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Abstract— In order to guarantee effective Maximum Power 

Point Tracking (MPPT), this research proposes an 

integrated control strategy for a Wind Energy Conversion 

System (WECS). A drive train carries the mechanical 

energy that the wind turbine has captured to a Doubly-Fed 

Induction Generator (DFIG), which transforms it into 

electrical power. Two control systems are used to maximise 

this conversion: the reliable Sliding Mode Controller 

(SMC) and the traditional Proportional-Integral (PI) 

controller. To optimise power extraction, the main goal is to 

modify the rotor speed in response to changing wind 

conditions. To depict the DFIG's behaviour under various 

operating circumstances, a comprehensive dynamic model 

is created. This model serves as the basis for a power control 

strategy that aims to independently regulate active and 

reactive power, which is crucial for grid stability. To assess 

both controllers' performance in the entire turbine–

generator system, MATLAB/Simulink is used for design 

and testing. 

Keywords— Maximum Power Point Tracking (MPPT), Doubly-

Fed Induction Generator (DFIG), Proportional-Integral (PI), 

Sliding Mode Controller (SMC), Wind Energy Conversion System 

(WECS). 

I. INTRODUCTION   

Renewable energy sources have been used since antiquity; 

ancient civilizations used sailing boats, windmills, and water 

wheels among other technologies. Particularly in rural areas, 

these systems were instrumental in driving economic 

development [1]. World energy consumption is driven by 

rising demand—mostly from coal, natural gas, and oil. 

Especially for air pollution and global warming produced by 

greenhouse gas emissions, the restricted availability and 

environmental concerns associated with these non-renewable 

sources raise big questions. The scarcity of these non-

renewable resources as well as their related environmental 

problems raise serious doubts especially about air pollution 

and global warming caused by greenhouse gas emissions[2]. 

Considering these problems, renewable energy sources are 

getting growing interest as wind power is among the most 

workable solutions [3]. Since the first wind turbine systems 

(WTS) were erected in the 1980s, when their capabilities 

were only a few tens of kilowatts, tremendous technical 

development has taken place. Along with being built more 

regularly, wind turbines are becoming bigger and more 

powerful [4]. Most installed wind turbines utilize doubly-

fed induction generators (DFIG) as the power conversion 

mechanism. This design allows efficient functioning across 

a broad range of wind speeds by maximizing the power 

extraction at every operating point. The stator is 

immediately connected to the grid in this whereas the rotor 

circuit is fed from the grid through a power converter. 

Because only a portion of the energy is transmitted through 

it [5], the converter's required capacity and cost are much 

cheaper than those of full-capacity converters used in 

variable-speed turbines with stator-side control[5]. This 

quality is one of the main causes dFIG-based systems 

frequently reach great power. Furthermore, the ability to 

change the connection's voltage point to the grid provides 

adaptability and improves general system performance [6]. 

To accomplish this, the present research analyzes the strong 

control of a wind energy conversion system (WECS) of the 

Doubly-Fed Induction Generator (DFIG) type so as to 

improve its total efficiency. Typical control techniques have 

two main disadvantages, according to the literature: 

inadequate damping [7] and poor dynamic response. As a 

result, there has been an increase in interest in sophisticated 

control techniques to overcome these constraints. Prior 

research has examined ways to improve dynamic 

performance, such as sliding mode control in systems that use 

Permanent Magnet Synchronous Generators (PMSG) [10], 

backstepping control [8], and fuzzy logic control (FLC) [9]. 

To ensure efficient Maximum Power Point Tracking 

(MPPT), this paper studies the electrical and mechanical 

aspects of the electrical energy conversion chain, we propose 

a mechanical speed control strategy for a Wind Energy 

Conversion System (WECS) using a Doubly-Fed Induction 

Generator (DFIG). The wind turbine transfers mechanical 
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energy to the DFIG via a drive train, converting it into 

electrical power. Two control approaches are implemented: a 

robust Sliding Mode Controller (SMC) and a conventional 

Proportional-Integral (PI) controller. The objective is to adapt 

the rotor speed optimally to variable wind conditions for 

maximum energy extraction. A detailed dynamic model of 

the DFIG is developed to enable independent control of 

active and reactive power—critical for grid integration. The 

system, including both control strategies, is modeled and 

simulated in MATLAB/Simulink to compare their 

performance. 

II. WIND ENERGY CONVERSION SYSTEM 

A Wind Energy Conversion System (WECS) converts wind’s 

kinetic energy into electrical energy using a wind turbine, 

mechanical drivetrain, and electrical generator. Its efficiency 

largely depends on the drivetrain’s mechanical characteristics 

and its ability to handle wind-induced oscillations with 

minimal losses. Energy conversion begins with aerodynamic 

interaction between wind and blades, transmitting 

mechanical energy to the generator. WECS designs can be 

direct drive or include multi-stage gearboxes [11]. Accurate 

modeling requires a multidisciplinary approach, combining 

fluid dynamics, structural mechanics, and electromechanical 

conversion [12]. Understanding mechanical dynamics is key 

to enhancing efficiency, minimizing wear, and ensuring 

system reliability [13,14]. 

 
   Fig. 1. Block diagram of the wind energy converter model 

A. The technique of Maximum Power Point Tracking 

(MPPT) 

    Mechanical speed closed-loop control 
It consists of discovering the speed of the turbine that allows 

for maximum power to be produced. 

Two controllers are used (Proportional-Integral PI and 

Sliding Mode SM), whose purpose is to make the actual 

mechanical speed move towards the reference one, which is 

wind speed based. 

               Cém_ref = REG (Ωméc-ref – Ωméc)               (10)                                                     

With: REG is the speed controller and  Ωméc_ref :  is the 

reference mechanical speed 

This reference mechanical speed depends on the turbine 

speed to be set (Ωturbine-ref) in order to maximize the extracted 

power. Taking into account the gearbox gain, we have: 

                     Ωméc_ref = G. (Ωturbine-ref)            (11)                                                                  

 
Fig. 2. Block diagram of power maximization with mechanical speed 
feedback control. 

 

Wind Energy Conversion 

It is clear that power is directly related to the rotor's swept 

area, but more crucially, to the cube of wind speed. 

 
Fig. 3.  Power coefficient Cp as a function of λ and β. 

B. Simulation results and discussion 

PI controller 
Fig.4. depicts a portion of our closed-loop system controlled 

by a PI controller with a transfer function of the kind (Kp + 

Ki/s). 

 
Fig. 4. The system is managed using a PI controller 
 

Sliding Mode Controller (SMC) 

The dynamic equation of the shaft is given by: 

 
Ωméc :   is the mechanical speed of the shaft which is our 

output in this case. 

Based on the turbine model's block diagram, the following 

state-space representation is defined: 

            

with : 

            x = Ω méc : the state of the system, which is the 

mechanical speed; 

u = Cém : the control input is the electromagnetic torque; 

             P(x) = Cméc : disturbance term representing the 

mechanical torque, considered constant. 

The convergence function is defined by the Lyapunov 

equation; it makes the surface attractive and invariant.                                      

 
The command is given by                        

 
 Since   



and 

  
which is negative, therefore, the convergence condition is 

satisfied.  The simulation outcomes indicate that the second 

operating region is correctly operated by the wind energy 

conversion system as expected by a variable-speed turbine 

model and its associated control strategy with Maximum 

Power Point Tracking (MPPT). Figure.5 illustrates the wind 

speed profile imparted to the turbine with an average of about 

9 m/s. At this speed, the control strategy can optimize power 

generation by holding the power coefficient of the turbine at 

its optimal level 

 
Fig. 5 .Wind speed (m/s).        Fig. 6.   Turbine speed (rad/s). 

 
 

Fig. 7. Power coefficient.       Fig.8 . Wind turbine power (W). 

 

 
Fig. 9 .Wind turbine torque (Nm). 

The control mechanism maintains the generator's mechanical 

rotating speed at its maximum  

 
Fig. 10 . The speed ratio () and its reference ((ref) for both regulators (PI 

et SM). 

 

 
Fig. 11 . Mechanical speed (Ωméc) and its reference (Ωméc_ref) for both 

regulators (PI et SM).      

 

 
Fig. 12 . Speed ration zoom () and mechanical speed (Ωmé) regulator 

(SM). 

All simulations were operated under identical operating 
conditions to contrast the effectiveness of the two control 
methods, Sliding Mode Control (SMC) and Proportional-
Integral (PI) (Figures 10 and 11). Mechanical speed (Figure 
11) and speed ratio (Figure 10) both yield acceptable 
setpoint tracking. The PI controller, however, possesses 
significant steady-state inaccuracy and a substantial 
overshoot (approximately 90 rad/s). However, the SMC 
approach that ensures accurate monitoring of the reference 
signal can effectively solve these issues. SMC is also 
renowned for insensitivity to parameter variation and 
external disturbances. The Sliding Mode Control technique 
boasts the best overall performance in tracking accuracy and 
system robustness. 

III. MODELING OF DOUBLY FED INDUCTION GENERATOR DFIG 

The Doubly-Fed Induction Generator (DFIG) is widely 

adopted in wind energy systems due to its ability to efficiently 

operate over a broad range of wind speeds, thanks to its stator 

directly connected to the grid and its rotor interfaced via 

power converters. This partial power processing reduces 

converter cost compared to full-scale systems and enables 

voltage control at the point of interconnection, making the 

DFIG suitable for large-scale wind applications [16,17], [18], 

[19]. In [20], the DFIG is modeled using input-output 

representations, such as transfer functions or state-space 

models, to facilitate control and dynamic analysis. Park’s 

transformation, based on [21], is employed to derive the 

machine’s electrical equations in a simplified and structured 

form using the Park matrix.  

 (16)     

The following relation provides the general form of the 

electromagnetic torque of a three-phase asynchronous 

machine modelled in the Park frame: 
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(17) 

The following provides the stator's active and reactive 

powers: 

                                   Ps = Uds ids + Uqs iqs               (18)                                 

                Qs = Uqs ids – Uds iqs 

The simulation of the 1.5 kW DFIG model provides results 

illustrating the behavior of key variables such as speed, 

torque, stator and rotor fluxes, current components, and 

active/reactive power. Under steady-state conditions at a 

constant speed of 1450 rpm, the DFIG is supplied by two 

ideal three-phase voltage sources: 220 V, 50 Hz at the stator 

and 12 V at the rotor, both operating at the same frequency.        

 
Fig. 13. Electromagnetic speed and torque. 

   

Fig. 14. The components of the stator flux of axis dq. 

 

Fig. 15. The components of the rotor flux of axis dq. 

 
Fig. 16. Block diagram of the system to be regulated. 

 

In this section, we present the regulation of the active and 

reactive powers of the machine using the remarks made in the 

previous paragraph. The link between, on the one hand, the 

active power and the voltage, and on the other hand, the 

reactive power and the voltage, has been highlighted. 

In this study, two regulators are used for PI and MG power 

control. 

PI: Proportional-Integral regulator; 

MG: Sliding-Mode regulator. 

 
Fig. 17.  Block diagram of the direct control 

A. Control of Doubly-Fed Induction Generator by PI 

Speed and simplicity are the strengths of the PI controller, 

which is why it is used in MADA control, with integral action 

improving steady-state performance and proportional action 

improving transient performance. 

  
Fig. 18.  PI regulated system.. 

   

 

with :      r  : is the real time constant of the system, and will 

be chosen during the simulation in order to offer the best 

compromise between performances, especially since an 

unsuitable value would cause disturbances during transient 

regimes and would cause unwanted overshoots and 

instabilities [19]. 

  (24) 

 

B. Control of the DFIG using Sliding Mode Control(SMC): 

We extract the derivatives of the rotor currents   we obtain 

the following state model: 
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C. Control law computation: 

Let us recall the command algorithm which is: 

                       u =  uéq + un                

For the first control law 1u  and the second control law 2u    : 

 

 

The following figure shows the block diagram of direct 

control by a sliding mode (MG) type regulator: 

 

 
Fig.  19 . Block diagram of direct control by the MG regulator. 

Two Controllers will be tested for setpoint tracking 

This test involves performing active and reactive power 

increments while maintaining a constant DFIG drive speed. 

D. Simulations results: 

Setpoint tracking 

Test Conditions 

Driven machine at 1450 tr/min  

• AT  t = 2s : active power step (Pref goes from 

2000W to -2000W) 

• AT  t = 2.5s : reactive power step (Qref goes from 

1000VAR to -1000VAR) 

The simulation results (cf.Figures 20) present the different 

active and reactive power setpoint tracking curves obtained 

for direct control. It can be seen that the power steps are well 

tracked by the generator, for both active and reactive power. 

There are notable distinctions between the two controllers (PI 

and Sliding Mode) when compared. Although there are still 

minor oscillations, the Sliding Mode Controller responds 

quickly and has zero steady-state error and no overshoot. The 

PI controller, on the other hand, has axis coupling that results 

in notable transient oscillations, overshoot during setpoint 

changes, and considerable delay. Additionally, when active 

and reactive powers drop, disruptions show themselves. In 

contrast to the PI controller, the sliding mode control exhibits 

a more noticeable chattering effect. 

 

 
Fig.  20 . Active and reactive power setpoint monitoring (direct control).. 

 
Fig.  21 . Zoom of active and reactive power (direct control) MG regulator. 

In practice, the term discontinuousu = − k signe (S)               

with   k > 0 .This can cause unmodeled high-frequency 

dynamics, resulting in “reluctance” or “chattering” 

(characterized by strong oscillations around the surface). To 

reduce or eliminate chattering, three types of controls are 

used: 

• Composite control based on Utkin's equivalent vector 

principle; 

•    Higher-order sliding modes; 

•    Boundary layer solution (modified sign function). 

Test of Robustness 

 The robustness test consists of testing the stability of the 

DFIG model in the face of parameter variations, to verify that 

the control remains compliant with the constraints. This is 

essential because in a real system, these parameters can vary 

due to physical phenomena and inaccuracies in identification. 

Simulations will be performed by modifying the resistances 

and inductances independently to identify the variables where 

the controls are not robust. 

Test conditions: Resistances increased by 50% and 

inductances reduced by 20%, with a constant speed of 1450 

tr/m. 

Test:  At t = 2s: Pref goes from 2000W to -2000W. 

At t = 2.5s: Qref changes from 1000 VAR to -1000 VAR. 

Inductances decrease by 20%. 

Results and interpretations 

Figure 22 shows the evolution of power during a 20% 

variation in inductances Ls, Lr, and Msr. It has been observed 

that direct control becomes unstable with a PI controller, 

particularly at       t = 2.5s, when the active power (Q) changes 

from 1000 VAR     to -1000 VAR, causing an increase in 

oscillations around the reference (Figure 22). In addition, the 

change in the reactive power Q setpoint with the PI controller 

causes an overshoot of 500 VAR.  
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Figure 22 : Robustness test with 20% reduction in inductance(direct 
control). 

IV. CONCLUSION  

This paper explores a control strategy for Maximum Power Point 

Tracking (MPPT) in wind energy systems utilizing a Doubly-Fed 

Induction Generator (DFIG). It compares two controllers: 

Proportional-Integral (PI) and Sliding Mode Controller (SMC). The 

results from simulations indicate that the SMC outperforms the PI 

controller in setpoint tracking, thus improving the performance and 

reliability of modern wind power systems. The second section of the 

paper focuses on modeling and controlling a DFIG using both PI and 

SMC techniques to regulate active and reactive power 

independently. Simulation findings show that while both controllers 

offer similar performance in setpoint tracking, the SMC 

demonstrates faster response, reduced steady-state error, and better 

robustness. Despite some chattering issues, the SMC is regarded as 

a more reliable and easily implementable solution for wind energy 

systems. The paper concludes by suggesting the consideration of 

practical implementation in future work. 
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APPENDIX  1 

Parameters of the wind turbine used: 
Average wind speed: Vmoy = 9 m/s. 

Wedge angle: B = 2. 

Number of blades: P = 3. 

Radius of the rotor: R = 35.25 m. 

Time constant value: 𝜏 = 4 s. 

Air density: 𝜌 = 1.22 Kg/m3. 

Gearbox gain (gear ratio): G = 90. 

Moment of inertia: J = 1000 Kg.m². 

Viscous friction coefficient: f = 0.0024 N.m.s/rd. 
Regulator Parameters 

Mechanical Speed Control (Turbine Part): 
PI Controller Sliding Mode Controller (SMC) 

      Kp = 2.800 103 

      Ki = 4000 

 

                          K₀ = 1 106 

 
APPENDIX 2 

Parameters used for simulations. 

Nominal values: 

Mechanical power: Pm = 1.5 KW. 

Nominal speed: Nn = 1450 tr/min. 

Nominal stator frequency: fsn = 50 Hz. 

Nominal rotor frequency: frn = 50 Hz. 

Nominal stator single voltage: Vsn = 220 V. 
Nominal rotor single voltage: Vrn = 12V. 

Nominal stator line current: Isn = 4.3 A. 

Nominal rotor line current: Irn = 1.5 A. 

 Parameters of DFIG: 

Stator winding resistance: Rs = 1.75 Ω 

Rotor winding resistance: Rr = 1.68 Ω. 

Stator cyclic inductance: Ls = 295 mH. 

Rotor cyclic inductance: Lr = 104 mH. 

Mutual cyclic inductance: Msr = 165mH. 

The number of pole pairs: p = 2. 

 Mechanical constants of the DFIG : 

Moment of inertia: Jméc = 0.01 Kg.m². 

Viscous friction coefficient: f = 0.0027 N.m.s/rd. 
PI regulator MG regulator 

 

Kp = 0.0410 

Ki = 5.8753 

K₁ = 80 

K₂ = 70 
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