in €.
1) We say (u,,) converges almost everywhere in €2 to u, and write u,, — v a.e. in €, if

meas {z € Q: u,(x) does not converge to u(z)} = 0,

2) We say that the sequence (u,,) converges in measure on 2 to u if for every x > 0

lim meas{z € Q: |u,(x) —u(x)| >} =0.

n—-+o0o

3) We refer to the sequence as (u,) is a Cauchy sequene if for every ¢ > 0 and every

k > 0 there exists N € N such that for all m,n > N, then

meas {x € Q: |u,(z) — un(z)| > K} <e.

The proposition below establishes a result concerning that for (s,,) being a convergent

sequence in measure is a necessary and sufficiant condition of being a Cauchy in measure.

Proposition 1.4 ([32]) Let (u,) be a sequence of measurable functions on ), then the fol-

lowing statemments are equivalent.
1) (u,) is Cauchy in measure.
2) (u,,) converges in measure to a measurable function w.

There is a relationship between the different modes of convergences almost every-

where convergence in measure. This relationship is determined by the next proposition:

Proposition 1.5 ([22]) Let (u,) be a sequence of measurable functions on (.
1) Ifu, — ua.e. in ) then u, — u in measure (here () is bounded).

2) If u, — w in measure, then 3(u,, ) such that u,, — v a.e. in Q as k — oc.

10



Convergence theorems

We proceed to define a Carathéodory function.

Definition 1.6 Let m > 1. A function a = a(z,§) : DxR™ — R is a Carathéodory function
if for all £ € R™ the function
f('u 5) Q= Rv

is measurable and for almost every z € () the function
flx,-):R™ = R,
is continuous.

Proposition 1.7 ([16]) Let a = a(z,£) : Q x R — R is a Carathéodory function. Let u,, be
a sequence of functions and u be a measuable function such that w, — u in measure. Then

a(x,u,) — a(x,u) in measure.

We frequently use the following convergence results.

Theorem 1.8 (Monotone convergence theorem [33] ) Let (u,) be an increaing sequence

of non-negative measuable functions on €2, which converges pointwise to u. Then

/undx—>/udxwhenn—>oo.
Q Q

Theorem 1.9 (Fatou’s Lemma [33] ) Let (u,) be a sequence of non-negtive mesurable func-
tions on (). Then
/ (lim inf un> dr < lim inf/ Uy, dx.
Q n—oo n—oo Q

The next result is the analog of Fatou’s Lemma.

Theorem 1.10 (Lebesgue’s dominated convergence theorem [33]) Let the sequence (u,,)
of LP(Q) with 1 < p < oo, converges a.e. to u, and be dominated by v € LP(f2), in the se-
quense that |u,(z)| < v(x) a.e. in Q. Then u, — u (strongly) in LP(Q)), that is, u € LP(2)
and

[tn = ull ppiq) = 0 as n — oo.

Theorem 1.11 (Vitali’s convergence theorem [15]) Let (u,) be a sequence of functions

in LP(Q) with 1 < p < oo such that

11
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* u, — ud.e. on .

* (u,) is equi-integrable, that is, for every ¢ > 0, there exists 6 > 0 such that
/|un(x)|p dr < e,
E

for all n and for every measurable set E C Q) with meas(F) < 6.
Then u,, — win LP(2).

We remark that when (2 is bounded, the weak-* convergence of (u,,) in L>°(£2) to some
u € L>(2) implies the weak convergence of (u,,) to v in any LP(Q2), 1 < p < oc.

It is imprtant to note that the above theorem is false when p = 1, since a bounded
sequence in L'(2) has in general no weak convergence property.

The following lemma shows the boundedness of weakly convergent sequences.

Proposition 1.12 ([26]) Let (u,) be a sequence of functions in LP(2) with 1 < p < oc.

Assume that
* (uy,) is bounded in L*(2);
* u, — ud.e. in €.
Then u,, — w in L(R2), for every 1 < q < p and weakly in L”(Q2), i.e,

/unvda: — /uvdac, as n — oo,
Q Q

for all v € L (9).

We have the following Charactization of the weak convergence in W1?(().

Proposition 1.13 ([331) A (u,) weakly converges sequence to u in WP(Q), if and only
if there exist v; € LP(Q)) such that u, — wu weakly in LP({2) and D;u, — v; weakly in
LP(2), i =1,..., N. In this case, v; = D;u.

Throughout this thesis, 7} denotes the truncation function at height £ (k > 0), that is

s, if |s| <k,
ks, if |s| > k.

Is|”

Tk(S) =

12



Variable exponent Lebesgue spaces

Note that 7}, is a Lipschitz continuous functions satisfying |T;(s)| < k and |T;(s)| < |s| and
its primitive The superposition operator associated with 7}, provides an approximation of

the identity in various spaces and this leads us to the next proposition

Proposition 1.14 ([33]) If u € L*(Q2), then Ty(u) — w in LP(S2) strongly when k — +oc.
If u € WhP(Q), then Ty (u) — u in WP(Q) strongly.

The following results concerns the superposition operators.

1.3 Variable exponent Lebesgue spaces

In this section we recall some basic facts on Lebesgue spaces with variable exponent
that can be found, for example, in [6, 9, 19, 21, 24, 42].
Let p(+) : Q2 — [1,+o0) is a continuous function, called the variable exponent. In what

follows, we adopt the following notations:

C: () ={peC(Q): 1<p <p' <o},

and

p~ =minp(z), p" = maxp(z).
ze) =19)

We define the generalized Lebesgue space LP()(Q), also called the Lebesgue space
with variable exponent, as the set of continuons functions u : @ — (1, +o00) for which

the convex modular

Poty(10) = / (@)@ da < oo,
Q

13
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if p™ < oo, then the expression

p(z)
”U’HLP(‘)(Q) = inf{ dx < 1} ,

defines a norm in L*()(Q), called the Luxembourg norm.

The space (L?V(Q); || - || o1 (o)) is @ Banach space and D(2) is dense in (LP)(€2)).

Proposition 1.15 ([6, 19]) Let p € C, (). Then for every u € LPU)((2), one has
ppy(u) < 1(>1; = 1) if and only if [|ul| o) (o) < 1(> 1; = 1); further

. +
F ooy < 1 then ull ) < 00 (0) < [l 1.2
if [|ull o) () > 1 then HUHZ;(-)(Q) < pp(y(u) < HU’HLP()(Q (1.3)

The above proposition states that in gsestions related to convergence, p,(.)(-) and ||| o) (o)

are equivalent, that is to say, if u,,u € L?)(Q), then
|tn — ull o)) — 0 if and only if pp((u, —u) — 0.
Henceforth, we denote
0, (@) = {p eC (@) : minple) > 1}.
€N

Whenever p € C, (Q), the space LP")(Q) is refleive and its dual space can be identified
with LP'0)(Q).

Letp, ¢ € C (Q) withp > 1, ¢ > 1, and r(-) defined by

L1
r() () al)

Then for all u € LPO)(Q) and v € LV)(Q), fg € L™(Q) and the following generalised
Holder inequality holds (see [19, 21])

[

r(z) ()

with ¢ = max —% + max —=

o p(a) )

Definition 1.16 ([6]) Let p € C,(Q2). We say that a measurable function u : Q — R

Lro@) < OHUHLP() ||U||Lq() Q) (1.4)

belongs to the Marcinkewicz space M?()(Q) if

Jull mror @) = S;\ulg)‘HX{luD)\}HLP(‘)(Q) < o0, (1.5)
>

where Y4 denotes the charactirestic function of a measurable set A.

14
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The inequalities (1.2)-(1.3) imply that the requirement in Definition 1.16 is equivalent

to say that, 3M > 0 such that

/ N@dr < M, forall A > 0. (1.6)
{lul>A}

If p,q € Cy (Q) with ¢(-) < p(-), then we have
Lp(')(Q) C Mp(')(Q) C MQ(')(Q).
We will need the following property.

Proposition 1.17 ([6]) If u € MI)(Q) with ¢~ > 0, then
M + ||

meas{|u| > k} < e

, forall k >0,

where M 1is the constnt appeared in (1.6). A direct result is that meas{|u| > k} — 0, as

k — +oc.
Proposition 1.18 Let p,q € C (Q). If (p — q)” > 0, then

Mp(-)(g) C Lq(-)(g)_

1.4 Variable exponent Sobolev spaces

Based on theories of several variable exponents function spaces have been intensively
developed during the last two decades. Our goal in this section is to recall briefly some
basic concepts and definitions regarding variable exponent Sobolev Spaces. For an expo-
sition of these concepts, we refer to the books [21, 24] and the references therein.

Everywhere in this section, let & ¢ RY, N > 2, be a bounded open domain with
Lipschitz boundary.

Let p(-) :  — [1,+00) be a continuous function. The (isotropic) Sobolev space with

variable exponent W'71)(Q) is defined by
whrO(Q) = {u e IPY(Q) : Diue IPY(Q), i=1,...,N},
endowed with the norm

[ullwroe @) = llull o) + [1Dull 2o @),

15
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where D;u, i € {1,..., N}, represent the partial derivatives of u with respect to z; in the
distributions sense.
We define W, *")(Q) as the completion of C3°(£2) with respect to the above norm.
Whenever p € C, (Q), the spaces W70 (Q) and W, *")(Q) are separable and reflexive

Banach spaces.

Definition 1.19 ([47]) We refer to a function as k : Q — R is log-Hélder continuous on

Q if and only if there 3M > 0 such that

|k(x) — k(y)] < ,forallz,y e Q, 0< |z —y| <1/2. (1.7)

—Infz —y|

Nevertheless.

Proposition 1.20 ([8]) Ifp € C(Q) satisfies (1.7), then C°(R2) is dense in Wol’p(')(Q).

We recall the famous Poincaré inequality.

Proposition 1.21 ([24]) Let p € C. (2 ) then there exists a finite constant C' > 0 such that
for every u € WO’ (Q)
[ull v ) < CllDul| o) (1.8)

for some constant C' which depends on ) and the function p.

Remark 1.22 ([24]) The following inequity

/]u\p(x)deC/|Du|p(x)dx,
0 0

generally does not hold (see [29]). But by Proposition 1.15 and (1.10) we have

/IUI”(‘”)dl‘ < Cmax{ || Dull7, g 1 Dull ) o - (1.9)
Let us denote by
Np(z) ;
() = N () if p(x) < N,
any number from [1;00[ if p(z) > N.

the Sobolev conjugate exponent.

Sobolev-Poincaré inequality [[24]]

[ull vy < CllDul| ooy (1.10)

16
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for some constant C' which depends on (2 and the function p.

An important embedding result is as follows:

Lemma 1.23 ([25]) Let Q C R be an open bounded set with Lipschitz boundary, and let
p: Q — (1, N) satisfy the logarithm Hélder continuity condition (1.7). Then, we have the

following continuous embedding:

WLP(')(Q) o [P0 (Q)

Lemma 1.24 ([24]) Given a set Q2 and if p(-),q(-) € C+(2) and p*(-) > q(-) then there

exists a finite constant C' > 0 such that for every u € W," (')(Q).
[ullzacr @) < ClIDul[ o @),

The embedding W, * (')(Q) s L1)(Q), is continuous and compact. In particular, we have

Wy P () s LPO(Q), is continuous and compact.

1.5 Anisotropic variable exponent Sobolev spaces

In this section, we outline some fundamental properties of the anisotropic variable
exponent Sobolev spaces to which the solutions of our main problem belong. For more
comprehensive discussions, one may refer, for instance, to [28, 29, 30].

Unless otherwise specified, in this section be a bounded open domain with Lipschitz
boundary. consider a bounded open domain Q ¢ RY, N > 2, with a boundary of Lipschitz
type Let 7/ (:) : © — RY defined by

?() = (p1(), s on (),

with p; € C(Q) foralli € {1,..., N}.
Define

py(x) = max (py(2),....,p1(z)), Vo € Q.

17
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The space W17 0)(Q) is defined by
WEPO@Q) = {u e L#O(Q) : D e LPO(Q), fori=1,..,N}
={u€e L, (Q): ue L"Y(Q) Due LPI(Q), fori=1,..,N}

endowed with the norm
(1.1D)

N
HUHWLW-)(Q) = HuHLP+(‘)(Q) + Z HDiuHLPi(')(Q) :
=1

We denote by W7 )(Q2) the closure of C2°(92) in the norm of W7 ()(Q). When equipped
with the norm introduced in (1.11) (see [28]), the spaces WL?(‘)(Q), Wol’?(')(Q) exhibit

the structure of separable and reflexive Banach spaces. We put for all z € Q

Mol if p(x) < N
pla)=4 Ve P (@) < N> here p(a) = _
+oo, ifp(z) > N. S L
= ml@)

() € (C4(2)". Sup-

Theorem 1.25 ([28]) Let D C RY an open bounded domain and
pose that

Vo € Q, po(z) <P (). (1.12)
(1.13)

Then v
1,7(-
lull sy < C S IDsull ooy Y € WP O(92),

=1

where C'is a constante positve independante de u. Thus Zfi 1 1Diu]| 1o () Ts an equivalent

norm on W&’?(')(Q).

Proposition 1.26 ([28]) Let F(-) € (C, (D))" and (1.12) hold. Then DY7V(Q) =

1,7(
W, 7 )( ).
Let us now recall some anisotropic Sobolev inequalities, proved in [43], that we will

use frequently in the sequel.
Theorem 1.27 Let «; are constante of « > 1, i = 1,..., N, we put q = (c1,...,an).
Suppose that u € W(}E(Q), and set

—x Na lfa < N,

I N
N @i any number from [1,4+00) ifa > N.

(2

QI —

=1

18
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Then, 3C' > 0 dependant de N,py,...,py if @ < N and also on r and meas(2) if @ > N,

such that

N 1
lullzrioy < C T I1Dsul e gy - (1.14)

i=1
Theorem 1.28 Let ) be a cabe of RY with faces parallel to the coordinate planes and o; >
1, 2=1,...,N. Suppose that u € WLE)(Q), and set

a ifa <N,
any number from [1,4+00) ifa > N.

Then, C depending on N,«,...,ay if @ < N and also on r and meas(Q) if @ > N, such
that

2|~

N

lull @) < CTT (lullze: ) + 1Dl o) (1.15)
=1

We finish this brief review by introducing the following space:

TEPOQ) = {u: Q — R measurable, Ty(u) € D7 () for all k > 0}

It is worth noticing that 761’?(')((2) is not contained in the Sobolev space W, (Q2). The

next proposition clarifies the meaning of the partial derivatives of u € 761’7(')(9).

Proposition 1.29 ([33]) Letu € 751’7(')(9), fori=1,... N, there exists a unique measur-
able function v; : 2 — R such that

DTy (u) = viX{ju<k} a.e. in D, for any k > 0.

The functions v; are called the weak partial derivatives of u and are still denoted by D;u.
Moreover, if u belongs to W, (), then v; coincides with the standard distributional deriva-

tives of u, that is v; = D;u.
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Chapter 2

Nonlinear Elliptic Equation with

Variable Exponents

In this chapter, we study a nonlinear anisotropic elliptic equation with variable ex-
ponents, non-regular data. We discuss the existence and regularity of weak solutions in
appropriate anisotropic variable exponent Sobolev spaces. The results presented here are

based on the work in [1].

2.1 Introduction

We will consider the following problem:

div (\Du|p<'>—2 Du) —f inQ,
u=0 on 02,

(2.1)

where 0 C RY is a bounded open domain with a smooth boundary 052, f belongs to
L™0)(Q), with m(-) satisfying the conditions given in (2.7).

The equation (2.1) generalizes the classical p -Laplace equation, where the constant
p € (1,400) is replaced by a variable exponent p(-). This problem has a variational struc-
ture, meaning that weak solutions can be obtained as critical points of the energy func-

tional

_ [ L pupergs -
L(u) /Qp(x)|Du| dx /qudx
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We consider a more general class of nonlinear elliptic equations with variable expo-

nents of the form

{ —div (@(z, Du)) = f inQ, (2.2)

u=>0 on 02,
where a; : RY x RY — R, is a Carathéodory function that satisfies, for almost every

x € Qand for all £, ¢ € RV, the following conditions:

a(.%',f) 5 2 a|€’p(x)’ 5(3:,@ = (a17-~-7aN)7 (23)
[a(z, )| < B (h(w) + D), 2.4)
(@(z,§) —a(2,¢)) - (€—¢) >0, forf+#¢, (2.5)

where o, 3 are tow constants non-negative, i > 0 is a function in L”()(Q) and p/(-) is the
conjugate exponent of p(-), defined by 1/p(x) + 1/p'(x) = 1.
We emphasize that the proof of existence of solutions to the problem relies on an

abstract surjectivity result.

2.2 Existence result of problem (2.2)
Definition 2.1 A function u is a weak solution of problem (2.2) if
uweWy'(Q), (e, Du) € (L'(Q)Y,

and
/6($,Du)Dgpdx:/f<pdw,
Q Q

for all ¢ € C§°(R2), the C§° smooth functions of compact support in Q.

Our main result is the following:

Theorem 2.2 Let f € L™)(Q), the assumptions (2.3)-(2.5) and assume that (1.19) such
that

1 1 _
+m—ﬁ<p(x)<]\/, forall x € 0, (2.6)
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and

Np(x)

Nple) = N 1 pl@) DmELT(@), forallz e 2.7)

1 <m(x) <

then the problem (2.2) has at least one weak solution u € W, ’q(')(Q), where ¢(-) is a contin-

uous function on < satisfying

Nm(z)(p(z) —1)

1 <q(z) < N — ()

forall €. (2.8)

2.3 The approximation method for problem (2.2)

In this part, we employ the approximation method to study the existence of weak so-

lutions for the problem (2.2).

Proof of Theorem 2.2 The proof needs three steps.

2.3.1 Approximate problem

Let (f,)n C C5°(©2) be a sequence of bounded functions.
fo — f stronglyin L™V(Q), as n — oo.

such that

[ fallmo@y < N fllpmory)s V> 1. (2.9)

The existence of the sequences u,, and f,, smooth functions of compact support in €2,

see for example. We approch the problem (2.2) by following problem

/ i(x, Duy) D da = / fapdz, Yo e Wir(Q), (2.10)
Q Q
there exists at least one weak solution

u, € WP ()

(cf. J.L. Lions [34] , Theorem 2.7, page 180). Because
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The approximation method for problem (2.2)

For u,, € W, (), we pst
Lu,, = —div (a(z, Duy,)).

!/
The operator L maps W, " (')(Q) into <W01 P ”(Q)) , thanks (2.5) A is monotone. The
growth condition (2.4) implies that A is hemicontinuous.
i.e., for all u,, v,, w, € Wol’p(')(Q), the mapping R > A — (A(u, + Av,), w,) is continuous.
By (2.3) and Lemma 2.2 [27], we can write
(L, un) > a Pp() (Du)
||unHW01’p(‘)(Q) Hun”wolap(‘)(ﬂ)
: Pt P
min < ||u, o) s || Un 0
Ll il

HunHWOLP(')(Q)

> o

Y

this prove that L is coercive. By (2.4), we get the operator L is bounded.

Thus, we get the desired result.

2.3.2 Uniform estimates

Lemma 2.3 Let p(-) as in (2.6), and m(-) as in (2.7) with m~ = inf m(z) > 1. Then, for
€S

any constant 0 < § < 1, there exists a constant Cs independent of n such that

D . p(x) s _m” 1
/—(’ Wl e < 4 (1+ (/(1+Iunl)(1 Ve ) ’") (2.11)
QO Q

1+ |uyl)?

Proof: Let 0 < § < 1, we define the function ¢s : R — R by

t du
vs(t) :/o At )

It’s clear that

Uslt) = (L4 )0 = Dsign(v),

we have 15 is a continuous function satisfies 15(0) = 0, |15(-)| < 1, taking vs(uy,) as a test

function in (2.10), we obtain

/d(a:, Dun)Dwg(un)d:c:/fnwg(un)dx.
Q Q
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The approximation method for problem (2.2)

Using the from (2.3) and
Dis(uy,) = Duy, 1ps(uy,)

|Dun|p(x) 1 / s
dz < 1 t — 1|dz.
“/ﬂ<1+|un|)”—1—6 o T I = e

By application of Holder’s inequality, we find

|Dun|p / /m</ 1—6s _ _ (m~=1)/m~
o md:r; 14|t — 1 /m 1)dx)
| s 7 [+ —1

Since for any 0 < § < 1 and

we get

(ay 4+ az)” < max{1,2" '} (a] +ab), a >0, 7>0,

we obtain

| Du,, |P(®) ( / (1-6)—m— 1—1_>
— __dx<Cs5(1+ 1+ |u, m——1 dg) m .
Joit gt = G (1 (L0t b )

Lemma 2.4 Let p(-) as in (2.6), and m(-) as in (2.7), and f € L™)(Q). Then there exists a
constant C such that

< Clv

||un||W1 ‘1()(9)

for all continuous functions q(-) as in (2.8).

Remark 2.5 Note that the result given in Lemma 2.4 also holds for any measurable function
q: Q — R such that

ess inf
e

(¥ ) o

Indeed, in both cases there exists a continuous function s : Q — R such that for almost every

X Gﬁ:

Non(a)(p(a) 1)

o) < slr) < SRS

From Lemma 2.4, we deduce, in both cases, that (uy,), is bounded in W, ’s(’)(Q). Finally, by
the continuous embedding

Wy () — Wy (@),

we have the desert result.
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Proof of Lemma 2.4 Firstly, note that since m(-) > 1 and p(-) is defined as in (2.6),

we get

Nm(z)(p(z) —1)
b= N —m(x)
Now, consider the following cases:

, for all

Case (a): Let ¢* be a constant satisfying
N p-—1
< m~( )

N —m~
Note that the assumption (2.7) implies that
Nm~(p~—-1) _
—=<p.
N —m~ P

Using Holder’s inequality with (2.11), we obtain

‘Dun|
D" d (1t )5
/ / (1 + )’

qt

<Gy (1 + (/Q(l + |un|)(1—5)m’17__1 dm))(l"‘l)p‘ (1 4 </Q(1  fun )7

By (2.12) and (2.13) , we get

b (NN—q q+> (o) < f;qfi n_rq<p)—

Now, choose § € (0, 1) such that

5q+ m_(l—é) <q+*:

< N(]+
p~—qt m-—1 N —qt

Notice that (2.15) and (2.16) are respectively equivalent to

b (NN—qq+) <m7_nj 1> <0< (m~ — ;7;(;(1); 'r;‘g’(p)‘ —q")

(2.12)

(2.13)

(2.16)

<1 (2.17)

Therefore, by (2.14), (2.16) and using Sobolev inequality with ¢**, we obtain

m(1-96)
/|Dun|‘1 dr < (s <1+/ |un|m 1 dx

< Cy (1+/ |7 dx) o
Q

RNC - e
< Cs (1+/ | D, |? d:v)
Q

L\ G-
< Cg+ Cy (/ | Dy, |1 dw)
Q
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The approximation method for problem (2.2)

By the fact that
Np~ N
< < —, 2.19
Np=—N+p~  p- ( )

m-

together with the assumption (2.12), this implies that

N qt
< mp” _
gt <m’p andO<<N_q+><1 mp><1.
Hence, the estimate (2.18) imply that (Du,) is bounded in L™ (Q).

Since | Du,|?") < |Du,|*" + 1, we obtain that (,) is bounded in W, ") (€2). This completes

the proof in Case (a).

Case (b): Let ¢ be a continuous functions satisfying (2.8) and

q-‘r Z Nm_<p_ B 1)
N —m~

By the continuity of p(-) and ¢(-) on €2, there exists a constant > 0 such that

Nm~ -1
max  ¢(y) < min m (p(y)_ )
yeB(@,n)N yeBamne N —m

forall zeQ.

Note that 2 is compact and therefore we can cover it with a finite number of balls

(Bi)i=1.. k- Moreover, there exists a constant p > 0 such that
|©2;| = meas(€;) > p, Q;:=B;NQ, foralli=1,... k. (2.20)

We denote by ¢;" the local maximum of ¢ on Q; (respectively p; the local minimum of p

on (),), such that
Nm”(pi —
N —m~

Using the same arguments as before locally, we obtain the similar estimate as in (2.18)

/ 1Qu, “ dx < Cy (1 +/ U

On the other hand, the Poincaré-Wirtinger inequality gives

q < D foralli=1,... k. (2.21)

+

1——=—
@ da:) " foralli=1,... k. (2.22)

Uy — Uy
[ nHqu' sw’"(gzi)SCSHDunH + ,(2.23)
L% (2;)

Ng;

1 *
where a;:—/ Up()dw, @ = —.
|Qz‘ Q; N—q;r
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The approximation method for problem (2.2)

Moreover, note that the sequence (u,,), is bounded in L!(9). So, from (2.20), we have
|tn|| 21 (@) < Cs,
Therefore, by (2.23), we deduce that

ltnll i ) < im = Wl e g Wl

L )

< C’sIIDunIIqu(Qi) +Cy, forall i=1,.. k.

Thus, using (2.22), we obtain

(2) (1--50)
/ | Dun “dr < Cio+ Cho (/ | Du,, qjdx) o o )
Q; o,

by (2.21) and arguing locally as in (2.19), we deduce

0< () (1- %) <1
N —gf mop; ’
/|Dun
Q;

qlz) <gq, forallzeQ; andforalli=1,.. k.

/|Dun\q(x)da:§/ | Du,,
o o)

7

so that

“dy <Oy, forall i=1,..k

Recall that

So, we get

N
Since Q2 C UQ“ forall ¢=1,...,k. we deduce that

i=1
k
/ |Dun|q("”)dx < Z/ |Dun|q("”)dx < (3.
Q i=1 7
This finishes the proof of the Case(b). m

Remark 2.6 Remark that in the constant case and f € L™)(€2), we choose in (2.14)

_pN—m"p—m Np+m N

) 0,1
N—mp € ©.1),
to obtain
_m*N(p—l) (1—4) m- 0q _ Nq
N —m~ m-—1 p—q N-—gq



The approximation method for problem (2.2)

It is easy to check that, instead of the global estimate (2.18), we find

(5) (-2%)
/ | Duy, |%dx < C + C (/ \Dun|qdaz) ,
Q Q

where 0 < (%) (1- mi,p) < 1. Then (2.2) has at least one weak solution u, possesses the
regularity u € Wy *(Q) far all ¢ = Y2021,

2.3.3 Passage to the limit

From Lemma 2.4 together with the continuous embedding 1, ’q(')(Q) — W' (Q), we

have a subsequence (still denoted (u,),) such that

u, —u weaklyin Wy? (Q), (2.24)
u, — u stronglyin L7 (Q) (2.25)
u, — u a.ein . (2.26)

To complete the proof, we need the following lemmas:

Lemma 2.7 We have

Du,, - Du aein £, (2.27)
Proof: In order to prove this lemma it is sufficient to show that:
Du,, — Du in measure.

By (2.25),(2.24),(2.3),(2.4), (2.8) and using Lebesgue’s dominated convergence theorem,

we get the convergence of (Du,) to (Du) in measure, which proves the Lemma 2.7. m

Lemma 2.8 We have

a(z, Du,) — a(x, Du) strongly in  L19(Q), (2.28)
for some continuous function q(-) : Q — [1, ]\],V_L%), where m(-) is a defined in (2.7).

Proof: To prove (2.28), we apply Vitali’s theorem with taking in consideration Lemma
2.4, (2.26), (2.27), (2.4) and (2.6).

Finally, for ¢ the space of smooth functions with compact support in €2, we know

/d(a:,Dun)Dgodx:/fngodx. (2.29)
Q Q
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The Variational Method for Problem (2.1)

Using (2.28), we can pass to the limit for n — +oo in the weak formulation (2.29), we

obtain that « is a weak solution for (2.2). m

Remark 2.9 Under the assumption f € L™)(Q) in Theorem 2.2, we can deduce that f is
never in the dual space (W1 p( )(Q))l, so that the result of this paper deals with irregular data.
If m(-) tends to be 1, then q(-) = % tends to be & ) b,

2.4 The Variational Method for Problem (2.1)

To prove that the problem (2.1) has a variational structure with f € L?()(Q2), meaning
that weak solutions can be obtained as critical points of an energy functional, we need to

follow these steps:

2.4.1 The Energy Functional

The energy functional £ : W, ¢ (©2) — R associated with the problem (2.1) is typically
defined as:

[ L pupr@gs —
L(u) /Qp(x)‘DM dx /qudas.

Here

* The first term [, ﬁ\Du!”(m)dw represents the "energy" associated with the gradient

of u.

* The second term [, fudz represents the work done by the external force f.

2.4.2 The Gateaux derivative

To show that weak solutions correspond to critical points of £, we compute the Gateaux
derivative of £ in the direction of a test function ¢ € W, (')(Q). The Géateaux derivative is

given by

(£ (), ) = lim 2 10) ~ £Q0)

t—0 t
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The Variational Method for Problem (2.1)

For the functional £, this derivative can be computed explicitly as

(L' (u),¢) = /Q | Du|P =2 Du - Dpda — /ﬂ foda.

2.4.3 The Weak Formulation

A function u € W™ (Q) is a critical point of £ if (£'(u),¢) = 0 for all ¢ € Wy (Q).

This condition is equivalent to the weak formulation of the problem:
/Q |DulP® 2Dy - Dpda = /Q fodr forall ¢ e WyPH ().
This is precisely the weak form of the equation:
—div (|Duf'2Du) = f in Q,

with the Dirichlet boundary condition u = 0 on 0f2.

2.4.4 The Variational Structure
To confirm that the problem (2.1) has a variational structure, we need to ensure that:
1. The energy functional £ is well-defined and differentiable on W, (')(Q).
2. The critical points of £ correspond to weak solutions of the problem.

These properties follow from the conditions (2.3)-(2.4) of the p(z)-Laplacian operator
beside this, the continuity and differentiability of the functional £ in the variable exponent

Sobolev space setting.

2.4.5 Existence of Critical Points

To prove the existence of critical points (and hence weak solutions) of the problem
(??), we can use (2.3)-(2.5) to show that £ is bounded below and coercive, and then

apply the direct method to find a minimizer.
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The Variational Method for Problem (2.1)

2.4.6 The Uniqueness of The Solution

We prove the uniqueness of weak solutions of the problem (2.1) as follows:
Proof: Assume there exist two weak solutions u;, uy € W, ) () to the problem. Then,

for all ¢ € W ")(Q), we have

/E(x, Duy)Dyp dx = / fodx,
0 Q

/Zi(x, Dus)Dpdz = / fedz.
Q Q

Subtracting the two equations, we obtain:
/ (a(x, Duy) —a(x, Dug)) Dpdr =0, Vo € W(}’Q(')(Q).
0

Let ¢ = u; — uy. Since uy, us € Wol’q(')(ﬂ), it follows that ¢ € Wol’q(')(Q). Substituting ¢

into the equation, we get
/Q (@(z, Dus) — @(z, Duy)) D(us — ug)dz = 0.
By (2.5), we have:
(a(x, Duy) — a(z, Dus)) - (Duy — Dugy) > 0,

with equality if and only if Du; = Du, almost everywhere in (2.

From the integral equation:
/Q (@(z, Duy) — a(x, Dus)) - (Duy — Dug)dz = 0,
and (2.5), it follows that
Du; = Du, almost everywhere in €.

Since u; and u, have the same gradient Du; = Du, and both satisfy the Dirichlet

bosndary condition u; = uy = 0 on 0f), we conclude:
u; = uy almost everywhere in ().

Thus, the weak solution u € W, ’Q(')(Q) of the problem (??) is unique. m
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Chapter 3

Anisotropic nonlinear elliptic equation

in bounded domain

3.1 Introduction

This chapter is devoted to the study the Dirichlet problem for the nonlinear anisotropic
elliptic equation in variable exponent. We focus particularly on the theory of monotone
and pseudo-monotone operators, which we will use later in the approximation framework
in Chapter 4. For that purpose, we introduce fundamental notions such as monotonicity,
hemicontinuity, coercivity, and pseudo-monotonicity, with simple illustrative examples for

each.

3.2 The Operators

3.2.1 Bounded Operators

Definition 3.1 Let V and V"’ be two Banach spaces, and let A : V — V' be an operator. We

say that A is bounded if it maps every bounded set in V' to a bounded set in V', i.e.,
Vp>0,3C, > 0: A(Bv(0,p)) C By(0,C,)

where By (0, p) denotes the open ball in V' centered at 0 with radius p > 0, and By (0,C,)

denotes the open ball in V' centered at 0 with radius C, > 0.
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The Operators

Example The operator Au = —A, is bounded from W,""(Q) in W, " '(€2) From the

expression of the norm in a dual space, let p > 0, for u € By(0, p), we can write:

| Aullv: = sup [(Au, )| = sup | [ |Du["*DuDgdz|.

lell<1 llell <1

So,
\/\Du!pQDchpd:L’] < /]Du\pl.]Dgp\da:.
D D

1 1
< / Duldz)? / DglPdz)P.
D D
<l gl

< ph

Hence ||Aul|y» < pP~* this shows that A(By (0, p)) C By(0,C,).

3.2.2 Monotone Operators

Definition 3.2 Let V' be a reflxive Banach space. A single-valued operator A :V — V'. We

say that:
A is monotone if:
Vu,v € V, (Au — Av,u —v) >0

A is strictly monotone if:
Vu,v € V, (Au — Av,u —v) >0
Example Let Au = —Awu. The operator A maps H} (1) into its dual (). It is mono-

tone because for all u,v € H}(Q) :

(Au — Av,u —v) = /D(u —v)D(u —v)dr = |lu — v|[ g1 > 0.
D
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The Operators

3.2.3 Hemicontinuous Operators

Definition 3.3 Let V' be a reflxive Banach space. A single-valued operator A :V — V'. We

say that A is said to be hemicontinuous if, for any fixed elements
u,v,w e Vit — (A(u+tv), w)yrwy

is continuous with respect to the real parameter.

Example Let Au = —Au. The operator A maps H} () into its dual H~(). It is hemi-

continuous. Indeed, for any u,v € H}(2) and ¢t € R, we have:
(A(u+tv),v) = / DA(u + tv) Dvdz.
D
Expanding the integral, we get:

/Du—i—Dvdx—i—t/]Dv]de.
D D

This shows that ¢ — (A(u + tv), v), is a linear function of ¢ and hence continuous.

3.2.4 Coercive Operators

Definition 3.4 Let V' be a reflxive Banach space. An operator A : V — V'. is coercive if,

(Av, v)

[v]lv

— 400, as ||y — +oc.

Example Let Au = —Au + a(z)u, a(x) > 0. The operator A maps H}(f2) into its dual

H~1(Q). It is coercive. Indeed, we have

[1Dv|*dz + [ a(z)v?dx
D D

(Av,v)
[0l 130 [0l 130
Since a(z) > 0, we obtain:
(Av, v)

> allvllmyeas  [v]laye) — +oo.
HUHH(%(Q) 0 () 0 ()
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3.2.5 Pseudo-monotone Operators

Definition 3.5 Let V' be a reflexive Banach space. An operator A : V — V' is pseudomono-

tone if
1) Ais bounded, that is, the image of a bounded subset of V' is a bounded subset of V';

2) if u; — uweakly in V and if lim sup(Au;, u; — v) <0, then

J—+oo

lim inf(Au;, u; — v) > (Au, u — v),

j—+oo

for every v in V, where (-, -) refers to the duality product between V' and V.

Proposition 3.6 If A : V — V' be bounded, hemicontinuous and monotonic, then A is

pseudo-monotone.

Proof: Let (u;);>o a sequence weakly converging to v in V' . Suppose that

lim sup(Au;, u; —v) <0,

Jj—+oo

we have A is monotone, we obtain

lim (Auj,u; —v) =0 (3.1)

Jj—+oo

Indeed, the monotonicity of A and the weak convergence of «; to wards « implies that
(Auj,u; —v) > (Au,u; —v) — 0 as j — +o0.

So
0>l Ay, — o) > liminf (A, u; — v) > lim (A, u; — v) = 0.
> gfg(}ﬂ uj, t — v) 2 Hminf(Au;, u; —v) > _lim {Au,u; — )
Hence (3.1).
On the other hand, for ¢ €]0,1[, let w = (1 — t)u + tv. We have (Au; — Aw,u; —w) >0
so that

t(Auj,u —v) > —(Au;, u; — u) + (Aw, u; —u) — t(Aw, v — u).

From which, thanks to a (3.1):

lim inf t(Au;, u — v) > —t{Aw,v — u),

Jj—+oo
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exponent

from which, dividing by t and taking into account (3.1):

liminf(Au;, u —v) > (Aw,u — v), (3.2)

Jj—+oo
w=(1—thu+tv, Vteo,1]

By making ¢ tend to wards 0 in (3.2), and using hemicontinuity, we deduce

lim inf(Au;,u —v) > (Au,u —v), YveV.

Jj—+oo
Which means that A is pseudo-monotonic. m
The following theorem stemming form [14], provides a surjectivity result for pseu-

domonotone operators.

Theorem 3.7 Let V be a reflexive separable Banach space. Let A : V. — V' be a pseu-
domonotone coercive operator. Then A is surjective, that is, for every f in V' there exists u in

V such that Au = f.

3.3 An application to anisotropic elliptic equation with

degenerate coercivity in variable exponent

We consider the following elliptic problem:

N o
{ —> 1 Dilai(xz,u,Du)) + H(xz,u) = f in D, (3.3)

u=>0 on 0D,

where D is a smouth bounded open set of RY (N > 2) with Lipschi boundary de-
noted by 9D, the function f belongs to (1, 7O (€2))’ the dual space of W, 7O (2). And we
suppose a; : D x R x RY — R is Carathéodory function satisfy the condictions:

Forallz € D,oc € Rand £ € RY

N
i(e,1,€).6 > a 316, a() = (@(), as(.), . an(.) (3.4)
i=1
_ N 1_%}1)
|ai(z, u,§)] < g(x) (h(fv) +luf ) \51!““”) , P =minp(z), (3.5)
=1 re
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(ai(xv u, 5) - ai(x7 u, 5/))(5 - 5/) >0, 5 7& 5/' (3.6)

Additionally, we assume that

sup |H(z,u)| € L*(Q), V1 >0 (3.7)
lu|<T
H(x,u)sign(u) >0, a.e, z€D, YuelR (3.8)

where a,7 and y are strictly positive real numbers, and h(z) € L'(2), g(z) € L=(Q)
are a given positive functions, and the variable exponents p; : RN — (1, +o00) for all
1 =1,..., N are continuus functios.

We define the following operator:

A WEPOQ) — (WJ’?(')(Q)Y

u — Au,

N

Au = — Z D;(a;(z,u, Du)) + H(z,u) (3.9)

i=1
The proof is based on the assertion that the operator A is pseudo-monotone and coer-

cive.

3.3.1 The coercivity of the operator:

Let A defined by (3.9), we have

N

(Au,v) = Z/ai(x,u,Du)Divdx—i-/H(x,u)vdm,
D

i=1 D
forany v € Wol’?(')(Q).
For any v = v, we get

N
(Av,v) = Z/ai(m,v,Dv)Divdaﬁ—l—/H(x,v)vdm,
D D

=1

Using the assumptions (3.4) and (3.7), we find
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exponent

N
22/ (z,v, Dyv) Dvdx

N
Z / | Dy[P ) da
In view of Proposition 1.15 , we obtain
D; p;
<‘Ai(v)7 U> Lri()(Q)’ Lpi(~)(g)}
i=1
A
Lrit)(Q)
where \; = p; if | Div|| i)y < Tor A = p; if 1 < || Do s ) < 00

So
N
((0):1) 2 @3 IDw e~ aN

> N_,\HUHW17<)( Q) —aN,
which implies
||U||W01,?<»>(Q)

as ”UHW(}’?(') — 400 since A~ > 1.

()

3.3.2 The pseudomonotonicity of the operator

(3.10)

(3.11)

(a) A is bounded. Indeed, let u be a bounded function in W, ’?(')(Q) thatis : let p > 0,

for u € B(o,p), and for all v € Wol’ﬁ(')(Q), we have

M@)o = s [{Aaw,o)]

veW, P (@) [|vl|<1

then, we have

N
(Au, v) Z/ai(x,u,Du)Divdx—i-/H(x,u)vdx,
i=1 D
which implies

N

[{(Au,v)| < Z/|ai($,u,Du)D,~v|dx+/|H(x,u)v|dm,
D

=1
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Since (3.5) and the fact that g € L*>°(Q2), we have

||Ai(u)||wf1»17;(-)(g) - ) .SU.p |<A7,U7U>|
vew i (@) v]<1
< sup /|ai(x,u,Du)Div|dac+ sup /|H(x,u)v|dac,
veW, i (@) o) <17 P veW i) () ol <1

which implies

AWy < s @ DoliDeldet s |G| / olde.
Hvll<1

UEWOI’pi(Z)( ”,UII<1 ’UEW()l Pz(z>( )

Using the Holder’s inequality (3.6) and (3.8) , we obtain

”Ai(u)HW*LPQO(Q) <2 ) (S;lp i (2, u, Diu)HLP;(»)(Q)"Div||Lpi(‘)(Q) + M,
veW, P (Q), v <1

||Ai(u)||w—1,p;(.>(g) <2 sup la;(z, u, D;u)||

|Div||LPi(~)(Q) +M
veW, i (@) |lv] <1

<2 sup llai(z, u, Diw) || i ) 1Dl prioo ) + 11011 o )+M
veW, i (@) ||v]| <1

< 2||ai(z, u, Diw)ll iy o) + M

< Qmax{(/ la;(x, u, Dyu) POy 4 M
D

pé(-)dm)l/ﬁ/’ (/ |a;(z,u, Dyu)
D
= (/ jas(z, u, Diu)‘p;(')d$)l/pi+/ + </ la;(x, u, Diu)|p§(')d:1:)1/p?' + M,
D D
/

where M = sup > p = 1/p;’

IN

WeW ) () <1 |H(:c,u)\g |v|dz, because that p;
1/p;" and we recall that

Va>0,a<f=a"<dad’+1
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we obtain

1/p}”
HAi(u>HWﬂvP’i(->(Q) < Cl (/ |ai(x7u> Dzu) pi(')dx) +1
D

N 1/73?_/
< / g(@)(h(x) + |uf” +> IDjUIpf(“)dx> +1
D

J=1

1/pf
P = Py
< Oy [ 9@ =@ (IA@l ey + 1l gy +2 S IDis 0 + M) | +1
=1

N 1/pf’
+
=Gy 1+ ZHDW %m.)(p)) +1

i=1

where Cy = Cs(max{||g(2)|z=@) (| (z)]|L1@) + Hu||§(9),2})1/pf', Because p/ < pi =
1/pf" < 1/pt, we find

+

p+_1
i)y 10y < Cs (14 Tullyamo) +1

So,

o
||Al(u)||w—1pi()(ﬂ) S 05 (1 + ,,,,)p+ ! + 1 = T/.
Then A; is bounded.

(b) If u,, — u weakly in W&’?(')(Q), as m — +o0, and for any v € Wol’?(')(Q)

0 > limsup(Aum, Uy, — v)

m—-+00

N
= lim sup Z/ai(x,umDium)(um —v)dx

m—+00 -
=1 D

+ /H(x, Up) (U, — v)d | . (3.12)
D
Then,

lim inf (A, tny — v) > (Au,u —v).

m——+0o0
Indeed, the compact embedding yields that w,, — u in L%)(Q) for a subsequence still
denoted as (u,,). Moreover, we assume that u,, — u a.e. in D.

Let us first prove that

N
Z / [a;(x, U, Dittyy,) — ai(x,u, Diw)] Dy(wy, — u)dx — 0,

i=1 D
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exponent

We observe that /H(x, U ) (U, — w)dx — 0 since u,, — v in L) (Q) and the sequence

D
(H(z,um))m is bounded in L90)(Q). By invoking (3.12) and using the fact that D;u, —
Dyu weakly in L7()(Q) , we get

lim supZ/ a; (T, U, Ditiy) — ai(x, u, Diw)] Di(ty, — u)dz < 0.

We have forall i =1,..., N

/ [a’i(x7 Um, Dzum) - CLZ'(Z', u, Dzu)] D um_u dZE

D

la;(x, U, Diw) — a;(x, u, Dyw)] D;i(uy,—u)dx

m\

Now, let us prove that

liminf (Auy,, Uy — v) > (Au,u —v), Yv € Wol’?(')(ﬂ).

m—-+00

Because that, from (1.13), we deduce up to a subsequence

Du,, - D;u a.einD, i=1,..,N.

Therefore, foreach:=1,..., N
Cli(l', Um,s Dlum> - (ZZ'(ZU, u, D,LU,),
weakly in LPi)(Q) and a.e in D. Thus

m——+00

lim a; () Uy, Diti,) Divdx = /ai(x,u,Diu)Divdx,

D D

forallv € WO1 ’7(')(9). By virtue of Fatou’s lemma and «a; are Carathéodory, we get

liminf/ai(x,um,Dium)dx > /ai(x,u,Diu)dx. (3.13)

m—-+00
D D

On the other hand, we have

/ H (2, ) (U, — v)dz — / H(z,u)(u — v)dz, Yo € WEPO Q). (3.14)
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exponent

Finally, combining , (3.13), and (3.14), we obtain

m—-+00

N
lim inf (A, ty —v) > Z / a; (2, U, Diti) Di(u — v)dx + /H(I, u)(u —v)dz
=g Q

= (Au,u —v).

Therefore A is pseudomonotone. Then, according to Theorem 3.7, there exists at least

one weak solution u € W(}’?(')(Q) to problem (3.3).
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Chapter 4

Nonlinear Anisotropic Degenerate

« g e . . N ... 1
Elliptic Equation in R"" with [; Data

In this chapter, we establish existence and regularity results for weak solutions to
a class of nonlinear anisotropic elliptic equations in RY, subject to p;(z) -type growth
conditions and locally integrable data, with principal part having degenerate coercivity

The results presented here are based on the work in [23].

4.1 Introduction
We consider the following nonlinear anisotropic elliptic equation:
N
=Y Dilei(w,u)bi(w,u, Du)) + H(z,u) = f, z€RY, N >2 4.1
=1

where the function f is locally integrable on RY. Suppose that b; : RY x R x RN — R,
e; : RY x R — R, are Carathéodory functions satisfying, for almost every = in R”, forall

,u € R forall £(&4,....&n), & (&), ..., &) e RN foralli = 1,..., N, the following:

bi(z,u, £).& > alglP™, (4.2)

N =@
|bi(z,v,§)| < g(x) (h(ff) +ol” + ) |€j|pj(”)> , P =minp(x), (4.3)

j=1

(bl(xvuag) - bl(xauagl))(f - 5/) > 07 5# 5/7 ﬁ N
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Statement of the problem

Ui

where «, n, 1 are strictly positive real numbers, ~;(z) > 0,7 = 1,..., N are continuous
functions RY, h is locally integrable on R”, ¢ is locally essentially bounded on R" are a
given positive functions.

Let H : RNV x R — R be a Carathéodory function satisfying the conditions:

sup |H(z,u)| € L, (RY),¥7 >0 (4.6)

lul<T

H(z,u)sign(u Z lu wi(@) a.e,z € RY, 4.7)

for all u € R where s;(-) > 0,7 = 1,..., N are continuous functions on R".

Example: As a prototype example, we consider the model problem

_ i D; | g(x) |u’< e + | DyulP*®) "2 Du

(In(1 + Jul))

— |ulF@ 1y | = f. (4.8)

where s;(-) > p;(+) foralli =1,..., N.

4.2 Statement of the problem

Definition 4.1 A function u is a weak solution of problem (P) if

we WEHRN) N (LS+(')(IR{N)) bi(,u, Du) € LL (RY),i=1,.., N, H(z,u) € L (RV),

loc loc
N
Z/ ei(x,u)b;(x,u, Du) D;pdx + H(z,u)pdr = fpdz, (4.9)
: RN RN RN

for all p € CHRY), the C! functions of compect support.

The core contributions of this work are detailed below:

Theorem 4.2 Let f is locally integrable on RY and p;(-) satisfy (4.21), i = 1,...,N. are
continous funtions on RY such that 1 +~vf <p(z) < N,and foralli =1,..,N

P@)(N —1—74(x)) = N — 7+(2)) P)(N =1 -y (2)) = N(v — 7+ (2))

N(p(x) =1 -71) (1474 (2))(N = p(x)) ’
(4.10)

< pi(x) <
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for all x € RN where

NQ@2 -+ 474 (2)

p(x) > N+1+7.) forall i=1,..,N, 4.11)
0<~vi(x)<pi(z)—1, foral i=1,.., N, (4.12)
si(z) > pi(z), forall i=1,..,N. (4.13)

Let b; be a functions satisfying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then the problem (4.1)

admits at least one weak solution w such that

= M&(')(RN)’ Du € qu'(')(RN)7

loc loc

where

Npi(z)(p(z) =1 =~)
p)(N =1 —i(x) = N(vi — 7))’
N(p(x) =1 =)
N-=p(x)

(4.14)

gi(z) =

q(x) = (4.15)

Theorem 4.3 Let f € L] (RY) and assume that p;(-) > 1, (4.21), s;(:) > 0,i=1,..., N are
continuous functions on RY such that

800> (@7 g (o) - 1)) v € B (4.16)

N(p(x) =1 —71)
N —p(z)

Let b; be a funtions satifying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then the problem (4.1)

, Vr e RY. (4.17)

si(x) >

admits at least one weak solution u such that

u e MORY), (4.18)

Tz(l’) _ pi($)8+(l‘)

1+ si(x) +yi(x) (419

Remark 4.4 Let 0 < v, (z) < pl(x) — 1 and s;(z) > p;(z) implies that for all x € RN

si(z) > (1 +74(2))(pi(z) = 1).
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Proof of Results:

Under the assumption that p(-) < N, it is possble to obtain a sharper regularity result

for Du provided the contribution of the lower order term H (z,u) when s, (-) = max s;(+)

- 1<i<N
is large enough.
We emphasize that this result remains valid even when p;(-) > 1 aslong as s, (-) > 1is
sufficiently large. Indeed, assumption (4.17) ensures that
POsi()  _ NpO@BO-1-91)
Lt s () +7%() = BOWN = 1=%()) = N = %())

foralli =1,..., N, so Theorem 4.3 improves Theorem 4.2.

Lemma 4.5 ([40]) Let p;(-),s;(-),i = 1,..., N in C(Q) with
si(-) > pi(-), forall i=1,.. N. (4.20)

with
14+t <p(-) < N. (4.21)

and g be a non-negative function in WO1 ’7(')(9). Suppose that there exists a constant c such

that
Hg L5+0)(Q) <g, (4.22)
and
N
Z/ |D;gP" " de < e(d + 1)"7%, vd > 0. (4.23)

Thzn there exits a constant C, depending on c such that

N(p(z) —1—-197)
N—p(x)

/ d|"Pdz < C, Vk>0, h(z)= Vz € D. (4.24)
{f>d}

4.3 Proof of Results:

4.3.1 Proof of Theorem 4.2

Let R > 0 and Br = {x € RY /|z| < R} be given. Our objective is to solve the equation
(4.1) in domain R". Our approach begins by analyzing the case of (4.1) in the bells Bg,
for an arbitrary but fixed R > 0, given a function f,, which approximated f. If one can
derive estimates, which are independent of R and approximate f,, we can then pass to

the limits R — +o0 and f,, — f to obtain a solution of the original problem.
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Proof of Results:

4.3.2 Approximate of Problem (4.1)

Let (fn), fn = Tn(f) and (u,) are sequences of bounded defined on a set B,, = {z €

RY : |x| < n} which convege to f in L} _(R"), and which verfies the inequalities

loc

I fallzy, @vy < I flly, @y,

|fu]l <n, Vn>1

lunllzy, @y < llullzy, @

The existence of the sequences u,, and f,, is traditional, see for example. We approch
the problem (4.1) by following problem:
N

- Z Di(ei(x, Ty (un))bi(w, up, Duy)) + H(z,u,) = f,, in RY (4.25)

=1

There exists at least one weak solution
N N
w € (Y (6B 20 (B) . Wo PO (B) = (WO (By)
=1 =1
indeed one has H(z,u,) € L'(B,) and

N
Z/ ei(x, T, (up))bi(z, uy, Duy)Dipdx + | H(x,u,)pdr = fnpdx, (4.26)
i=1 /Bn

By B

forall p € N, Wol’pi(')(Bn) N L>(B,). Note that by (4.5) and (4.2) we have

U > U
(1 + [T (ug) )@ — (1+ n)“’i

ei(r, T (uy)) >

In such a manner that the operator

B:v— Y Dilei(x,To(v))bi(z, v, Dv))

=1
is coercive. Thus, chapter 3 provedes a rigorous proof of the existence of the approximate

solution wu,,.
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Proof of Results:

4.3.3 Uniform estimates

We assume that u,, be a solution of (4.35), (4.2)-(4.4) and (4.6)-(4.7) hold, r such

that 0 < 2r < mn, an B, = {x € RY : |z| < r}.

Lemma 4.6 Let u.(-) > pi(:), ¢ = 1,..., N, consider a redius R = n and let 0 < 2r < n.

Thare exists a constant C, indepzndent of n, such that

)] L3+0O(B,) <C, s54(-) = max s(-) (4.27)

1<i<N

[ H (x, un)|| 218,y < C. (4.28)

Morever, for every 6 > 1 there exists a constant Cs, depending on ¢, such that

pi(-

| D;uy,
Z/ T T )d:r < Cs. (4.29)

Proof: We fixed § > 1 such that

: u;(x)
de(Lk), k= —_ — .30
€ (L k), 1§i§r1nvgle§2r (pz(ﬂf) -1 7+(x)) 7 (%:30)
we define the function ¢ : R — R by
7 dt
=(1-9¢ =(1-90 ————dt Vo > 1 4.31
V(o) = (1= D)isle) = (1=0) [ ot b > 43D)
It’s apparent that
v(o) = ((1+]o)'~" = Dsign(o), (4.32)
We know |¢| < 1 and |¢'| < 6 — 1. Taking
W (uy,)0” (4.33)

as test function in (4.35), where « is a number such that

o max Sl(l')pZ(;L')
~ léiSN,xeﬁzr(Si(aﬁ) — (6 + 74 (@) (pi(z) — 1)) >0, (4.34)

0 is a smooth with compact support in B,,, such that 0 < # < 1and # = 1 on B, and
|Df| < 2. We obtain

N
Z/ ei(x, T (un))bi(z, ty, Duy)Di(0(un)0%)dx+ | H(z, uy)(u,)0%de = fat(uy,)0%dx,
i=1 Y Br Bgr Br

(4.35)
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Proof of Results:

Using the form (4.2), (4.5) and
D;(Y(un)0%) = Diunt' ()0 + atp(u,)0* D0, i=1,...,N,

we obtain

Bn Z / [ D) A ()0 [ H () ()07 da

B2r 1 + |u | ’Yz BQT

< | fall 2 (Bar) QZ/ (2, Up, Duy ) (u,)0% t D;0dx

BQr

< 111zt +012 / )t P+ 3 Dy ) )0 D O

7j=1

< G+ Cs Z/ )+ |ua P + Z | Dy, [P @) @ 6

Bay ] 1

(4.36)
By Youeng’s inequality, we find

N
1= (h0)+lual” + > 1Djun) 0767

j=1

1 N =74 ()

—_ —1 T+
= ()70 (h(-)+|un|P +Z|Djun|pj(')) (1+|u ) 7O ) PiO OO () PO (14| uy|) 7O ap O g7i0)

i=1

(5 — D0
pi(=( 0

()| +Z|Dun|pf ) (L[ ]) 7+ O ()0 +

e w [P N_l Djuy, p; ()
1< Y (h(-)+( i t g |(_) )w’(un)Oa

(5 _ 1)904—102‘(')

(1+ |un|>(5+7+('))(pi(')*l)

Y

SO
- N
() [a]? Dy 20
I< h(-) + + o )7
70 ( (4 fenl)re 0 2 (L a0
+ Céea—pi(')(l + |un|)(5+7+(-))(m(~)—1)’ (4.37)

(1+’u |) O+y+ () (pi()— 1)



Proof of Results:

where ¢ : R — (0, +00) anyposetive function, and p}(-) = p;(-)/(p:(-) — 1),i =1, ...

Choosing ¢(-) = 8/(2C, S, (1/p4(+))) and C5 = M the fact that

V() = (6 = 1)(1 + |un|) ™

Using (4.36),(4.37), we obtain

pi ()

—1) | Dy . )
2/32 At o, ot [ H@ ) (un)0%d

B2r

1+ ) (6474 (2)) (pi (2)—1) ga—pi(x) + |un P 9“)

<C4+C5Z/

B2'r

<C6+C7Z/ (14 Jun )+ EDE@ D gapit@) 4 [y, |5+6)92) g

Bay

Using Young inequality, we can write

— [ | GO @)1 gapi)

o) o ps()si()
O B N O CE AN ) CHORSY

= si(-

< (6 + 7+())(1)9z() - 1>0a’u

si(-)
By thisinequality, (4.38) , we have

pi(x)

|D;u,, N .
ZLQ 1+ |u ’ 6+7Z(I 0 d.]f-'- H(.T,un)w<un)6 dx

Bay

S ClO + 011/ |UJn|S+ Gada;.

B2r
Now, from the assumption (4.7), we get

N
H(z,0)(0) > agp(1) Y |o|"™, V|o|>1 andae. zecR",

=1

so we have

si(x) 1 N
Z\a i H(z,0)Y(c)+ N, VoeR andae. x€R".

Oéow( )

[~a}

(4.38)

(4.39)

(4.40)



Proof of Results:

We combine (4.39) and (4.40), we can write

D npz )
Z/ i |+ |5 BEE Qadx—i- H(z, u,)t(u,)0%de < Cha+Ch3s H(z, u, )Y (uy,)0%dz.
B2'r

BQT BQT

Using thes inequality and satting ¢ = 1/(2C3), weobtain

D;u,, |Pi®) 1
Z / | Ditin| s0°de + 5 | H(,un)(un)0%de < Cho. (4.41)
Ba,

1 + ’u ’ 5+71 2 Ba,
Aftar dropping the nonnegative term, we derive
H(x,up)(uy,)0%dr < 20, (4.42)
B2r
estimate (4.27) is then direct consequence of (4.42). By (4.6), (4.42), and the definition

of 1) we obtain

H (2, u,)|d < / H(z,u)lde + —— [ H(z,u)(un)de < C.

Br N{Jun]<1} ¥(1) J,

B,

Finally by (4.41), we deduce that

| Dy, [Po(®)
Z/T 14+ |U | 5+% dI < Cho, Vo € (1,]{3), (4.43)
so that
|D Up, |p1(75)
Z/T Tt [u, )o@ e <6 vo>1 (4.44)

This completes the proof of Lemma 4.6 m
Lemma 4.7 There exist a conestant C}, depeendent of k such that

| DT (u,) [P @dx < Cy,i=1,...,N. (4.45)
B
Proof: Let § > 1 and By the estimmate (4.29), we obtain

| DiT (un)

By

i i ()
pi(x) _ | D; T (un) P o
" /B (1 + Jug )7+ (1 + fun )" d

dx

DTy, (uy, ) [P
< (anpet [ DT
s UERTE ) el ®

< C(1+ k),

[~ |



Proof of Results:

so that

|D; Ty (u) P @da < C,i=1,...,N.

B

this finishes the proof of Lemma (4.7) »

Lemma 4.8 Under the assumptions of Theorem 4.2, there exists tow constants C1, Cy (inde-
pendent of n) such that

N(p(z) =1 =77)
N —p(z)

/ E'@de < ¢y, VE>0, hz)= (4.46)
{[un| >k}

and

Npi(x)(P(x) — 1 =)

px)(N =1 —=5(x)) = N(vi —vi(=))
(4.47)

/ Ki@dr < Cyy VE >0, hi(z) =
{|Diun|>k}

Proof: The inequality in Lemma (4.6), we have

||un)| LS+(')(BT) < C, S-i-(') = max Si(')a

1<i<N

3+(') > pi('),

and | D;|u,|| < |D;u,| yield

{lun|<k}

we obtain (4.46). For the estimate (4.47), setting o (-) —nl) 1,..., N, then for

= 5RO+
k > 1, and from (4.46) we deduce

/ L EWdr < / ) KM da + / M) da
{IDiun|* ) >k} {IDiun|* ) >k} {|un| <k} {lun|>k}

p; (@)

/ L) |Diun al(z) \ of(x) e
ok T
{lun|<k} 2

< / L——i(@) ‘Dlun
{lun|<k}

< / 21 (1 4 k)0~ | Dyuy,
{lun|<k}

Py < Ck, i=1,.., N,

IN

Py 4 C,

Pi®dy 4 C.

pi(w)

< 2‘”71/ |Dittn ———dx + C.
(un <k (1 [ |)2 (@)
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Proof of Results:

By (4.29), we obtain
/ . KM@ dy < Cy, Vk > 1.
{|Diun | @) >k}
If k € (0,1), we have

/ kM@ dg < / kM@ < ;.
{IDsun |0 >k} :

/ ; kM@ de < O, Vk > 0.
{| Diun| 7 ) >k}

Therefore

This shows that, for all i = 1, ..., N, (D;u,) is bounded in M"")*()(B,) where

__wOhO)  _ pOR) Npi(2)(p(z) =1 =)
O+ () +v%() 1+h()+%() Dl@)(N—1—m(x)—-NOT—vz)

So that g : RY — R such that

h(-)os ()

pi(-)h(")
L+ h() + ()

g()) <

we have (D;u,,) is bounded in M9 (B,).

Npi(z)(p(x)—1-7])
p(x)(N—=1—vi(2)) =N (vf —vi(2))

Finally suppese that h;(z) = and let ¢ € (0, hZ). Then we have

/ . ki@ =ede < C, Vk > 0.
{| Diun| 7 ™) >k}
Letting ¢ go to zero, the proof of lemma 4.8 is completed. m

Lemma 4.9 Under the assemptions of Theorem 4.3. Then, sequence (u,) is bounded in

,/\/l”(')(Br)7 such that r;(-) = %

Proof: Let s, (-) > 0 and s, (-) > p;(+), we have

s+() < D — .
5 || <0, s4() 121%}](\[ si(+)

we obtain

/ k** (z)dx < C, vk > 0.
|wn | >k

By applying the same technique used in the proof of Lemma, along with the aforemen-
tioned estimate, we deduce that sequence u, is bounded in M7()5+()(B,) such that

_ pi(*)
() = w0 ™
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Passage to the limit

4.4 Passage to the limit

In light of the previously obtained estimates, which ensures that for any fixed > 0 the

=1,...

B,}and ¢;(-), ..., qn(-) are restricted as in Lemma 4.6 or Lemma 4.8. It is therefore possible

to extract a subsequence, still denoted by (u,,), such that
u, —u ae.inD andstronglyin L% (B,). (4.48)

Lemma 4.10 Let f € L} _(R") and let e;, b, H be Caratheodory functions, where a; are
satisfying (4.2)-(4.4) and H satisfy (4.6)-(4.7). Then

H(z,u,) — H(z,u) stronglyin L (RY), Vr>0. (4.49)

Proof: Let A > 0, » > 0 and We shallfirst obtain local-integrability of (H (z,u,)) on B,.
We define ¢, : R — R such that

gb(U—A) :UZ)\a
oxr(c) =12 0 ol < A,
o+ A) ,0< =),

Let o > 0. We choose ¢.,(u, )0 as test function, where ¢ be a cutoff function as in (4.35),

we have
N
> / ei(, Ty (un )b (, Dty ) Dyt ¢y (1, ) 0% i + / H (0, 1) (1) 0% dx
i=1 7D D

- / f ()07,
D

working as in (4.36), we obtain

N
> /D ei (2, Ty () )bs (¢, D) Ditin @ (1) 0% dix + / H, (2, up) b (uy)0%da

<02+ng/ + un|? —i—Z\D Uy [P 5@ 9o .

Then

Z/B | Dy,

pi@ ¢ (un)0%dx + %/ H(x,un)py(u,)0%dx
Bay
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Passage to the limit

SCn/ (1f] + |h| + |unl? )dx + C17|Bar N {un| > 71}
BarN{|un|>7}

Sincethe sequence (u,) is bounded in L'(By,) for any n > 2r. and f,h € L, (R"), we

loc

deduce form the above inequality that

Using the properties of the function 6, ¢,, and the fact that H(x,o)o > 0, we get

1
/ |H(x,up,)|dz < H(z,up)ox(u,)0%dx — 0 as A — +00.
Bar (Wlunl 227} $~(27) /i,

This inequality and the assumption (6) give equi-integrable of (H (z,u,)) on (B, ). Form

this (54), and Vitali’s theorem we obtain the result.

H(z,u,) — H(z,u) ae.in RY. (4.50)

By the assumption (4.6), (4.28), (4.50), and with the help of techniques used in [37], we
get (4.49). m

Taking u* = Tj,(u,,) and u* = Tj(u), The result obtained is as follows.

Lemma 4.11 For all k > 0, we have there exists a function 0, such that for all ¢,

we have

lim Sup/ 9(1’)61(27, Tn(un))bz(xa U, Dzun)(DZun - Dluk)d‘r < lk(g)v
{lun—uk|<e}

n

with for alli = 1,..., N and lim._,( lx(¢) = 0.

Proof: The proof of Lemma 4.11 is similar to that of Lemma 2.16 of [35]. =

Proposition 4.12 Let b; be a function satisfying (4.2)-(4.4). Then

e(x)el(xaTn(un))bz(x>unaDuk) — 0<x)ei(x7u)ai(x>ua Duk) Strongly in Lpi()(B%‘)
(4.51)

oralli=1,... Nandl(-) = i
f ©) pi(t) —1

Proof: we have (4.48), implies that

0(z)ei(x, Ty (un))bi (2, tn, Du”) — 0(2)e;(z, u)bi(z,u, Du*) a.e.in Bs,. (4.52)
and in the fact
10(x)e; (2, Ty (un))bi(z, upn, DuF)| < Clbi(z, u, Dub)| € LPiO(By,) (4.53)

according to Lebesgue’s dominoated convergence theorem, we have (4.51). m

55



Passage to the limit

Lemma 4.13 There exists a subsequence ( still denoted (u,,) ) such that
Du,, — Du, a.e. in RY. (4.54)
Proof: We write for all € € (0, 1)
Ani(e) = /{| e }G(x)ei(:z:, Ty (1)) (bi (2, U, D) — bs(, up, Du®))(Diy, — Diul¥)d

= A4e) — A%(e),

with
Al(e) = /{| 5 }Q(x)ei(x,Tn(un))bi(x,un, Duy,)(Diu, — Dau*)dx

and _

Aii(e) = / O(x)ei(z, T (up))bi(x, Uy, Duk)(Diun — Diuk)dx
{lun—uk|<e}

r'n

= / 0(z)e;(x, Ty (un))bs (2, u"™, DUF) (D™ — Dju®)da.
{lun—uP|<e}

By (4.49) and Lebesgue’s dominated convergence theorem we have

0(2)ei(, Ty (1) )bi (2, 1, DUF) — 0(2)es (2, w)bi(w, u, DuF)  stronglyin  LZ"(RY).

loc

Therefore, by Lemma 4.7, we can write

lim AZ%(e) = / 0(z)e;(z, u)b;(x, u, Du) (D™ — DjuF)da.
e {lul>k.[u—uk|<c}
Consequently

lim lim AZ(¢) = 0.

e—=0n—+o0o0
By Lemma 4.11, we get
lim lim A, (e) = 0. (4.55)

e—=0n—+o0

We put foralli =1,..., N
Li(un,u) = e;j(x, Tp(un)){(b;(x, uy, Duy,) — bi(x, up, Du)).D;(u, — u)}l/pi > 0.

From (4.3) and Young inequality’s, we derive

N N
Li(up,u) < C (h(m) + |ul + Z |Djuy,| + Z |Dju|> . (4.56)
p =1
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Passage to the limit

Let us write
/ 0(x)L;i(uy, u)de = / O(x) L (up, u)dx + / 0(z)Li(uy, u)dx. (4.57)
Ba {lul<k} {lul>k}
By (4.56), the L'(B,,) -bound on h(x) and L%")(B,) -bound on D;u, for ¢;(-) satisfy (4.14),

we have fori=1,..., N

, - ~ — mi in g
/BQT |Li(tp,w)|*de < C, ¢ = min, xré%r; qi(x). (4.58)
So, we have
/ 0(z) Li(up, uw)dz < C|{|u| > kY'Y= = o(1)(as &k — +o0). (4.59)
{lul>k}
For the first integral in (4.57), we decompose it as
/ 0(x)L;i(uy, u)dx :/ 0(z)L;i(uy,, u)dx
{lul<k} {lun—ub|<e, |ul <k}
+/ 0(x)L;(tp, u)dzx. (4.60)
{lun—uP[>e,|ul<k}
By (4.55), we get
lim 0(x)L;(up, u)dr < o(l)(as e —0)+o(l)(as n— +o0). (4.61)

400w —uk| <e,|u|<k}

Arguing as in (4.59), we obtain
/ 0(2) L, w)dz < Cl{Jun — u| > }|"79° = o(1)(as n — +o0). (4.62)
{Jun—u*|>e,lu|<k}
We combine (4.57), (4.59), (4.61) and (4.62) to obtain
lim Sup/ 0(x)L;(tp, u)dx = 0. (4.63)
n—+0o0 J By,
Since the integralfunction in (4.63) is nonnegative and § = 1 on B,, this implies that
ei(l', Tn(un))(bz(xa Unp, Dun) - bz(xa u, Du))(Dzun - Dzu)dx - 07 strongly in Ll(Br)
Thus, up to subsequence still denoted by wu,,
ei(x, Tn(un))(bi(z, wn, Duy) — bi(x, uy, Du))(Dsu, — Diu)de — 0, a.e z € B,. (4.64)
Let x € B, be such that u,(z) converges to u(zx), that |s(z)| < +o0, and that (4.25) hol

Du true. Due to (4.49), the set of x € B, such that at least one of the above properties

57



Passage to the limit

does not hold has zero measure. Since |s(x)| < +o0, one has |s,(z)| < |s(x)| +1 < n for

n large enough, so that (4.64) becomes
ei(x, up) (bi(x, uy, Duy,) — bi(z, un, Du))(Dsu,, — Diu)de — 0, a.e x € B,. (4.65)
Adopting the approach of [34], we obtain the desert result. m

Lemma 4.14 Let b; be a function satisfying (4.2)-(4.4) and H let satisfy (4.6)-(4.7),
foralli=1,...,N, Then

ei(x, Ty (un))bi (2, Un, Duy) — e;(z,u)b;(z,u, Du),  stronglyin L (RY). (4.66)

Proof: Let m;(-) > 1 are continuous functions on R" such that

1 L Nwi() p)—1 -1
pz() —1 = ml( ) = pz() -1 (ﬁ()(N —1- 7+(')) - N(%t - 7+())) ’

this is possible since we have (4.10). Let o0 : RY — (0, 1) be a continuous function such

that
PO =1 p()—1-17f
m) =y <O <N (ﬁ(')(N T () NG - %(-))) <t
OG0 =D 2 70RO <00 (oS T KT ) 47

Using the fact that

N mi() =0
b3 (-, tn, Di,) ™) < (h +lual” Y |Djun|pf<'>) ,

j=1

N ml()%
< (h"(‘) + Iun!"(')T + Z \Djun|"(')pj(‘)> ] (4.68)

j=1
By (4.54), (4.67), (4.68), (4.47), and Vitali’s Theorem, we derive

ei(z, T (un))bi (2, Un, Duy) — €;(x,u)bs(x,u, Du),  stronglyin L™0(B,). (4.69)

This finishes the proof of Lemma 4.14. u
Using the convergence (4.49) and (4.66), we conclude that the function u is weak

solution of equation (4.1). The Theorem 4.2 is so proved.

£Q



Passage to the limit

Remark 4.15 If we replace the hypothesis (4.3) by

Y

lai(z,u, &) < g(x) (h(x) +ulP” + & pi(w))l_mm)

we can prove the same regularity reported in Theorem 4.2 but the exponent p;(-) satisfies a

better condition

P@)(N —1—v.(2)) = N(ov§ — () p(x)(N —1—7(x)) = N(ovf — (=)
N(p(z) —1=77) (1 +7i(2))(N = p(x)) ’

compared to (4.10). Indeed, it suffices to substitute o(-) in (4.67) by o;(-) such that

-1 p() —1-177
O <o <N <13(-)(N— T () - N —%<~>>> <t

< pi(x) <

4.4.1 Proof of Theorem (4.3)

By applying Lemma (4.14) where r;(-) > 0 such that

pi(z)s4(x)
1<r(s) < .
VT @ m@ - D
Hence, by
H(z,u,) — H(z,u) stronglyin L, (RY), Vr>0.
and

ei(x, Ty (un))bs (2, Un, Duy) — e;(z,u)b;(z,u, Du), stronglyin L} (R™).

loc

we conclude that the limit function « is a weak solution of equation possessing the regu-

larity stated in (4.18) this finishes the proof of Theorem 4.3.

o)



Conclusions and Future Research

This work focuses on the study of nonlinear elliptic equations with variable exponents,
which represent a natural generalization of classical elliptic problems with constant expo-
nents. The main objective is to prove the existence of weak solutions, even in cases where
standard assumptions, such as coercivity, may fail. These equations arise in various physi-
cal and engineering models, particularly when the properties of the medium change from
point to point. The proof strategy relies on constructing approximate problems, obtaining
a priori estimates, and applying a limiting process, which allows us to extend classical
results to a more general framework.

In future research, several directions can be explored:

Regularity: studying the smoothness and uniqueness of weak solutions.

Parabolic Extensions: extending the analysis to time-dependent problems with variable
exponents.

Applications: applying the theoretical results to real-world models such as heat conduc-
tion and fluid flow in non-homogeneous materials.

Numerical Approaches: developing efficient numerical methods to approximate weak so-

lutions and analyze their convergence.
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