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Abstract In this paper, we consider an inverse time-dependent source problem for a time-
fractional telegraph equation with mixed boundary conditions and an additional measurement
at a fixed point. The fractional derivative is described in the conformable sense. Under some
assumptions on the input data, the well-posedness of this inverse source problem is shown by
using Fourier’s method and Banach’s contraction mapping principle.

1 Introduction

Let 0, T > 0 be some fixed numbers and let Q1 be a rectangular region defined by:
Qp :={(z,t):0<z <l 0<t<T}.
We consider the one-dimensional time-fractional telegraph equation

DPu (1) + 20Dy (2, 1) + bu (2,1) = wigg (2,1) + F (z,t), (2,) € Qr,  (L.1)

where Dﬁ‘“) represent the left-conformable fractional derivative of order 0 < o < 1 with respect

to t such that DIEM) = D§a> (D§a>>, F (z,t) is the source term and u (x,t) represent the voltage

or the current inside a piece of telegraph or transmission wire, whose electrical properties per
unit length are: resistance R, inductance L, capacitance C, and conductance of leakage current
G wherew = 7=, 2a =& + £ and v = £L4.

For o = 1, equation (1.1) is the classical telegraph equation developed by Oliver Heaviside
in last decades of 19" century [9]. This equation is a second-order linear hyperbolic equation
and it models several phenomena in many different fields such as signal analysis [13], wave
propagation [19], random walk theory [7].

Suppose the unknown function u satisfy the following initial conditions
u(z,0) =@ (z), ’Dga)u(m,O):¢(x), 0<z <Y, (1.2)
and the homogeneous mixed boundary conditions
ug (0,8) =u(€,t) =0,0<¢t<T, (1.3)

where o and i are given functions. If all functions F (x,t) , ¢ (t) 1) (t) are given appropriately,
the problem (1.1)-(1.3) is a direct problem. It should be noted that the direct problem (1.1)-(1.3)
has been investigated in the works [3, 4, 2], and the references therein. When the source term
F(z,t) =7r(t) f (x,t) with f (z,t) is a given function. The problem of finding the solution pair
{u(z,t),r(t)} of the problem (1.1)-(1.3) with additional measurement condition

u(zo,t) =h(t), 0<t<T, (1.4)
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is called the inverse problem where xy € [0,£] is a fixed point and h (t) is a given function.
We note that inverse source problems for fractional diffusion and wave equations were investi-
gated in [5, 10, 20, 11, 17, 18] and inverse coefficient problems for a semilinear time fractional
telegraph equation in [16, 15]. It should also be noted that all the articles on the inverse prob-
lems mentioned used the fractional derivative of the Caputo sense. However, the inverse source
problems for fractional telegraph equations have not yet been studied.

Our aim in this paper is to study the existence and uniqueness of the solution as well as the
continuous dependence of the solution upon data of the inverse time-dependent source problem
(1.1)-(1.4). As far as we know, the study of this inverse source problem will be discussed in this
paper for the first time.

The rest of this paper is structured as follows: in Section 2, we give some definitions and
properties of the conformable fractional calculus. In Section 3, under some natural regularity
and consistency conditions on the input data, the well-posedness of inverse problem (1.1)-(1.4)
is shown by using eigenfunction expansion of a self-adjoint spectral problem along the Fourier’s
method and Banach’s contraction mapping principle.

2 Preliminaries

We recall some definitions and properties of the conformable fractional calculus theory.

Definition 2.1 ([14]). Given a function f : [0,c0] — R. Then, the conformable fractional
derivative of f of order « is defined by

tetl=) — f(t
D(a)f(t):hmf(—’_g ) .f()
e—0 g
forallt > 0, a € ]0,1]. If D\®f (t) exists in some ]0,a[, a > 0, and Jlim D f () exists,
0+
then define

D f(0) = lim DY (1).

t—0F

If the conformable fractional derivative of f of order « exists, then we simply say f is a-
differentiable.

Definition 2.2 ([14]). The conformable fractional integral of a function f starting from a > 0 of
order « is defined by

dx,

where a € ]0,1].

Theorem 2.3 ([14]). Let o« € 0,1 ] and f, g be a-differentiable at a point t > 0. Then
(1) D (af + bg) = aD\ (f) + bD'¥) (g), forall a, b € R.

(2) D (X) = 0, for all constant functions f (z) = \.

3) D) (fg) = fD) (9) + gD (f).

(4) If f is differentiable, then D) (f) (t) = t'=> %L (¢).

Theorem 2.4 ([14]). Let v € 10,1 ], a > Oand f : [ a,00 [ — R be continuous function. Then,
forallt > a we have

DI (f) (1) = f(1).

Definition 2.5 ([1]).Let 0 < o < l and f : [0,00[ — R be function. Then the fractional
Laplace transform of order « of f is defined by

o

Lalf ()} (s) = Fals) = /OOO e () et
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Theorem 2.6 ([1]). Let0 < a < 1 and f : | 0,00 [ — R be differentiable function. Then
LoD (0} (5) = sFa(s) = £(0).

Property 2.7 ([1,6, 12]). Let 0 < o < 1, a,b € Rand f,g : [ 0,00[ — R be a functions such
that £, {f (t)} (s) = Fu (s) and L, {g (¢)} (s) = Ga (s) exists. Then

(i) The fractional Laplace transform is linear operator:
La{af (1) +bg (1)} () = aFu () +bGa (s). @1

(i) We have:
LoAf 0} () = £{f ((@D)™) } (5). 22)

where L is the usual Laplace transform such that £ {g (¢)} (s) = / e Stg (t)dt.
0

(iii) We have Lo {e*5 7 (1)} (s) = £{ef ((a)™) } (5) = £{f ((at)*) } (s + ). For

example:
el te s+a
Lo {e %« cosh <b) } s) = L{e % cosh(bt)} (5) = ———, (2.3)
{ “Wo=ef W)=
t& t* b
Lo e %« sinh (b) } s) = L£{e %sinh (bt)} (s) = ————. 2.4)
{ T} = el i 00} () = s
(iv) The derivative of the fractional Laplace transform satisfy:
dlo {f ()} (s) _ . [t*
s =—L, a @y (s). (2.5)
(v) The fractional Laplace transform of the «-convolution of f (¢) and g (t) is:
Lo {(f*9) ()} (5) = Fa(s) - Ga(s), (2.6)

where (f + g) () = /Ot f (=) g (r) o tar.

Theorem 2.8. Let 1,y > 0 and g : [ 0,00 — R be continuous function. For all 0 < a < 1,
the following Cauchy problem:

DOy (1) + 2Dy (1) + % (1) = g (1), 0<t, o
y(0) = y1, DYy (0) = 1, '
admits a unique solution given in the following three cases:
(i) If n <~ (by Theorem 2.1 in [2])
y (t) — yle_"]% COS (1 /72 — n2t> + we—’?% Sin (, /,72 _ n2t)
A e

1 t et ta — T«
+ — / g(7) e~ = sin V2 —n? R e
VR =ntJo a

(ii) If n =1

tr— 7% o0

e "= ldr. (2.9)

ot [ ¢
y(t) =ye™"s +(ny1+yz)ge T +/ g (1)
0 «
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(iii) Ifn >~

o 2 o ¢
Y (t) = yle_n% cosh ( 772 _ 72) + we—n% sinh (m)
) RV a

(2.10)
1 t g > — 7
+——— g(r)e”" =« sinh ( n? — ’yz) o= ldr.
— ) 9 v .
Proof. According to Theorem 2.6, and from (2.1) and (2.7) we get:
y1(s+n
Lty ) ) =
g . T | @2.11)
yin T y2
o T T La{g (t)} ().
(s+m) =m*=9%) (s+n)" =0 —9?)
(i) If n < =, the proof in [2, page 30].
(i) If n = ~, using (2.2) we have
t& ]
N = —nt =
La {e }(s) LLH o) = oy 2.12)
using (2.5), from (2.12) we obtain:
dﬁa {—@777%} (5) e e 1
=Ly —e Ta b (s) = —7, (2.13)
ds o (s +mn)

by using (2.8), from (2.13) we obtain:

e [ e a0 = e { e L) £ato 016,
(2.14)

after substituting (2.12)-(2.14) in equation (2.11), we find

1 — 7 oo

e "« To‘ldT} (s),

> [l K
Laly ) () = La {me™® +lmn+i) e+ |90 52
hence, by using the inverse fractional Laplace transform, we get (2.9).

(iii) The last case (if n > v): using (2.4) and (2.6) with putting b = /1% — 42 in equation (2.4),
we obtain:

oo

. { sinh (Wta)} () Lala (O} (5).

sinh (mta ;Ta> T"‘_ldT} (s)
(2.15)
Vo

after rearranging (2.3), (2.4) and (2.15) in equation (2.11), we find

t ta t* ta
Lo{yt)}(s) =Ly {yle_"rf cosh ( n? — 72@) + :7/%6_"0 sinh (x/nz - 7204)

1 t td 1 ta— @
+ 7/ g(r)e "« sinh (\/772 =T ) o ldr b (s),
VP =2 Jo a

thus, by using the inverse fractional Laplace transform, we get (2.10).
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Definition 2.9 ([8]). Let « € ] 0,1 ]. Define a function space
Cl0,1] ={u:u(t)=Lz{t)+cceRzeC[0,1]}.
Define
lullg = lrully + [P

)

0

where |ufl, = ma fu (7).

Theorem 2.10 ([8]). (C* [0, 1], |-||,) is @ Banach space.
Definition 2.11. Let o € ]0,1 | and T' > 0. We define the set of functions as:

C*[0,T] = {u : Dy e O [O,T]} = {u Dy (t) =12z (t)+¢,ce R,z € C[O,T]}.

Define

HUHCZQ[(),T] = ||UHC[O,T] + H’D(Q)UHC + HD(2Q)UH

0,7 cpo,1)’

where [|ul| ¢ ) = max, Ju (t)]-

Theorem 2.12. (€2 [0, T, |[|ee(o 1y ) is @ Banach space.

Proof. To prove this theorem, we follow the same steps as the proof of Theorem 2.10. It is easy
to verify that [|-[| g2a o 1) satisfies the norm axioms.

The following proof is the completeness of C*>* [0, T']. Let {u,, } .-, be a Cauchy sequence in
C%*0,T):
DYy, (t) = 1%, (t) + cn,
where z,, € C'[0,7T], and ¢,, € R. Then
Dy, (1) = Dup, (1) = 10 (2, (£) — 2 (£)) + o — Cms
by using parts (1) and (2) of Theorem 2.4 and using Theorem 2.6, we find
D (1, () =ty (1)) = @ (£) — 21 (1) -

Because {u,, } -, is a Cauchy sequence in C*“ [0, T], we have

[tn = tmll 2o 1) = lltin — tmll o) + HD(Q) (un = um)HC[O,T]

+ HD(ZQ) (up — 0.

)
c0, 7] mym—+oo

Thus every term of the above formula converges to 0. By

2a
= llo02) sy Oand [ DO (=) = e = wllcr) O
we know {u,} -, and {z,} -, are a Cauchy sequences in C'[0,7]. By the completeness of

C'[0, T, there exists u, z € C' [0, T] such that u,, —— w and x,, ——— z. The second term
n—-+0oo n—+0o00

is

HD(Q) (Up, — )

= |}I§ (Tn = 2m) + (e — Cm)”c[o,T] o ¥

C[0,77] n,m—-+oo

We have
llen = emllcpo,ry < 1 (20 = 2m) + (en = em)ll oz + 1 (20 = 2m)ll o,y 7 O

that is to say, {c, },., is a Cauchy sequence in R. By the completeness of R, there exists ¢ € R
such that ¢,, — Let D@y (t) = 192 (t) + ¢, then u € C?* [0, T] and
—+00

n

=l czagoz) 75750 O-

The completeness of C?* [0, T7] is proved. i
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3 Main results
The following lemma is obtained with the help of integration by parts and the Cauchy—Schwarz
inequality.

ﬂ(2+'e+l) with n € N. We have:

Lemma 3.1. Let p,, =
(i) If g € C [0, (] satisfies the conditions g' (0) = g ()

g"” (€) = 0, then the inequality

¢
% /0 g (z) cos (pnx) dz

< 5 llgllesyo,q » hold.

:’iﬁ

(i) If g € C*[0,¢] satisfies the conditions g’ (0) = g (¢) = ¢" (£) = ¢"" (0) = 0, then the
inequality

4
7 | 9@ eos (s

\f
< 7 I9llc+j0.6) » hold.

+oo
1
Lemma 3.2. The numerical series Z

n= OUWVWH%L+b27a2

converges to S > 0, where u,, =

77 (2n+1).
Proof. Using Riemann’s rule, we get:
. n? ?
lim =5
n—too wu% + 02— g2 T \/Z;
+00 1
then, the numerical series converges to S > 0. O

,;Mn\/w:u%—"bz_U'Z
Letaw€]0,1], T >0and L > 0. For f € C[0,T], we define in C [0,T] the norm

£l = gmax e” "/ |f @)

Lemma 3.3. The norms ||-||, , and ||-|| ¢ 7) are equivalent.
Proof. For f € C[0,T], we have

eI < e @I < If @)
For all ¢ € [0, T, we obtain

e LT /e Ifllco,r) S Wz < W llcjor) »

where, Hf”co:r :Orgixﬂf( - u

3.1 Existence and uniqueness of the solution

The first main result on existence and uniqueness of the solution of the inverse time-dependent
source problem (1.1)-(1.4) is presented as follows.

Theorem 3.4. Suppose that the following assumptions hold:
(A1) 10 € CH[0,4]5 ¢ (0) = 0 (¢) = ¢" (0) = ¢"" (¢) = 0;

(42) 10 € CP[0,4]; ¥/ (0) = v () = 9" (£) = 0;

(Az) : t) € C*0,4]; f(x0,-) €C[0,T] with , f (z0,t) # O forallt € [0,T];

fG
of *f )
87(() t)y=f(lt) = a—(é,t):O, forallt €10,T];

(Ag) - h € C*[0,T]: ¢ (x0) = h(0) and v (zo) = D\* 1 (0).
Then, the inverse problem (1.1)-(1.4) has a unique solution {u (z,t),r (t)}.
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Proof. The proof of this theorem takes place in three steps:
Step 1: Construction of solution. By using the Fourier’s method (separation of variables), the
associated spectral problem of the direct problem (1.1)-(1.3) is given by:

X"(z)+AX (z)=0,0<z <, G.1)
X' (0)=X(¢)=0. )
Eigenvalues and eigenfunctions of the spectral problem (3.1) are
2 1
An = 12 where i, = % and X,, (z) = cos (unz), n € N. (3.2)

We can easily show that problem (3.1) is self-adjoint, then the system of functions (3.2) forms
an orthogonal basis in the space L? [0, ¢].

By applying the standard procedure of the Fourier method, we obtain the following represen-
tation for the solution of the direct problem(1.1)-(1.3) for arbitrary € C [0, 7],

t) = un(t) Xu (x)
n=0

where the functions u,, (t) with n € N satisfy the following sequence of Cauchy problems:

{D&amn (t) + 20D @y, (£) + (B2 + cp2 ) up (8) =7 (t) fu (£), 0< t < T, (33)

where
¢
fn(t) = %/ f (z,t) cos (u,x) dz,
©On / ) cos (punw) dz,
= z/o ¥ (z) cos (pnx) dx

According to Theorem 2.8, the solutions of (3.3) are given in the following three cases:

212
Case 1: Ifa

< ug, then the solutions of (3.3) are:

up (t) = emo <<pn cos <5nt> + Yn + apn sin <6nt )>
« On, «

e . (3.4)
€ @ . — S a—1
+ /(a - ) 1 (s) fi () ds,

where 6, = Jwpu2 + b? — a2.

Case 2: If exist ng € N such that 12, <

t n n e
forn <ng, u,(t) =e %« (gpn cosh (An> + Yn + an sinh (An>)
« A, «

e~ t o — @
inh | A et
+ I /Osm<n = )s €51 (5) fu (5) ds

t& t n n . e
forn > ng, u, (t) =e %« (gpn cos (6n> + Yn t+apn sin (5n>)
o On «

2 2

< quU +1- then the solutions of (3.2) are:

(3.5)
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where A, = \/a? — b? — wp2.
2 b2
Case 3: If exist ng € N such that . - uio, then the solutions of (3.3) are:
w

forn < ng, u, (t) = e <cpn cosh < ) + Yn 1 apn sinh <Ant)>
o A, o

—at- t QL
+6A /Osinh(Ant as )so‘_le "‘T()fn()

T

) e to tta_ « 0 o
if n=no, uy, (t) =e "= (‘Pvzo+(wn‘)+a@7b(>)a+/ et 5! 7(8) fro (8)d >

0 «

forn > ng, u, (t) = e (apn cos <5nt> + Yn + agk sin <5nt>>
« On, «

o

—at- t a Lo
+65n /Osin <5nt 048 )so‘ 1@“?7"( ) fn (s)ds

Hence, the representation of the first component of solution pair {u (x,¢),r ()} is given in the
following three cases:

(3.6)

212

= If a4 < M%, then

Zo[e = (wncos <5 ) 1/}";7:@" sin (&Lt:))

3.7
e_“% t e — s@ 5
+ / sin (5n ) s e T 1 (5) fu (5) ds] cos (pnT) .
&n 0 (6%
22
o If g2, < < pk 410 then
0 00
Zun cos (pnz) + Z up, (t) cos (punz), (3.8)
n=no+1
where u,, (t) is defined by (3.5).
22
w1t © P 2 then
no—1 0o
u(z,t) = Z Up, (t) €08 (pn) + Un, (t) cOs (tnyz) + Z up, (t) cos (pnz), (3.9)
n=0 n=ng+1

where u,, (t) is defined by (3.5). In this case, if ng = 0, we delete the first series from the
representation (3.9).

Now we construction the second component of solution pair {u (z,t), (¢)}. Under the condi-
tion (A4) and from (1.1), (1.4) and (3.6)-(3.9), we obtain the following Volterra integral equation
of the second kind for 7 (¢):

/ Q(t,s)r(s)ds, t €[0,T], (3.10)

where
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2 12
/Il

< yi3, then

DC ] (t) + 2aD @k (t) + bk (t)

B(t) =
( ) f(x()vt)
_aqt® oo o o + 1o (3.11)
we « n aPn . 2
+ — ncos|d,— | + ————sin | 6,— + €os ((no) ,
f(xo,w;[*" ( a) 5 ( a)]” (o)
and
Q(t,s) = e ! i f1 €05 (n0) i, (5 - sa> fn (5) (3.12)
’ I (o, t) ~ On " a A '
2 _ g2
/I /Lno < M%L()Jrl’ then
DR (t) + 2aDh (t) + bR (t)
B(t) =
f(.l?o,t)
we s [ & Yn + apn . t 2
-— ncosh [ A, ————"—sinh [ A,— o n
+f(x0,t) (nz_;) [@ cos < a) A sn < a)]u cos (pnxo)
- n+agn . e
+ > {%COS( ) % sin (&Laﬂ iz, COS (ﬂnxo)) ;
n=ng+1
(3.13)
and
wea Tt ga1 [ 0 2 cos (tnxo) . t* — s
Q(t,s) = e (;) A, sinh (An - ) o (5)
(3.14)
> 2 a feY
wz cos (finxo) . e —s
Z Tsm <5n - )fn(s)>
n=no+1
2 b2
v If = pfm, then
D] (t) 4+ 2aD @k (t) + b*h (t)
B(t) =
f(l‘o,t)
_at® /mo—1
we™%%a Y + apy . L2 2
+ @0 d) @o.0) <nzo [cpn cosh (A a) 7&» sinh (An o )] Ly, €08 (Ln o)

tOé
+ |:90n0 (1/Jn0 + a‘Pno) :| /’Lno COos (,Unoffo)

ﬁ Yn + apn . i 2
5 [ () () ).

n=no+1

(3.15)
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and

Q(t )_ weas C—Yt“ ga—l no—1 ,LL%L cos (,UntO) sinh (A 1o g f ( )
T e\ A e )Y

toc _ Soc
17 €08 (Jng T0) Frg (5) ——— (3.16)

F Y g (o) (S)> |

In this case, if nyp = 0, we delete the first series from the two representations (3.15) and
(3.16).
Step 2: Existence of the solution
To establish the regularity of the first component u(z,t), we need to show u (z,t), u, (z,t),
Usg (2,1), DS (2, 1) and D (2, 1) are continuous functions in Dr.
Under the conditions (A;) — (A3) and Lemma 3.1, by using the series (3.8), the following
inequalities hold for any (z,¢) € Dy such that

= [V2 V2| V2a s
MWSZ[ I9lesng | V21Wletog | V20 lelleros

—~ I Onbt, On b,
" N (3.17)
V2T 7o,y |f||c3[0,é]><C[O,T]‘|
+ 3 .
acln, [,
- fH‘PHcW/ V29| V2ag|
] 30,4 40,4
<
e (=, 9)l < z_: [ " On iz, - On i3,
B . (3.18)
V2eeT" /e ||7"||c[0,T] ||f|C3[O}Z]><C[O7T]‘|
+ 3 .
acdn iy,
e (1, 1)] < Z \[”@Hc‘*op] \/§||1/)||c3[o,e] n ﬁa”@”c‘*[o,[]
e 0 /'l’n On i 5nl’d721 3.19)
[e3 ( °
+\@6GT e 17llego, 2y 11l esjo0,qx o,
aaén,un
Nt 2\ [[¥lles
‘Dﬁ“)u(ﬂc,t)‘ <y l\fz <2a+6 + 2 ) ||80|t:4[oe N <\@+ a(;f) | ||c3[o,e]
n=0 n n n
(3.20)
V2 V2N arese 1/ lle3j0,61x 0,77
+ (a + 5. e/ ITllco,q 3|
c V2
‘ Z 52 + 2a + N (va(1+ a ||50||c4[o,1] ||¢||c3[0£
- (3.21)

T Ja 1/ llesj0,6xcpo,
+\[< +— +2) ™/ H’””c[o,T M—3]
From (3.17)-(3.21) and by Weierstrass M-test, the series corresponding to u (z,t), u, (z,t),
Ugs (7, 1), DI u (2, ) and D (z, t) are uniformly convergent on Dr. Hence, u (z, 1), uy (z, t),

Uga (), D\ (2, ) and D{** u (z,t) are continuous functions on Dy,
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Similarly, we show that the two series (3.8) and (3.9) are uniformly convergent in D. There-
fore, their sums u (2, ), ug (,1), te (2, 1), D\ (z,t) and DI**u (z, ) are continuous in Dr.
Thus, u (z, t) satisfies the conditions (1.1)-(1.3) for arbitrary r € C [0, T.

We define the following operator:

P(r (1)) ::B<t>+/0tc2<t,s>r<s>ds,

on the space C [0, 7] with [|¢||cpo 7y :=  max_ | (t)]. To show P is well defined.
Under assumption (A4), the function ¢ +— D(za)h(t)“fa(fﬁ))h(t)%%(t) is continuous on [0, 7.

Under assumptions (A;) — (A4,), using Lemma 3.1 and (3.11)-(3.12), we have:

S @ nt apn . t*
E {@n cos <6nt) + Yn + aon sin (6n>} 2 cos (pn o)
«o 1) «

n

= (3.22)
- Jff‘/i 4o [€lleai0, N 1¥llesjo,
o 0 5n ,U%L 6n,Um,
and
> 2 o g X V21l
uz cos (fnxo) . > —s ©3[0,6]xC[0,T]
> Sy T sin (an - ) fals) <> S (3.23)
n=0 n=0
From (3.22) and (3.23), the series functions
Z [gpn cos <5nt> + Yn + apn sin (5nt>} /ii cos (tnZo) ,
n=0 @ On @

o 2 a Lo
Z:;) Hy €05 \fin0) COZE,UnxO) sin (571,t a ® > In (S)

are uniformly convergent. Then, B (¢) and Q (¢, s) defined by (3.11) and (3.12) are continuous
functions on [0, T and [0, T] x [0, T, respectively. Hence, the operator P is well defined.

For the rest of this proof, we take only the first case (if # < p3). Now we prove that P
is a contraction operator in the space C [0, 7]. We choose L > 0 and let 71, € C [0, T]. Under
assumption (A3) and using (3.12), we have the following estimates:

t
e EHP (ry (1) = P (r2 ()] < 67“&/“/ PNQ (ts) e M ry (5) — 72 (s)] ds
0

t
< lr =l /0 M/ (1, )| ds

+oo
1
V20 fllso.xeor O St
ni() nHn

_ =
<—7 .
(L +a) min |f(zo,1)]

[ri = 72llp g -

Consequently, we obtain:

V2wS I/ lesi0,gxcr0,7)

[P (r1) =P (r2)llpq < - I =72l 0 (3.24)
(L+a) min |f (a0.1)
+oo 1
where S = Z . It is easy to choose the real L > 0 such that,
nZON%Vw'u%—i_bz*a2
1/ le30,0%co, <1 (3.25)

ol
(L+a) min, |7 (z0,0)
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Then the operator P is a contraction. Consequently, by Banach’s contraction mapping principle,
P has a unique fixed point € C [0, T'].
Step 3: Uniqueness of the solution

Let {u(z,t),r(¢t)} and {@(z,t),7 ()} be two solution sets of the inverse problem (1.1)-
(1.4). From (3.7) and (3.9) , we have

w(z,t) — i (z,t) = e ' > W/o sin (6nta — Sa) s (r (s) = 7 (s)) fi () ds

(6]
n=0
(3.26)
and
r(t)—7F{t) =P (@) —-P(F{)). (3.27)
From (3.24) and (3.27) we get:
I — 7l V2w 5||f||c%oe xC[0,T] I — 7] (3.28)
La*(L—I—a)Omm |f (zo,t)] La ’
which implies that r = 7. After inserting r = 7 in (3.26), we have u = 4. O

Remark 3.5. We can prove Theorem 3.4 so that the function Q (¢, s) given by (3.14) and (3.16).
In both cases, the contraction constant in (3.25) will be given as follows:

2 b2
v If Mio <2 < Mio 41, the contraction constant in (3.25) is replaced by
V2wS' || f 70 1
| H.C3[O,Z]><C[(),T] where § — Z
(L+a) min |f (x0,t)| /% — b2 — wp
0<t<T n=0 F'n n
- (3.29)
+oo 1
+ .
n:%,:ﬂ pn Wiz, + 0% — a?
a? —b?
v If = uio, the contraction constant in (3.25) is replaced by
V205" (| fllespo.gxcioun where §” — Lo 4 ni:
(L+a) min_|f (xo,t)] auno Lin — w2
0<t<T n=0 n
(3.30)
+o00

1

71:7;01%””‘/&}'“%4_[)27&2

+

3.2 Continuous dependence upon the data of the solution

In this subsection, we give the second main result on continuous dependence upon the data of
the solution pair {u (z,t) ,r (t)} of the inverse problem (1.1)-(1.4).

Let  be the set of quartiles {p,, f, h} where the functions ¢, 1), fand h satisfy the condi-
tions (A1) — (A4) of Theorem 3.4 and

||<P||c4041 < My, ||7/’||c?[0£ < My, ||f|\c%oz 1xclo,r] = Ms, HhHCZ”[OT < My,
Ms = min_|f (z0,t)|, Me = max {1,2a,b*}.

0<t<T

(3.31)

For ¢ € 3, we define the norm

[18lls == llellcspo,g + N¥lleso,q + 11 llespo,qxcio,r) + 12l 2o,z - (3.32)
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Theorem 3.6. The solution {u (x,t),r (t)} of the inverse problem (1.1)-(1.4) under the assump-
tions of Theorem 3.4, depends continuously upon the data.

Proof. Let {u(z,t),r(t)} and {@ (z,t), 7 (t)} be two solution sets of the inverse problem (1.1)-

(1.4), corresponding to the data ¢ = {¢, ), f,h} and ¢ = {$, V), f, h}, respectively.
From (3.11), we have

1
f (zo,t)

f (IL'O, t) — f (1’(), t) 2a)7 . (@7 -
f(wOat)f(l‘o,t) |:D h(t) + 2aD h(t) +b h(t)}

B(t)-B(t) =

[DC) (= R) + 2D (h = R) + 7 (h— )]

we— /o X . 1 ~ - .
+ T w0 t) Z |:(90n — $n) €08 (™ /ar) + 5 (Yn — P +a(pn — @n)) sin (5nta/0<)] 17, €08 (pin0)
b n=0 n
we™ "/ (F (w0, t) = [ (w0, 1)) = ( Pn + afn
+ = @ o8 (0% /a) + ————sin (6,t*/« > ufl cos (ptnxo) -
Flen) o) A \Preos0ut?/e) 4 ZEg T sin(0ut?/a) )y o8 (o)
(3.33)
Under conditions (A;) — (A4) and using Lemme 3.1, (3.30) and (3.32) we obtain:
HB - BHC[O,T] < Mo - 95||C4[0,£] + Ms Hw - w”m[o,e] + Mo Hf - f”c3xc[0,T] (3.34)
+ Mo Hh - h”czu[o,T] ’
where
w X/1 a
My = — — 4
=i et
+o00
w 1
Mg = —
$ M;s o 5n/in’
M4M6 w = a M1 M2
My = adl 14+ 220
? ]\452 +M52nz:_0(+5n/l%+5n,un>7
My = Me/Ms.
From (3.10) and for all L > 0, we have
e M (8) = F(6)] = e M [B (1) - B(t)]
t
+ /0 e HaQ (t,s) [ (s) — 7 (s)] ds (3.35)
t
—i—/ o—Lt*/ (Q(t,s) — Q(t, )] 7 (s) ds.
0
Under condition (A3), using Lemma 3.1, Lemma 3.2 and (3.12), we obtain
t . V2wS
/0 eHAQ t) [ (5) =7 ()] ds < —— gi”‘;)[oﬁ:qm [ (3.36)
and
b e ~ 2V/2dwM3 S .
—Lt%/« ~ 3
/(; € / [Q (t7 S) - Q (t7 S)] r (S) ds < m Hf - fHC3[0,Z]><C[0,T] ’ (337)

where d = |||,
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From (3.34)-(3.37), we have the estimate

<1 \fWS”ch2 £]xC[0,T)

>|| —7“||LQSM7||SD ‘P”cme]"‘MSHz/J ¢Hc3[oe

(L+a) M
2V2dwM;3S (3.38)
i |oo 2 1 - Fleen
+ Mio Hh - h”cm[o,T] :
From (3.38) and (3.32), we get
V2wS | flle
B 3[0,€] xC[0,T) . < B
<1 T i ) =l < Mo = s (3:39)
where
2v2dwMs S
My = M7, Mg, My + —————, M
11 max{ 7, Mg, Mg + (L—l—a)MSz’ 10}
From (3.25) and (3.39), we have
[r=7llp 0 < Mi2ll¢ — ¢lls, (3.40)
_ My,
where M, = VST g el
(L+a)M.
Under conditions (A;) - (A3) and from (3.4), we obtain
[ ﬂ”c(DT) < Mzl - 95”64[0,2] + Mg ||¢ - ¢||c3[0,z] + Mis Hf - f||C3[O,Z]><C[O,T] (3.41)
+ M |lr =71 o
where
f \/’ +o0 \/E +oo d\/i +oo M \/E
M13—Z 7M1422737M152273,M162273 3
=\ da o O, = O = (L+a)p, = (L+a)u,

From (3.40) and (3.41), we get
= ile(pyy + lIr = Fll .0 < Miz [l = 8]l

where M7 = max { M3, M4, M5, M12Mjs}. Then, the solution of the inverse problem (1.1)-
(1.4) is depends continuously upon the data. O

4 Conclusion

An inverse time-dependent source problem of finding the time-dependent source term in a time-
fractional telegraph equation with mixed boundary conditions and an additional measurement
at a fixed point, have been investigated. Under some assumptions on the input data, the well-
posedness of this inverse source problem is shown by the Fourier’s method and Banach’s con-
traction mapping principle.
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