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Abstract In this paper, we consider an inverse time-dependent source problem for a time-
fractional telegraph equation with mixed boundary conditions and an additional measurement
at a fixed point. The fractional derivative is described in the conformable sense. Under some
assumptions on the input data, the well-posedness of this inverse source problem is shown by
using Fourier’s method and Banach’s contraction mapping principle.

1 Introduction

Let ℓ, T > 0 be some fixed numbers and let ΩT be a rectangular region defined by:

ΩT := {(x, t) : 0 < x < ℓ, 0 < t < T} .

We consider the one-dimensional time-fractional telegraph equation

D(2α)
t u (x, t) + 2aD(α)

t u (x, t) + b2u (x, t) = ωuxx (x, t) + F (x, t) , (x, t) ∈ ΩT , (1.1)

where D(α)
t represent the left-conformable fractional derivative of order 0 < α ≤ 1 with respect

to t such that D(2α)
t = D(α)

t

(
D(α)

t

)
, F (x, t) is the source term and u (x, t) represent the voltage

or the current inside a piece of telegraph or transmission wire, whose electrical properties per
unit length are: resistance R, inductance L, capacitance C, and conductance of leakage current
G where ω = 1

LC , 2a = G
C + R

L , and b2 = GR
LC .

For α = 1, equation (1.1) is the classical telegraph equation developed by Oliver Heaviside
in last decades of 19th century [9]. This equation is a second-order linear hyperbolic equation
and it models several phenomena in many different fields such as signal analysis [13], wave
propagation [19], random walk theory [7].

Suppose the unknown function u satisfy the following initial conditions

u (x, 0) = φ (x) , D(α)
t u (x, 0) = ψ (x) , 0 ≤ x ≤ ℓ, (1.2)

and the homogeneous mixed boundary conditions

ux (0, t) = u (ℓ, t) = 0, 0 ≤ t ≤ T, (1.3)

where φ and ψ are given functions. If all functions F (x, t) , φ (t) , ψ (t) are given appropriately,
the problem (1.1)-(1.3) is a direct problem. It should be noted that the direct problem (1.1)-(1.3)
has been investigated in the works [3, 4, 2], and the references therein. When the source term
F (x, t) = r (t) f (x, t) with f (x, t) is a given function. The problem of finding the solution pair
{u (x, t) , r (t)} of the problem (1.1)-(1.3) with additional measurement condition

u (x0, t) = h (t) , 0 ≤ t ≤ T, (1.4)
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is called the inverse problem where x0 ∈ [ 0, ℓ [ is a fixed point and h (t) is a given function.
We note that inverse source problems for fractional diffusion and wave equations were investi-
gated in [5, 10, 20, 11, 17, 18] and inverse coefficient problems for a semilinear time fractional
telegraph equation in [16, 15]. It should also be noted that all the articles on the inverse prob-
lems mentioned used the fractional derivative of the Caputo sense. However, the inverse source
problems for fractional telegraph equations have not yet been studied.

Our aim in this paper is to study the existence and uniqueness of the solution as well as the
continuous dependence of the solution upon data of the inverse time-dependent source problem
(1.1)-(1.4). As far as we know, the study of this inverse source problem will be discussed in this
paper for the first time.

The rest of this paper is structured as follows: in Section 2, we give some definitions and
properties of the conformable fractional calculus. In Section 3, under some natural regularity
and consistency conditions on the input data, the well-posedness of inverse problem (1.1)-(1.4)
is shown by using eigenfunction expansion of a self-adjoint spectral problem along the Fourier’s
method and Banach’s contraction mapping principle.

2 Preliminaries

We recall some definitions and properties of the conformable fractional calculus theory.

Definition 2.1 ([14]). Given a function f : [ 0,∞ [ −→ R. Then, the conformable fractional
derivative of f of order α is defined by

D(α)f (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε

for all t > 0, α ∈ ] 0, 1 ]. If D(α)f (t) exists in some ] 0, a [ , a > 0, and lim
t→0+

D(α)f (t) exists,

then define

D(α)f (0) = lim
t→0+

D(α)f (t) .

If the conformable fractional derivative of f of order α exists, then we simply say f is α-
differentiable.

Definition 2.2 ([14]). The conformable fractional integral of a function f starting from a ≥ 0 of
order α is defined by

Iaα (f) (t) =

∫ t

a

f (x)

x1−α
dx,

where α ∈ ] 0, 1 ].

Theorem 2.3 ([14]). Let α ∈ ] 0, 1 ] and f , g be α-differentiable at a point t > 0. Then

(1) D(α) (af + bg) = aD(α) (f) + bD(α) (g), for all a, b ∈ R.

(2) D(α) (λ) = 0, for all constant functions f (x) = λ.

(3) D(α) (fg) = fD(α) (g) + gD(α) (f).

(4) If f is differentiable, then D(α) (f) (t) = t1−α df
dt (t).

Theorem 2.4 ([14]). Let α ∈ ] 0, 1 ], a ≥ 0 and f : [ a,∞ [ −→ R be continuous function. Then,
for all t > a we have

D(α)Iaα (f) (t) = f (t) .

Definition 2.5 ([1]). Let 0 < α ≤ 1 and f : [ 0,∞ [ −→ R be function. Then the fractional
Laplace transform of order α of f is defined by

Lα {f (t)} (s) = Fα (s) =

∫ ∞

0
e−s tα

α f (t) tα−1dt.
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Theorem 2.6 ([1]). Let 0 < α ≤ 1 and f : ] 0,∞ [ −→ R be differentiable function. Then

Lα

{
D(α)f (t)

}
(s) = sFα (s)− f (0) .

Property 2.7 ([1, 6, 12]). Let 0 < α ≤ 1, a, b ∈ R and f, g : [ 0,∞ [ −→ R be a functions such
that Lα {f (t)} (s) = Fα (s) and Lα {g (t)} (s) = Gα (s) exists. Then

(i) The fractional Laplace transform is linear operator:

Lα {af (t) + bg (t)} (s) = aFα (s) + bGα (s) . (2.1)

(ii) We have:

Lα {f (t)} (s) = L
{
f
(
(αt)

1
α

)}
(s) , (2.2)

where L is the usual Laplace transform such that L{g (t)} (s) =
∫ ∞

0
e−stg (t) dt.

(iii) We have Lα

{
e−a tα

α f (t)
}
(s) = L

{
e−atf

(
(αt)

1
α

)}
(s) = L

{
f
(
(αt)

1
α

)}
(s+ a). For

example:

Lα

{
e−a tα

α cosh
(
b
tα

α

)}
(s) = L

{
e−at cosh (bt)

}
(s) =

s+ a

(s+ a)
2 − b2

, (2.3)

Lα

{
e−a tα

α sinh
(
b
tα

α

)}
(s) = L

{
e−at sinh (bt)

}
(s) =

b

(s+ a)
2 − b2

. (2.4)

(iv) The derivative of the fractional Laplace transform satisfy:

dLα {f (t)} (s)
ds

= −Lα

{
tα

α
f (t)

}
(s) . (2.5)

(v) The fractional Laplace transform of the α-convolution of f (t) and g (t) is:

Lα {(f ∗ g) (t)} (s) = Fα (s) · Gα (s) , (2.6)

where (f ∗ g) (t) =
∫ t

0
f
(
(tα − τα)

1/α
)
g (τ) τα−1dτ .

Theorem 2.8. Let η, γ > 0 and g : [ 0,∞ [ −→ R be continuous function. For all 0 < α ≤ 1,
the following Cauchy problem:{

D(2α)y (t) + 2ηD(α)y (t) + γ2y (t) = g (t) , 0 < t,

y (0) = y1, D(α)y (0) = y2,
(2.7)

admits a unique solution given in the following three cases:

(i) If η < γ (by Theorem 2.1 in [2])

y (t) = y1e
−η tα

α cos
(√

γ2 − η2 t
α

α

)
+

ηy1 + y2√
γ2 − η2

e−η tα

α sin
(√

γ2 − η2 t
α

α

)

+
1√

γ2 − η2

∫ t

0
g (τ) e−η tα−τα

α sin
(√

γ2 − η2 t
α − τα

α

)
τα−1dτ.

(2.8)

(ii) If η = γ

y (t) = y1e
−η tα

α + (ηy1 + y2)
tα

α
e−η tα

α +

∫ t

0
g (τ)

tα − τα

α
e−η tα−τα

α τα−1dτ. (2.9)
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(iii) If η > γ

y (t) = y1e
−η tα

α cosh
(√

η2 − γ2 t
α

α

)
+

ηy1 + y2√
η2 − γ2

e−η tα

α sinh
(√

η2 − γ2 t
α

α

)

+
1√

η2 − γ2

∫ t

0
g (τ) e−η tα−τα

α sinh
(√

η2 − γ2 t
α − τα

α

)
τα−1dτ.

(2.10)

Proof. According to Theorem 2.6, and from (2.1) and (2.7) we get:

Lα {y (t)} (s) =
y1 (s+ η)

(s+ η)
2 − (η2 − γ2)

+
y1η + y2

(s+ η)
2 − (η2 − γ2)

+
1

(s+ η)
2 − (η2 − γ2)

· Lα {g (t)} (s) .
(2.11)

(i) If η < γ, the proof in [2, page 30].

(ii) If η = γ, using (2.2) we have

Lα

{
e−η tα

α

}
(s) = L

{
e−ηt

}
(s) =

1
s+ η

, (2.12)

using (2.5), from (2.12) we obtain:

dLα

{
−e−η tα

α

}
(s)

ds
= Lα

{
tα

α
e−η tα

α

}
(s) =

1

(s+ η)
2 , (2.13)

by using (2.8), from (2.13) we obtain:

Lα

{∫ t

0
g (τ)

tα − τα

α
e−η tα−τα

α τα−1dτ

}
(s) = Lα

{
tα

α
e−η tα

α

}
(s) · Lα {g (t)} (s) ,

(2.14)

after substituting (2.12)-(2.14) in equation (2.11), we find

Lα {y (t)} (s) = Lα

{
y1e

−η tα

α + (ηy1 + y2)
tα

α
e−η tα

α +

∫ t

0
g (τ)

tα − τα

α
e−η tα−τα

α τα−1dτ

}
(s) ,

hence, by using the inverse fractional Laplace transform, we get (2.9).

(iii) The last case (if η > γ): using (2.4) and (2.6) with putting b =
√
η2 − γ2 in equation (2.4),

we obtain:

Lα

{∫ t

0
g (τ)

e−η tα−τα

α√
η2 − γ2

sinh
(√

η2 − γ2 t
α − τα

α

)
τα−1dτ

}
(s)

= Lα

{
e−η tα

α√
η2 − γ2

sinh
(√

η2 − γ2 t
α

α

)}
(s) · Lα {g (t)} (s) ,

(2.15)

after rearranging (2.3), (2.4) and (2.15) in equation (2.11), we find

Lα {y (t)} (s) = Lα

{
y1e

−η tα

α cosh
(√

η2 − γ2 t
α

α

)
+

ηy1 + y2√
η2 − γ2

e−η tα

α sinh
(√

η2 − γ2 t
α

α

)

+
1√

η2 − γ2

∫ t

0
g (τ) e−η tα−τα

α sinh
(√

η2 − γ2 t
α − τα

α

)
τα−1dτ

}
(s) ,

thus, by using the inverse fractional Laplace transform, we get (2.10).
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Definition 2.9 ([8]). Let α ∈ ] 0, 1 ]. Define a function space

Cα [0, 1] =
{
u : u (t) = I0

αx (t) + c, c ∈ R, x ∈ C [0, 1]
}
.

Define

∥u∥α = ∥u∥0 +
∥∥∥D(α)u

∥∥∥
0
,

where ∥u∥0 = max
t∈[0,1]

|u (t)|.

Theorem 2.10 ([8]). (Cα [0, 1] , ∥·∥α) is a Banach space.

Definition 2.11. Let α ∈ ] 0, 1 ] and T > 0. We define the set of functions as:

C2α [0, T ] =
{
u : D(α)u ∈ Cα [0, T ]

}
=
{
u : D(α)u (t) = I0

αx (t) + c, c ∈ R, x ∈ C [0, T ]
}
.

Define

∥u∥C2α[0,T ] = ∥u∥C[0,T ] +
∥∥∥D(α)u

∥∥∥
C[0,T ]

+
∥∥∥D(2α)u

∥∥∥
C[0,T ]

,

where ∥u∥C[0,T ] = max
t∈[0,T ]

|u (t)|.

Theorem 2.12.
(
C2α [0, T ] , ∥·∥C2α[0,T ]

)
is a Banach space.

Proof. To prove this theorem, we follow the same steps as the proof of Theorem 2.10. It is easy
to verify that ∥·∥C2α[0,T ] satisfies the norm axioms.

The following proof is the completeness of C2α [0, T ]. Let {un}∞n=1 be a Cauchy sequence in
C2α [0, T ]:

D(α)un (t) = I0
αxn (t) + cn,

where xn ∈ C [0, T ], and cn ∈ R. Then

D(α)un (t)−D(α)um (t) = I0
α (xn (t)− xm (t)) + cn − cm,

by using parts (1) and (2) of Theorem 2.4 and using Theorem 2.6, we find

D(2α) (un (t)− um (t)) = xn (t)− xm (t) .

Because {un}∞n=1 is a Cauchy sequence in C2α [0, T ], we have

∥un − um∥C2α[0,T ] = ∥un − um∥C[0,T ] +
∥∥∥D(α) (un − um)

∥∥∥
C[0,T ]

+
∥∥∥D(2α) (un − um)

∥∥∥
C[0,T ]

−−−−−−→
n,m→+∞

0.

Thus every term of the above formula converges to 0. By

∥un − um∥C[0,T ] −−−−−−→n,m→+∞
0 and

∥∥∥D(2α) (un − um)
∥∥∥
C[0,T ]

= ∥xn − xm∥C[0,T ] −−−−−−→n,m→+∞
0

we know {un}∞n=1 and {xn}∞n=1 are a Cauchy sequences in C [0, T ]. By the completeness of
C [0, T ], there exists u, x ∈ C [0, T ] such that un −−−−−→

n→+∞
u and xn −−−−−→

n→+∞
x. The second term

is ∥∥∥D(α) (un − um)
∥∥∥
C[0,T ]

=
∥∥I0

α (xn − xm) + (cn − cm)
∥∥
C[0,T ]

−−−−−−→
n,m→+∞

0.

We have

∥cn − cm∥C[0,T ] ≤
∥∥I0

α (xn − xm) + (cn − cm)
∥∥
C[0,T ]

+
∥∥I0

α (xn − xm)
∥∥
C[0,T ]

−−−−−−→
n,m→+∞

0,

that is to say, {cn}∞n=1 is a Cauchy sequence in R. By the completeness of R, there exists c ∈ R
such that cn −−−−−→

n→+∞
c. Let D(α)u (t) = I0

αx (t) + c, then u ∈ C2α [0, T ] and

∥un − u∥C2α[0,T ] −−−−−→n→+∞
0.

The completeness of C2α [0, T ] is proved.
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3 Main results

The following lemma is obtained with the help of integration by parts and the Cauchy–Schwarz
inequality.

Lemma 3.1. Let µn = π(2n+1)
2ℓ with n ∈ N. We have:

(i) If g ∈ C3 [0, ℓ] satisfies the conditions g′ (0) = g (ℓ) = g′′ (ℓ) = 0, then the inequality∣∣∣∣∣2ℓ
∫ ℓ

0
g (x) cos (µnx) dx

∣∣∣∣∣ ≤
√

2
µ3
n

∥g∥C3[0,ℓ] , hold.

(ii) If g ∈ C4 [0, ℓ] satisfies the conditions g′ (0) = g (ℓ) = g′′ (ℓ) = g′′′ (0) = 0, then the
inequality ∣∣∣∣∣2ℓ

∫ ℓ

0
g (x) cos (µnx) dx

∣∣∣∣∣ ≤
√

2
µ4
n

∥g∥C4[0,ℓ] , hold.

Lemma 3.2. The numerical series
+∞∑
n=0

1
µn

√
ωµ2

n + b2 − a2
converges to S > 0, where µn =

π
2ℓ (2n+ 1).

Proof. Using Riemann’s rule, we get:

lim
n→+∞

n2

µn

√
ωµ2

n + b2 − a2
=

ℓ2

π2√ω
,

then, the numerical series
+∞∑
n=0

1
µn

√
ωµ2

n + b2 − a2
converges to S > 0.

Let α ∈ ] 0, 1 ], T > 0 and L > 0. For f ∈ C [0, T ], we define in C [0, T ] the norm

∥f∥L,α := max
0≤t≤T

e−Ltα/α |f (t)| .

Lemma 3.3. The norms ∥·∥L,α and ∥·∥C[0,T ] are equivalent.

Proof. For f ∈ C [0, T ], we have

e−LTα/α |f (t)| ≤ e−Ltα/α |f (t)| ≤ |f (t)| .

For all t ∈ [0, T ], we obtain

e−LTα/α ∥f∥C[0,T ] ≤ ∥f∥L,α ≤ ∥f∥C[0,T ] ,

where, ∥f∥C[0,T ] = max
0≤t≤T

|f (t)|.

3.1 Existence and uniqueness of the solution

The first main result on existence and uniqueness of the solution of the inverse time-dependent
source problem (1.1)-(1.4) is presented as follows.

Theorem 3.4. Suppose that the following assumptions hold:

(A1) : φ ∈ C4 [0, ℓ] ; φ′ (0) = φ (ℓ) = φ′′ (0) = φ′′′ (ℓ) = 0;

(A2) : ψ ∈ C3 [0, ℓ] ; ψ′ (0) = ψ (ℓ) = ψ′′ (ℓ) = 0;

(A3) : f (·, t) ∈ C3 [0, ℓ] ; f (x0, ·) ∈ C [0, T ] with , f (x0, t) ̸= 0 for all t ∈ [0, T ] ;

∂f

∂x
(0, t) = f (ℓ, t) =

∂2f

∂x2 (ℓ, t) = 0, for all t ∈ [0, T ] ;

(A4) : h ∈ C2α [0, T ] ;φ (x0) = h (0) and ψ (x0) = D(α)
t h (0) .

Then, the inverse problem (1.1)-(1.4) has a unique solution {u (x, t) , r (t)}.
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Proof. The proof of this theorem takes place in three steps:
Step 1: Construction of solution. By using the Fourier’s method (separation of variables), the
associated spectral problem of the direct problem (1.1)-(1.3) is given by:{

X ′′ (x) + λX (x) = 0, 0 < x < ℓ,

X ′ (0) = X (ℓ) = 0.
(3.1)

Eigenvalues and eigenfunctions of the spectral problem (3.1) are

λn = µ2
n where µn =

π (2n+ 1)
2ℓ

and Xn (x) = cos (µnx) , n ∈ N. (3.2)

We can easily show that problem (3.1) is self-adjoint, then the system of functions (3.2) forms
an orthogonal basis in the space L2 [0, ℓ].

By applying the standard procedure of the Fourier method, we obtain the following represen-
tation for the solution of the direct problem(1.1)-(1.3) for arbitrary r ∈ C [0, T ],

u (x, t) =
∞∑
n=0

un (t)Xn (x) .

where the functions un (t) with n ∈ N satisfy the following sequence of Cauchy problems:{
D(2α)un (t) + 2aD(α)un (t) +

(
b2 + cµ2

n

)
un (t) = r (t) fn (t) , 0 < t ≤ T,

un (0) = φn, D(α)un (0) = ψn,
(3.3)

where

fn (t) =
2
ℓ

∫ ℓ

0
f (x, t) cos (µnx) dx,

φn =
2
ℓ

∫ ℓ

0
φ (x) cos (µnx) dx,

ψn =
2
ℓ

∫ ℓ

0
ψ (x) cos (µnx) dx.

According to Theorem 2.8, the solutions of (3.3) are given in the following three cases:

Case 1: If
a2 − b2

ω
< µ2

0, then the solutions of (3.3) are:

un (t) = e−a tα

α

(
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

))

+
e−a tα

α

δn

∫ t

0
sin
(
δn
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds,

(3.4)

where δn =
√
ωµ2

n + b2 − a2.

Case 2: If exist n0 ∈ N such that µ2
n0
<
a2 − b2

ω
< µ2

n0+1, then the solutions of (3.2) are:

for n ≤ n0, un (t) = e−a tα

α

(
φn cosh

(
∆n
tα

α

)
+
ψn + aφn

∆n
sinh

(
∆n
tα

α

))

+
e−a tα

α

∆n

∫ t

0
sinh

(
∆n
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds

for n > n0, un (t) = e−a tα

α

(
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

))

+
e−a tα

α

δn

∫ t

0
sin
(
δn
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds,

(3.5)
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where ∆n =
√
a2 − b2 − ωµ2

n.

Case 3: If exist n0 ∈ N such that
a2 − b2

ω
= µ2

n0
, then the solutions of (3.3) are:

for n < n0, un (t) = e−a tα

α

(
φn cosh

(
∆n
tα

α

)
+
ψn + aφn

∆n
sinh

(
∆n
tα

α

))

+
e−a tα

α

∆n

∫ t

0
sinh

(
∆n
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds

if n = n0, un0 (t) = e−a tα

α

(
φn0 + (ψn0 + aφn0)

tα

α
+

∫ t

0

tα − sα

α
ea

sα

α sα−1r (s) fn0 (s) ds

)
for n > n0, un (t) = e−a tα

α

(
φn cos

(
δn
tα

α

)
+
ψn + aφk

δn
sin
(
δn
tα

α

))

+
e−a tα

α

δn

∫ t

0
sin
(
δn
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds.

(3.6)

Hence, the representation of the first component of solution pair {u (x, t) , r (r)} is given in the
following three cases:

☞ If
a2 − b2

ω
< µ2

0, then

u (x, t) =
∞∑
n=0

[
e−a tα

α

(
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

))

+
e−a tα

α

δn

∫ t

0
sin
(
δn
tα − sα

α

)
sα−1ea

sα

α r (s) fn (s) ds

]
cos (µnx) .

(3.7)

☞ If µ2
n0
<
a2 − b2

ω
< µ2

n0+1, then

u (x, t) =
n0∑
n=0

un (t) cos (µnx) +
∞∑

n=n0+1

un (t) cos (µnx) , (3.8)

where un (t) is defined by (3.5).

☞ If
a2 − b2

ω
= µ2

n0
, then

u (x, t) =
n0−1∑
n=0

un (t) cos (µnx) + un0 (t) cos (µn0x) +
∞∑

n=n0+1

un (t) cos (µnx) , (3.9)

where un (t) is defined by (3.5). In this case, if n0 = 0, we delete the first series from the
representation (3.9).

Now we construction the second component of solution pair {u (x, t) , r (t)}. Under the condi-
tion (A4) and from (1.1), (1.4) and (3.6)-(3.9), we obtain the following Volterra integral equation
of the second kind for r (t):

r (t) = B (t) +

∫ t

0
Q (t, s) r (s) ds, t ∈ [0, T ] , (3.10)

where
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✓ If
a2 − b2

ω
< µ2

0, then

B (t) =
D(2α)h (t) + 2aD(α)h (t) + b2h (t)

f (x0, t)

+
ωe−a tα

α

f (x0, t)

∞∑
n=0

[
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

)]
µ2
n cos (µnx0) ,

(3.11)

and

Q (t, s) =
ωea

sα−tα

α sα−1

f (x0, t)

∞∑
n=0

µ2
n cos (µnx0)

δn
sin
(
δn
tα − sα

α

)
fn (s) . (3.12)

✓ If µ2
n0
<
a2 − b2

ω
< µ2

n0+1, then

B (t) =
D(2α)h (t) + 2aD(α)h (t) + b2h (t)

f (x0, t)

+
ωe−a tα

α

f (x0, t)

(
n0∑
n=0

[
φn cosh

(
∆n
tα

α

)
+
ψn + aφn

∆n
sinh

(
∆n
tα

α

)]
µ2
n cos (µnx0)

+
∞∑

n=n0+1

[
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

)]
µ2
n cos (µnx0)

 ,

(3.13)

and

Q (t, s) =
ωea

sα−tα

α sα−1

f (x0, t)

(
n0∑
n=0

µ2
n cos (µnx0)

∆n
sinh

(
∆n
tα − sα

α

)
fn (s)

+
∞∑

n=n0+1

µ2
n cos (µnx0)

δn
sin
(
δn
tα − sα

α

)
fn (s)

 .

(3.14)

✓ If
a2 − b2

ω
= µ2

n0
, then

B (t) =
D(2α)h (t) + 2aD(α)h (t) + b2h (t)

f (x0, t)

+
ωe−a tα

α

f (x0, t)

(
n0−1∑
n=0

[
φn cosh

(
∆n
tα

α

)
+
ψn + aφn

∆n
sinh

(
∆n
tα

α

)]
µ2
n cos (µnx0)

+

[
φn0 + (ψn0 + aφn0)

tα

α

]
µ2
n0

cos (µn0x0)

+
∞∑

n=n0+1

[
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

)]
µ2
n cos (µnx0)

 ,

(3.15)
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and

Q (t, s) =
ωea

sα−tα

α sα−1

f (x0, t)

(
n0−1∑
n=0

µ2
n cos (µnx0)

∆n
sinh

(
∆n
tα − sα

α

)
fn (s)

+µ2
n0

cos (µn0x0) fn0 (s)
tα − sα

α

+
∞∑

n=n0+1

µ2
nXn (x0)

δn
sin
(
δn
tα − sα

α

)
fn (s)

 .

(3.16)

In this case, if n0 = 0, we delete the first series from the two representations (3.15) and
(3.16).

Step 2: Existence of the solution
To establish the regularity of the first component u(x, t), we need to show u (x, t), ux (x, t),

uxx (x, t), D(α)
t u (x, t) and D(2α)

t u (x, t) are continuous functions in D̄T .
Under the conditions (A1) − (A3) and Lemma 3.1, by using the series (3.8), the following

inequalities hold for any (x, t) ∈ D̄T such that

|u (x, t)| ≤
∞∑
n=0

[√
2 ∥φ∥C4[0,ℓ]

µ4
n

+

√
2 ∥ψ∥C3[0,ℓ]

δnµ3
n

+

√
2a ∥φ∥C4[0,ℓ]

δnµ4
n

+

√
2eaT

α/α ∥r∥C[0,T ] ∥f∥C3[0,ℓ]×C[0,T ]

aαδnµ3
n

]
.

(3.17)

|ux (x, t)| ≤
∞∑
n=0

[√
2 ∥φ∥C4[0,ℓ]

µ3
n

+

√
2 ∥ψ∥C3[0,ℓ]

δnµ2
n

+

√
2a ∥φ∥C4[0,ℓ]

δnµ3
n

+

√
2eaT

α/α ∥r∥C[0,T ] ∥f∥C3[0,ℓ]×C[0,T ]

aαδnµ2
n

]
.

(3.18)

|uxx (x, t)| ≤
∞∑
n=0

[√
2 ∥φ∥C4[0,ℓ]

µ2
n

+

√
2 ∥ψ∥C3[0,ℓ]

δnµn
+

√
2a ∥φ∥C4[0,ℓ]

δnµ2
n

+

√
2eaT

α/α ∥r∥C[0,T ] ∥f∥C3[0,ℓ]×C[0,T ]

aαδnµn

]
.

(3.19)

∣∣∣D(α)
t u (x, t)

∣∣∣ ≤ ∞∑
n=0

[
√

2
(

2a+ δn +
a2

δn

) ∥φ∥C4[0,ℓ]

µ4
n

+

(
√

2 +
a
√

2
δn

)
∥ψ∥C3[0,ℓ]

µ3
n

+

(√
2
a

+

√
2

δn

)
eaT

α/α ∥r∥C[0,ℓ]
∥f∥C3[0,ℓ]×C[0,T ]

µ3
n

]
.

(3.20)

∣∣∣D(2α)
t u (x, t)

∣∣∣ ≤ ∞∑
n=0

[(
δ2
n +

2a
δn

+ 2
)(√

2
(

1 +
a

δn

) ∥φ∥C4[0,ℓ]

µ4
n

+

√
2 ∥ψ∥C3[0,ℓ]

δnµ3
n

)

+
√

2
(
a

δn
+
δn
a

+ 2
)
eaT

α/α ∥r∥C[0,T ]

∥f∥C3[0,ℓ]×C[0,T ]

µ3
n

] (3.21)

From (3.17)-(3.21) and by Weierstrass M-test, the series corresponding to u (x, t), ux (x, t),
uxx (x, t), D(α)

t u (x, t) and D(2α)
t u (x, t) are uniformly convergent on D̄T . Hence, u (x, t), ux (x, t),

uxx (x, t), D(α)
t u (x, t) and D(2α)

t u (x, t) are continuous functions on D̄T .
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Similarly, we show that the two series (3.8) and (3.9) are uniformly convergent in D̄T . There-
fore, their sums u (x, t), ux (x, t), uxx (x, t), D(α)

t u (x, t) and D(2α)
t u (x, t) are continuous in D̄T .

Thus, u (x, t) satisfies the conditions (1.1)-(1.3) for arbitrary r ∈ C [0, T ].
We define the following operator:

P (r (t)) := B (t) +

∫ t

0
Q (t, s) r (s) ds,

on the space C [0, T ] with ∥ϕ∥C[0,T ] := max
0≤t≤T

|ϕ (t)|. To show P is well defined.

Under assumption (A4), the function t 7→ D(2α)h(t)+2aD(α)h(t)+b2h(t)
f(x0,t)

is continuous on [0, T ].
Under assumptions (A1)− (A2), using Lemma 3.1 and (3.11)-(3.12), we have:

∞∑
n=0

[
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

)]
µ2
n cos (µnx0)

≤
+∞∑
n=0

√
2

[(
1 +

a

δn

) ∥φ∥C4[0,ℓ]

µ2
n

+
∥ψ∥C3[0,ℓ]

δnµn

] (3.22)

and
∞∑
n=0

µ2
n cos (µnx0)

δn
sin
(
δn
tα − sα

α

)
fn (s) ≤

+∞∑
n=0

√
2 ∥f∥C3[0,ℓ]×C[0,T ]

δnµn
(3.23)

From (3.22) and (3.23), the series functions
∞∑
n=0

[
φn cos

(
δn
tα

α

)
+
ψn + aφn

δn
sin
(
δn
tα

α

)]
µ2
n cos (µnx0) ,

∞∑
n=0

µ2
n cos (µnx0)

δn
sin
(
δn
tα − sα

α

)
fn (s)

are uniformly convergent. Then, B (t) and Q (t, s) defined by (3.11) and (3.12) are continuous
functions on [0, T ] and [0, T ]× [0, T ], respectively. Hence, the operator P is well defined.

For the rest of this proof, we take only the first case (if a2−b2

ω < µ2
0). Now we prove that P

is a contraction operator in the space C [0, T ]. We choose L > 0 and let r1, r2 ∈ C [0, T ]. Under
assumption (A3) and using (3.12), we have the following estimates:

e−Ltα/α |P (r1 (t))− P (r2 (t))| ≤ e−Ltα/α

∫ t

0
eLsα/α |Q (t, s)| e−Lsα/α |r1 (s)− r2 (s)| ds

≤ ∥r1 − r2∥L,α

∫ t

0
eL(sα−tα)/α |Q (t, s)| ds

≤

√
2ω ∥f∥C3[0,ℓ]×C[0,T ]

+∞∑
n=0

1
δnµn

(L+ a) min
0≤t≤T

|f (x0, t)|
∥r1 − r2∥L,α .

Consequently, we obtain:

∥P (r1)− P (r2)∥L,α ≤

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a) min
0≤t≤T

|f (x0, t)|
∥r1 − r2∥L,α , (3.24)

where S =
+∞∑
n=0

1
µn

√
ωµ2

n + b2 − a2
. It is easy to choose the real L > 0 such that,

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a) min
0≤t≤T

|f (x0, t)|
< 1. (3.25)
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Then the operator P is a contraction. Consequently, by Banach’s contraction mapping principle,
P has a unique fixed point r ∈ C [0, T ].
Step 3: Uniqueness of the solution

Let {u (x, t) , r (t)} and {ũ (x, t) , r̃ (t)} be two solution sets of the inverse problem (1.1)-
(1.4). From (3.7) and (3.9) , we have

u (x, t)− ũ (x, t) = e−a tα

α

∞∑
n=0

cos (µnx)

δn

∫ t

0
sin
(
δn
tα − sα

α

)
sα−1ea

sα

α (r (s)− r̃ (s)) fk (s) ds,

(3.26)

and

r (t)− r̃ (t) = P (r (t))− P (r̃ (t)) . (3.27)

From (3.24) and (3.27) we get:

∥r − r̃∥L,α ≤

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a) min
0≤t≤T

|f (x0, t)|
∥r − r̃∥L,α , (3.28)

which implies that r = r̃. After inserting r = r̃ in (3.26), we have u = ũ.

Remark 3.5. We can prove Theorem 3.4 so that the function Q (t, s) given by (3.14) and (3.16).
In both cases, the contraction constant in (3.25) will be given as follows:

✓ If µ2
n0
<
a2 − b2

ω
< µ2

n0+1, the contraction constant in (3.25) is replaced by

√
2ωS′ ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a) min
0≤t≤T

|f (x0, t)|
where S′ =

n0∑
n=0

1
µn

√
a2 − b2 − ωµ2

n

+
+∞∑

n=n0+1

1
µn

√
ωµ2

n + b2 − a2
.

(3.29)

✓ If
a2 − b2

ω
= µ2

n0
, the contraction constant in (3.25) is replaced by

√
2ωS′′ ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a) min
0≤t≤T

|f (x0, t)|
where S′′ =

Tα

αµ3
n0

+
n0−1∑
n=0

1
µn

√
a2 − b2 − ωµ2

n

+
+∞∑

n=n0+1

1
µn

√
ωµ2

n + b2 − a2
.

(3.30)

3.2 Continuous dependence upon the data of the solution

In this subsection, we give the second main result on continuous dependence upon the data of
the solution pair {u (x, t) , r (t)} of the inverse problem (1.1)-(1.4).

Let ℑ be the set of quartiles {φ,ψ, f, h} where the functions φ, ψ, fand h satisfy the condi-
tions (A1)− (A4) of Theorem 3.4 and

∥φ∥C4[0,ℓ] ≤M1, ∥ψ∥C3[0,ℓ] ≤M2, ∥f∥C3[0,ℓ]×C[0,T ] ≤M3, ∥h∥C2α[0,T ] ≤M4,

M5 = min
0≤t≤T

|f (x0, t)| , M6 = max
{

1, 2a, b2} . (3.31)

For ϕ ∈ ℑ, we define the norm

∥ϕ∥ℑ := ∥φ∥C4[0,ℓ] + ∥ψ∥C3[0,ℓ] + ∥f∥C3[0,ℓ]×C[0,T ] + ∥h∥C2α[0,T ] . (3.32)



1176 Qaddour Acheb and Brahim Nouiri

Theorem 3.6. The solution {u (x, t) , r (t)} of the inverse problem (1.1)-(1.4) under the assump-
tions of Theorem 3.4, depends continuously upon the data.

Proof. Let {u (x, t) , r (t)} and {ũ (x, t) , r̃ (t)} be two solution sets of the inverse problem (1.1)-
(1.4), corresponding to the data ϕ = {φ,ψ, f, h} and ϕ̃ =

{
φ̃, ψ̃, f̃ , h̃

}
, respectively.

From (3.11), we have

B (t)− B̃ (t) =
1

f (x0, t)

[
D(2α) (h− h̃

)
+ 2aD(α)

(
h− h̃

)
+ b2 (h− h̃

)]
+
f̃ (x0, t)− f (x0, t)

f (x0, t) f̃ (x0, t)

[
D(2α)h̃ (t) + 2aD(α)h̃ (t) + b2h̃ (t)

]
+
ωe−atα/α

f (x0, t)

+∞∑
n=0

[
(φn − φ̃n) cos (δntα/α) +

1
δn

(
ψn − ψ̃n + a (φn − φ̃n)

)
sin (δntα/α)

]
µ2
n cos (µnx0)

+
ωe−atα/α

(
f̃ (x0, t)− f (x0, t)

)
f (x0, t) f̃ (x0, t)

+∞∑
n=0

(
φ̃n cos (δntα/α) +

ψ̃n + aφ̃n

δn
sin (δntα/α)

)
µ2
n cos (µnx0) .

(3.33)

Under conditions (A1)− (A4) and using Lemme 3.1, (3.30) and (3.32) we obtain:∥∥B − B̃
∥∥
C[0,T ]

≤M7 ∥φ− φ̃∥C4[0,ℓ] +M8
∥∥ψ − ψ̃

∥∥
C3[0,ℓ] +M9

∥∥f − f̃
∥∥
C3×C[0,T ]

+M10
∥∥h− h̃

∥∥
C2α[0,T ]

,
(3.34)

where

M7 =
ω

M5

+∞∑
n=0

(
1
µ2
n

+
a

δnµ2
n

)
,

M8 =
ω

M5

+∞∑
n=0

1
δnµn

,

M9 =
M4M6

M2
5

+
ω

M2
5

+∞∑
n=0

(
1 +

a

δn

M1

µ2
n

+
M2

δnµn

)
,

M10 =M6/M5.

From (3.10) and for all L > 0, we have

e−Ltα/α [r (t)− r̃ (t)] = e−Ltα/α
[
B (t)− B̃ (t)

]
+

∫ t

0
e−Ltα/αQ (t, s) [r (s)− r̃ (s)] ds

+

∫ t

0
e−Ltα/α

[
Q (t, s)− Q̃ (t, s)

]
r̃ (s) ds.

(3.35)

Under condition (A3), using Lemma 3.1, Lemma 3.2 and (3.12), we obtain∫ t

0
e−Ltα/αQ (t, s) [r (s)− r̃ (s)] ds ≤

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a)M5
∥r − r̃∥L,α , (3.36)

and ∫ t

0
e−Ltα/α

[
Q (t, s)− Q̃ (t, s)

]
r̃ (s) ds ≤

2
√

2dωM3S

(L+ a)M2
5

∥∥f − f̃
∥∥
C3[0,ℓ]×C[0,T ]

, (3.37)

where d = ∥r̃∥L,α.
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From (3.34)-(3.37), we have the estimate(
1 −

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a)M5

)
∥r − r̃∥L,α ≤M7 ∥φ− φ̃∥C4[0,ℓ] +M8

∥∥ψ − ψ̃
∥∥
C3[0,ℓ]

+

[
M9 +

2
√

2dωM3S

(L+ a)M2
5

]∥∥f − f̃
∥∥
C3×C[0,T ]

+M10
∥∥h− h̃

∥∥
C2α[0,T ]

.

(3.38)

From (3.38) and (3.32), we get(
1 −

√
2ωS ∥f∥C3[0,ℓ]×C[0,T ]

(L+ a)M5

)
∥r − r̃∥L,α ≤M11 ∥ϕ− ϕ∥ℑ , (3.39)

where

M11 = max

{
M7,M8,M9 +

2
√

2dωM3S

(L+ a)M2
5
,M10

}
.

From (3.25) and (3.39), we have

∥r − r̃∥L,α ≤M12 ∥ϕ− ϕ∥ℑ , (3.40)

where M12 =
M11

1−
√

2ωS∥f∥C3 [0,ℓ]×C[0,T ]
(L+a)M5

.

Under conditions (A1)− (A3) and from (3.4), we obtain

∥u− ũ∥C(D̄T ) ≤M13 ∥φ− φ̃∥C4[0,ℓ] +M14
∥∥ψ − ψ̃

∥∥
C3[0,ℓ] +M15

∥∥f − f̃
∥∥
C3[0,ℓ]×C[0,T ]

+M16 ∥r − r̃∥L,α ,
(3.41)

where

M13 =
+∞∑
n=0

(√
2

µ4
n

+

√
2

δnµ4
n

)
, M14 =

+∞∑
n=0

√
2

δnµ3
n

, M15 =
+∞∑
n=0

d
√

2
(L+ α)µ3

n

, M16 =
+∞∑
n=0

M3
√

2
(L+ α)µ3

n

From (3.40) and (3.41), we get

∥u− ũ∥C(D̄T ) + ∥r − r̃∥L,α ≤M17
∥∥ϕ− ϕ̃

∥∥
ℑ ,

where M17 = max {M13,M14,M15,M12M16}. Then, the solution of the inverse problem (1.1)-
(1.4) is depends continuously upon the data.

4 Conclusion

An inverse time-dependent source problem of finding the time-dependent source term in a time-
fractional telegraph equation with mixed boundary conditions and an additional measurement
at a fixed point, have been investigated. Under some assumptions on the input data, the well-
posedness of this inverse source problem is shown by the Fourier’s method and Banach’s con-
traction mapping principle.
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