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F̊i‹n`a˜l¨l›y, I ”wˆo˘u˜l´dffl ˜lˇi˛k`e ˚t´o `e›xṗ˚r`eṡfi¯s ”m‹y ˛h`e´a˚r˚t¨f´e¨lˇt ˚t‚h`a‹n˛k¯s ˚t´o ”m‹y ˜f´a‹m˚i˜l›y `a‹n`dffl ˜fˇr˚i`e›n`d¯s ˜f´o˘rffl ˚t‚h`eˇi˚rffl
˚u‹n‹wˆa‹vfleˇr˚i‹n`g ¯sfi˚u¯p¯p`o˘r˚t, `e›n`c´o˘u˚r`a`g´e›m`e›n˚t, `a‹n`dffl ¯p`a˚tˇi`e›n`c´e ˚t‚h˚r`o˘u`g‚h`o˘u˚t ”m‹y `a`c´a`d`e›m˚i`c ¯j´o˘u˚r‹n`e›y.

M. F̀a˚r˚i`dffl

i



ii



T ime-fractional diffusion equations (TFDEs), which generalize classical diffusion equations

by replacing the first-order time derivative with a fractional-order operator of order 0 <

α ≤ 1, provide an effective framework for modeling subdiffusive phenomena in diverse

applications-from chemical transport and viscoelastic materials to biological systems and nuclear engineer-

ing. Their nonlocal, weakly singular kernels, however, obstruct the direct use of many standard analytical

techniques. In particular, inverse problems-recovering unknown source terms or coefficients from integral

or pointwise measurements-pose additional challenges, as one must accommodate fractional-order deriva-

tives and often non-self-adjoint boundary value problem.

This thesis focuses on two main inverse problems for the one-dimensional time-fractional diffusion

equation

∂αu

∂tα
(x, t) = uxx (x, t) + F (x, t, u) , 0 < x < 1, 0 < t ≤ T,

subject to nonlocal family of boundary conditions and an integral over-determination, where ∂α

∂tα repre-

sents a fractional derivative. In the first, the source takes the separable form F (x, t, u) = r (t) f (x, t), and

one seeks the pair {u (x, t) , r (t)}. In the second, F (x, t, u) = −p (t)u (x, t) + S (x, t) and the goal is to re-

cover the time-dependent coefficient p (t) alongside u. Both problems are studied under minimal regularity

and compatibility assumptions on the data. After reviewing relevant spectral theory for Sturm-Liouville

operators with regular but not strongly regular boundary conditions, we employ a generalized Fourier

method, expanding solutions in biorthogonal systems of root functions and fixed-point arguments based

on Mittag-Leffler estimates to establish existence, uniqueness, and continuous dependence. Theoretical re-

sults are complemented by finite-difference schemes and a spectral algorithm based on shifted Legendre

polynomials, with numerical examples confirming accuracy and stability.

Keywords: Fractional diffusion equations, nonlocal boundary conditions, Generalized Caputo fractional derivative,

Conformable fractional derivative, Generalized Fourier method, Banach fixed-point theorem, Finite-difference

scheme, Legendre collocation method, Backward Euler method, non-self-adjoint spectral problem, biorthogonal

systems.
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L es équations de diffusion fractionnaires temporelles (TFDE), qui généralisent les équations de

diffusion classiques en remplaçant la dérivée temporelle du premier ordre par un opérateur

d’ordre fractionnaire d’ordre 0 < α ≤ 1, offrent un cadre efficace pour la modélisation des

phénomènes subdiffusifs dans diverses applications, du transport chimique et des matériaux viscoélas-

tiques aux systèmes biologiques et au génie nucléaire. Leurs noyaux non locaux et faiblement singuliers

entravent cependant l’utilisation directe de nombreuses techniques analytiques standard. En particulier, les

problèmes inverses (récupération de termes sources ou de coefficients inconnus à partir de mesures inté-

grales ou ponctuelles) posent des défis supplémentaires, car il faut prendre en compte les dérivées d’ordre

fractionnaire et souvent les problèmes aux limites non auto-adjoints.

Cette thèse se concentre sur deux principaux problèmes inverses pour l’équation de diffusion fraction-

naire en temps unidimensionnelle

∂αu

∂tα
(x, t) = uxx (x, t) + F (x, t, u) , 0 < x < 1, 0 < t ≤ T,

soumis à une famille non locale de conditions aux limites et à une surdétermination intégrale, où ∂α

∂tα

représente une dérivée fractionnaire. Dans le premier cas, la source prend la forme séparable F (x, t, u) =

r (t) f (x, t), et on cherche le couple {u (x, t) , r (t)}. Dans le second cas, F (x, t, u) = −p (t)u (x, t) + S (x, t)

et l’objectif est de retrouver le coefficient dépendant du temps p (t) aux côtés de u. Les deux problèmes

sont étudiés sous des hypothèses minimales de régularité et de compatibilité sur les données. Après avoir

examiné la théorie spectrale pertinente pour les opérateurs de Sturm-Liouville avec des conditions aux

limites régulières mais non fortement régulières, nous utilisons une méthode de Fourier généralisée, éten-

dant les solutions aux systèmes biorthogonaux de fonctions racines et les arguments de point fixe basés sur

les estimations de Mittag-Leffler pour établir l’existence, l’unicité et la dépendance continue. Les résultats

théoriques sont complétés par des schémas aux différences finies et un algorithme spectral basé sur des

polynômes de Legendre décalés, avec des exemples numériques confirmant la précision et la stabilité.

Mots-clés: Équations de diffusion fractionnaire, Conditions aux limites non locales, Dérivée fractionnaire de

Caputo généralisée, Dérivée fractionnaire conformable, Méthode de Fourier généralisée, Théorème du point fixe de

Banach, Schéma aux différences finies, Méthode de collocation de Legendre, Méthode d’Euler rétrograde, Problème

spectral non auto-adjoint, Systèmes biorthogonaux.
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General introduction

P Parabolic partial differential equations with fractional time derivatives of order less than 1,

known as time-fractional diffusion equations (TFDEs), have become a crucial tool for mod-

eling slow diffusion (subdiffusion) processes in various fields, including chemistry, physics,

viscoelasticity, biology, and nuclear power engineering, [8, 38, 39]. The challenges associated with TFDEs

are more pronounced because many standard methods cannot be directly applied to non-classical deriva-

tives. The difficulty arises from the definition of fractional-order derivatives, which fundamentally involve

an integral with a weakly singular kernel.

It is important to highlight that the first theoretical results for the inverse problem of determining co-

efficients in TFDEs were established in [12, 28, 34, 47, 50]. Inverse source problems for TFDEs have been

extensively studied under various initial, boundary, and over-determination conditions. The problem of

identifying a space-dependent source term from the final temperature distribution has been investigated

in [5,7,14,15,32,49], while the recovery of a space-dependent source term from total energy measurements

has been discussed in [10, 36, 37].

For inverse problems involving TFDEs, the identification of a time-dependent source term from tem-

perature measurements at a selected spatial point has been considered in [6, 25], while the determination

of a time-dependent source term using an integral-type over-determination condition has been explored

in [3, 4, 18, 21]. Additionally, the identification of initial and boundary data from final measurements in the

initial boundary value problem for the time-fractional heat equation has been examined in [2, 33] and [11],

respectively.

In the study of inverse source problems for TFDEs, several approaches have been explored in the liter-

ature, one of which is the generalized Fourier method. The works [2–5, 21, 34] investigate inverse source

problems from the perspective of spectral analysis, where the temperature distribution is expanded in terms

of root functions (eigenfunctions and associated functions) of a spectral problem with boundary conditions

1



relevant to the given problem. When the boundary conditions involve nonlocal characteristics, classical

self-adjoint eigenfunction expansion results cannot be directly applied to the auxiliary spectral problem, ne-

cessitating further investigation into eigenfunction expansions [41]. Non-self-adjoint operators commonly

arise in the modeling of dissipative processes [19, 48]. In many cases, nonlocal conditions provide a more

realistic framework for addressing physical problems than traditional local conditions, further motivating

the study of nonlocal boundary-value problems.

In this thesis, we are interested with the one-dimensional time-fractional diffusion equation

cDα,ρt u (x, t) = uxx (x, t) + F (x, t, u) , (x, t) ∈ ΩT , (1)

subject to the initial condition

u (x, 0) = ϕ (x) , 0 < x < 1, (2)

and the family of nonlocal boundary conditions


u (0, t) = u (1, t) ,

βux (0, t) = ux (1, t) ,

0 < t ≤ T, (3)

where−1 < β < 1 and ΩT := {(x, t) : 0 < x < 1, 0 < t ≤ T} for some fixed T > 0, cDα,ρt stands for left-sided

generalized Caputo fractional derivative of order 0 < α ≤ 1 and ρ > 0 is a real constant, F (x, t, u) is the

source term and ϕ (x) is the initial data. The fractional derivative in (1) is a generalization of left Caputo and

Caputo-Hadamard fractional derivatives, which can be obtained by taking ρ = 1 and ρ→ 0+, respectively.

The nonlocal boundary conditions (3) are regular but not strongly regular. For β = 0, the nonlocal boundary

conditions (3) are well-known and called in literature as Samarskii-Ionkin conditions, [20]. More general

boundary conditions of the type (3) have been considered in [17, 24, 41, 44].

Our goal in this thesis is to determine the source term F in two cases, together with u (x, t) under the

additional integral measurement:

∫ 1

0
u (x, t) dx = g (t) , t ∈ [0, T ] , (4)

where g belongs to AC [0, T ], the space of absolutely continuous functions. The integral condition (4) natu-
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rally arises and serves as supplementary information for identifying the source term. This type of condition

is applicable in various physical contexts, including chemical engineering, thermo-elasticity, heat conduc-

tion and diffusion processes, and fluid flow in porous media [21].

When the function F is given, the problem of finding u (x, t) from the initial boundary value problem

given by (1)-(3) is called the direct problem . The inverse problem given by (1)-(4) is formulated when the

function F is unknown. The following two inverse problems will be studied.

Inverse time-dependent source problem:

If we take the unknown function F to be F (x, t, u) = r (t) f (x, t), the inverse time-dependent source

problem is formulated as the problem of finding the pair {u (x, t) , r (t)} satisfying (2)-(4) and

cDα,ρt u (x, t) = uxx (x, t) + r (t) f (x, t) , (x, t) ∈ ΩT , (5)

where f (x, t) is a given function and r (t) is an unknown function.

The study of inverse source problems with same conditions has been considered earlier [22, 46]. In [22],

the inverse source problem (2)-(4) and (5) was studied using the time-fractional derivative in the Riemann-

Liouville sense. In [46], the same inverse source problem is studied for α = ρ = 1. The case 0 < α < 1 and

ρ 6= 1 is considered in our article [40] for the first time.

Inverse time-dependent coefficient problem:

If we take the unknown function F to be F (x, t, u) = −p (t)u (x, t) + S (x, t), the inverse problem is

formulated as the problem of finding the pair {u (x, t) , p (t)} satisfying (2), (4) and

D(α)
t u (x, t) = uxx (x, t)− p (t)u (x, t) + S (x, t) , (x, t) ∈ ΩT , (6)

where D(α)
t represent the left-conformable fractional derivative of order 0 < α ≤ 1 with respect to t, S (x, t)

is a given function and a (t) is an unknown function.

The rest of our thesis is organized as follows: in Chapter 1, we provide some preliminaries and basic

result needed for the forthcoming chapters.

In Chapter 2, we study a spectral problem for Sturm-Liouville operator with two-point boundary con-

ditions. We introduce some necessary properties regarding: regular boundary conditions and biorthogonal

systems in a Hilbert space. We make a detailed study of the completeness property and the fundamental

property of the system of root functions. Finally, we introduce the non-self-adjoint spectral problem that

3



we use in Chapter 3 and which is a key element of a paper published in an international journal [40].

In Chapter 3, we study the time-dependent source inverse problem (2)- (4) and (5). The peculiarity

of this inverse problem is that the system of eigenfunctions is not complete, but the system of eigenfunc-

tions and associated functions forms a basis in L2 (0, 1). Under certain natural conditions of regularity and

consistency of the input data, the existence, uniqueness, and continuous data dependence of the solution

are shown using the generalized Fourier method, Mittag-Leffler function estimates, and the Banach con-

traction principle. This chapter is a draft of an article titled "An inverse time-dependent source problem for a

time-fractional diffusion equation witn nonlocal boundary conditions" published in an international journal [40].

In Chapter 4, we study an inverse problem of determining the time-dependent coefficient in one-dimensional

time-fractional reaction-diffusion equation with nonlocal boundary and overdeterminarion conditions. The

time-fractional derivative is described in the conformable sense. Under some assumptions on the input

data, the well-posedness of this inverse time-dependent coefficient problem is shown by using Fourier’s

method and Banach’s contraction mapping principle.

In Chapter 5, we discus the finite difference approximation for the inverse time-dependent source prob-

lem (2)- (4) and (5).

In the last chapter, an efficient algorithm is proposed for solving the inverse time-dependent source

problem (2)- (4) and (5). This algorithm is based on shifted Legendre polynomials of the first kind. This

inverse problem is reduced to a linear system of first order differential equations and the Backward Euler

method is applied to solve this system. Finally, some numerical examples are presented to confirm the

reliability and effectiveness of this algorithm.

We conclude this thesis with a general conclusion and some perspectives.
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CHAPTER 1

PRELIMINARIES

I n this chapter, we introduce the mathematical tools essential for a thorough understanding of the thesis.

We begin with a review of key concepts from functional analysis and Fourier analysis, followed by

an introduction to fundamental definitions and basic properties related to fractional calculus and inverse

problems.

1.1 Basic results of Banach spaces

Definition 1.1. Let E be a vector space over R. A real-valued function ‖·‖ defined on E and satisfying the

following conditions is called a norm:

(1) ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0.

(2) ‖αx‖ = |α| ‖x‖ for all x ∈ E and α ∈ R.

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ R.

(E, ‖·‖), vector space E equipped with ‖·‖ is called a normed space.

Definition 1.2. A normed space E is called a Banach space, if its every Cauchy sequence is convergent.

1.1.1 Examples of Banach spaces

Example 1.1. Let a, b ∈ R with a < b.

1. The vector space C ([a, b]) of all real-valued continuous functions defined on [a, b] is a Banach space

with respect to the following norm:

‖f‖C([a,b]) := max
a≤x≤b

|f (x)| .

5



1.1. BASIC RESULTS OF BANACH SPACES 6

2. The vector space Cn ([a, b]) of all real-valued n time continuously differentiable functions defined on

[a, b] is a Banach space with respect to the following norm:

‖f‖Cn([a,b]) :=
n∑
k=0

∥∥∥f (k)
∥∥∥
C([a,b])

=
n∑
k=0

max
a≤x≤b

∣∣∣f (k) (x)
∣∣∣
C([a,b])

.

Definition 1.3. Let p ∈ R with 1 ≤ p < +∞, we denote Lp (a, b) the space of Lebesgue’s integrable functions

on [a, b] such that:

Lp (a, b) :=
{
u : [a, b]→ R, u measurable and ‖u‖Lp(a,b) <∞

}
,

with

‖u‖Lp(a,b) :=

(∫ b

a
|u (x)|p dx

)1/p

.

The following theorem summarizes some properties of the Lp spaces:

Theorem 1.1. Let 1 ≤ p < +∞. Then

1. The space Lp (a, b) endowed with the norm ‖·‖Lp(a,b) is a Banach space.

2. Holder’s inequality: Let 1 ≤ q < +∞ with 1
p + 1

q = 1, u ∈ Lp (a, b) and v ∈ Lq (a, b). Then, uv ∈ L1 (a, b)

and

∫ b

a
|u (x) v (x)| dx ≤

(∫ b

a
|u (x)|p dx

)1/p(∫ b

a
|v (x)|q dx

)1/q

.

Corollary 1.1. The space L2 (a, b) is a Hilbert space with the inner product

〈u, v〉L2(a,b) :=

∫ b

a
u (x) v (x) dx, ∀u, v ∈ L2 (a, b) .

Moreover, the following Cauchy-Schwarz inequality holds:

∣∣∣〈u, v〉L2(a,b)

∣∣∣ ≤ ‖u‖L2(a,b) ‖v‖L2(a,b) , ∀u, v ∈ L
2 (a, b) ,

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



1.2. FIXED POINT THEOREM 7

where

‖u‖L2(a,b) :=

(∫ b

a
|u (x)|2 dx

)1/2

.

Definition 1.4 ( [31, 1.1.5]). Let [a, b] be a finite interval. Then, AC [a, b] is the space of absolute continuous

functions on [a, b], defined by

AC [a, b] =

{
f : [a, b]→ R such that f (x) = c+

∫ x

a
ϕ (t) dt, ϕ ∈ L1 (a, b)

}
.

1.2 Fixed point theorem

Definition 1.5 (Contraction Mapping). Let (E, ‖·‖) be a Banach space. A mapping F : E → E is called a

Lipschitz continuous mapping if there exists a number L > 0 such that

‖F (x)− F (y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ E.

If 0 < L < 1, then F is called a contraction mapping. L is called the contractivity coefficient of F .

Definition 1.6 (Fixed point). Let F be a mapping on a Banach space (E, ‖·‖) into itself. u ∈ E is called a

fixed point if

F (u) = u.

Next, let us recall the well-known Fixed point contraction mapping theorem, for more see [57].

Theorem 1.2 (Fixed point contraction mapping theorem). Let (E, ‖·‖) be a Banach space and let F be a contrac-

tion mapping on E into itself with contractivity coefficient 0 < L < 1. Then there exists only one point u in E such

that F (u) = u, that F has a unique fixed point. Furthermore, for any u ∈ E the sequence

v, F (v) , F 2 (v) , . . . , F k (v) ,

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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converges to the point u; that is

lim
k→+∞

F k (v) = u.

1.3 Fractional calculus

This section provides a review of relevant definitions, notations in fractional calculus, and fundamental

results for the reader’s convenience.

Definition 1.7 ( [29]). Let [a, b] be a finite interval and f : [a, b]→ R be an integrable function. The general-

ized left fractional integral (in the sense of Katugampola) is defined by

(Iα,ρa ) f (t) =
1

Γ (α)

∫ t

a

(
tρ − sρ

ρ

)α−1

f (s)
ds

s1−ρ , 0 < α < 1, ρ > 0,

where Γ (·) is the Euler Gamma function defined by Γ (α) :=
∫ +∞

0 tα−1e−t dt.

Definition 1.8 ( [27]). Let ρ > 0 and f ∈ AC [a, b]. The left generalized Caputo fractional derivative of f of

order 0 < α < 1 is defined by

C
a Dα,ρf (t) =

1

Γ (1− α)

∫ t

a

(
tρ − sρ

ρ

)−α
f ′ (s) ds.

If α = ρ = 1, then c
aDα,ρf (t) = f ′ (t).

Theorem 1.3 ( [27]). Let f ∈ AC [a, b], 0 < α < 1 and ρ > 0. Then, we have:

Iα,ρa

(
C
a Dα,ρf (x)

)
= f (x)− f (a) .

Definition 1.9 ( [1]). Let f : [ 0,+∞ [ → R be a real valued function. The ρ-Laplace transform of f is defined

by

Lρ {f (t)} (s) =

∫ +∞

0
e
−s t

ρ

ρ f (t)
dt

t1−ρ
, ρ > 0,

for all values of s, the integral is valid.
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Theorem 1.4 ( [1]). If the ρ-Laplace transform of f : [ 0,+∞ [ → R exists for s > c1 and the ρ-Laplace transform

of g : [ 0,+∞ [ → R for s > c2. Then, for any constants a and b, the ρ-Laplace transform of af + bg exists and

Lρ {af (t) + bg (t)} (s) = aLρ {f (t)} (s) + bLρ {g (t)} (s) , for s > max {c1, c2} .

Definition 1.10 ( [26]). Let f and g be two functions which are piecewise continuous at each interval [0, T ].

We define the ρ-convolution of f and g by

(f ∗ g) (t) =

∫ t

0
f
[
(tρ − sρ)1/ρ

]
g (s)

ds

s1−ρ .

Theorem 1.5 ( [26]). Let f and g be two functions which are piecewise continuous at each interval [0, T ]. Then,

Lρ {(f ∗ g) (t)} = Lρ {f (t)}Lρ {g (t)} .

Theorem 1.6 ( [26]). Let α > 0 and f ∈ AC [0, T ]. Then,

Lρ
{(

C
0 Dα,ρf

)
(t)
}

(s) = sαLρ {f (t)} − sα−1f (0) .

Definition 1.11 ( [16]). The Mittag-Leffler function of two parameters is defined as

Eξ,η (x) :=

+∞∑
k=0

zk

Γ (ξk + η)
, z ∈ C, Re (ξ) > 0, Re (η) > 0.

For η = 1, the Mittag-Leffler function is reduced to classical one parameter Mittag-Leffler function, that is,

Eξ,1 (x) := Eξ (x) =

+∞∑
k=0

zk

Γ (ξk + 1)
.

Let eξ (t, µ) := Eξ
(
−µtξ

)
and eξ,η (t, µ) := tη−1Eξ,η

(
−µtξ

)
, where µ is a positive real number. The

Mittag-Leffler functions eξ (t, µ), eξ,η (t, µ) for 0 < ξ ≤ 1, 0 < ξ ≤ η ≤ 1, respectively, are completely

monotone functions, i.e.

(−1)n
∂n

∂tn
[eξ (t, µ)] ≥ 0 and (−1)n

∂n

∂tn
[eξ,η (t, µ)] ≥ 0, n ∈ N.
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Using Theorem 1.6 in [43], we can have the following estimate

|µeξ,ξ (t, µ)| ≤ Nµtξ

t (1 + µξ)
≤ N

t
≤ C, t ∈ ] ε, T ] , (1.1)

where ε > 0, N and C are some constants.

Lemma 1.1 ( [26]). Let ξ > 0 and
∣∣ λ
sξ

∣∣ < 1. Then, we have:

Lρ
{
eξ

(
tρ

ρ
, λ

)}
=

sα−1

sα + λ
and Lρ

{
eξ,ξ

(
tρ

ρ
, λ

)}
=

1

sα + λ
.

Theorem 1.7 ( [26]). The Cauchy problem


C
0 Dα,ρy (t) + λy (t) = f (t) , t > 0, 0 < α < 1, ρ > 0, λ ∈ R,

y (0) = y0, y0 ∈ R,

has the solution

y (t) = y0eα

(
tρ

ρ
, λ

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λ

)
f (s)

ds

s1−ρ .

1.4 Conformable fractional calculus

In this section, we start by recalling some concepts about conformable fractional calculus.

Definition 1.12 ( [1]). Let ϕ : [a,+∞ [ → R is a given function and α ∈ ] 0, 1 ]. Then, the left-conformable

fractional derivative of order α is defined by:

D(α)
t (ϕ) (t) := lim

ε→0

ϕ
(
t+ ε (t− a)1−α

)
− ϕ (t)

ε
. (1.2)

If D(α)
t (ϕ) (t) exists on ] a,+∞ [ , then D(α)

t (ϕ) (a) = lim
t→a+

D(α)
t (ϕ) (t). If a = 0, the definition (1.2) is intro-

duced by Khalil et al. [30]. In this case, we say that ϕ is α-differentiable.
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Propriety 1.1 ( [1, 30]). For f, g : [0,+∞ [ → R and 0 < α ≤ 1, we have the following properties:

If f is α-differentiable, then f is continuous. (1.3)

D(α) (af + bg) = aD(α) (f) + bD(α) (g) , a, b ∈ R. (1.4)

D(α)tk =


Γ(k+1)
Γ(k−n) t

k−α If k ∈ N and k > α,

0 If k ∈ N and k < α,

, (1.5)

where Γ (·) is the Euler Gamma function and n < α ≤ n+ 1.

D(α) (C) = 0 where C is a constant. (1.6)

D(α) (fg) = fD(α) (g) + gD(α) (f) . (1.7)

D(α)

(
f

g

)
=
gD(α) (f)− fD(α) (g)

g2
with g 6= 0. (1.8)

If f is n times differentiable on [a,+∞ [ then we have:

D(α) (f) (t) = (t− a)n+1−α f (n+1) (t) , n < α ≤ n+ 1. (1.9)

Let h (t) = (f ◦ g) (t) such that f and g are α-differentiable functions, then

D(α) (h) (t) = D(α) (f) (g (t)) · D(α) (g) (t) · gα−1 (t) . (1.10)

Definition 1.13 ( [30]). Let α ∈ ] 0, 1 ] and ϕ : [0,+∞ [ → R be real valued function. The left-conformable

fractional integral of ϕ of order α from zero to t is defined by:

Iαϕ (t) :=

∫ t

0
sα−1ϕ (s) ds, t ≥ 0, (1.11)

Lemma 1.2 ( [30]). Let ϕ : [0,+∞ [ → R is a given function and 0 < α ≤ 1. Then, for all t > 0, we have:

1. If ϕ is continuous, then D(α)
t [Iαϕ (t)] = ϕ (t).

2. If ϕ is α-differentiable, then Iα
[
D(α)
t (ϕ) (t)

]
= ϕ (t)− ϕ (0).

We introduce the following theorem, which is used further in this thesis.

Theorem 1.8. Let g : [0,+∞ [ → R is a continuous function and γ ∈ R. For all 0 < α ≤ 1, the Cauchy problem:


D(α)
t y (t) + γy (t) = g (t) ,

y (0) = y0.

(1.12)
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admits a unique solution given by

y (t) = y0 exp

(
−γ t

α

α

)
+

∫ t

0
exp

(
γ
sα − tα

α

)
sα−1g (s) ds. (1.13)

1.5 Legendre polynomials

Legendre polynomials, also known as Legendre functions, are a class of orthogonal polynomials that consti-

tute a special case of both ultra-spherical functions and Jacobi polynomials. These functions play a central

role in various physical and mathematical problems, particularly those formulated in spherical coordinates.

In such contexts, Legendre polynomials are essential for handling the angular components of functions,

especially through their appearance in spherical harmonics, which are expressed in terms of these polyno-

mials. There are two main types of Legendre polynomials.

In this thesis, we consider the first type of Legendre polynomials which is a solution of the following

differential equation, see [13]:

(
1− x2

)
y′′ (x)− 2xy′ (x) + n (n+ 1) y (x) = 0. (1.14)

Legendre polynomials of the first kind are denoted by Pn (x).

Definition 1.14 ( [13]). The Legendre polynomial of the first kind is a polynomial of degree n in x defined

by the Rodriguez formula:

Pn (x) =
1

n!2n
dn

dxn
[(
x2 − 1

)n]
, (1.15)

where x is a real or complex variable. Figure 1.1 shows the graphs of the first Legendre polynomials Pn (x).
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Figure 1.1: The Legendre polynomials Pn (x) at different values of n.

Proposition 1.1 ( [13]). The analytic form of the Legendre polynomial of the first kind is given by:

Pn (x) =
1

2n

[n2 ]∑
k=0

(−1)k (2n− 2k)!

k! (n− k)! (n− 2k)!
xn−2k, n ∈ N, (1.16)

where
[
n
2

]
is the integer part of n/2.

Proof. Using Newton’s binomial law and Rodriguez’s formula (1.14), we obtain:

Pn (x) =
1

n!2n
dn

dxn

[
n∑
k=0

(−1)k n!x2n−2k

k! (n− k)!

]

=
1

2n

n∑
k=0

(−1)k

k! (n− k)!

dnx2n−2k

dxn

=
1

2n

[n2 ]∑
k=0

(−1)k

k! (n− k)!

(2n− 2k)!

(n− 2k)!
xn−2k,

Since 2n− 2k in the combination must be greater than or equal to n, so 0 ≤ k ≤
[
n
2

]
.

Definition 1.15 ( [13]). The generating function of the Legendre polynomial Pn (x) is given by:

+∞∑
n=0

tnPn (x) =
1√

1− 2xt+ t2
. (1.17)
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Proposition 1.2 ( [13]). The Legendre polynomials of the first kind Pn (x) satisfy the following recurrence formula:


P0 (x) = 1,

P1 (x) = x

Pn+1 (x) = 2n+1
n+1 xPn (x)− n

n+1Pn−1 (x) , n ∈ N.

(1.18)

Proof. By differentiating with respect to t the generating function (1.17), we obtain:

n
+∞∑
n=1

tn−1Pn (x) =
x− t

(1− 2xt+ t2)
√

1− 2xt+ t2
.

Multiplying both sides by 1− 2xt+ t2 and according to (1.17), we get:

n
(
1− 2xt+ t2

) +∞∑
n=1

tn−1Pn (x) =
x− t√

1− 2xt+ t2
= (x− t)

+∞∑
n=0

tnPn (x) .

Let each t be raised to the power n:

(n+ 1)

+∞∑
n=0

tnPn+1 (x)− 2nx

+∞∑
n=1

tnPn (x) + (n− 1)

+∞∑
n=2

tnPn−1 (x) = x

+∞∑
n=0

tnPn (x)−
+∞∑
n=1

tnPn−1 (x) .

By equating the coefficient of tn, we obtain the recurrence formula (1.18).

Lemma 1.3 ( [13]). The Legendre polynomials of the first kind form an orthogonal set on the interval [−1, 1], such

that

〈Pn, Pm〉 =

∫ 1

−1
Pn (x)Pm (x) dx =


0 if n 6= m,

2
2n+1 if n = m.

(1.19)

Proof. 1. For n 6= m, Pn and Pm are solutions of the Legendre equation (1.11), then

d

dx

[(
1− x2

)
P ′n (x)

]
+ n (n+ 1)Pn (x) = 0, (1.20)

d

dx

[(
1− x2

)
P ′m (x)

]
+m (m+ 1)Pm (x) = 0. (1.21)

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Multiplying (1.20) by Pm (x) and (1.21) by Pn (x) and with the difference, we obtain:

Pm (x)

(
d

dx

[(
1− x2

)
P ′n (x)

]
+ n (n+ 1)Pn (x)

)
−Pn (x)

(
d

dx

[(
1− x2

)
P ′m (x)

]
+m (m+ 1)Pm (x)

)
= 0.

(1.22)

Integrating the equation (1.22) with respect to x between −1 and 1, we obtain:

∫ 1

−1
Pm (x)

(
d

dx

[(
1− x2

)
P ′n (x)

])
dx−

∫ 1

−1
Pn (x)

(
d

dx

[(
1− x2

)
P ′m (x)

])
dx

+ [n (n+ 1)−m (m+ 1)]

∫ 1

−1
Pn (x)Pm (x) dx = 0.

The proof is done using integration by parts.

2. For n = m and using the generating function (1.17), we obtain:

+∞∑
n=0

tnPn (x) =
1√

1− 2xt+ t2
, (1.23)

+∞∑
m=0

tmPm (x) =
1√

1− 2xt+ t2
. (1.24)

Multiplying (1.23) by (1.24), we obtain:

+∞∑
n=0

+∞∑
m=0

tn+mPn (x)Pm (x) =
1

1− 2xt+ t2
.

Integrating both sides with respect to x from −1 to 1, we get:

+∞∑
n=0

+∞∑
m=0

tn+m

(∫ 1

−1
Pn (x)Pm (x) dx

)
=

∫ 1

−1

dx

1− 2xt+ t2
.
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Since
∫ 1
−1 Pn (x)Pm (x) dx = 0 for n 6= m, then we have:

+∞∑
n=0

t2n
(∫ 1

−1
P 2
n (x) dx

)
=

∫ 1

−1

dx

1− 2xt+ t2

= − 1

2t

[
ln
(
1− 2xt+ t2

)]1
−1

=
1

t
[ln (1 + t)− ln (1− t)]

=
1

t

[
+∞∑
n=0

(−1)n
tn+1

n+ 1
+

+∞∑
n=0

tn+1

n+ 1

]

=
+∞∑
n=0

2

2n+ 1
t2n.

By equating the coefficients of t2n, we find:

∫ 1

−1
P 2
n (x) dx =

2

2n+ 1
,

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



CHAPTER 2

STURM-LIOUVILLE PROBLEM WITH

TWO-POINT BOUNDARY CONDITIONS

I n this chapter, we study a spectral problem for Sturm-Liouville operator with two-point boundary con-

ditions. We introduce some necessary properties regarding: regular boundary conditions and biorthog-

onal systems in a Hilbert space. We make a detailed study of the completeness property and the fundamen-

tal property of the system of root functions. Finally, we introduce the non-self-adjoint spectral problem that

we use in Chapter 3 and which is a key element of a paper published in an international journal [40].

2.1 Sturm-Liouville problem with two-point boundary conditions

We study the linear Sturm-Liouville problem consisting of the equation

u′′ (x) + λu (x) = 0, 0 < x < 1, λ ∈ C, (2.1)

and the linear two-point boundary conditions of the general form


B1 (u) = a11u

′ (0) + a12u
′ (1) + a13u (0) + a14u (1) = 0,

B2 (u) = a21u
′ (0) + a22u

′ (1) + a23u (0) + a24u (1) = 0,

(2.2)

where B1 (u) and B2 (u) are linearly independent forms with arbitrary complex-valued coefficients.

We consider the linear operator Lu = −u′′ defined on L2 (0, 1) with the domain

D (L) :=
{
u ∈ L2 (0, 1) : B1 (u) = B2 (u) = 0

}
.

Definition 2.1 ( [31, Page 193]). A number λ0 is called an eigenvalue of the operator L if there exists a

17
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function u0 ∈ D (L) with u0 6= 0 such that

Lu0 = λ0u
0. (2.3)

The function u0 is called the eigenfunction, of the operator L, for the eigenvalue λ0.

Definition 2.2 ( [31, Page 193]). A function um is called an associated function of the operator L of order m

(m = 1, 2, . . .) corresponding to the same eigenvalue λ0 and the eigenfunction u0 if satisfies the equation

Lum = λ0u
m + um−1. (2.4)

The set of functions
{
u0, u1, . . .

}
is called the eigen-and associated functions of the problem (2.1)-(2.2).

From the condition (2.2), we can form the matrix

A =

a11 a12 a13 a14

a21 a22 a23 a24


We denote by A (ij) the matrix composed of the i-th and j-th columns of A, and denote

Aij := detA (ij) =

∣∣∣∣∣∣∣
a1i a1j

a2i a2j

∣∣∣∣∣∣∣ , 1 ≤ i < j ≤ 4.

Then the general solution of equation (2.1) is given by:

u (x) = c1 cos (µx) + c2 sin (µx) , λ = µ2,

where c1 and c2 are arbitrary constants. Substituting the general solution into the boundary conditions (2.2)

for finding c1 and c2, we obtain the system of equations



(
−a12 sinµ+ a13

µ + a14
cosµ
µ

)
c1 +

(
a11 + a12 cosµ+ a14

sinµ
µ

)
c2 = 0,

(
−a22 sinµ+ a23

µ + a24
cosµ
µ

)
c1 +

(
a21 + a22 cosµ+ a24

sinµ
µ

)
c2 = 0.

(2.5)

Hence, the boundary value problem (2.1)-(2.2) has a nonzero solution if and only if the system (2.5) has a

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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nonzero solution. The eigenvalues of the boundary value problem (2.1)-(2.2) are the roots of the character-

istic determinant

∆ (µ) =

∣∣∣∣∣∣∣
−a12 sinµ+ a13

µ + a14
cosµ
µ a11 + a12 cosµ+ a14

sinµ
µ

−a22 sinµ+ a23
µ + a24

cosµ
µ a21 + a22 cosµ+ a24

sinµ
µ

∣∣∣∣∣∣∣
Simple calculations show that

∆ (µ) = −A13 −A24 +A34
sinµ

µ
− (A23 +A14) cosµ+A12µ sinµ. (2.6)

Definition 2.3. Two-point boundary conditions (2.2) under one of three conditions

(1)A12 6= 0,

(2)A12 = 0, A14 +A23 6= 0,

(3)A12 = 0, A14 +A23 = 0, A34 6= 0.

(2.7)

are called the non-degenerate boundary conditions. Accordingly, if

A12 = A14 +A23 = A34 = 0, (2.8)

then the two-point boundary conditions (2.2) are called the degenerate boundary conditions.

Lemma 2.1 ( [31]). Let the two-point boundary conditions (2.2) be non-degenerate, that is, one of the three conditions

(2.7) holds. Then, the problem (2.1)-(2.2) has an infinite countable number of eigenvalues.

Example 2.1 ( [31, page 196]). Consider the Sturm-Liouville problem


−u′′ (x) = λu (x) , 0 < x < 1,

u′ (1)− αu (1) = 0, u (0) = 0,

(2.9)

where α ∈ C is a fixed number. From the boundary conditions of the Sturm-Liouville problem (2.9), we

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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have the matrix

A =

0 1 0 −α

0 0 1 0


It is easy to see that for all α the case (2) from (2.7) holds: A12 = 0, A14 + A23 = 1. Therefore, the boundary

conditions of the Sturm-Liouville problem (2.9) are non-degenerate.

Example 2.2 ( [31, page 195]). We consider the Sturm-Liouville problem


−u′′ (x) = λu (x) , 0 < x < 1,

u′ (0) + αu′ (1) = 0, u (0)− αu (1) = 0,

(2.10)

where α ∈ C is a fixed number. From the boundary conditions of the Sturm-Liouville problem (2.10), we

have the matrix

A =

1 α 0 0

0 0 1 −α


It is easy to see that for all α, (2.8) holds: A12 = A14 + A23 = A34 = 0. Therefore, the boundary conditions

of the Sturm-Liouville problem (2.10) are degenerate. From (2.10), we have

∆ (µ) = −A13 −A24 = −1 + α2.

Then we obtain that for α2 6= 1 the Sturm-Liouville problem (2.10) does not have eigenvalues, and for

α2 = 1 each number λ ∈ C is an eigenvalue of this problem.

2.2 Regular boundary conditions

In this section, we present the concept of regular boundary conditions. This concept was first introduced

by G. D. Birkhoff in his works in 1908 in [9], for n-th order general ordinary differential operators

u(n) (x) + q2 (x)u(n−2) (x) + . . .+ qn−1 (x)u′ (x) + qn (x)u (x) = λu (x) , 0 < x < 1, (2.11)
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with n linearly independent boundary conditions of the general form

Bj (u) =
n−1∑
s=0

(
ajsu

(s) (0) + bjsu
(s) (1)

)
= 0, j = 1, . . . , n,

Rewrite the limit forms Bj (u) by the form

aju
(kj) (0) + bju

(kj) (1) +

kj−1∑
s=0

(
ajsu

(s) (0) + bjsu
(s) (1)

)
= 0, j = 1, . . . , n, (2.12)

where |aj |+ |bj | > 0, n− 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn, kj > kj+2.

Definition 2.4 ( [31, page 197 ]). We denote by εj = exp
(
i2πj
n

)
, j = 1, . . . , n, the roots of order n from 1.

+ In the odd case n = 2m− 1, the "normed" boundary conditions (2.12) are called the regular boundary

conditions if the numbers θ0 and θ1 defined by the equality

θ0 + θ1s =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1ε
k1
1 . . . a1ε

k1
m−1 (a1 + sb1) εk1m b1ε

k1
m+1 . . . b1ε

k1
n

a2ε
k2
1 . . . a2ε

k2
m−1 (a2 + sb2) εk2m b2ε

k2
m+1 . . . b2ε

k2
n

. . . . . . . . . . . . . . . . . . . . .

anε
kn
1 . . . anε

kn
m−1 (an + sbn) εknm bnε

kn
m+1 . . . bnε

kn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
are different from zero.

+ In the even case n = 2m, the "normed" boundary conditions (2.12) are called the regular boundary

conditions if the numbers θ1 and θ2 defined by the equality

θ0 + θ1s+
θ2

s
+ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1ε
k1
1 . . . a1ε

k1
m−1 (a1 + sb1) εk1m

(
a1 + b1

s

)
εk1m+1 b1ε

k1
m+2 . . . b1ε

k1
n

a2ε
k2
1 . . . a2ε

k2
m−1 (a2 + sb2) εk2m

(
a2 + b2

s

)
εk2m+1 b2ε

k2
m+2 . . . b2ε

k2
n

. . . . . . . . . . . . . . . . . . . . . . . .

anε
kn
1 . . . anε

kn
m−1 (an + sbn) εknm

(
an + bn

s

)
εknm+1 bnε

kn
m+2 . . . bnε

kn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
are different from zero.

An important subclass of the regular boundary conditions, the so-called strengthened regular boundary

conditions was defined.
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Definition 2.5. + In the odd case n = 2m − 1 of equation (2.11) all the regular boundary conditions

are strengthened regular.

+ In the even case n = 2m of equation (2.11), we have

1. If θ2
0 − 4θ1θ2 6= 0, the regular boundary conditions (2.12) are called strengthened regular.

2. If θ2
0 − 4θ1θ2 = 0, the regular boundary conditions (2.12) are not strengthened regular.

For the case of the Sturm-Liouville problem (2.1)-(2.2), we have n = 2, m = 1, ε1 = −1 and ε2 = 1.

Let first A12 6= 0. In this case the boundary conditions (2.2) have the normed form. we have a1 = a11,

b1 = a12, a2 = a21, b2 = a22, k1 = k2 = 1. We calculate the determinant

θ0 + θ1s+
θ2

s
=

∣∣∣∣∣∣∣
(a1 + sb1) εk11

(
a1 + b1

s

)
εk12

(a2 + sb2) εk21

(
a2 + b2

s

)
εk22

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
− (a11 + sa12)

(
a11 + a12

s

)
− (a21 + sa22)

(
a21 + a22

s

)
∣∣∣∣∣∣∣ = A12

(
s− 1

s

)
.

Then θ0 = 0, θ1 = A12, θ2 = −A12. In this case the boundary conditions (2.2) are regular. Since θ2
0 − 4θ1θ2 =

4A2
12 6= 0, in this case the conditions are strengthened regular.

Let nowA12 = 0, and |a11|+ |a12| > 0. Then the boundary conditions (2.2) can be reduced to the normed

form 
a11u

′ (0) + a12u
′ (1) + a13u (0) + a14u (1) = 0,

a23u (0) + a24u (1) = 0.

(2.13)

we have a1 = a11, b1 = a12, a2 = a23, b2 = a24, k1 = 1, k2 = 0. We calculate the determinant

θ0 + θ1s+
θ2

s
=

∣∣∣∣∣∣∣
− (a11 + sa12) a11 + a12

s

a23 + sa24 a23 + a24
s

∣∣∣∣∣∣∣ = −
(
s+

1

s

)
(A14 +A23)− 2 (A13 +A24) .

Then, θ1 = θ2 = − (A14 +A23), θ0 = −2 (A13 +A24). That is, in this case the boundary conditions (2.13) are

regular under the additional condition A14 + A23 6= 0. The condition of the strengthened regularity will be

written in the form:

θ2
0 − 4θ1θ2 = (A13 +A24)2 − (A14 +A23)2 6= 0.

Consider the remaining case A12 = 0, with a11 = a12 = 0. Then the boundary conditions (2.2) can be
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reduced to the normed form 
a13u (0) + a14u (1) = 0,

a23u (0) + a24u (1) = 0.

(2.14)

We have a1 = a13, b1 = a14, a2 = a23, b2 = a24, k1 = k2 = 0. We calculate the determinant

θ0 + θ1s+
θ2

s
=

∣∣∣∣∣∣∣
a13 + sa14 a13 + a14

s

a23 + sa24 a23 + a24
s

∣∣∣∣∣∣∣ = A34

(
1

s
− s
)
.

then, θ2 = −θ1 = A34, θ0 = 0. The inequality A34 6= 0 is satisfied in view of the linear independence

of the boundary conditions (2.14). Hence, in this case the boundary conditions (2.14) are regular. Since

θ2
0 − 4θ1θ2 = 4A2

34, these boundary conditions are strengthened regular.

Theorem 2.1 ( [31, Theorem 3.105 ]). The boundary conditions (2.2) are regular in the following three cases:

(1) A12 6= 0,

(2) A12 = 0, A14 +A23 6= 0,

(3) A12 = A13 = A14 = A23 = A24 = 0, A34 6= 0.

(2.15)

Here, the boundary conditions will be strengthened regular in the cases (1) and (3), and in the case (2) under the

additional condition

A13 +A24 6= ± (A14 +A23) . (2.16)

Corollary 2.1 ( [31, Corollary 3.106]). 1. For the case of the Sturm-Liouville equation (2.1), all the regular bound-

ary conditions (2.2) are non-degenerate.

2. Here, the boundary conditions can be non-degenerate and simultaneously irregular in the case when

A12 = A14 +A23 = 0, A34 6= 0, and |A13|+ |A14|+ |A23|+ |A24| > 0
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Example 2.3 ( [31, Example 3.107]). Consider the spectral problem


−u′′ (x) = λu (x) , 0 < x < 1,

u′ (0)− αu (1) = 0, u (0) = 0,

(2.17)

where α ∈ C is a fixed number. It is easy to see that for all α 6= 0 in case (3) from (2.7) holds: A12 = 0,

A14 +A23 = 0, A34 = α 6= 0. Therefore, the boundary conditions of the problem (2.17) are non-degenerate.

Here, the determinant A13 = 1 is not equal to zero since condition (3) from (2.15) does not hold. Hence,

the boundary conditions of the problem (2.17) are not regular.

For convenience of use we reformulate Theorem 2.1 in terms of coefficients of the boundary conditions

(2.2).

Theorem 2.2 ( [31, Theorem 3.108]). The boundary conditions (2.2) are regular, if one of the following three condi-

tions holds:

(1) a11a22 − a12a21 6= 0,

(2) a11a22 − a12a21 = 0, |a11|+ |a12| > 0, a11a24 + a12a23 6= 0,

(3) a11 = a12 = a21 = a22 = 0, a13a24 − a14a23 6= 0.

(2.18)

The regular boundary conditions are strengthened regular in the first and third cases, and in the second case under

the additional condition

a11a23 + a12a24 6= a11a24 + a12a23 (2.19)

2.3 Regular but not strengthened regular boundary conditions

From Theorem 2.1 and (2.19), the boundary conditions (2.2) are called regular but not strengthened regular

boundary conditions, if the following conditions are hold:

A12 = 0, A14 +A23 6= 0, A13 +A24 = ± (A14 +A23) .
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From Theorem 2.2, the regular but not strengthened regular boundary conditions (2.2) can be written in the

form 
a11u

′ (0) + a12u
′ (1) + a13u (0) + a14u (1) = 0,

a23u (0) + a24u (1) = 0,

(2.20)

when |a11|+ |a22| > 0 and two conditions

a11a24 + a12a23 6= 0, (2.21)

a11a23 + a12a24 = ± (a11a24 + a12a23) , (2.22)

simultaneously hold. Indeed, condition (2.22) can be written in the form:

(a11 ± a12) (a23 ± a24) = 0.

Theorem 2.3 ( [42]). If the boundary conditions (2.2) are regular but not strengthened regular, they can be always

reduced to the form (2.20) (with |a11|+ |a22| > 0) of one of the following four types:

(1) a11 = a12, a23 6= −a24;

(2) a11 = −a12, a23 6= a24;

(3) a23 = a24, a11 6= −a12;

(4) a23 = −a24, a11 6= a12

(2.23)

Corollary 2.2 ( [31, Corollary 3.110]). All regular, but not strengthened regular boundary conditions can be reduced
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to one of the four forms:


u′ (0)− u′ (1) + au (0) + bu (1) = 0,

u (0) + αu (1) = 0,


u′ (0) + u′ (1) + au (0) + bu (1) = 0,

u (0)− αu (1) = 0,


u′ (0) + αu′ (1) + au (0) + bu (1) = 0,

u (0)− u (1) = 0,


u′ (0)− αu′ (1) + au (0) + bu (1) = 0,

u (0) + u (1) = 0,

where α 6= 1, and the coefficients a and b can be arbitrary. For α = 1, these boundary conditions are degenerate and

consequently, are not regular.

2.4 Biorthogonal systems in Hilbert spaces

Definition 2.6. Let H be a Hilbert space. Two systems of elements (xk) and (yk) are said to be biorthogonal

systems in H if the relation

〈xi, yj〉 = δij =


1, if i = j,

0, if i 6= j,

(2.24)

holds for all values of the indices i and j. Here δij is the Kronecker delta.

Definition 2.7. A system of elements of a Hilbert space H is said to be a complete system if any vector

orthogonal to all vectors of this system is equal to zero.

Definition 2.8. A system of elements of a Hilbert space H is said to be a Riesz basis in H if there exist two

constants m,M > 0 such that for any f ∈ H , the following inequality holds:

m ‖f‖2H ≤
+∞∑
i=0

f2
i ≤M ‖f‖

2
H (2.25)

2.5 A non-self-adjoint boundary value problem

In this section we consider main properties of eigen- and associated functions of a non-self-adjoint bound-

ary value problem for a second-order ordinary differential operator.
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In L2 (0, 1), we consider the operator L given by:

LX = −X ′′ (x) = λX (x) , 0 < x < 1, (2.26)

and nonlocal boundary conditions:


B1 (X) = X (0)−X (1) = 0,

B2 (X) = βX ′ (0)−X ′ (1) = 0, |β| < 1.

(2.27)

where B1 (X) and B2 (X) are linearly independent forms. It is easy to justify that the operator L is a linear

operator on L2 (0, 1) defined by (2.26) with the domain

D (L) =
{
X ∈ L2 (0, 1) : B1 (X) = B2 (X) = 0

}
.

Remark 2.1. From case (3) in Theorem 2.3, the boundary conditions in (2.27) are regular but not strength-

ened regular.

Proposition 2.1. The adjoint problem of the boundary value problem (2.26)-(2.27) is given by:

L∗Y = −Y ′′ (x) = λY (x) , 0 < x < 1, (2.28)

with nonlocal boundary conditions


B∗1 (Y ) = Y (0)− βY (1) = 0, |β| < 1,

B∗2 (Y ) = Y ′ (x)− Y ′ (1) = 0.

(2.29)

Proof. The operator L∗ defined by (2.28) is a linear operator on L2 (0, 1) with the domain

D (L∗) =
{
X ∈ L2 (0, 1) : B∗1 (X) = B∗2 (X) = 0

}
.
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Let X ∈ D (L) and Y ∈ D (L∗), by integration by parts twice, we obtain

〈LX,Y 〉 = −
∫ 1

0
X ′′ (x)Y (x) dx

= X ′ (0) [Y (0)− βY (1)] +X (0)
[
Y ′ (1)− Y ′ (0)

]
−
∫ 1

0
X (x)Y ′′ (x) dx

= 〈X,L∗Y 〉 ,

then, L∗ is the adjoint operator of the operator L. Since, the problem (2.28)-(2.29) is the adjoint problem of

the problem (2.26)-(2.27).

Remark 2.2. Obviously D (L) 6= D (L∗) then, the spectral problems (2.26)-(2.27) and (2.28)-(2.29) are not

self-adjoint.

Proposition 2.2. We have

1. The two spectral problem (2.26)-(2.27) and (2.28)-(2.29) have the same double eigenvalues λk = (2πk)2 (except

for the first λ0 = 0). The set of eigenfunctions of the problems (2.26)-(2.27) and (2.28)-(2.29) are the following:

X0 (x) = b0; X2k−1 (x) = Ak cos (2πkx) , k ∈ N∗, b0, Ak ∈ R, (2.30)

Y0 (x) = a′0

(
x+

β

1− β

)
; Y2k (x) = B′k sin (2πkx) , k ∈ N∗, a′0, B′k ∈ R. (2.31)

2. The sets of eigenfunctions {X0 (x) , X2k−1 (x)} and {Y0 (x) , Y2k (x)}, k ∈ N∗, are not complete in the space

L2 (0, 1).

Proof. 1. We have:

(a) If λ = 0 in (2.26) and (2.28), then X0 (x) = a0x+ b0 and Y0 (x) = a′0x+ b′0. From (2.27), we obtain:


X (0) = X (1) ,

βX ′ (0) = X ′ (1)

⇔


b0 = a0 + b0

βa0 = βa0

⇔ a0 = 0,
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then X0 (0) = b0. On other hand,


Y (0) = βY (1) ,

Y ′ (0) = Y ′ (1)

⇔


b′0 = β (a′0 + b′0)

a′0 = a′0

⇔ b′0 =
βa′0

1− β
,

then, Y0 (x) = a′0

(
x+ β

1−β

)
.

(b) If λ = µ2, the general solutions of equations (2.26) and (2.28) are given by :

X2k−1 (x) = Ak cos (µx) +Bk sin (µx) , Y2k (x) = A′k cos (µx) +B′k sin (µx) , Ak, Bk, A
′
k, B

′
k ∈ R.

From boundary conditions (2.27), we have:


X2k−1 (0) = X2k−1 (1) ,

βX ′2k−1 (0) = X ′2k−1 (1) .

⇔


Ak (cosµ− 1) +Bk sinµ = 0,

−Ak sinµ+Bk (cosµ− β) = 0.

(2.32)

The system (2.32) admits a non-trivial solution, then the determinant of this system is zero.

Therefore, we have:

∆ (µ) =

∣∣∣∣∣∣∣
cosµ− 1 sinµ

− sinµ cosµ− β

∣∣∣∣∣∣∣ = 2 (β + 1) sin2 (µ/2) = 0⇔ µk = 2πk, k ∈ N∗,

then λk = (2πk)2 are multiple eigenvalues and From (2.32), we obtain Bk = 0. Then, X2k−1 =

Ak cos (2πkx) are eigenfunctions.

From boundary conditions (2.29), we have:


Y2k (0) = βY2k (1) ,

Y ′2k (0) = Y ′2k (1) .

⇔


A′k (β cosµ− 1) +B′k sinµ = 0,

−A′k sinµ+B′k (cosµ− 1) = 0.

(2.33)

The system (2.33) admits a non-trivial solution, then the determinant of this system is zero.
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Therefore, we have:

∆ (µ) =

∣∣∣∣∣∣∣
β cosµ− 1 sinµ

− sinµ cosµ− 1

∣∣∣∣∣∣∣ = 2 (2− (β − 1) cosµ) sin2 (µ/2) = 0⇔ µk = 2πk, k ∈ N,

then λk = (2πk)2 are multiple eigenvalues and from (2.33), we obtain A′k = 0. Then, Y2k =

B′k sin (2πkx) are eigenfunctions.

(c) If λ = −µ2, with µ 6= 0, the general solutions of equations (2.26) and (2.28) are given by :

X2k (x) = Cke
µx +Dke

−µx, Y2k−1 = C ′ke
µx +D′ke

−µx, Ck, Dk, C
′
k, D

′
k ∈ R.

From boundary conditions (2.27), we have:


X2k (0) = X2k (1) ,

βX ′2k (0) = X ′2k (1) .

⇔


(eµ − 1)Ck + (e−µ − 1)Dk = 0,

(eµ − β)Ck + (β − e−µ)Dk = 0.

(2.34)

The system (2.34) admits a non-trivial solution, then the determinant of this system is zero.

Therefore, we have:

∆ (µ) =

∣∣∣∣∣∣∣
eµ − 1 e−µ − 1

eµ − β β − e−µ

∣∣∣∣∣∣∣ = 2 (β + 1) (coshµ− 1) = 0,

then, µ = 0 (impossible).

From boundary conditions (2.29), we have:


Y2k−1 (0) = βY2k−1 (1) ,

Y ′2k−1 (0) = Y ′2k−1 (1) .

⇔


(βeµ − 1)C ′k + (βe−µ − 1)D′k = 0,

(eµ − 1)C ′k + (1− e−µ)D′k = 0.

(2.35)

The system (2.35) admits a non-trivial solution, then the determinant of this system is zero.

Therefore, we have:

∆ (µ) =

∣∣∣∣∣∣∣
βeµ − 1 βe−µ − 1

eµ − 1 1− e−µ

∣∣∣∣∣∣∣ = 2 (β + 1) (coshµ− 1) = 0,
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then, µ = 0 (impossible).

2. Let f (x) = 2 sin (2πkx) and g (x) = 2 cos (2πkx). We have:

〈X2k−1 (x) , f (x)〉 =

∫ 1

0
2ak cos (2πkx) sin (2πkx) dx =

∫ 1

0
ak sin (4πkx) dx =

ak
4πk

[cos (4πkx)]10 = 0,

and

〈Y2k (x) , g (x)〉 =

∫ 1

0
2a′k sin (2πkx) cos (2πkx) dx =

∫ 1

0
a′k sin (4πkx) dx =

a′k
4πk

[cos (4πk)]10 = 0,

then, sets of eigenfunctions {X0, X2k−1 (x)} and {Y0 (x) , Y2k (x)}, k ∈ N∗, are not complete in L2 (0, 1).

To make the set {X0 (x) , X2k−1 (x)}, k ∈ N∗, a complete set on L2 (0, 1), we have to look for the associ-

ated eigenfunctions X2k (x). According to Definition 2.2, we have to solve the following spectral problem:


−X ′′2k (x) = λkX2k (x) +X2k−1 (x) , 0 < x < 1,

X2k (0) = X2k (1) , βX ′2k (0) = X ′2k (1) .

(2.36)

The solution of spectral problem (2.36) is given by:

X2k (x) =

(
Ck +

Ak
16π2k2

)
cos (2πkx) +

Ak
4πk

(
1

β − 1
+ x

)
sin (2πkx) ,

where Ak, Ck ∈ R and k ∈ N∗. Similarly for the set {Y0 (x) , Y2k (x)}, k ∈ N∗, we have to solve the following

spectral problem:


−Y ′′2k−1 (x) = λkY2k−1 (x) + Y2k (x) , 0 < x < 1,

Y2k−1 (0) = βY2k−1 (1) , Y ′2k−1 (0) = Y ′2k−1 (1) .

(2.37)

The solution of spectral problem (2.37) is given by:

Y2k−1 (x) =
Bk
4πk

(
β

β − 1
− x
)

cos (2πkx) +

(
Dk +

Bk
16π2k2

)
sin (2πkx) ,

where Bk, Dk ∈ R and k ∈ N∗.
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To show that the two systems of functions {X0 (x) , X2k−1 (x) , X2k (x)} and {Y0 (x) , Y2k−1 (x) , Y2k (x)}

are biorthogonal, we must explicitly determine the coefficients b0, a0, Ak, Bk, Ck and Dk. According the

biorthogonality condition:

〈X0, Y0〉 = 1, 〈X2k−1, Y2k−1〉 = 1, 〈X2k, Y2k〉 = 1, 〈X2k, Y2k−1〉 = 0. (2.38)

From the first condition we get

1 = 〈X0, Y0〉 = b0a
′
0

∫ 1

0

(
x+

β

1− β

)
dx = b0a

′
0

[
x2

2
+

βx

1− β

]1

0

= b0a
′
0

(1 + β)

2 (1− β)
.

Then, b0 = 2 and a′0 = 1−β
1+β . In this case, we have:

X0 (x) = 2, Y0 (x) = ax+ b, (2.39)

where a = 1−β
1+β and b = β

1+β .

We use the second condition from (2.38):

1 = 〈X2k−1, Y2k−1〉 =
AkBk
4πk

∫ 1

0

(
β

β − 1
+ x

)
cos2 (2πkx) dx+

Ak
2

(
Dk +

Bk
16π2k2

)∫ 1

0
sin (4πkx) dx

=
AkBk
8πk

∫ 1

0

(
β

β − 1
− x
)
dx+

AkBk
8πk

∫ 1

0

(
β

β − 1
− x
)

cos (4πkx) dx

=
AkBk
8πk

[
βx

β − 1
− x2

2

]1

0

+
AkBk
8πk

[(
β

β − 1
− x
)

sin (4πkx)

4πk

∣∣∣∣1
0

+

∫ 1

0

sin (4πkx)

4πk
dx

]

=
AkBk (β + 1)

16πk (β − 1)
.

Then, Ak = 4 and Bk = 4πk(β−1)
1+β . In this case, we have:

X2k−1 (x) = 4 cos (2πkx) , Y2k−1 (x) = (ax+ b) cos (2πkx) +
(
Dk −

a

4πk

)
sin (2πkx) , (2.40)
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where Dk ∈ R. We use the third condition from (2.38):

1 = 〈X2k, Y2k〉 =
B′k
2

(
Ck +

Ak
16π2k2

)∫ 1

0
sin (4πkx) dx+

AkB
′
k

4πk

∫ 1

0

(
1

β − 1
+ x

)
sin2 (2πkx) dx

=
AkB

′
k

8πk

∫ 1

0

(
1

β − 1
+ x

)
dx−

AkB
′
k

8πk

∫ 1

0

(
1

β − 1
+ x

)
cos (4πkx) dx

=
AkB

′
k

8πk

[
x

β − 1
+
x2

2

]1

0

=
AkB

′
k

16πk

β + 1

β − 1
.

Then, B′k = 1 and Ak = 16πk(β−1)
β+1 . In this case, we have:

X2k (x) =
(
Ck −

a

πk

)
cos (2πkx) + 4 (1− b− ax) sin (2πkx) , Y2k (x) = sin (2πkx) , (2.41)

where Ck ∈ R. We use the fourth condition from (2.38), and from (2.40), (2.41) we have:

0 = 〈X2k, Y2k−1〉 =
(
Ck −

a

πk

)∫ 1

0
(ax+ b) cos2 (2πkx) dx+ 4

(
Dk −

a

4πk

)∫ 1

0
(1− b− ax) sin2 (2πkx) dx

=

(
Ck
2
− a

2πk

)[∫ 1

0
(ax+ b) dx+

∫ 1

0
(ax+ b) cos (4πkx) dx

]
+ 2

(
Dk −

a

4πk

)[∫ 1

0
(1− b− ax) dx−

∫ 1

0
(1− b− ax) cos (4πkx) dx

]
= a

(
Ck
2
− a

2πk

)
− 2a

(
Dk −

a

4πk

)
= a

(
Ck
2
− 2Dk

)
.

Then, we have:

Ck = 4Dk. (2.42)

Thus, from (2.39)-(2.42), the system given by:

X0 (x) = 2, X2k−1 (x) = 4 cos (2πkx) , X2k (x) = 4
(
Dk −

a

4πk

)
cos (2πkx) + 4 (1− b− ax) sin (2πkx)

(2.43)
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will be biorthogonal to the system

Y0 (x) = ax+ b, Y2k−1 (x) = (ax+ b) cos (2πkx) +
(
Dk −

a

4πk

)
sin (2πkx) , Y2k (x) = sin (2πkx) . (2.44)

We calculate the norms of elements of the biorthogonal systems (2.43) and (2.44).

‖X0‖ = 2, ‖X2k−1‖ = 2
√

2, ‖X2k‖2 = 8
(
Dk −

a

4πk

)2
+

4

πka

(
Dk −

a

4πk

)
− 8

3a

(
2b3 − 3b2 + 3b− 1

)
,

‖Y0‖ =

√
a2 + 3b2 + 3ab

3
, ‖Y2k−1‖2 =

1

2

(
Dk −

a

4πk

)2
− a

4πk

(
Dk −

a

4πk

)
+

a2

8π2k2
+

1

6

(
a2 + 3ab+ 3b2

)
,

‖Y2k‖ =

√
2

2
.

Using [31, Theorem 3.151], we check for which of the constants Dk the necessary and sufficient condition of

the unconditional basis holds.

If the sequence (Dk) is unbounded. Then,

lim
k→+∞

‖X2k‖ ‖Y2k‖ = +∞, lim
k→+∞

‖X2k−1‖ ‖Y2k−1‖ = +∞.

Hence, the requirement of the criterion in [44, Theorem 3.151] for an unconditional basis does not hold.

Therefore, the systems (2.43) and (2.44) does not give an unconditional basis in L2 (0, 1).

In the case when the sequence Dk is bounded, we get

lim
k→+∞

‖X2k‖ ‖Y2k‖ < +∞, lim
k→+∞

‖X2k−1‖ ‖Y2k−1‖ < +∞.

Then, we obtain the following result for the systems (2.43) and (2.44).

Lemma 2.2. If Dk = a
4πk with k ∈ N∗, then the systems

X0 (x) = 2, X2k−1 (x) = 4 cos (2πkx) , X2k = 4 (1− b− ax) sin (2πkx) , (2.45)

and

Y0 = ax+ b, Y2k−1 (x) = (ax+ b) cos (2πkx) , Y2k (x) = sin (2πkx) , (2.46)

are bi-orthonormal in L2 (0, 1).
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Proof. It is easy to show that the systems (2.45) and (2.46) form a bi-orthogonal system on [0, 1], i.e.

〈Xi, Yj〉 =

∫ 1

0
Xi (x)Yj (x) dx =


1 if i = j,

0 if i 6= j.

Lemma 2.3. The systems of functions (2.45) and (2.46) are complete in L2 (0, 1).

Proof. Let f ∈ L2 (0, 1) be orthogonal with the system of functions (2.45). f (x) can be presented by the

series

f (x) =
+∞∑
n=1

Bn sin (2πnx) , (2.47)

which converges in L2 (0, 1). Since f (x) is orthogonal with (2.45), we have

0 =

∫ 1

0
4 (1− b− ax) f (x) sin (2πkx) dx

=

+∞∑
n=1

Bn

∫ 1

0
4 (1− b− ax) sin (2πkx) sin (2πnx) dx = Bk, k ∈ N∗.

From (2.47), f (x) = 0. Then, (2.45) is complete in L2 (0, 1).

The following theorem is valid:

Theorem 2.4. The system of functions (2.45) forms a Riesz basis in L2 (0, 1).

Proof. From [31, page 211], the system (2.45) is a Riesz basis in L2 (0, 1) if there exist two constantsm,M > 0

such that for any f ∈ L2 (0, 1), the following inequality holds:

m ‖f‖2L2(0,1) ≤
+∞∑
i=0

f2
i ≤M ‖f‖

2
L2(0,1) ,

where

fi = 〈f, Yi〉 =

∫ 1

0
f (x)Yi (x) dx and f̄i = 〈f,Xi〉 =

∫ 1

0
f (x)Xi (x) dx. (2.48)
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For i = 0, and using the Cauchy-Schwarz inequality we have

f2
0 = 〈f, Y0〉2 =

[∫ 1

0
Y0 (x) f (x) dx

]2

≤
∫ 1

0
Y 2

0 (x) dx

∫ 1

0
f2 (x) dx

≤ 1 + β + β2

3 (1 + β)2 ‖f‖
2
L2(0,1) .

(2.49)

For i = 2k − 1, and using the Bessel inequality we obtain:

+∞∑
k=1

f2
2k−1 =

+∞∑
k=1

〈f, Y2k−1〉2 ≤ ‖Y2k−1‖2L2(0,1) ‖f‖
2
L2(0,1)

≤ 7− 11β + 7β2

6 (1 + β)2 ‖f‖2L2(0,1) .

(2.50)

For i = 2k, and using the Bessel inequality we obtain:

+∞∑
k=1

f2
2k =

+∞∑
k=1

〈f, Y2k〉2 ≤ ‖Y2k‖2L2(0,1) ‖f‖
2
L2(0,1) ≤

1

2
‖f‖2L2(0,1) . (2.51)

From (2.49)-(2.51), we have

+∞∑
i=0

f2
i = f2

0 +
+∞∑
k=1

f2
2k−1 +

+∞∑
k=1

f2
2k ≤M ‖f‖

2
L2(0,1) , (2.52)

where M = 4−β+4β2

2(1+β)2
.

On the other hand we have:

f̄2
0 = 〈f,X0〉2 =

[∫ 1

0
X0 (x) f (x) dx

]2

≤ 4 ‖f‖2L2(0,1) . (2.53)

Using the Bessel inequality, we obtain:

+∞∑
k=1

f̄2
2k−1 =

+∞∑
k=1

〈f,X2k−1〉2 ≤ 8 ‖f‖2L2(0,1) , (2.54)

+∞∑
k=1

f̄2
2k =

+∞∑
k=1

〈f,X2k〉2 ≤
8
(
1 + β + β2

)
3 (1 + β)2 ‖f‖2L2(0,1) . (2.55)
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Then, from (2.53)-(2.55) we have:

+∞∑
i=0

f̄2
i ≤

44 + 80β + 44β2

3 (1 + β)2 ‖f‖2L2(0,1) . (2.56)

Using the Cauchy-Schwarz inequality and (2.56), we get

‖f‖2L2(0,1) = 〈f, f〉

=
+∞∑
i=0

f̄ifi

≤

[
+∞∑
i=0

f̄2
i

]1/2 [+∞∑
i=0

f2
i

]1/2

≤
[

44 + 80β + 44β2

3 (1 + β)2

]1/2

‖f‖L2(0,1)

[
+∞∑
i=0

f2
i

]1/2

.

Consequently, we have:

m ‖f‖2L2(0,1) ≤
+∞∑
i=0

f2
i , m =

3 (1 + β)2

44 + 80β + 44β2
. (2.57)

From (2.52) and (2.57), the system (2.45) is a Riesz basis in L2 (0, 1).

Corollary 2.3. From Lemma 2.2 and Theorem 2.4, the systems (2.45) and (2.46) are equivalent bases in L2 (0, 1).
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CHAPTER 3

AN INVERSE TIME-DEPENDENT SOURCE

PROBLEM

I n this chapter, we study the inverse time-dependent source problem (2)- (4) and (5). The peculiarity of

this inverse problem is that the system of eigenfunctions is not complete, but the system of eigenfunc-

tions and associated functions forms a basis in L2 (0, 1). Under certain natural conditions of regularity and

consistency of the input data, the existence, uniqueness, and continuous data dependence of the solution

are shown using the generalized Fourier method, Mittag-Leffler function estimates, and the Banach con-

traction principle. This chapter is a draft of an article titled "An inverse time-dependent source problem for a

time-fractional diffusion equation witn nonlocal boundary conditions" published in an international journal [40].

3.1 Statement of the problem

In this section, we are interested with an inverse source problem of recovering a time-dependent source

term r (t) and u (x, t) for the one-dimensional time-fractional diffusion equation given by (5) such that:

cDα,ρt u (x, t) = uxx + r (t) f (x, t) , (x, t) ∈ ΩT , (3.1)

supplemented with the initial condition

u (x, 0) = ϕ (x) , 0 < x < 1, (3.2)

38
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and nonlocal family of boundary conditions


u (0, t) = u (1, t) ,

βux (0, t) = ux (1, t) ,

0 < t ≤ T, (3.3)

where −1 < β < 1 and ΩT := {(x, t) : 0 < x < 1, 0 < t ≤ T} for some fixed T > 0, cDα,ρt stands for left-

sided generalized Caputo fractional derivative of order 0 < α ≤ 1, ρ > 0 is a real constant, ϕ (x) and f (x, t)

are given functions on [0, 1] and Ω̄T respectively.

In the physical sense, the first condition in (3.3) means the equality of the distribution densities at the

ends of the interval [0, 1], and the second condition in (3.3) means the proportionality of fluxes across op-

posite boundaries, where β is a coefficient characterizing the proportionality of the flux at one end and the

rate of change of the average of flux over of the interval [0, 1].

The direct problem is to find the solution u (x, t) that satisfies (3.1)-(3.3), when the function r (t) is

known. The structure of the source term r (t) f (x, t) in (3.1) arises in microwave heating processes, where

r (t) is proportional to the power of the external energy source, and f (x, t) represents the local conversion

rate of microwave energy. The external energy is delivered to the target at a controlled level by microwave-

generating equipment. The inverse source problem for such a model provides insight into how the total

energy content can be externally controlled. However, our focus is on determining the pair of functions

{u (x, t) , r (t)} from (3.1)-(3.3), subject to an integral over-determination condition

∫ 1

0
u (x, t) dx = g (t) , 0 ≤ t ≤ T, (3.4)

where g (t) is a given function representing the total amount of diffusion in the interval [0, 1]. The integral

condition (3.4) arises naturally and serves as supplementary information for identifying the source term.

This type of condition is capable of modeling various physical phenomena in the contexts of chemical

engineering, thermo-elasticity, heat conduction and diffusion processes, and fluid flow in porous media

[21].

We aim to solve the direct problem (3.1)-(3.3) using the Fourier method, commonly known as the

method of separation of variables. The spectral problem associated with the corresponding homogeneous

form of (3.1)-(3.3) is given by the boundary value problem (2.26)-(2.27). Recall that this boundary value

problem is non-self-adjoint, and the set of eigenfunctions corresponding to the spectral problem (2.26)-
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(2.27) is not complete in the space L2 (0, 1). We supplement the set of eigenfunctions with associated eigen-

functions to form a complete system in L2 (0, 1). Another complete set of eigenfunctions and associated

eigenfunctions of the adjoint problem (2.28)-(2.29) was obtained in Proposition 2.1 to construct a biorthog-

onal system of functions.

A regular solution to the inverse time-dependent source problem is a pair of functions {u (x, t) , r (t)}

such that

u (·, t) ∈ C2 (0, 1) , cDα,ρt u (x, ·) ∈ C (0, T ) and r ∈ C (0, T ) ,

and which satisfy equations (3.1)-(3.4).

Our strategy is primarily based on Fourier’s method, constructing a series solution using a biorthogonal

system of functions derived from the eigen-and associated functions (2.45) and (2.46) of the spectral problem

(2.26)-(2.27) and its conjugate problem (2.28)-(2.29). Under suitable regularity and consistency conditions on

the input data, and by employing estimates of the Mittag-Leffler function along with Banach’s contraction

mapping principle, we establish the existence, uniqueness, and stability of the solution to the inverse time-

dependent source problem (3.1)-(3.4).

3.2 Main results

3.2.1 Existence and uniqueness of the solution

In this subsection, we present the main result on the existence and uniqueness of the solution to the inverse

time-dependent source problem (3.1)-(3.4).

Theorem 3.1 ( [40]). Let the following assumptions be satisfied

(A1) ϕ ∈ C4 (0, 1), ϕ (1) = ϕ (0), ϕ′ (1) = βϕ′ (0), ϕ′′ (1) = ϕ′′ (0), ϕ′′′ (1) = βϕ′′′ (0);

(A2) f (x, ·) ∈ C [0, T ] and for t ∈ [0, T ], f (·, t) ∈ C4 [0, 1]; f (0, t) = f (1, t); fx (1, t) = βfx (0, t); fxx (0, t) =

fxx (1, t); fxxx (1, t) = βfxxx (0, t);
∫ 1

0 f (x, t) dx 6= 0 and there exists a constant M > 0 such that

0 <

∣∣∣∣∫ 1

0
f (x, t) dx

∣∣∣∣−1

≤M ;

(A3) g ∈ C1 (0, T ), and g satisfies the consistency condition
∫ 1

0 ϕ (x) dx = g (0).
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If the following condition

T <

(
α |1 + β| ρα

MC ′ |1− β|

)1/ρα

, (3.5)

where C ′ is defined in (3.22), then the inverse time-dependent problem (3.1)-(3.4) has a unique solution.

Proof. According to assumptions (A1)-(A3), there are positive constants, L1, L2, Mi, i = 0, . . . , 2, such that

L1 := max
0≤t≤T

eα

(
tρ

ρ
, λk

)
, L2 := max

0≤s≤t≤T
Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
, M0 := ‖r‖C(0,T ) ;

M1 := max

(
‖f0‖C(0,T ) ,

∥∥∥f (4)
2k−1

∥∥∥
C(0,T )

,
∥∥∥f (4)

2k

∥∥∥
C(0,T )

)
, M2 := max

(
|ϕ0| ,

∣∣∣ϕ(4)
2k−1

∣∣∣ , ∣∣∣ϕ(4)
2k

∣∣∣) .
The proof of this theorem takes place in three steps:

Step 1: Construction of solution . By applying the Fourier’s method, the solution u (x, t) of the direct

problem (3.1)-(3.3), can be developed in uniformly convergent series form using the eigenfunctions (2.45)

in L2 (0, 1) as follows

u (x, t) = 2u0 (t) +
+∞∑
k=1

u2k−1 (t)X2k−1 (x) +
+∞∑
k=1

u2k (t)X2k (x) , (3.6)

We define the coefficients u0 (t), u2k−1 (t) and u2k (t) for k ∈ N∗ by multiplying (3.6) by the eigenfunctions

of (2.46) and integrating over [0, 1] and using Lemma 2.2, we get

u0 (t) = 〈u (x, t) , Y0 (x)〉 , u2k−1 (t) = 〈u (x, t) , Y2k−1 (x)〉 , u2k (t) = 〈u (x, t) , Y2k (x)〉 , (3.7)

where 〈·, ·〉 represents the inner product in L2 (0, 1).

The expansion coefficients of the functions f (x, t) and ϕ (x) into eigenfunctions (2.46) are given by

f0 (t) = 〈f (x, t) , Y0 (x)〉 , f2k−1 (t) = 〈f (x, t) , Y2k−1 (x)〉 , f2k (t) = 〈f (x, t) , Y2k (x)〉 , (3.8)

and

ϕ0 = 〈ϕ (x) , Y0 (x)〉 , ϕ2k−1 = 〈ϕ (x) , Y2k−1 (x)〉 , ϕ2k = 〈ϕ (x) , Y2k (x)〉 . (3.9)
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From (3.1), (3.7)-(3.9), Lemma 2.2, integration by parts twice and (3.3), we obtain


cDα,ρt u0 (t) = r (t) f0 (t) ,

u0 (0) = ϕ0,

(3.10)


cDα,ρt u2k (t) + λku2k (t) = r (t) f2k (t) ,

u2k (0) = ϕ2k,

(3.11)


cDα,ρt u2k−1 (t) + λku2k−1 (t) = −4πaku2k (t) + r (t) f2k−1 (t) ,

u2k−1 (0) = ϕ2k−1.

(3.12)

Applying Iα,ρ0 on (3.10) and using Theorem 1.3, we obtain

u0 (t) = ϕ0 +
1

Γ (α)

∫ t

0

(
tρ − sρ

ρ

)α−1

r (s) f0 (s)
ds

s1−ρ . (3.13)

Applying Theorem 1.7 on (3.11) and (3.12) , we obtain:

u2k (t) = ϕ2keα

(
tρ

ρ
, λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
r (s) f2k (s)

ds

s1−ρ , (3.14)

and

u2k−1 (t) = ϕ2k−1eα

(
tρ

ρ
, λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
r (s) f2k−1 (s)

ds

s1−ρ

− 4πak

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
u2k (s)

ds

s1−ρ .

(3.15)

After substituting expressions u0 (t), u2k (t), and u2k−1 (t), respectively described by (3.13), (3.14), and (3.14),
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into (3.6), we have:

u (x, t) = 2ϕ0 +
2

Γ (α)

∫ t

0

(
tρ − sρ

ρ

)α−1

r (s) f0 (s)
ds

s1−ρ

+
+∞∑
k=1

{
ϕ2keα

(
tρ

ρ
, λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
r (s) f2k (s)

ds

s1−ρ

}
X2k (x)

+

+∞∑
k=1

{
ϕ2k−1eα

(
tρ

ρ
, λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
r (s) f2k−1 (s)

ds

s1−ρ

−4πak

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
u2k (s)

ds

s1−ρ

}
X2k−1 (x) ,

(3.16)

Taking the generalized Caputo fractional derivative cDα,ρt of the over-determination condition (3.4), and

integrating the equation (3.1) on [0, 1] and using (3.3), we obtain

r (t) =
cDα,ρt g (t) + (1− β)ux (0, t)∫ 1

0 f (x, t) dx
where

∫ 1

0
f (x, t) dx = 2f0 (t) +

2a

π

+∞∑
k=1

f2k (t)

k
,

and

ux (0, t) =

+∞∑
k=1

8πk (1− b)
(
ϕ2keα

(
tρ

ρ
, λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
, λk

)
r (s) f2k (s)

ds

s1−ρ

)
.

Hence, we get following implicit representation of r (t)

r (t) = η (t) +

[
2f0 (t) +

2a

π

+∞∑
k=1

f2k (t)

k

]−1 ∫ t

0
K (t, s) r (s)

ds

s1−ρ , (3.17)

where

η (t) =

cDα,ρt g (t) + a
∑+∞

k=1 8πkϕ2keα

(
tρ

ρ , λk

)
∫ 1

0 f (x, t) dx
, (3.18)

and

K (t, s) = a

(
tρ − sρ

ρ

)α−1 +∞∑
k=1

8πkf2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
. (3.19)
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Step 2: Existence of the solution. We consider the following map:

P (r (t)) := η (t) +

[
2f0 (t) +

2a

π

+∞∑
k=1

f2k (t)

k

]−1 ∫ t

0
K (t, s) r (s)

ds

s1−ρ .

on the space C [0, T ] with ‖φ‖ := max
0≤t≤T

|φ (t)|. To show P is well defined. Since, under the assumptions (A1),

(A2) and integration by parts four times, for t, s ∈ [0, T ], we obtain

+∞∑
k=1

8πkϕ2keα

(
tρ

ρ
, λk

)
≤

+∞∑
k=1

L1

∣∣∣ϕ(4)
2k

∣∣∣
2π3k3

, (3.20)

+∞∑
k=1

8πkf2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
≤

+∞∑
k=1

L2

∣∣∣f (4)
2k (s)

∣∣∣
2π3k3

, (3.21)

where ϕ(4)
2k =

∫ 1
0 ϕ

(4) (x) sin (2πkx) dx and f (4)
2k (t) =

∫ 1
0
∂4f(x,t)
∂x4

sin (2πkx) dx.

Using the Cauchy-Schwarz and Bessel inequalities, we obtain

+∞∑
k=1

L2

∣∣∣f (4)
2k (s)

∣∣∣
2π3k3

≤

[
+∞∑
k=1

L2
2

4π6k6

]1/2 [+∞∑
k=1

(
f

(4)
2k (s)

)2
]1/2

≤ c
∥∥∥∥∂4f (x, t)

∂x4

∥∥∥∥
L2(0,1)

where c is a constant independent of t and k. Thus, we have

+∞∑
k=1

8πkf2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
≤ C ′, C ′ = c max

0≤t≤T

∥∥∥∥∂4f (x, t)

∂x4

∥∥∥∥
L2(0,1)

. (3.22)

By (3.20) and (3.21), the series functions

+∞∑
k=1

8πkf2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
and

+∞∑
k=1

8πkϕ2keα

(
tρ

ρ
, λk

)

are uniformly convergent. Then, η (t) and K (t, s) are continuous functions on [0, T ] and [0, T ] × [0, T ],

respectively. Hence, the operator P is well defined.

Let r1, r2 ∈ C (0, T ). From (3.22) and the change of variable τ = tρ−sρ
ρ , we get

‖P (r1)− P (r2)‖ ≤ MC ′ |1− β|T ρα

α |1 + β| ρα
‖r1 − r2‖ . (3.23)

With the condition (3.5), MC′|1−β|T ρα
α|1+β|ρα < 1, then the mapping P is a contraction. Consequently, by Banach
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fixed point theorem, the mapping P has a unique fixed point r ∈ C [0, T ].

To establish the regularity of the obtained solution, it remains to show

u (x, t) , ux (x, t) , uxx (x, t) ,cDα,ρt u (x, t) ∈ C (ΩT ) .

Under assumptions (A1)-(A2) and integration by parts four times, we have

f2k (t) =
f

(4)
2k (t)

16π4k4
, f2k−1 (t) =

−1

16π4k4

(
f

(4)
2k−1 (t) +

a

πk
f

(4)
2k (t)

)
,

ϕ2k =
ϕ

(4)
2k

16π4k4
, ϕ2k−1 =

−1

16π4k4

(
ϕ

(4)
2k−1 +

a

πk
ϕ

(4)
2k

)
.

(3.24)

From (3.13)-(3.15), (3.24) and (1.1), we get

|u0 (t)| ≤M2 +
M0M1T

ρα

ραΓ (α+ 1)
:= M3, t ∈ [0, T ] ,

|u2k (t)| ≤ L1M2 + L2M0M1T
ρα/αρα

16π4k4
, t ∈ [0, T ] ,

|u2k−1 (t)| ≤ (L1M2 + L2M0M1T
ρα/αρα) (1 + |a|+ |a|CT ρ/ρ)

16π4k4
, t ∈ [ε, T ] , ε > 0.

(3.25)

By using (3.6) and (3.25), following relations hold for x ∈ [0, 1] and t ∈ [ε, T ] with ε > 0 such that

|u (x, t)| ≤ 2M1 +
+∞∑
k=1

(L1M2 + L2M0M1T
ρα/αρα) (1 + |a|+ |a|CT ρ/ρ)

4π4k4

+

+∞∑
k=1

(1 + |b|+ |a|) (L1M2 + L2M0M1T
ρα/αρα)

4π4k4
,

|ux (x, t)| ≤
+∞∑
k=1

(L1M2 + L2M0M1T
ρα/αρα) (1 + |a|+ |a|CT ρ/ρ)

2π3k3

+
+∞∑
k=1

(|a|+ 2πk (1 + |b|+ |a|)) (1 + |b|+ |a|) (L1M2 + L2M0M1T
ρα/αρα)

4π4k4

|uxx (x, t)| ≤
+∞∑
k=1

(L1M2 + L2M0M1T
ρα/αρα) (1 + |a|+ |a|CT ρ/ρ)

πk2

+
+∞∑
k=1

(a+ πk (1 + |b|+ |a|)) (L1M2 + L2M0M1T
ρα/αρα)

π3k3
.

(3.26)
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From (3.10)-(3.12), (3.25) and for t ∈ [ε, T ], we have

|c0D
α,ρ
t u0 (t)| ≤M0M2,

|c0D
α,ρ
t u2k (t)| ≤ M0M2

16π4k4
+
L1M2 + L2M0M1T

ρα/αρα

4π2k2
,

|c0D
α,ρ
t u2k−1 (t)| ≤ (1 + |a|)M0M2

16π4k4
+

(L1M2 + L2M0M1T
ρα/αρα) (1 + |a|+ |a|CT ρ/ρ)

4π2k2

+
|a| (L1M2 + L2M0M1T

ρα/αρα)

4π3k3
.

Consequently,

|c0D
α,ρ
t u (x, t)| ≤ 2M0M2 +

+∞∑
k=1

(2 + |b|+ 2 |a|)M0M2

4π4k4

+
+∞∑
k=1

|a| (L1M2 + L2M0M1T
ρα/αρα)

π3k3

+

+∞∑
k=1

(L1M2 + L2M0M1T
ρα/αρα) (2 + |b|+ 2 |a|+ |a|CT ρ/ρ)

π2k2
.

(3.27)

From (3.26), (3.27) and by Weierstrass M-test, the series corresponding to u (x, t), ux (x, t), uxx (x, t), c0D
α,ρ
t u (x, t)

are uniformly convergent on [0, 1]× [ε, T ] for ε > 0. Hence, u (x, t), ux (x, t), uxx (x, t), c0D
α,ρ
t u (x, t) are con-

tinuous functions on ΩT .

Step 3: Uniqueness of the solution . Let {u (x, t) , r1 (t)} and {v (x, t) , r2 (t)} be two solution sets of the

inverse problem (3.1)-(3.4). By using (3.6), we obtain

u (x, t)− v (x, t) = 2 (u0 (t)− v0 (t)) +
+∞∑
k=1

(u2k−1 (t)− v2k−1 (t))X2k−1 (x)

+

+∞∑
k=1

(u2k (t)− v2k (t))X2k (x) ,

(3.28)

Due to the estimate (3.23) and condition (3.5), we have r1 = r2, and by substituting r1 = r2 in (3.28) and

(3.13)-(3.15), we obtain u = v.
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3.2.2 Continuous dependence of the solution on the data

Let H be the set of triples {ϕ, f, g} where the functions ϕ, f and g satisfy the assumptions of Theorem 3.1

and

‖ϕ‖C4(0,1) ≤M4, ‖f‖C4(ΩT ) ≤M5, ‖g‖C1(0,1) ≤M6.

For φ ∈ H, we define the norm

‖φ‖H := ‖ϕ‖C4(0,1) + ‖f‖C4(ΩT ) + ‖g‖C1(0,1) .

By using the Cauchy-Schwarz and Bessel inequalities, the series functions

+∞∑
k=1

∣∣∣f (4)
2k (s)

∣∣∣
2π3k3

≤M7,

is uniformly convergent, where f (4)
2k (s) are the coefficients of the sine Fourier expansion of the function

∂4f(x,s)
∂x4

.

Theorem 3.2. The solution {u (x, t) , r (t)} of the inverse problem (3.1)-(3.4) under the assumptions of Theorem 3.1,

depends continuously upon the data for T <
(
α|1+β|ρα
MC′|1−β|

)1/ρα
.

Proof. Let {u (x, t) , r (t)} and {ũ (x, t) , r̃ (t)} be two solution sets of the inverse problem (3.1)-(3.4), corre-

sponding to the data φ = {ϕ, f, g} and φ =
{
ϕ̃, f̃ , g̃

}
, respectively.

For g, g̃ ∈ C1 (0, T ), we have

‖c0D
α,ρ
t g −c0 D

α,ρ
t g̃‖C(0,T ) ≤M8 ‖g − g̃‖C1(0,T ) ,
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where M8 = T 1−ρα

ρ1−αΓ(2−α)
. From (3.18), we have

η (t)− η̃ (t) =

(∫ 1

0
f (x, t) dx

∫ 1

0
f̃ (x, t) dx

)−1 [∫ 1

0
f̃ (x, t) dx (c0D

α,ρ
t g (t)−c0 D

α,ρ
t g̃ (t))

+a
+∞∑
k=1

8πk (ϕ2k − ϕ̃2k)Eα

(
−λk

(
tρ

ρ

)α)
+c

0D
α,ρ
t g̃ (t)

(∫ 1

0
f̃ (x, t) dx−

∫ 1

0
f (x, t) dx

)
+a

+∞∑
k=1

8πkϕ̃2kEα

(
−λk

(
tρ

ρ

)α)(∫ 1

0
f̃ (x, t) dx−

∫ 1

0
f (x, t) dx

)]
.

From (3.24), we have

ϕ2k − ϕ̃2k =

∫ 1

0
(ϕ (x)− ϕ̃ (x))X2k (x) dx =

ϕ
(4)
2k − ϕ̃

(4)
2k

16π4k4
.

We have the estimate

‖η − η̃‖ ≤ N1 ‖ϕ− ϕ̃‖C4(0,1) +N2

∥∥∥f − f̃∥∥∥
C(ΩT )

+N3 ‖g − g̃‖C1(0,1) ,

where N1 = M2 |a|L1C
∗, N2 = M2 (|a|L1M7 +M6M8), N3 = M2M5M8.

From (3.17), we have the estimate

‖r − r̃‖ ≤ ‖η − η̃‖+
MM0 |a|T ρα

αρα

∥∥∥f (4) − f̃ (4)
∥∥∥
C(ΩT )

+
M |a|C ′T ρα

αρα
‖r − r̃‖

+
M2M0C

′T ρα

αρα

∥∥∥f − f̃∥∥∥
C(ΩT )

.

Due to the estimate of ‖η − η̃‖, we have

(
1− M |a|C ′T ρα

αρα

)
‖r − r̃‖ ≤ N1 ‖ϕ− ϕ̃‖C4(0,1)

+

(
N2 +

MM0 |a|T ρα

αρα
+
M2M0C

′T ρα

αρα

)∥∥∥f − f̃∥∥∥
C4(ΩT )

+N3 ‖g − g̃‖C1(0,1) .
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Hence

(
1− M |a|C ′T ρα

αρα

)
‖r − r̃‖ ≤ N4

∥∥∥φ− φ̃∥∥∥
H
,

where N4 := max
{
N1, N2 + MM0|a|T ρα

αρα + M2M0C′T ρα

αρα , N3

}
. For T <

(
αρα

M |a|C′

)1/ρα
, we have

‖r − r̃‖ ≤ N4

1− M |a|C′T ρα
αρα

∥∥∥φ− φ̃∥∥∥
H
.

From (3.6), a similar estimate can be also obtained for the difference u− ũ:

‖u− ũ‖C(Ω̄T ) ≤ N5

∥∥∥φ− φ̃∥∥∥
H
.
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CHAPTER 4

AN INVERSE TIME-DEPENDENT COEFFICIENT

PROBLEM

I n this chapter, we study an inverse problem of determining the time-dependent coefficient in one-

dimensional time-fractional reaction-diffusion equation with nonlocal boundary and overdeterminar-

ion conditions. The time-fractional derivative is described in the conformable sense. Under some assump-

tions on the input data, the well-posedness of this inverse time-dependent coefficient problem is shown by

using Fourier’s method and Banach’s contraction mapping principle.

4.1 Statement of the problem

In this section, we consider the time-fractional reaction-diffusion equation

D(α)
t w (x, t) = wxx (x, t)− p (t)w (x, t) + S (x, t) , (x, t) ∈ ΩT , (4.1)

where D(α)
t represent the left-conformable fractional derivative of order 0 < α ≤ 1 with respect to t, S (x, t)

is the source term and w (x, t) represent the temperature in a segment slab [0, 1] over time interval ] 0, T ]

with T > 0, p (t) describes the coefficient of heat capacity.

For α = 1, equation (4.1) is a classical reaction-diffusion equation. Suppose the unknown function w

satisfy the following initial condition

w (x, 0) = ϕ (x) , 0 ≤ x ≤ 1, (4.2)

50
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and nonlocal family of boundary conditions


w (0, t) = w (1, t) ,

βwx (0, t) = wx (1, t) ,

0 < t ≤ T, (4.3)

where ϕ are given function and β is a real number such that −1 < β < 1.

When the coefficient p (t) is given, the problem of finding w (x, t) from the equation (4.1), initial con-

dition (4.2) and boundary conditions (4.3) is referred to as the direct problem. In the case when the func-

tion p (t) is unknown, the inverse problem we are interested in consists in determining a pair of functions

{w (x, t) , p (t)} satisfying equation (4.1), initial condition (4.2), boundary conditions (4.3) and overdetermi-

nation condition

∫ 1

0
w (x, t) dx = E (t) , 0 ≤ t ≤ T, (4.4)

where E (t) is a given function. We begin our investigation with a pair of transformations:

v (x, t) = µ (t)w (x, t) , µ (t) = exp

(∫ t

0
sα−1p (s) ds

)
, 0 < α ≤ 1, t ∈ [0, T ] . (4.5)

Then, the inverse time-dependent coefficient problem given by (4.1)-(4.4) transforms as

D(α)
t v (x, t) = vxx (x, t) + µ (t)S (x, t) , (x, t) ∈ ΩT , (4.6)

v (x, 0) = ϕ (x) , x ∈ [0, 1] , (4.7)

v (0, t) = v (1, t) , βvx (0, t) = vx (1, t) , t ∈ [0, T ] , (4.8)

∫ 1

0
v (x, t) dx = µ (t)E (t) , t ∈ [0, T ] , (4.9)

where µ (0) = 1 and µ (t) > 0 for t ∈ [0, T ]. Solving the inverse time-dependent source problem given by

(4.6)-(4.9) for the solution pair (v (x, t) , µ (t)) yields afterwards the original solution (w (x, t) , p (t)) for the
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inverse time-dependent coefficient problem given by (4.1)-(4.4) from

w (x, t) =
v (x, t)

µ (t)
, p (t) =

D(α)
t µ (t)

µ (t)
. (4.10)

4.2 Well-posedness of the problem

4.2.1 Existence and uniqueness of the solution

In this subsection, we present the main result on the existence and uniqueness of the solution to the inverse

time-dependent source problem (4.6)-(4.9).

Theorem 4.1. Suppose that the following assumptions hold:

(A1): ϕ ∈ C4 [0, 1]; ϕ (0) = ϕ (1); ϕ′ (1) = βϕ′ (0); ϕ′′ (0) = ϕ′′ (1); ϕ′′′ (1) = βϕ′′′ (0),

(A2): S (·, t) ∈ C4 [0, 1], for all t ∈ [0, T ]; S (0, t) = S (1, t); Sx (1, t) = βSx (0, t); Sxx (0, t) = Sxx (1, t);

Sxxx (1, t) = βSxxx (0, t),

(A3): E is α−differentiable and D(α)E ∈ C [0, T ], E (t) 6= 0,
∫ 1

0 S (x, ·) dx ∈ C [0, T ], for all t ∈ [0, T ].

If the following condition hold:

T <

 αm

M + ω(1−β)
8π5(1+β)

∥∥∥S(4)
2k

∥∥∥
C[0,T ]


1/α

, (4.11)

where m = min
0≤t≤T

|E (t)|, M = max
0≤t≤T

∣∣∣∣∫ 1

0
S (x, t) dx−D(α)E (t)

∣∣∣∣, ω =
+∞∑
k=1

1

k5
and

S
(4)
2k (t) =

∫ 1

0
Sxxxx (x, t) sin (2πkx) dx.

Then, the inverse time-dependent source problem (4.6)-(4.9) has a unique solution {v (x, t) , µ (t)}.

Proof. According to assumptions (A1)− (A3), there are positive constants

M0 := ‖µ‖C[0,T ] , M1 := max

(
‖S0‖C[0,T ] ,

∥∥∥S(4)
2k−1

∥∥∥
C[0,T ]

,
∥∥∥S(4)

2k

∥∥∥
C[0,T ]

)
, M2 := max

(
|ϕ0| ,

∣∣∣ϕ(4)
2k−1

∣∣∣ , ∣∣∣ϕ(4)
2k

∣∣∣)

The proof of this theorem takes place in three steps:
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Step 1: Construction of solution . By applying the standard procedure of the Fourier method, we obtain

the following representation for the solution of the direct problem (4.6)-(4.8) for µ is α−differentiable on

[0, T ],

v (x, t) = 2v0 (t) +

+∞∑
k=1

v2k−1 (t)X2k−1 (x) +

+∞∑
k=1

v2k (t)X2k (x) . (4.12)

We define the coefficients v0 (t), v2k−1 (t) and v2k (t) for k ∈ N∗ by multiplying (4.12) by eign-and associated

functions of (2.46) and integrating over [0, 1] and using Lemma 2.2, we get

v0 (t) = 〈v (x, t) , Y0 (x)〉 , v2k−1 (t) = 〈v (x, t) , Y2k−1 (x)〉 , v2k (t) = 〈v (x, t) , Y2k (x)〉 , (4.13)

where 〈·, ·〉 represents the inner product in L2 (0, 1).

The expansion coefficients of the functions S (x, t) and ϕ (x) into eigen-and associated functions (2.46)

are given by

S0 (t) = 〈S (x, t) , Y0 (x)〉 , S2k−1 (t) = 〈S (x, t) , Y2k−1 (x)〉 , S2k (t) = 〈S (x, t) , Y2k (x)〉 , (4.14)

and

ϕ0 = 〈ϕ (x) , Y0 (x)〉 , ϕ2k−1 = 〈ϕ (x) , Y2k−1 (x)〉 , ϕ2k = 〈ϕ (x) , Y2k (x)〉 . (4.15)

From (4.6), (4.12)-(4.15), Lemma 2.2, integration by parts twice and (4.8), we obtain


D(α)
t v0 (t) = µ (t)S0 (t) ,

v0 (0) = ϕ0,

(4.16)


D(α)
t v2k−1 (t) + λkv2k−1 (t) = −4πkav2k (t) + µ (t)S2k−1 (t) ,

v2k−1 (0) = ϕ2k−1,

(4.17)


D(α)
t v2k (t) + λkv2k (t) = µ (t)S2k (t) ,

v2k (0) = ϕ2k,

(4.18)
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Applying Iα on (4.16) and using Lemma 1.2, we obtain

v0 (t) = ϕ0 +

∫ t

0
µ (s)S0 (s)

ds

s1−α . (4.19)

Applying Theorem 1.8 on (4.17) and (4.18) , we obtain:

v2k−1 (t) = ϕ2k−1 exp

(
−λk

tα

α

)
− 4πka

∫ t

0
exp

(
λk
sα − tα

α

)
v2k (s)

ds

s1−α

+

∫ t

0
exp

(
λk
sα − tα

α

)
µ (s)S2k−1 (s)

ds

s1−α ,

(4.20)

and

v2k (t) = ϕ2k exp

(
−λk

tα

α

)
+

∫ t

0
exp

(
λk
sα − tα

α

)
µ (s)S2k (s)

ds

s1−α . (4.21)

After substituting expressions v0 (t), v2k−1 (t), and v2k (t), respectively described by (4.19), (4.20), and (4.21),

into (4.12), we have:

v (x, t) =2ϕ0 + 2

∫ t

0
µ (s)S0 (s)

ds

s1−α

+∞∑
k=1

[
ϕ2k−1 exp

(
−λk

tα

α

)
− 4πka

∫ t

0
exp

(
λk
sα − tα

α

)
v2k (s)

ds

s1−α

+

∫ t

0
exp

(
λk
sα − tα

α

)
µ (s)S2k−1 (s)

ds

s1−α

]
X2k−1 (x)

+∞∑
k=1

[
ϕ2k exp

(
−λk

tα

α

)
+

∫ t

0
exp

(
λk
sα − tα

α

)
µ (s)S2k (s)

ds

s1−α

]
X2k (x) .

(4.22)

Taking the conformable fractional derivativeD(α)
t of the over-determination condition (4.9), and integrating

the equation (4.6) on [0, 1] and using (4.8) and (4.22), we obtain the Cauchy problem involving a fractional

integro-differential equation given by:


D(α)
t µ (t) = η (t) + δ (t)µ (t) +

∫ t
0 K (t, s)µ (s) ds,

µ (0) = 1,

(4.23)
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where

η (t) = − 8πa

E (t)

+∞∑
k=1

kϕ2k exp

(
−λk

tα

α

)
, (4.24)

δ (t) =

∫ 1
0 S (x, t) dx−D(α)

t E (t)

E (t)
, (4.25)

K (t, s) = − 8πa

E (t)

+∞∑
k=1

kS2k (s) exp

(
λk
sα − tα

α

)
sα−1. (4.26)

Using Lemma 1.2, the Cauchy problem (4.23) is equivalent to the following linear integral equation

µ (t) = 1 +

∫ t

0
sα−1

[
η (s) + δ (s)µ (s) +

∫ s

0
K (s, τ)µ (τ) dτ

]
ds. (4.27)

Step 2: Existence of the solution. From (4.27), we define on the space C [0, T ] the following operator:

Φ (µ (t)) := 1 +

∫ t

0
sα−1

[
η (s) + δ (s)µ (s) +

∫ s

0
K (s, τ)µ (τ) dτ

]
ds. (4.28)

To show Φ is well defined. Under the assumptions (A1) and (A2), and from (4.24), (4.26) and using integra-

tion by parts, we have:

∫ t

0
sα−1η (s) ds =

+∞∑
k=1

∫ t

0

8πkaϕ2k

E (s)
sα−1 exp

(
−λk

sα

α

)
ds ≤

+∞∑
k=1

a

8π5m

∣∣∣ϕ(4)
2k

∣∣∣
k5

, (4.29)

and

∫ t

0
sα−1

[∫ s

0
K (s, τ)µ (τ) dτ

]
ds =

+∞∑
k=1

∫ t

0
sα−1

[∫ s

0

8πkaS2k (τ)µ (τ)

E (s)
τα−1 exp

(
λk
τα − sα

α

)
dτ

]
ds

≤
+∞∑
k=1

aTα ‖µ‖C[0,T ]

∣∣∣S(4)
2k (τ)

∣∣∣
8mαπ5k5

,

(4.30)

where ϕ(4)
2k =

∫ 1
0 ϕ

(4) (x) sin (2πkx) dx and S
(4)
2k (s) =

∫ 1
0
∂4S
∂x4

(x, s) sin (2πkx) dx. From (4.29) and (4.30), the

series functions

+∞∑
k=1

∫ t

0

8πkaϕ2k

E (s)
sα−1 exp

(
−λk

sα

α

)
ds
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and

+∞∑
k=1

∫ t

0
sα−1

[∫ s

0

8πkaS2k (τ)µ (τ)

E (s)
τα−1 exp

(
λk
τα − sα

α

)
dτ

]
ds

are uniformly convergent. Then, t 7→
∫ t

0 s
α−1η (s) ds and t 7→

∫ t
0 s

α−1
[∫ s

0 K (s, τ)µ (τ) dτ
]
ds are continuous

functions on [0, T ], respectively.

Under assumption (A3) and using (4.25), we obtain t 7→
∫ t

0 s
α−1δ (s)µ (s) ds is continuous function.

Hence, the operator Φ is well defined. Now we prove that Φ is a contraction operator in the space C [0, T ].

Let µ1, µ2 ∈ C [0, T ], using (4.28) and (4.30) we obtain

|Φ (µ1 (t))− Φ (µ2 (t))| ≤
∫ t

0
sα−1 |δ (s) |µ1 (s)− µ2 (s)|| ds

+

∫ t

0
sα−1

[∫ s

0
|K (s, τ)| |µ1 (τ)− µ2 (τ)| dτ

]
ds

≤ Tα

αm

M +

a
∥∥∥S(4)

2k

∥∥∥
C[0,T ]

8π5

+∞∑
k=1

1

k5

 ‖µ1 − µ2‖C[0,T ]

≤ Tα

αm

[
M +

aω

8π5

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

]
‖µ1 − µ2‖C[0,T ] ,

where
+∞∑
k=1

1

k5
= ω. Hence,

‖Φ (µ1)− Φ (µ2)‖C[0,T ] ≤
Tα

αm

[
M +

ω (1− β)

8π5 (1 + β)

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

]
‖µ1 − µ2‖C[0,T ] . (4.31)

With the condition (4.11), Tα

αm

[
M + ω(1−β)

8π5(1−β)

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

]
< 1, then the mapping Φ is a contraction. Conse-

quently, by Banach fixed point theorem, the mapping Φ has a unique fixed point µ ∈ C [0, T ].

To establish the regularity of the obtained solution, it remains to show

v (x, t) , vx (x, t) , vxx (x, t) , D(α)
t v (x, t) ∈ C (ΩT ) .
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Under assumptions (A1)− (A2) and integration by parts four times, we have

ϕ2k =
ϕ

(4)
2k

16π4k4
, ϕ2k−1 =

−1

16π4k4

(
ϕ

(4)
2k−1 +

a

πk
ϕ

(4)
2k +

)
,

S2k (t) =
S

(4)
2k (t)

16π4k4
, S2k−1 (t) =

−1

16π4k4

(
S

(4)
2k−1 (t) +

a

πk
S

(4)
2k (t)

)
.

(4.32)

From (4.19)-(4.21) and (4.32) we get

|v0 (t)| ≤M2 +
Tα

α
M0M1 := M3, t ∈ [0, T ] ,

|v2k−1 (t)| ≤ M2

16π4k4
+

aM2

8π5k5
+
M0M1

64π6k6
+

3aM0M1

64π7k7
,

|v2k (t)| ≤ M2

16π4k4
+
M0M1

32π6k6
.

(4.33)

By using (4.12) and (4.33), following relations hold for x ∈ [0, 1] such that

|v (x, t)| ≤ 2M3 +

+∞∑
k=1

[
M2 (2− b)

4π4k4
+

aM2

2π5k5
+

(3− 2b)M0M1

16π6k6
+

3aM0M1

16π7k7

]
,

|vx (x, t)| ≤
+∞∑
k=1

[
M2 (2− b)

2π3k3
+

5aM2

4π4k4
+
M0M1 (3− 2b)

8π5k5
+
aM0M1

2π6k6

]
,

|vxx (x, t)| ≤
+∞∑
k=1

[
M2 (2− b)
π2k2

+
3aM2

π3k3
+
M0M1 (3− 2b)

4π4k4
+

5aM0M1

4π5k5

]
.

(4.34)

From (4.16)-(4.18), (4.33) we have

∣∣∣D(α)
t v0 (t)

∣∣∣ ≤M0M1,∣∣∣D(α)
t v2k−1 (t)

∣∣∣ ≤ M2

4π2k2
+

3aM2

4π3k3
+
M0M1

8π4k4
+

3aM0M1

8π5k5
,∣∣∣D(α)

t v2k (t)
∣∣∣ ≤ M2

4π2k2
+

3M0M1

16π4k4
.

Consequently,

∣∣∣D(α)
t v (x, t)

∣∣∣ ≤ 2M0M1 +

+∞∑
k=1

(
M2 (2− b)
π2k2

+
3aM2

π3k3
+
M0M1 (5− 3b)

2π4k4
+

3aM0M1

2π5k5

)
. (4.35)

From (4.34), (4.35) and by Weierstrass M-test, the series corresponding to v (x, t), vx (x, t), vxx (x, t) and

D(α)
t v (x, t) are uniformly convergent on ΩT . Hence, v (x, t), vx (x, t), vxx (x, t) and D(α)

t v (x, t) are continu-

ous functions on ΩT .
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Step 3: Uniqueness of the solution. Let {u (x, t) , µ1 (t)} and {v (x, t) , µ2 (t)} be two solutions of the

inverse problem (4.6)-(4.9). By using (4.12), we obtain

u (x, t)− v (x, t) = 2 (u0 (t)− v0 (t)) +
+∞∑
k=1

(u2k−1 (t)− v2k−1 (t))X2k−1 (x)

+

+∞∑
k=1

(u2k (t)− v2k (t))X2k (x) .

(4.36)

By the estimate (4.31) and condition (4.11), we have µ1 = µ2. Substituting µ1 = µ2 into equation (4.36) and

(4.13)-(4.15), it follows that u = v.

4.2.2 Continuous dependence of the solution on the data

In this subsection, we give the main result on continuous dependence upon the data of the solution pair

{v (x, t) , µ (t)} of the inverse time-dependent source problem (4.6)-(4.9). Let B be the set of triples {ϕ, S,E},

where the functions ϕ, S and E satisfy the assumptions of Theorem 4.1 and

M̃ = max
0≤t≤T

∣∣∣∣∫ S̃ (x, t) dx−D(α)
t Ẽ (t)

∣∣∣∣ , m̃ = min
0≤t≤T

|E (t)| .

For ψ ∈ B, we define the norm

‖ψ‖B := ‖ϕ‖C4[0,1] + ‖S‖C4[0,1]×C[0,T ] + ‖E‖C[0,T ] . (4.37)

Theorem 4.2. The solution {v (x, t) , µ (t)} of the inverse time-dependent source problem (4.6)-(4.9) under the as-

sumptions of Theorem 4.1, depends continuously upon the data if T verified the condition (4.11).

Proof. Let {v (x, t) , µ (t)} and {ṽ (x, t) , µ̃ (t)} be two solutions of the inverse time-dependent source problem

(4.6)-(4.9), corresponding to the data {ϕ, S,E} and
{
ϕ̃, S̃, Ẽ

}
, respectively.

From (4.27), we have

|µ (t)− µ̃ (t)| ≤
∫ t

0
sα−1 [η (s)− η̃ (s)] ds+

∫ t

0
sα−1

[
δ (s)µ (s)− δ̃ (s) µ̃ (s)

]
ds

+

∫ t

0
sα−1

[∫ s

0

(
K (s, τ)µ (τ)− K̃ (s, τ) µ̃ (τ)

)
dτ

]
ds.

(4.38)
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Using (4.24), the first integral of (4.38) becomes

∫ t

0
sα−1 [η (s)− η̃ (s)] ds =

+∞∑
k=1

8πka

∫ t

0
sα−1 exp

(
−λk

sα

α

)[
ϕ2k

E (s)
− ϕ̃2k

Ẽ (s)

]
ds

=

+∞∑
k=1

8πka

∫ t

0
sα−1 exp

(
−λk

sα

α

)ϕ2k − ϕ̃2k

E (s)
−
ϕ̃2k

(
E (s)− Ẽ (s)

)
E (s) Ẽ (s)

 ds. (4.39)

Under assumptions (A1)− (A3) and from (4.32), (4.39) we obtain

∫ t

0
sα−1 [η (s)− η̃ (s)] ds ≤M4 ‖ϕ− ϕ̃‖C4[−π,π] +M5

∥∥∥E − Ẽ∥∥∥
C[0,T ]

, (4.40)

where

M4 =
a

π5m

+∞∑
k=1

1

k5
, M5 =

a ‖ϕ̃‖C4[0,1]

π5mm̃

+∞∑
k=1

1

k5
.

Using (4.25), we have

∣∣∣δ (s)− δ̃ (s)
∣∣∣ ≤M6

∥∥∥S − S̃∥∥∥
C(Ω̄T )

+M7

∥∥∥E − Ẽ∥∥∥
C[0,T ]

, (4.41)

where

M6 = 1/m, M7 = max
{

1/m, M̃/mm̃
}
.

With (4.41), the second integral (4.38) becomes

∫ t

0
sα−1

[
β (s)µ (s)− β̃ (s) µ̃ (s)

]
ds ≤ MTα

αm
‖µ− µ̃‖C[0,T ] +M8

∥∥∥S − S̃∥∥∥
C(Ω̄T )

+M9

∥∥∥E − Ẽ∥∥∥
C[0,T ]

, (4.42)

where

M8 =
M6T

α

α
‖µ̃‖C[0,T ] , M9 =

M7T
α

α
‖µ̃‖C[0,T ] .

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



4.2. WELL-POSEDNESS OF THE PROBLEM 60

The third integral of (4.38) becomes

∫ t

0
sα−1

[∫ s

0

(
K (s, τ)µ (τ)− K̃ (s, τ) µ̃ (τ)

)
dτ

]
ds =

∫ t

0
sα−1

[∫ s

0
K (s, τ) (µ (τ)− µ̃ (τ)) dτ

]
ds

+

∫ t

0
sα−1

[∫ s

0
µ̃ (τ)

(
K (s, τ)− K̃ (s, τ)

)
dτ

]
ds.

(4.43)

Using (4.26), the first integral of (4.43) becomes

∫ t

0
sα−1

[∫ s

0
K (s, τ) (µ (τ)− µ̃ (τ)) dτ

]
ds ≤

aωTα
∥∥∥S(4)

2k

∥∥∥
C[0,T ]

8αmπ5
‖µ− µ̃‖C[0,T ] , (4.44)

and the second integral of (4.43) becomes

∫ t

0
sα−1

[∫ s

0
µ̃ (τ)

(
K (s, τ)− K̃ (s, τ)

)
dτ

]
ds ≤M10

∥∥∥S − S̃∥∥∥
C4[0,1]×C[0,T ]

+M11

∥∥∥E − Ẽ∥∥∥
Cα[0,T ]

, (4.45)

where

M10 =
Tα

20αm
, M11 =

Tα
∥∥∥f̃∥∥∥

C4[0,1]×C[0,T ]

20αmm̃
.

From (4.38), (4.40), (4.42) and (4.43)-(4.45), we have the estimate

[
1− Tα

αm

(
M +

aω

8π5

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

)]
‖µ− µ̃‖C[0,T ] ≤M1 ‖ϕ− ϕ̃‖C4[0,1] +M12

∥∥∥S − S̃∥∥∥
C4[0,1]×C[0,T ]

+M13

∥∥∥E − Ẽ∥∥∥
Cα[0,T ]

,

(4.46)

where M12 = M8 +M10, M13 = M9 +M11. From (4.11) and (4.37), we get

[
1− Tα

αm

(
M +

aω

8π5

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

)]
‖µ− µ̃‖C[0,T ] ≤M14

∥∥∥ψ − ψ̃∥∥∥
B
, (4.47)

where M14 = max {M1,M12,M13}. From (4.11) and (4.37), we have

‖µ− µ̃‖C[0,T ] ≤M15

∥∥∥ψ − ψ̃∥∥∥
B
, (4.48)
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where

M15 =
M14

1− Tα

αm

(
M + aω

8π5

∥∥∥S(4)
2k

∥∥∥
C[0,T ]

) .

Under assumptions (A1)− (A3) and using (4.12), we obtain

‖v − ṽ‖C(Ω̄T ) ≤M16 ‖ϕ− ϕ̃‖C4[−π,π] +M17 ‖f − f‖C4[−π,π]×C[0,T ] +M18 ‖µ− µ̃‖C[0,T ] , (4.49)

where

M16 = 1 +
π4

10
, M17 =

Tα ‖µ̃‖C[0,T ]

α
+
‖µ̃‖C[0,T ]

10
, M18 =

Tα ‖S‖C4[0,1]×C[0,T ]

α
+
‖f‖C4[0,1]×C[0,T ]

10

From (4.48) and (4.49), we get

‖v − ṽ‖C(Ω̄T ) + ‖µ− µ̃‖C[0,T ] ≤M19

∥∥∥ψ − ψ̃∥∥∥
B
,

where M19 = max {M15,M16,M17,M18}. Then, the solution of the inverse problem (4.6)-(4.9) is depends

continuously upon the data.
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CHAPTER 5

FINITE DIFFERENCE APPROXIMATION FOR

THE INVERSE TIME-DEPENDENT SOURCE

PROBLEM

I n this chapter we investigate the finit difference methods for an inverse time-dependent source problem

for a time-fractional diffusion equation with nonlocal boundary and integral over determination con-

ditions.

Let T > 0 be a Fixed number and DT = {(x, t) : 0 < x < 1, 0 < t ≤ T}we are concerned with the following

fractional differential equation in DT :

CDα,ρ
0+

(u(x, t)) = uxx(x, t) + r(t)f(x, t), (5.1)

with the initial condition

u(x, 0) = ϕ(x), 0 < x < 1, (5.2)

and the boundary condition

u(0, t) = u(1, t), ux(1, t) = βux(0, t), 0 6 t 6 T, β ∈ R− {−1, 1} (5.3)

and the over deternmination condition ∫ 1

0
u(x, t)dx = g(t) (5.4)

wehere CDα,ρ
0+

the Katugampola fractional derivative of order 0 < α < 1, and r(t), ϕ(x), f(x, t) and g(t) are

given function.

62
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5.1 The finite difference scheme

In this section,we payourattention on a numerical approach to generalized Caputo-Katugampola fractional

differential equation. The finite difference scheme. from [45] we sub-divide the intervals [0, 1] and [0, T ]

with

xi = (ik)
1
ρ , i = 0, 1, ...,M

tj = (jh)
1
ρ , j = 0, 1, ..., N

where

k =
1

M
, h =

T ρ

N

are the spatial and temporal step sizes, respectively. We denote un+1
i the numerical approximation to

u(xi, tn+1), rn+1 = r(tn+1) and fn+1
i = f(xi, tn+1).

1. The initial boundary conditions (5.2)-(5.3), are discretizedas


u0
i = ϕi,

un+1
0 = un+1

M ,

un+1
M − un+1

M−1 = β
(
un+1

1 − un+1
0

)
,

(5.5)

the over deternmination condition

g(tn+1) = gn+1 =

∫ 1

0
u(x, tn+1)dx = kun+1

0 + k
M−1∑
i=1

un+1
i , n = 0, 1, ..., N − 1, (5.6)

where

un+1
0 =

1

1 + β

(
βun+1

1 + un+1
M−1

)
.

2. The approximation of the Caputo-Katugampola fractional derivative CDα,ρt in (5.1) is given by the

following scheme ( [45]):

CDα,ρt u(xi, tn+1) =
h1−αρα−1

Γ (2− α)

n∑
j=0

bj

(
uj+1
i − uji

)
, (5.7)
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where

bj =
t1−ρj+1

tj+1 − tj

(
(n− j + 1)1−α − (n− j)1−α

)
, j = 0, 1, ..., n. (5.8)

and

CDα,ρt u(xi, tn+1) :=C Dα,ρt un+1
i + Cα,ρh

2−α.

3. For uxx(x, t), the well known formula is:

uxx(xi, tn+1) =
un+1
i+1 − 2un+1

i + un+1
i−1

k2
+ γk2. (5.9)

Now, By using the time-fractional approximation (5.7) and (5.9) we obtain the following numerical

approximation to equation (5.1),

h1−αρα−1

Γ (2− α)

n∑
j=0

bj

(
uj+1
i − uji

)
=
un+1
i+1 − 2un+1

i + un+1
i−1

k2
+ rn+1fn+1

i ,

− λun+1
i+1 + (bn + 2λ)un+1

i − λun+1
i−1 = bnu

n
i −

n−1∑
j=0

bj

(
uj+1
i − uji

)
+ λk2rn+1fn+1

i , (5.10)

where

λ =
Γ (2− α)hα−1

ρα−1k2
.

for each n ∈ {0, 1, ..., N − 1} , and i ∈ {0, 1, ...,M} .

• For n = 0, and i = 1, ...,M − 1,

− λu1
i+1 + (b0 + 2λ)u1

i − λu1
i−1 = b0ϕi + λk2r1f1

i , (5.11)

• For n > 0, and i = 1, ...,M − 1,

− λun+1
i+1 + (bn + 2λ)un+1

i − λun+1
i−1 =

n∑
j=1

(bj − bj−1)uji + b0ϕi + λk2rn+1fn+1
i , (5.12)

The above equation (5.11) and (5.12) can be written as


A0U

1 = b0ϕ+ F1

AnU
n+1 =

n∑
j=1

(bj − bj−1)Uj + b0ϕ+ Fn+1
, (5.13)
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where,

An =



bn + 2λ− λβ
1+β −λ 0 · · · 0 − λ

1+β

−λ bn + 2λ −λ 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 −λ bn + 2λ −λ

− λβ
1+β 0 · · · 0 −λ bn + 2λ− λ

1+β


(5.14)

and

Un =



un1

un2
...

unM−1


, ϕ =



ϕ1

ϕ2

...

ϕM−1


, Fn =



λk2rn+1fn1

λk2rn+1fn2
...

λk2rn+1fnM−1


.

Proof.

Lemma 5.1. The matrice (5.14) is inversible and the matricial system (5.13) has a unique solution if

T ≤
(

2
Cn
c2
ρα−1 |β + 1|

|β − 1|

) 1
αρ

. (5.15)

where Cn =
(n+1
N )

1−ρ
ρ

(n+1
N )

1
ρ−( nN )

1
ρ
, c2 = Γ(2−α)

Nα−1k2
.

Proof. Clarely the matrice An is inversible becease it is positive defined i.e,

(Un)tAnU
n = bn

M−2∑
i=2

(uni )2 + λ

M−2∑
i=2

(
uni+1 − uni

)2
+
λ

2

(
un1 − unM−1

)2
+

(
bn −

λβ

1 + β
+
λ

2

)
(un1 )2 +

(
bn −

λ

1 + β
+
λ

2

)(
unM−1

)2
,

where bn = CnT
−ρ > 0, λ = c2

ρα−1T
(α−1)ρ > 0.

If bn − λβ
1+β + λ

2 ≥ 0 and bn − β
1+β + λ

2 ≥ 0, then bn ≥ λ
2
|β+1|
|β−1| . Therefor, we find that

T ≤
(

2
Cn
c2
ρα−1 |β + 1|

|β − 1|

) 1
αρ

.
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Hence,

(Un)tAnU
n > 0.

So the system (5.13) admits a unique solution.

New, integrating equation (5.1) with respect to x from 0 to 1 and using (5.3) and (5.4), we obtain

r (t) =
CDα,ρt g (t) + (1− β)ux (0, t)∫ 1

0 f(x, t)dx
(5.16)

see [] .

The finite difference approximation of (5.16) is

rn+1 =

h1−αρα−1

Γ(2−α)

n∑
j=0

bj
(
gj+1 − gj

)
+ (1−β)

k

(
un+1

1 − un+1
0

)
(Fin)n+1 (5.17)

where (Fin)n+1 =
∫ 1

0 f(x, tn+1)dx = kfn+1
0 + k

M−1∑
i=1

fn+1
i , n = 0, 1, ..., N − 1.

For n = 0,

r1 =
(1−β)
k

(
u1

1 − u1
0

)
(Fin)1 . (5.18)

5.2 Stability analysis of finite difference scheme

Now, we analyze the stability via mathematical induction method, we suppose that ũni , for i = 0, 1, 2, ...,M ,

and n = 0, 1, 2, ..., N is the approximate solution of (5.11), (5.12), the error εni = ũni − uni . From (5.11) and

(5.12), we have

For n = 0,

−λε1
i+1 + (b0 + 2λ) ε1

i − λε1
i−1 = b0 (ϕ̃i − ϕi) + λk2(r̃1f̃1

i − r1f1
i ),

For n > 0,

−λεn+1
i+1 + (bn + 2λ) εn+1

i − λεn+1
i−1 =

n∑
j=1

(bj − bj−1)
(
ũji − u

j
i

)
+b0 (ϕ̃i − ϕi) + λk2

(
r̃n+1f̃n+1

i − rn+1fn+1
i

)
.

Let
{
un+1
i , rn+1

}
and

{
ũn+1
i , r̃n+1

}
be two solution of the scheme (5.11), (5.12) and (5.17) for the inverse
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problem (5.1)-(5.4 ), corresponding to the data Ψn+1
i =

{
ϕi, f

n+1
i , gn+1

}
,

LetH be the set of triples
{
ϕi, f

n+1
i , gn+1

}
where the functions ϕi, fn+1

i and gn+1 satisfy the assumptions

of Theorem 4.1,

for φn+1
i ∈ H and φn+1

i =
{
ϕi, g

n+1
}
, we define the norm

∥∥φn+1
i

∥∥
H = ‖ϕi‖+

∥∥gn+1
∥∥ ,

where

‖ϕi‖ = max
0≤i≤M−1

|ϕi| ,
∥∥gn+1

∥∥ = max
0≤n≤N−1

∣∣gn+1
∣∣ .

for Ψn+1
i ∈ H and Ψn+1

i =
{
φn+1
i , fn+1

i

}
, we define the norm

∥∥Ψn+1
i

∥∥
H = max

{∥∥φn+1
i

∥∥
H ,
∥∥fn+1

i

∥∥
H
}

where ∥∥fn+1
i

∥∥
H = max

0≤i≤M−1
0≤n≤N−1

∣∣fn+1
i

∣∣ .
Theorem 5.1. Let the following assumptions be satisfied

(A1) ϕ0 = ϕM , ϕM − ϕM−1 = β (ϕ1 − ϕ0)

(A2) fn+1
0 = fn+1

M , fn+1
M − fn+1

M−1 = β
(
fn+1

1 − fn+1
0

)
and there existe a constant M3 such that

0 <

∣∣∣∣∫ 1

0
f(x, tn+1)dx

∣∣∣∣−1

=
∣∣Finn+1

∣∣−1
< M3.

(A3) g0 satisfies the consistency condition g0 =
∫ 1

0 ϕ(x)dx = k
1+β (βϕ1 + ϕM−1) + k

M−1∑
i=1

ϕi.

(A4)
∥∥rn+1

∥∥ = M0,
∥∥fn+1

i

∥∥ = M1,
∥∥gn+1

∥∥ = M2,

If

T <

(
Cn |1 + β| ρα−1

2c2kM1M3 |β − 1| (|β|+ 1)

) 1
αρ

.

The discretised scheme (5.11), (5.12) and (5.17) for the inverse problem (5.1)-(5.4 ) is conditionally stable.

Proof. We have prove that ∥∥εn+1
i

∥∥ ≤ Cn

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
,
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where
∥∥εn+1

i

∥∥ = max
1≤i≤M−1

∣∣εn+1
i

∣∣ =
∣∣εn+1
l

∣∣ .
- For n = 0, we have

b0
∣∣ε1
l

∣∣ = −λ
∣∣ε1
l

∣∣+ (b0 + 2λ)
∣∣ε1
l

∣∣− λ ∣∣ε1
l

∣∣
≤ −λ

∣∣ε1
l+1

∣∣+ (b0 + 2λ)
∣∣ε1
l

∣∣− λ ∣∣ε1
l−1

∣∣
≤

∣∣−λε1
l+1 + (b0 + 2λ) ε1

l − λε1
l−1

∣∣
≤ b0 |ϕ̃l − ϕl|+ λk2

(∣∣∣r̃1f̃1
l − r1f1

l

∣∣∣)
≤ b0 |ϕ̃l − ϕl|+ λk2

(∣∣∣f̃1
l

∣∣∣ ∣∣r1 − r̃1
∣∣+
∣∣r1
∣∣ ∣∣∣f̃1

l − f1
l

∣∣∣) ,
since

∣∣r1 − r̃1
∣∣ =

1

|1 + β|

(
|β|
∣∣∣fn+1

1 − f̃n+1
1

∣∣∣+
∣∣∣fn+1
M−1 − f̃

n+1
M−1

∣∣∣)
+k

∣∣r1
∣∣∣∣∣(Fin)1
∣∣∣
∣∣∣∣∣
M−1∑
i=1

(
fn+1
i − f̃n+1

i

)∣∣∣∣∣
+

∣∣∣∣ 1− β
k (Fin)1

∣∣∣∣ (∣∣ε1
1

∣∣+
∣∣ε1

0

∣∣) ,
and

∥∥r1 − r̃1
∥∥ ≤ kM0M3

(
1− k
k

+
|β|+ 1

|β + 1|

)∥∥∥fn+1
i − f̃n+1

i

∥∥∥
+2M3

|1− β|
k |1 + β|

(|β|+ 1)
∣∣ε1
l

∣∣ .
then

b0
∣∣ε1
l

∣∣ ≤ b0 ‖ϕ̃i − ϕi‖

+λk2M0

[
kM1M3

(
1− k
k

+
|β|+ 1

|β + 1|

)
+ 1

] ∥∥∥f1
i − f̃1

i

∥∥∥
+2λkM1M3

|1− β|
|1 + β|

(|β|+ 1)
∣∣ε1
l

∣∣ .
If b0 − 2λkM1M3

|1−β|
|1+β| (|β|+ 1) > 0, i.e

(
T <

(
C0|1+β|ρα−1

2c2kM1M3|β−1|(|β|+1)

) 1
αρ

)
we find that

∣∣ε1
l

∣∣ ≤ C0

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
,
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where C0 =
b0+λk2M0

[
kM1M3

(
1−k
k

+
|β|+1
|β+1|

)
+1
]

b0−2λkM1M3
|1−β|
|1+β| (|β|+1)

.

and ∥∥r1 − r̃1
∥∥ ≤

 kM0M3

(
1−k
k + |β|+1

|β+1|

)
+2M3

|1−β|
k|1+β| (|β|+ 1)C0

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
.

- For n ≥ 1,we assum that ∥∥∥εji∥∥∥ ≤ Cj

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
, j = 0, 1, ..., n.

bn
∣∣εn+1
l

∣∣ = −λ
∣∣εn+1
l

∣∣+ (bn + 2λ)
∣∣εn+1
l

∣∣− λ ∣∣εn+1
l

∣∣
≤ −λ

∣∣εn+1
l+1

∣∣+ (bn + 2λ)
∣∣εn+1
l

∣∣− λ ∣∣εn+1
l−1

∣∣
≤

∣∣−λεn+1
l+1 + (bn + 2λ) εn+1

l − λεn+1
l−1

∣∣
≤

∣∣∣∣∣∣
n∑
j=1

(bj − bj−1) εjl + b0 (ϕl − ϕ̃l) + λk2
(
rn+1fn+1

l − r̃n+1f̃n+1
l

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
j=1

(bj − bj−1)

∣∣∣∣∣∣
∣∣∣εjl ∣∣∣+ b0 |ϕl − ϕ̃l|+ λk2

∣∣∣rn+1fn+1
l − r̃n+1f̃n+1

l

∣∣∣ ,
which gives

bn
∣∣εn+1
l

∣∣ ≤ |bn − b0|
∣∣∣εjl ∣∣∣+ b0 |ϕl − ϕ̃l|

+λk2
(∣∣∣f̃n+1

l

∣∣∣ ∣∣r̃n+1 − rn+1
∣∣+
∣∣rn+1

∣∣ ∣∣∣f̃n+1
l − fn+1

l

∣∣∣) . (5.19)
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since

∣∣rn+1 − r̃n+1
∣∣

= k

∣∣rn+1
∣∣∣∣∣(Fin)n+1
∣∣∣ 1

|1 + β|

(
|β|
∣∣∣fn+1

1 − f̃n+1
1

∣∣∣+
∣∣∣fn+1
M−1 − f̃

n+1
M−1

∣∣∣)

+k

∣∣rn+1
∣∣∣∣∣(Fin)n+1
∣∣∣
∣∣∣∣∣
M−1∑
i=1

(
fn+1
i − f̃n+1

i

)∣∣∣∣∣

+
h1−αρα−1∣∣∣(Fin)n+1

∣∣∣Γ (2− α)


bn−1

∣∣gn+1 − g̃n+1
∣∣

+b0
k
|1+β|

(
|β| |ϕ1 − ϕ̃1|+ |ϕM−1 − ϕ̃M−1|+

M−1∑
i=1
|ϕi − ϕ̃i|

)
+

n∑
j=1
|bj−1 − bj |

∣∣gj − g̃j∣∣


+2M3

|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣ .
then

∥∥rn+1 − r̃n+1
∥∥

≤ k

∣∣rn+1
∣∣∣∣∣(Fin)n+1
∣∣∣
(

2 |β|
|1 + β|

+ (M − 1)

)∥∥∥fn+1
i − f̃n+1

i

∥∥∥

+
h1−αρα−1∣∣∣(Fin)n+1

∣∣∣Γ (2− α)


bn−1

∥∥gn+1 − g̃n+1
∥∥

+b0
k
|1+β| (|β|+M) ‖ϕi − ϕ̃i‖

+ |bn−1 − b0|
∥∥gn+1 − g̃n+1

∥∥


+2M3

|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣
≤ kM0M3

(
2 |β|
|1 + β|

+

(
1− k
k

))∥∥∥fn+1
i − f̃n+1

i

∥∥∥
+
h1−αρα−1

Γ (2− α)
M3

 (2bn−1 − b0)
∥∥gn+1 − g̃n+1

∥∥
+b0

k
|1+β|

(
|β|+ 1

k

)
‖ϕi − ϕ̃i‖


+2M3

|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣
≤ kM0M3

(
2 |β|
|1 + β|

+

(
1− k
k

))∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+M4

∥∥∥φn+1
i − φ̃n+1

i

∥∥∥
H

+ 2M3
|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣
where M4 = max

{
2bn−1 − b0, b0 k

|1+β|
(
|β|+ 1

k

)}
.
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this is amplies that

∥∥rn+1 − r̃n+1
∥∥ ≤

[
kM0M3

(
2 |β|
|1 + β|

+

(
1− k
k

))
+M4

] ∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+2M3
|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣ . (5.20)

According to (5.19), we imply

bn
∣∣εn+1
l

∣∣ ≤ |bn − b0|
∣∣∣εjl ∣∣∣+ b0 |ϕl − ϕ̃l|

+λk2
∣∣∣f̃n+1
l

∣∣∣

[
kM0M3

(
2|β|
|1+β| +

(
1−k
k

))
+M4

] ∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+2M3
|1−β|
k|1+β| (|β|+ 1)

∣∣εn+1
l

∣∣


+λk2
∣∣rn+1

∣∣ ∣∣∣f̃n+1
l − fn+1

l

∣∣∣
≤ (bn − b0)Cj

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+ b0

∥∥∥φn+1
i − φ̃n+1

i

∥∥∥
H

+λk2M1


[
kM0M3

(
2|β|
|1+β| +

(
1−k
k

))
+M4

] ∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+2M3
|1−β|
k|1+β| (|β|+ 1)

∣∣εn+1
l

∣∣


+λk2M0

∥∥∥f̃n+1
l − fn+1

l

∥∥∥
≤ M5

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+2λk2M1M3
|1− β|
k |1 + β|

(|β|+ 1)
∣∣εn+1
l

∣∣ .
where M5 =

[
(bn − b0)Cj + b0 + λk2M1

(
kM0M3

(
2|β|
|1+β| +

(
1−k
k

))
+M4

)
+ λk2M0

]
,

this is amplies that

(
bn − 2λk2M1M3

|1− β|
k |1 + β|

(|β|+ 1)

) ∣∣εn+1
l

∣∣ ≤M5

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
,

If bn − 2λk2M1M3
|1−β|
k|1+β| (|β|+ 1) > 0, i.e

(
T <

(
Cn|1+β|ρα−1

2c2kM1M3|β−1|(|β|+1)

) 1
αρ

)
we find that

∣∣εn+1
l

∣∣ ≤ Cn

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
,

where Cn = M5

bn−2λk2M1M3
|1−β|
k|1+β| (|β|+1)

.
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According to (5.20), we imply

∥∥rn+1 − r̃n+1
∥∥ ≤

[
kM0M3

(
2 |β|
|1 + β|

+

(
1− k
k

))
+M4

] ∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

+2M3
|1− β|
k |1 + β|

(|β|+ 1)Cn

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H

≤ M6

∥∥∥Ψn+1
i − Ψ̃n+1

i

∥∥∥
H
.

where M6 = kM0M3

(
2|β|
|1+β| +

(
1−k
k

))
+M4 + 2M3

|1−β|
k|1+β| (|β|+ 1)Cn.

The proof is complet.

5.3 Convergence of the approximate scheme

In this section, we discuss the convergence of the approximate scheme (5.11), and (5.12).

Let u (xi, tn) be the exact solution of the time fractional diffusion equation (5.1)-(5.2)-(5.3) at mesh points

(xi, tn) where (i = 0, 1, 2, . . . ,M ;n = 0, 1, 2, . . . , N).

Define eni = u (xi, tn) − uni , and en =
(
en1 , e

n
2 , . . . , e

n
M−1

)t
. Using e0 = (0, 0, . . . , 0)t . Substitution uni =

u (xi, tn)− eni into (5.11), (5.12) leads to:

1. For n = 0, the approximate scheme (5.11), gives

−λe1
i+1 + (b0 + 2λ) e1

i − λe1
i−1 = −λu (xi+1, t1) + (2λ+ b0)u (xi, t1)

− λu (xi−1, t1)− b0ϕi − λk2r1f1
i

= R1
i .

2. For n > 0, the approximate scheme (5.12) gives

−λen+1
i+1 + (2λ+ bn) en+1

i − λen+1
i−1

=

n∑
j=1

(bj − bj−1) eji +Rn+1
i ,
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where

Rn+1
i = −

n∑
j=1

(bj − bj−1)u (xi, tj)

−λu (xi+1, tn+1) + (2λ+ bn)u (xi, tn+1)− λu (xi−1, tn+1)

−b0ϕi − λk2rn+1fn+1
i

then

Rn+1
i =

n∑
j=0

bj (u (xi, tj+1)− u (xi, tj))

−λ (u (xi+1, tn+1)− 2u (xi, tn+1) + u (xi−1, tn+1))

−λk2rn+1fn+1
i .

From (5.1) we have

Rn+1
i = λk2

(
CDα,ρt u(xi, tn+1)− uxx(xi, tn+1)− rn+1fn+1

i − Cα,ρh2−α + γk2
)

= λk2
(
−Cα,ρh2−α + γk2

)
=

Γ (2− α)

ρα−1
hα−1

(
−Cα,ρh2−α + γk2

)

Hence, there exist C1
α,ρ > 0, such that

∣∣Rn+1
i

∣∣ ≤ C1
α,ρh

α−1
(
h2−α + k2

)
,

where C1
α,ρ = Γ(2−α)

ρα−1 max {|Cα,ρ| , |γ|} .

Lemma 5.2. For n = 0, 1, 2, . . . , N,we have

∥∥en+1
i

∥∥ ≤ C2
α,ρb

−1
n hα−1

(
h2−α + k2

)
.

Proof. Let
∥∥en+1

i

∥∥ =
∣∣en+1
l

∣∣ = max1≤i≤M−1

∣∣en+1
i

∣∣ , and
∣∣e1
l

∣∣ = max1≤i≤M−1

∣∣e1
i

∣∣ .
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For n = 0, we get

b0
∣∣e1
l

∣∣ = −λ
∣∣e1
l

∣∣+ (b0 + 2λ)
∣∣e1
l

∣∣− λ ∣∣e1
l

∣∣
≤ −λ

∣∣e1
l+1

∣∣+ (b0 + 2λ)
∣∣e1
l

∣∣− λ ∣∣e1
l−1

∣∣
imply

∣∣e1
l

∣∣ 6 b−1
0

∣∣R1
i

∣∣∣∣e1
l

∣∣ 6 b−1
0 C1

α,ρh
α−1

(
h2−α + k2

)
.

For n > 0, suppose that
∣∣∣ejl ∣∣∣ ≤ C1

α,ρb
−1
j−1h

α−1
(
h2−α + k2

)
, (j = 1, . . . , n), we get

∣∣en+1
l

∣∣ 6 C1
α,ρb

−1
n hα−1

(
bnb
−1
0

) (
h2−α + k2

)
.

because b−1
j−1 ≤ b

−1
0 for j = 1, . . . , n, then

∣∣en+1
l

∣∣ 6 C2
α,ρb

−1
n hα−1

(
h2−α + k2

)
,

where

C2
α,ρ =

 C1
α,ρ, if n = 0

C1
α,ρ

(
bnb
−1
0

)
, if n ≥ 1

.

We can prove that lim
n→∞

b−1
n(

t
ρ
0
h

+n

)α−1 = 0, there exist a constant ζ > 0 suth that

b−1
n(

tρ0
h + n

)α−1 6 ζ,

then ∣∣en+1
l

∣∣ 6 C2
α,ρζ

(
tρ0
h

+ n

)α−1

hα−1
(
h2−α + k2

)
because (

tρ0
h

+ n

)α−1

hα−1 = tρ(α−1)
n ≤ T ρ(α−1).
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Is finite we have

|uni − u (xi, tn)| ≤ C3
α,ρ

(
h2−α + k2

)
Then we obtain the following theorem:

Theorem 5.2. Let uni be the approximate value of u(xi, tn) computed by use of the difference scheme (5.11) and (5.12).

Then there is a positive constant C3
α,ρ, such that

|uni − u (xi, tn)| ≤ C3
α,ρ

(
h2−α + k2

)
.

5.4 Illustrative examples

In this section, we present some examples to illustrate the usefulness of our main results.

Consider the inverse problem (5.1)-(5.4)



CDα,ρ
0+

(u(x, t)) = uxx(x, t) + r(t)f(x, t), 0 < x < 1,

u(0, t) = u(1, t), ux(1, t) = βux(0, t), 0 6 t 6 T, β ∈ R− {−1, 1}

u(x, 0) = ϕ(x), 0 < x < 1,∫ 1
0 u(x, t)dx = g(t),

r (t) =
CDα,ρt g (t) + (1− β)ux (0, t)∫ 1

0 f(x, t)dx
.

with 

f (x, t) = (1− (1− β)x) sin (2πx)
(

ρα

Γ(2−α) .
tρ(1−α)

tα+2 + (2π)2 tρ+1
tα+2

)
−4π (β − 1) tρ+1

tα+2 cos (2πx)

ϕ (x) = (1− (1− β)x) sin (2πx)

g (x) = 1−β
2π (tρ + 1)

It is easy to Check that the exacte solution is

{r (t) , u (x, t)} = {tα + 2, (1− (1− β)x) sin (2πx) (tρ + 1)} .

The system of equation (??), (??) and (??), (??) can be solved the Gauss elimination method and un+1(s+1)
i

is determined. If the differnce of values between two iterations reaches the perscribted tolerance, the itera-
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tion is stopped and we accept the corresponding values rn+1(s+1), u
n+1(s+1)
i , i = 1, 2, . . . ,M. as rj+1, uj+1

i , i =

1, 2, . . . ,M. on the (j + 1) th time step, respectively. In virtue of this itiration, we can move from level j to

level j + 1.

Figures 5.1,5.2,...5.11 and 5.12 represent the comparison between the analytical solution and its approx-

imation for different values of h.
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Analytical solution

Numerical solution for h=0.02

Figure 5.1: Graphical comparison between the analytical solution and it approximation with α = 0.9, rho =
2, beta = 2, k = 0.002 and h = 0.02.
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Numerical solution for h=0.002

Figure 5.2: Graphical comparison between the analytical solution and it approximation with α = 0.9, rho =
2, beta = 2, k = 0.002 and h = 0.002.
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Numerical solution for h=0.02

Figure 5.3: Graphical comparison between the analytical solution and it approximation with α = 0.9, rho =
2, beta = −2, k = 0.002 and h = 0.02.
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Figure 5.4: Graphical comparison between the analytical solution and it approximation with α = 0.9, rho =
2, beta = −2, k = 0.002 and h = 0.002.
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Figure 5.5: Graphical comparison between the analytical solution of r(t) and it approximation with α = 0.9,
rho = 2, beta = 2, k = 0.002 and h = 0.02.
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Figure 5.6: Graphical comparison between the analytical solution of r(t) and it approximation with α = 0.9,
rho = 2, beta = −2, k = 0.002 and h = 0.02.
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Figure 5.7: Graphical comparison between the analytical solution and it approximation with α = 0.5, rho =
3, beta = 1.2, k = 0.002 and h = 0.02.
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Figure 5.8: Graphical comparison between the analytical solution and it approximation with α = 0.5, rho =
3, beta = 1.2, k = 0.002 and h = 0.02.
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Figure 5.9: Graphical comparison between the analytical solution and it approximation with α = 0.5, rho =
3, beta = −1.2, k = 0.002 and h = 0.02.
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Figure 5.10: Graphical comparison between the analytical solution and it approximation with α = 0.5,
rho = 3, beta = −1.2, k = 0.002 and h = 0.002.
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Figure 5.11: Graphical comparison between the analytical solution of r(t) and it approximation with α =
0.5, rho = 3, beta = 1.2, k = 0.002 and h = 0.02.
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Figure 5.12: Graphical comparison between the analytical solution of r(t) and it approximation with α =
0.5, rho = 3, beta = −1.2, k = 0.002 and h = 0.02.
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CHAPTER 6

A NUMERICAL METHOD FOR SOLVING AN

INVERSE TIME-DEPENDENT COEFFICIENT

PROBLEM

I n this chapter, we propose a numerical method for solving an inverse time-dependent coefficient prob-

lem associated with a time-fractional reaction-diffusion equation subject to nonlocal boundary and

overdetermination conditions. The time-fractional derivative is considered in the conformable sense. By

employing the Shifted Legendre collocation method, the inverse problem is transformed into a linear sys-

tem of first-order differential equations, which is then solved using the Backward Euler method. Through

two illustrative examples, we conduct a comparative analysis between the proposed algorithm and existing

numerical methods from the literature. The results demonstrate that our approach achieves highly accurate

approximations using a relatively small number of collocation points.

6.1 Shifted Legendre polynomials of the first kind

To use the polynomials given in Section 1.5 on the interval [0, 1], we define the so-called shifted Legendre

polynomials of the first kind by introducing the following change of variable:

z = 2x− 1 ou x =
1

2
(z + 1) .

In this case, the shifted Legendre polynomials P ∗n (x) of order n in x are defined on [0, 1] by:

P ∗n (x) = Pn (z) = Pn (2x− 1) . (6.1)
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With (6.1) and Proposition 1.2, the shifted Legendre polynomials of the first kind P ∗n(x) verify the following

recurrence formula, see [13]:


P ∗0 (x) = 1,

P ∗1 (x) = 2x− 1,

P ∗n+1(x) = 2n+1
n+1 (2x− 1)P ∗n(x)− n

n+1P
∗
n−1(x), n ∈ N∗.

(6.2)

Using (6.1) and (1.12), we obtain the explicit form of the shifted Legendre polynomials of the first kind

P ∗n(x) of degree n in x given by:

P ∗n(x) =
n∑
k=0

(−1)n+k Γ (n+ k + 1)

Γ (n− k + 1) (Γ (k + 1))2x
k, n ∈ N, (6.3)

where Γ (·) is Euler’s Gamma function. We note that


P ∗n (0) = (−1)n , (P ∗n (0))′ = (−1)n−1 n (n+ 1) ,

P ∗n (1) = 1, (P ∗n (1))′ = n (n+ 1) .

(6.4)

According to (6.1) and Lemma 1.3, the polynomials P ∗n (x) are orthogonal on the interval [0, 1], that is:

〈
P ∗i (x), P ∗j (x)

〉
=

∫ 1

0
P ∗i (x)P ∗j (x) dx =


1

2i+1 , if i = j,

0, if i 6= j.

(6.5)

Let Φ ∈ L2 (0, 1) be expressed in terms of shifted Legendre polynomials of the first kind such that

Φ (x) =

∞∑
i=0

ciP
∗
i (x), (6.6)

where the coefficients ci ; i ∈ N are given by:

ci = (2i+ 1)

∫ 1

0
Φ (x)P ∗i (x) dx. (6.7)
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In practice, only the first shifted Legendre polynomials (m+ 1)-terms are considered. Then, we have:

Φm (x) =

m∑
i=0

ciP
∗
i (x). (6.8)

6.2 Legendre collocation method

In this section, we apply Legendre collocation method to the inverse time-dependent coefficient problem

(4.1)- (4.4). Let wm (x, t) be the approximation of w (x, t) given in the following form:

wm (x, t) =

m∑
i=0

ci (t)P ∗i (x) , (6.9)

By replacing (6.9) into the equation (4.1). Using (4.3)-(4.4) and (1.9), we obtain:



m∑
i=0

t1−αc′i (t)P ∗i (x) =
m∑
i=0

ci (t)Ri (x, t) + S (x, t) ,

p (t) = 1
E(t)

[
(β − 1)

m∑
i=0

ci (t) (P ∗i )′ (0) +

∫ 1

0
S (x, t) dx−D(α)

t E (t)

]
.

(6.10)

We put in (6.10) x = xs, s = 1, . . . ,m− 1 the roots of the Legendre polynomial Pm−1 (x), we have



m∑
i=0

t1−αc′i (t)P ∗i (xs) =
m∑
i=0

ci (t)Ri (xs, t) + S (xs, t) ,

p (t) = 1
E(t)

[
(β − 1)

m∑
i=0

ci (t) (P ∗i )′ (0) +

∫ 1

0
S (x, t) dx−D(α)

t E (t)

]
.

(6.11)

where

Ri (xs, t) = (P ∗i )′′ (xs)− p (t)P ∗i (xs) , i = 0, 1, . . . ,m, s = 1, . . . ,m− 1. (6.12)

From (6.9), (4.3) and (6.4), we obtain

m∑
i=0

[
1− (−1)i

]
ci (t) = 0 (6.13)
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and

m∑
i=1

[
1− β (−1)i−1

]
i (i+ 1) ci (t) = 0. (6.14)

We introduce the vectors

X (t) = (c0 (t) , c1 (t) , . . . , cm (t))T ,

Ẋ (t) =
(
c′0 (t) , c′1 (t) , . . . , c′m (t)

)T
,

F (t) = (S (x1, t) , S (x1, t) , . . . , S (xm−1, t) , 0, 0)T .

(6.15)

By combining equations (6.11), (6.12), (6.13) and (6.14), we find the following matrix form


A (t) Ẋ (t) = B (t)X (t) + F (t) ,

X (0) = (c0 (0) , c1 (0) , . . . , cm (0))T ,

p (t) =
1

E (t)

[
(β − 1)

m∑
i=0

ci (t) (P ∗i )′ (0) +

∫ 1

0
S (x, t) dx−D(α)

t E (t)

]
.

(6.16)

where A (t) is the damping matrix given by

A (t) = t1−α



P0 (x1) P1 (x1) . . . Pm (x1)

P0 (x2) P1 (x2) . . . Pm (x2)

...
. . .

...
...

P0 (xm−1) P1 (xm−1) . . . Pm (xm−1)

0 0 0 0

0 0 0 0


(6.17)
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and B (t) is the stiffness matrix given by

B (t) =



R0 (x1, t) R1 (x1, t) . . . Rm (x1, t)

R0 (x2, t) R1 (x2, t) . . . Rm (x2, t)

...
. . .

...
...

R0 (xm−1, t) R1 (xm−1, t) . . . Rm (xm−1, t)

0 2 . . . 1− (−1)m

0 0 . . .
(

1− β (−1)m−1
)
m (m+ 1)


(6.18)

6.2.1 Backward Euler method

For positive integer N , ∆t = T/N , denotes the step size of the variable t. So we define tj = j∆t in which

j = 0, 1, . . . , N , and we introduce the following notations ci (tj) = cji , F
j = (S (x1, tj) , . . . , S (xm−1, tj))

T

andXj =
(
cj0, c

j
1, . . . , c

j
m

)T
. The system (6.16) is discretized in time by the backward Euler method [35] and

takes the following linear system



[A (tj+1)−∆tB (tj+1)]Xj+1 = A (tj+1)Xj + ∆tF j+1, j = 0, 1, . . . , N − 1,

p (tj+1) = 1
E(tj+1)

[
(β − 1)

m∑
i=0

ci (tj+1) (P ∗i )′ (0) +

∫ 1

0
S (x, tj+1) dx−D(α)

t E (tj+1)

]
,

X0 =
(
c0

0, c
0
1, . . . , c

0
m

)T
.

(6.19)
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Algorithm 1 (Algorithm of the Method)

1: Initializations:

1. Give the values of T , α and β.

2. Give the values of time step τ = T/Nt and the step value of the space h = 1/Nx.

3. Give the initial condition ϕ (x) and the reaction coefficient pex (t).

4. Give the source term S (x, t) and the integral
∫ 1

0 S (x, t) dx.

5. Give the functions E (t) and D(α)E (t).

6. Give the shifted Legendre polynomials P ∗0 (x) , P ∗1 (x) , ..., P ∗m (x).

7. Give the second derivatives of (P ′′)∗0 (x) , (P ′′)∗1 (x) , ..., (P ′′)∗m (x).

8. Give x1, x2, ..., xm−1 the roots of shifted Legendre polynomial P ∗m−1 (x).

9. Give the exact solution to the problem uex (x, t).

2: For each time step:

1. Compute the mass matrix Aj+1, the stiffness matrix Bj+1 and the source term Fj+1.

2. Calculate the matrix Dj+1 = Aj+1 − τBj+1 and the right-hand side Gj+1 = Aj+1Uj+1 + τFj+1.

3. Solve the system Dj+1Uj+1 = Gj+1.

4. We set c0 = Uj+1 (1), c1 = Uj+1 (2),. . . , cm = Uj+1 (m), and we set um =

m∑
i=1

ciP
∗
i (x).

5. Draw in the same figure, the graphs of um (x) and uex (x, tj+1).

6. Calculate the L2 norm: ‖um − uex‖L2(0,1) and the L∞ norm: ‖um − uex‖L∞(0,1).

7. Calculate the approximate reaction:

p (tj+1) =
1

E (tj+1)

[
(β − 1)

m∑
i=0

ci (tj+1) (P ∗i )′ (0) +

∫ 1

0
S (x, tj+1) dx−D(α)

t E (tj+1)

]
.

8. Draw in the same figure, the graphs of p (tj+1) and pex (tj+1).

9. Calculate the norm: |p (tj+1)− pex (tj+1)|.
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Example 6.1 ( [23]). We consider the following data:



S (x, t) = 4π2 cos (2πx) e−4π2t + 2t (1 + cos (2πx)) e−4π2t+10t2 ,

ϕ (x) = 1 + cos (2πx) ,

E (t) = e−4π2t,

α = 1, β = 0.

For these data, the inverse time-dependent coefficient problem (4.1)- (4.4) is given by:



ut (x, t) = uxx (x, t)− p (t)u (x, t) + S (x, t) ,

u (x, 0) = ϕ (x) ,

u (0, t) = u (1, t) ; ux (1, t) = 0,∫ 1
0 u (x, t) dx = E (t) .

(6.20)

This example was studied in [23] by different numerical method. In this case, the exact solution is given by:

u (x, t) = (1 + cos (2πx)) e−4π2t; p (t) = 4π2 + 2te10t2 .

We apply Algorithm 1 for m = 8 with the numerical solution defined by:

u8 (x) =
8∑
i=1

ci (t)P ∗i (x) .

Table 6.1 compares error and relative error obtained by our algorithm and with the numerical method

studied in [23]. In Table 6.2, we compare the L2 errors at different values of T with τ = 0.0025 and h = 0.005

with the results obtained by the method studied in [23]. From this comparative study, we can conclude that

the numerical solutions obtained by our algorithm are very good. the curves of the exact and numerical

solutions of p(t) and u(x, t) are given by Figure 6.1 and Figure 6.2.
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Table 6.1: Error and Relative error of p (t) with τ = 0, 0455, h = 0, 005.

Our Method M. Ismailov and F. Kansa [23]
Times Error Relative error Error Relative error
0.0455 9.66E-13 2.44E-14 0.0650 0.0016
0.0909 9.52E-13 2.40E-14 0.0647 0.0016
0.1364 1.25E-12 3.12E-14 0.0606 0.0015
0.1818 1.63E-12 4.09E-14 0.0588 0.0014
0.2273 1.76E-12 4.38E-14 0.0576 0.0014
0.2727 2.10E-12 5.18E-14 0.0561 0.0013
0.3182 2.27E-12 5.51E-14 0.0544 0.0013
0.3636 4.82E-12 1.14E-14 0.0524 0.0012
0.4091 1.58E-12 3.61E-14 0.0503 0.0011
0.4545 2.29E-11 4.90E-13 0.0485 0.0010
0.5000 3.64E-11 7.04E-13 0.0480 0.0009

Figure 6.1: Exact and approximate of p (t)

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



6.2. LEGENDRE COLLOCATION METHOD 90

Table 6.2: Error of u (x, t) with T = 0.5, τ = 0, 00025, h = 0, 0005.

Our Method M. Ismailov and F. Kansa [23]
Times Error Error

0.000250 0.00009 0.0079
0.050250 0.00013 0.0057
0.100250 0.00019 0.0034
0.150250 0.00024 0.0020
0.200250 0.00029 0.0014
0.250250 0.00034 0.0053
0.300250 0.00039 0.0062
0.350250 0.00044 0.0004
0.400250 0.00049 0.0080
0.450250 0.00054 0.0084

Figure 6.2: Exact and approximate of u (x, t)
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Example 6.2. We consider the following data:


T = 20, r (t) = et

α
, ϕ (x) =

(
x− x2

)2
, E (t) = et

α
/30,

S (x, t) =
(
et
α

+ α
)
et
α (
x− x2

)2 − 2
(
1− 6x+ 6x2

)
et
α
,

Exact solution is ue = et
α (
x− x2

)2
.

(6.21)

+ For α = 0.5, the exact and approximate solution of u (x, t) and p (t) are given by:

Figure 6.3: Exact and numerical solutions of
u (x, t).

Figure 6.4: Exact and numerical solutions of p (t).

+ For α = 0.9, the exact and approximate solution of u (x, t) and p (t) are given by:

Figure 6.5: Exact and numerical solutions of
u (x, t).

Figure 6.6: Exact and numerical solutions of p (t).
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+ For α = 0.1, the exact and approximate solution of u (x, t) and p (t) are given by:

Figure 6.7: Exact and numerical solutions of
u (x, t).

Figure 6.8: Exact and numerical solutions of p (t).
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Conclusion générale

IIn this thesis, we have studied various inverse problems related to time-fractional diffusion and reaction-
diffusion equations with nonlocal and overdetermination conditions. Our main focus has been on
the identification of time-dependent parameters—namely, source terms and coefficients—appearing

in such models.
We first examined the inverse problem of determining a time-dependent source term in a time-fractional

diffusion equation. A key challenge in this problem is the lack of completeness of the eigenfunction system.
However, by employing the system of eigenfunctions together with their associated functions, which forms
a basis in L2 (0, 1), we established well-posedness results. Under suitable assumptions on the input data,
we proved the existence, uniqueness, and continuous dependence of the solution using a combination of
the generalized Fourier method, Mittag-Leffler function estimates, and the Banach fixed-point theorem.
The results of this study formed the basis of a research article published in an international journal [40].

Subsequently, we investigated an inverse problem aimed at identifying a time-dependent coefficient in a
one-dimensional time-fractional reaction-diffusion equation. Here, the fractional derivative was considered
in the conformable sense. Using Fourier analysis and Banach’s contraction mapping principle, we showed
that this problem also admits a unique and stable solution under appropriate conditions.

From a numerical standpoint, we proposed and analyzed a finite difference approximation scheme for
the time-dependent source inverse problem. Furthermore, we developed an efficient numerical algorithm
based on shifted Legendre polynomials. This approach transforms the inverse problem into a linear system
of first-order differential equations, which is solved using the Backward Euler method. Several numerical
examples were provided to validate the accuracy, robustness, and effectiveness of the proposed algorithm.
Overall, this thesis contributes to both the theoretical analysis and numerical resolution of inverse problems
involving time-fractional partial differential equations. The methodologies employed offer a solid frame-
work for tackling a wide range of related problems in applied mathematics, physics, and engineering.
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[41] M.A. Naǐmark. Linear differential operators: two volumes bound as one. Dover Publications,Incorporated,
2012.

[42] I. Orazov and M.A. Sadybekov. On a class of problems of determining the temperature and density of
heat sources given initial and final temperature. Siberian Mathematical Journal, 53:146–151, 2012.

[43] I. Podlubny. Fractional differential equations. Academic Press, 1999.

[44] M. Ruzhansky, M. Sadybekov, , and D. Suragan. Spectral geometry of partial differential operators. CRC
Press, 2020.

[45] Y. Bai S. Zeng, D. Baleanu and G. Wu. Fractional differential equations of caputoâ€“katugampola type
and numerical solutions. Appl. Math. Comp., 315:549–554, 2017.

[46] M. Sadybekov, G. Oralsyn, and M.I. Ismailov. Determination of a time-dependent heat source under
not strengthened regular boundary and integral overdetermination conditions. Filomat, 32(3):809–814,
2018.

[47] K. Sakamoto and M. Yamamoto. Inverse source problem with a final overdeter-mination for a frac-
tional diffusion equation. Mathematical Control and Related Fields, 1(4):509–518, 2011.

[48] A.L. Skubachevskii. Nonclassical boundary-value problems. Journal of Mathematical Sciences,
155(2):199–334, 2008.
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