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ime-fractional diffusion equations (TFDEs), which generalize classical diffusion equations
by replacing the first-order time derivative with a fractional-order operator of order 0 <
a < 1, provide an effective framework for modeling subdiffusive phenomena in diverse
applications-from chemical transport and viscoelastic materials to biological systems and nuclear engineer-
ing. Their nonlocal, weakly singular kernels, however, obstruct the direct use of many standard analytical
techniques. In particular, inverse problems-recovering unknown source terms or coefficients from integral
or pointwise measurements-pose additional challenges, as one must accommodate fractional-order deriva-
tives and often non-self-adjoint boundary value problem.
This thesis focuses on two main inverse problems for the one-dimensional time-fractional diffusion
equation
0“u

%(x,t):um(x,t)+F(:v,t,u), 0<z<1,0<t<T,

subject to nonlocal family of boundary conditions and an integral over-determination, where aé% repre-
sents a fractional derivative. In the first, the source takes the separable form F'(z,t,u) = r (¢) f (x,t), and
one seeks the pair {u (z,t),r (t)}. In the second, F' (z,t,u) = —p(t)u(x,t) + S (z,t) and the goal is to re-
cover the time-dependent coefficient p (¢) alongside u. Both problems are studied under minimal regularity
and compatibility assumptions on the data. After reviewing relevant spectral theory for Sturm-Liouville
operators with regular but not strongly regular boundary conditions, we employ a generalized Fourier
method, expanding solutions in biorthogonal systems of root functions and fixed-point arguments based
on Mittag-Leffler estimates to establish existence, uniqueness, and continuous dependence. Theoretical re-
sults are complemented by finite-difference schemes and a spectral algorithm based on shifted Legendre

polynomials, with numerical examples confirming accuracy and stability.

Keywords: Fractional diffusion equations, nonlocal boundary conditions, Generalized Caputo fractional derivative,
Conformable fractional derivative, Generalized Fourier method, Banach fixed-point theorem, Finite-difference
scheme, Legendre collocation method, Backward Euler method, non-self-adjoint spectral problem, biorthogonal

systems.
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es équations de diffusion fractionnaires temporelles (TFDE), qui généralisent les équations de

diffusion classiques en remplacant la dérivée temporelle du premier ordre par un opérateur

d’ordre fractionnaire d’ordre 0 < « < 1, offrent un cadre efficace pour la modélisation des

phénomeénes subdiffusifs dans diverses applications, du transport chimique et des matériaux viscoélas-

tiques aux systemes biologiques et au génie nucléaire. Leurs noyaux non locaux et faiblement singuliers

entravent cependant I'utilisation directe de nombreuses techniques analytiques standard. En particulier, les

problémes inverses (récupération de termes sources ou de coefficients inconnus a partir de mesures inté-

grales ou ponctuelles) posent des défis supplémentaires, car il faut prendre en compte les dérivées d’ordre
fractionnaire et souvent les problemes aux limites non auto-adjoints.

Cette thése se concentre sur deux principaux problémes inverses pour 1’équation de diffusion fraction-

naire en temps unidimensionnelle

0%u
%(w,t) = Upy (z,1) + F(x,t,u), 0<x<1,0<t<T,
soumis a une famille non locale de conditions aux limites et a une surdétermination intégrale, o1 g%

représente une dérivée fractionnaire. Dans le premier cas, la source prend la forme séparable F' (z,t,u) =
r(t) f (z,t), et on cherche le couple {u (z,t),r (t)}. Dans le second cas, F' (x,t,u) = —p (t)u(x,t) + S (z,t)
et I'objectif est de retrouver le coefficient dépendant du temps p (t) aux cotés de u. Les deux problemes
sont étudiés sous des hypotheses minimales de régularité et de compatibilité sur les données. Apres avoir
examiné la théorie spectrale pertinente pour les opérateurs de Sturm-Liouville avec des conditions aux
limites réguliéres mais non fortement réguliéres, nous utilisons une méthode de Fourier généralisée, éten-
dant les solutions aux systémes biorthogonaux de fonctions racines et les arguments de point fixe basés sur
les estimations de Mittag-Leffler pour établir 1’existence, 'unicité et la dépendance continue. Les résultats
théoriques sont complétés par des schémas aux différences finies et un algorithme spectral basé sur des

polynomes de Legendre décalés, avec des exemples numériques confirmant la précision et la stabilité.

Mots-clés: Equations de diffusion fractionnaire, Conditions aux limites non locales, Dérivée fractionnaire de
Caputo généralisée, Dérivée fractionnaire conformable, Méthode de Fourier généralisée, Théoreme du point fixe de
Banach, Schéma aux différences finies, Méthode de collocation de Legendre, Méthode d’Euler rétrograde, Probleme

spectral non auto-adjoint, Systemes biorthogonaux.
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General introduction

Parabolic partial differential equations with fractional time derivatives of order less than 1,

known as time-fractional diffusion equations (TFDEs), have become a crucial tool for mod-

eling slow diffusion (subdiffusion) processes in various fields, including chemistry, physics,
viscoelasticity, biology, and nuclear power engineering, [8, 38, 39]. The challenges associated with TFDEs
are more pronounced because many standard methods cannot be directly applied to non-classical deriva-
tives. The difficulty arises from the definition of fractional-order derivatives, which fundamentally involve
an integral with a weakly singular kernel.

It is important to highlight that the first theoretical results for the inverse problem of determining co-
efficients in TFDEs were established in [12,28,34,47,50]. Inverse source problems for TFDEs have been
extensively studied under various initial, boundary, and over-determination conditions. The problem of
identifying a space-dependent source term from the final temperature distribution has been investigated
in [5,7,14,15,32,49], while the recovery of a space-dependent source term from total energy measurements
has been discussed in [10,36,37].

For inverse problems involving TFDEs, the identification of a time-dependent source term from tem-
perature measurements at a selected spatial point has been considered in [6,25], while the determination
of a time-dependent source term using an integral-type over-determination condition has been explored
in [3,4,18,21]. Additionally, the identification of initial and boundary data from final measurements in the
initial boundary value problem for the time-fractional heat equation has been examined in [2,33] and [11],
respectively.

In the study of inverse source problems for TFDEs, several approaches have been explored in the liter-
ature, one of which is the generalized Fourier method. The works [2-5,21, 34] investigate inverse source
problems from the perspective of spectral analysis, where the temperature distribution is expanded in terms

of root functions (eigenfunctions and associated functions) of a spectral problem with boundary conditions



relevant to the given problem. When the boundary conditions involve nonlocal characteristics, classical
self-adjoint eigenfunction expansion results cannot be directly applied to the auxiliary spectral problem, ne-
cessitating further investigation into eigenfunction expansions [41]. Non-self-adjoint operators commonly
arise in the modeling of dissipative processes [19,45]. In many cases, nonlocal conditions provide a more
realistic framework for addressing physical problems than traditional local conditions, further motivating
the study of nonlocal boundary-value problems.

In this thesis, we are interested with the one-dimensional time-fractional diffusion equation
“DiPu(z,t) = Upy (2,) + F (z,t,u), (x,t) € Qp, (1)
subject to the initial condition
u(z,0)=p(x), 0<z<l1, (2)
and the family of nonlocal boundary conditions

uw(0,t) =wu(l,t),
0<t<T, 3)

Buz (0,t) = ug (1,1),

where —1 < 8 < land Qp = {(x,t) : 0 <z < 1, 0 < ¢t < T} for some fixed T' > 0, °D;"” stands for left-sided
generalized Caputo fractional derivative of order 0 < a < 1 and p > 0 is a real constant, F' (z,t,u) is the
source term and ¢ () is the initial data. The fractional derivative in (1) is a generalization of left Caputo and
Caputo-Hadamard fractional derivatives, which can be obtained by taking p = 1 and p — 0%, respectively.
The nonlocal boundary conditions (3) are regular but not strongly regular. For 8 = 0, the nonlocal boundary
conditions (3) are well-known and called in literature as Samarskii-lonkin conditions, [20]. More general
boundary conditions of the type (3) have been considered in [17,24,41,44].

Our goal in this thesis is to determine the source term F' in two cases, together with u (x,¢) under the

additional integral measurement:

/0 w(z t)dz = g(t), t € [0,T], )

where g belongs to AC' [0, T, the space of absolutely continuous functions. The integral condition (4) natu-



rally arises and serves as supplementary information for identifying the source term. This type of condition
is applicable in various physical contexts, including chemical engineering, thermo-elasticity, heat conduc-
tion and diffusion processes, and fluid flow in porous media [21].

When the function F' is given, the problem of finding u (x,t) from the initial boundary value problem
given by (1)-(3) is called the direct problem . The inverse problem given by (1)-(4) is formulated when the
function F'is unknown. The following two inverse problems will be studied.

Inverse time-dependent source problem:
If we take the unknown function F' to be F'(z,t,u) = r(t) f (z,t), the inverse time-dependent source

problem is formulated as the problem of finding the pair {u (z,t) ,r (t)} satisfying (2)-(4) and
“DiPu(x,t) = ugy (x,t) + 7 (t) f (z,1), (z,t) € Qr, 5)

where f (z,t) is a given function and r (¢) is an unknown function.

The study of inverse source problems with same conditions has been considered earlier [22,46]. In [22],
the inverse source problem (2)-(4) and (5) was studied using the time-fractional derivative in the Riemann-
Liouville sense. In [46], the same inverse source problem is studied for « = p = 1. The case 0 < o < 1 and
p # 11is considered in our article [40] for the first time.

Inverse time-dependent coefficient problem:
If we take the unknown function F' to be F (z,t,u) = —p(t)u(x,t) + S (z,t), the inverse problem is

formulated as the problem of finding the pair {u (z,t),p ()} satisfying (2), (4) and
D (,1) = gy (2,8) — p () u (@, 8) + S (2,8), (2,t) € Qr, (6)

where DEQ) represent the left-conformable fractional derivative of order 0 < a < 1 with respectto t, S (z,t)
is a given function and « (¢) is an unknown function.

The rest of our thesis is organized as follows: in Chapter 1, we provide some preliminaries and basic
result needed for the forthcoming chapters.

In Chapter 2, we study a spectral problem for Sturm-Liouville operator with two-point boundary con-
ditions. We introduce some necessary properties regarding: regular boundary conditions and biorthogonal
systems in a Hilbert space. We make a detailed study of the completeness property and the fundamental

property of the system of root functions. Finally, we introduce the non-self-adjoint spectral problem that



we use in Chapter 3 and which is a key element of a paper published in an international journal [40].

In Chapter 3, we study the time-dependent source inverse problem (2)- (4) and (5). The peculiarity
of this inverse problem is that the system of eigenfunctions is not complete, but the system of eigenfunc-
tions and associated functions forms a basis in L? (0, 1). Under certain natural conditions of regularity and
consistency of the input data, the existence, uniqueness, and continuous data dependence of the solution
are shown using the generalized Fourier method, Mittag-Leffler function estimates, and the Banach con-
traction principle. This chapter is a draft of an article titled "An inverse time-dependent source problem for a
time-fractional diffusion equation witn nonlocal boundary conditions" published in an international journal [40].

In Chapter 4, we study an inverse problem of determining the time-dependent coefficient in one-dimensional
time-fractional reaction-diffusion equation with nonlocal boundary and overdeterminarion conditions. The
time-fractional derivative is described in the conformable sense. Under some assumptions on the input
data, the well-posedness of this inverse time-dependent coefficient problem is shown by using Fourier’s
method and Banach’s contraction mapping principle.

In Chapter 5, we discus the finite difference approximation for the inverse time-dependent source prob-
lem (2)- (4) and (5).

In the last chapter, an efficient algorithm is proposed for solving the inverse time-dependent source
problem (2)- (4) and (5). This algorithm is based on shifted Legendre polynomials of the first kind. This
inverse problem is reduced to a linear system of first order differential equations and the Backward Euler
method is applied to solve this system. Finally, some numerical examples are presented to confirm the
reliability and effectiveness of this algorithm.

We conclude this thesis with a general conclusion and some perspectives.



CHAPTER 1

PRELIMINARIES

n this chapter, we introduce the mathematical tools essential for a thorough understanding of the thesis.
We begin with a review of key concepts from functional analysis and Fourier analysis, followed by
an introduction to fundamental definitions and basic properties related to fractional calculus and inverse

problems.

1.1 Basic results of Banach spaces

Definition 1.1. Let E be a vector space over R. A real-valued function ||-|| defined on E and satisfying the
following conditions is called a norm:

(1) [|z]| > 0; ||z|| = 0 if and only if z = 0.

(2) |laz|| = |a|||z|| for all z € E and « € R.

©) llz +yll < ll=ll + llyll, Va,y € R.

(E, ||Il), vector space E equipped with ||-|| is called a normed space.

Definition 1.2. A normed space F is called a Banach space, if its every Cauchy sequence is convergent.

1.1.1 Examples of Banach spaces

Example 1.1. Leta,b € Rwitha < b.
1. The vector space C ([a, b]) of all real-valued continuous functions defined on [a, b] is a Banach space

with respect to the following norm:

1 lle(ap) = max [f(z)].

a<z<b
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2. The vector space C" (|a, b]) of all real-valued n time continuously differentiable functions defined on

[a, b] is a Banach space with respect to the following norm:

a<z<b ‘C([a,b]) '

=0

1l o ¢ Zka)H ey = 2o x| (@)
k

Definition 1.3. Letp € Rwith 1 < p < +00, we denote L? (a, b) the space of Lebesgue’s integrable functions

on [a, b] such that:
LP (a,b) := {u :[a,b] = R, umeasurable and [lul| 15, ;) < oo} ,
with

1/p
el oy = (/ e \de) .

The following theorem summarizes some properties of the L spaces:
Theorem 1.1. Let 1 < p < 4o00. Then
1. The space L* (a, b) endowed with the norm ||-|| 1, ) is a Banach space.

2. Holder’s inequality: Let 1 < q < 400 with % + é =1,u € L (a,b) and v € L9 (a,b). Then, uv € L' (a,b)

and

/\u |dx<</ lu (x ]pdx)l/p</ v (2 \%)Uq.

Corollary 1.1. The space L? (a,b) is a Hilbert space with the inner product
b
(U, V) [2(3qp) 1= / u(z)v(z)de, Yu,v € L?(a,b).
Moreover, the following Cauchy-Schwarz inequality holds:

(0,0 12| < Nl gty 19 2y » Vet w € L2 (a,0),

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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where

b 1/2
lll sy = ( / |u<x>|2dx) .

Definition 1.4 ([31, 1.1.5]). Let [a, b] be a finite interval. Then, AC [a, ] is the space of absolute continuous

functions on [a, b], defined by

AC’[a,b]:{f: [a,b]%Rsuchthatf(x)zc%—/ch(t) dt, cpeLl(a,b)}.

1.2 Fixed point theorem

Definition 1.5 (Contraction Mapping). Let (£, ||-||) be a Banach space. A mapping F' : E — E is called a

Lipschitz continuous mapping if there exists a number L > 0 such that
[ (z) = F(y)ll < Lllz —yll, Yo,y e E.

If 0 < L < 1, then F is called a contraction mapping. L is called the contractivity coefficient of F .
Definition 1.6 (Fixed point). Let F' be a mapping on a Banach space (E, ||-||) into itself. u € E is called a
fixed point if

F (u) = u.

Next, let us recall the well-known Fixed point contraction mapping theorem, for more see [57].

Theorem 1.2 (Fixed point contraction mapping theorem). Let (E, ||-||) be a Banach space and let F' be a contrac-
tion mapping on E into itself with contractivity coefficient 0 < L < 1. Then there exists only one point v in E such

that F (u) = u, that F' has a unique fixed point. Furthermore, for any u € E the sequence

v,F(v),FQ(v),...,Fk(v),

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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converges to the point u; that is

lim F* (v) = u.
k—4o0

1.3 Fractional calculus

This section provides a review of relevant definitions, notations in fractional calculus, and fundamental

results for the reader’s convenience.

Definition 1.7 ( [29]). Let [a, b] be a finite interval and f: [a,b] — R be an integrable function. The general-

ized left fractional integral (in the sense of Katugampola) is defined by

t N a—1 d
@10 =i [ (F5F) 10 i 0<a<i s3>0

where I' (+) is the Euler Gamma function defined by I (a) := f0+°° tele=t dt.

Definition 1.8 ([27]). Let p > 0 and f € AC [a, b]. The left generalized Caputo fractional derivative of f of

order 0 < o < 1is defined by

CD20f (1) = (11_ 3 /at (tp ; 5p> h ' (s) ds.

If o = p=1,then ¢D*f (t) = f' (¢).

Theorem 1.3 ([27]). Let f € AC [a,b],0 < a < 1and p > 0. Then, we have:

TP (DY f (2)) = f (x) — [ (a).

Definition 1.9 ([1]). Let f: [ 0,400 [ — R be a real valued function. The p-Laplace transform of f is defined

by

+o00 iy
LAFONe) = [0 g5 >0,

for all values of s, the integral is valid.

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Theorem 1.4 ( [1]). If the p-Laplace transform of f: [0,+oo[ — R exists for s > c¢; and the p-Laplace transform

of g: [0,400[ — R for s > ca. Then, for any constants a and b, the p-Laplace transform of a f + bg exists and

Lo{af (1) +bg (0} (s) = aly {F (1)} (s) + bL,p {g ()} (s). for s > max {er, o).

Definition 1.10 ( [20]). Let f and g be two functions which are piecewise continuous at each interval [0, 7.

We define the p-convolution of f and g by

G0 = [ 1[er-"] o) £

sl=p

Theorem 1.5 ([26]). Let f and g be two functions which are piecewise continuous at each interval [0, T). Then,
Lo{(f+g) @)} =L {f ()} Lo{g ()}
Theorem 1.6 ( [26]). Let a > O and f € AC [0, T). Then,
L {(§DPF) (1)} (5) = s“Lp {f (£)} — s> £ (0).

Definition 1.11 ( [16]). The Mittag-Leffler function of two parameters is defined as

00 Zk
E&:T] (I) = kzo m, S C, Re (6) > O, Re (T]) > 0.

For n = 1, the Mittag-Leffler function is reduced to classical one parameter Mittag-Leffler function, that is,

+oo Sk
B¢y () = B¢ (z) = kgo T

Let e¢ (t,p) = E¢ (—pt®) and eg, (t,p) = t"7'E¢, (—ut®), where p is a positive real number. The
Mittag-Leffler functions e¢ (¢, 1), e¢yy (t, 1) for 0 < £ < 1,0 < £ < n < 1, respectively, are completely

monotone functions, i.e.

n n

()" gtn le¢ (t,p)] >0 and (—1)" gtn lee.n (t,11)] >0, ne€N.

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Using Theorem 1.6 in [43], we can have the following estimate

<

N uté N
K — <0, teleT], (1.1)
t

e (t, )] <
|neee (t, )] 0+

where ¢ > 0, N and C are some constants.

Lemma 1.1 ([26]). Let £ > O and | | < 1. Then, we have:

tP o1 tP 1
e (5)) - e ()} -

Theorem 1.7 ( [26]). The Cauchy problem

FD* Py + @ = (1), >0, 0<a<l, p>0, AeR

y(0)=yo, wo€R,

has the solution

tr t P — s ds
y(t) = Yota (p;)\> +/0 Ca,a ( P 7)‘> f<3> sl—p°

1.4 Conformable fractional calculus

In this section, we start by recalling some concepts about conformable fractional calculus.

Definition 1.12 ( [1]). Let ¢ : [a,+0o [ — R is a given function and a € ]0,1 ]. Then, the left-conformable

fractional derivative of order « is defined by:

D () () 1= lim — (tree-o) -0 “

e—0 3

(1.2)

If DI () (¢) exists on ] a, +00 [, then DY () (a) = lim D' () (t). If a = 0, the definition (1.2) is intro-
t—a

duced by Khalil et al. [30]. In this case, we say that ¢ is a-differentiable.

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Propriety 1.1 ([1,30]). For f,g: [0,+00 [ = Rand 0 < o < 1, we have the following properties:

If f is a-differentiable, then f is continuous. (1.3)

D (af + bg) = aD'Y (f) + D (g), a,b € R. (1.4)
D(k+1) jo—

Do)k _ F(kfn)t @ IfkeNandk > a, | @5
0 IfkeNandk < a,

where I' (+) is the Euler Gamma function and n < oo < n + 1.

D (C) = 0 where C is a constant. (1.6)
D (fg) = D' (g) + gD (f). (1.7)

If f is n times differentiable on [a, 400 [ then we have:
D)=t —a)" T () n<a<n+1. (1.9)
Let i (t) = (f o g) (t) such that f and g are a-differentiable functions, then

D) (h) (t) = D' () (9 (1)) - D (9) (£) - 9" (). (1.10)

Definition 1.13 ([30]). Leta € ]0,1] and ¢ : [0, +00 [ — R be real valued function. The left-conformable

fractional integral of ¢ of order « from zero to t is defined by:

t
Zop (1) ::/0 sl (s)ds, t>0, (1.11)

Lemma 1.2 ( [30]). Let ¢ : [0, 400 [ — R is a given function and 0 < o < 1. Then, for all t > 0, we have:
1. If ¢ is continuous, then D\ [T (t)] = ¢ (t).
2. If p is a-differentiable, then I, [Dt(a) () (t)} =@ (t) — ¢ (0).
We introduce the following theorem, which is used further in this thesis.
Theorem 1.8. Let g : [0, 400 [ — R is a continuous function and v € R. For all 0 < o < 1, the Cauchy problem:

Dy (1) +yy (1) = g (1), (1.12)

y(0) = wo.

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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admits a unique solution given by

a t o _ o
y (t) = yoexp <—Wta> +/0 exp (78 ! ) s g (s)ds. (1.13)

1.5 Legendre polynomials

Legendre polynomials, also known as Legendre functions, are a class of orthogonal polynomials that consti-
tute a special case of both ultra-spherical functions and Jacobi polynomials. These functions play a central
role in various physical and mathematical problems, particularly those formulated in spherical coordinates.
In such contexts, Legendre polynomials are essential for handling the angular components of functions,
especially through their appearance in spherical harmonics, which are expressed in terms of these polyno-
mials. There are two main types of Legendre polynomials.

In this thesis, we consider the first type of Legendre polynomials which is a solution of the following

differential equation, see [13]:
(1—2)y" (z) =22y (x) + n(n+ 1)y (z) =0. (1.14)

Legendre polynomials of the first kind are denoted by P, (z).

Definition 1.14 ( [13]). The Legendre polynomial of the first kind is a polynomial of degree n in « defined
by the Rodriguez formula:

L

Pul@) = S g

[(* = 1)"], (1.15)

where z is a real or complex variable. Figure 1.1 shows the graphs of the first Legendre polynomials P, (x).

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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I I T Po(x)
1K :
\\ -’/l
" /
% PO PO ¥ K
0.5 N ‘ - ¢ .
L //7,»’
< r
g 0r \\‘u / \K’” 7 -
o / 1 / s
i I il g
05 R (e ——— ! Po(x)
/ P00
-1 =
Py09 I | |
-1 -0.5 0 0.5 1
Figure 1.1: The Legendre polynomials P, () at different values of n.
Proposition 1.1 ( [13]). The analytic form of the Legendre polynomial of the first kind is given by:
P, (z) = 1 - (=1)" (2n — 2h) 2" 2k neN (1.16)
T &k (n = K)! (n - 2K)! ’ ’ ‘
where %] is the integer part of n/2.
Proof. Using Newton’s binomial law and Rodriguez’s formula (1.14), we obtain:
1 d" | < (—1)k nlgp2n—2k
P, (z) = = RS
(z) nl2n dzm [ k! (n — k)!
B i z": (_1 k drp2n—2k
Soon E'(n—Ek)!  dz»
k=0
R C TS T T
S 2kl (n = k)L (n - 2k)! ’
Since 2n — 2k in the combination must be greater than or equal ton, so 0 < k < [%]. O
Definition 1.15 ( [13]). The generating function of the Legendre polynomial P, (z) is given by:
+oo 1
Zt”Pn () = —/—. (1.17)
—~ V1 -2zt + 12

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Proposition 1.2 ([13]). The Legendre polynomials of the first kind P,, (x) satisfy the following recurrence formula:

Py (z) =2 (1.18)

Pn+1 (1’) = 27:7':11.Tpn (.@) — nL_H n—1 (l’) , n e N.

Proof. By differentiating with respect to ¢ the generating function (1.17), we obtain:

—t
ny t" 1P, ( v .
Z (1—2xt+t2)\/1—2xt+t2

Multiplying both sides by 1 — 2zt + t? and according to (1.17), we get:

+00 +oo

r—t
n(1—2xt+ 2 P (r)= ————— = (x— ¢ t"P, ().
( ) R ) = e = ) L A

Let each ¢ be raised to the power n:

(n+1) Zt Py (z —2ant P, ( (n—1) Zt P, ( —th”P Zt P (

n=0
By equating the coefficient of ¢, we obtain the recurrence formula (1.18). O
Lemma 1.3 ( [13]). The Legendre polynomials of the first kind form an orthogonal set on the interval [—1, 1], such

that

: 0 ifntm,
(P, Pp) = / P, (x) Py (x)de = (1.19)

2 .
2nt1 if n=m

Proof. 1. For n # m, P, and P,, are solutions of the Legendre equation (1.11), then

(1= a?) Py @)] 4 n(n+ 1) Py (@) =0, (1.20)
% [(1 =) Py, ()] +m (m+1) P (2) = 0. (1.21)

F. Mihoubi
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Multiplying (1.20) by Py, (z) and (1.21) by P, (z) and with the difference, we obtain:

—P, (z) (di [(1-2%) P, (2)] +m(m+1) Py, (x)) =0.

[(1-2%) P, (z)] +n(n+1)P, ($)>
(1.22)

Integrating the equation (1.22) with respect to x between —1 and 1, we obtain:

/ 11 Poo) (g [0- ) Pro)] ) o | 11 P (g [0=%) 2 <x>]) o

i

+nn+1)—m(m+1)] / P, z)dz = 0.

The proof is done using integration by parts.

2. For n = m and using the generating function (1.17), we obtain:

+00 1
Y Py (2) = ————, (1.23)
— V1 =2t + 12

+o0o 1
t"P, () = —m——. 1.24
mz:: (=) V1 —2xt+t2 ( )

Multiplying (1.23) by (1.24), we obtain:
+o00 +oo 1
n+m _
2D P (@) P (@) = T
n=0m=0
Integrating both sides with respect to « from —1 to 1, we get:

400 400 N 1 dx
nom P, ( x)dz | = _
> Dt </ x) /_11—2xt+t2

n=0m=0

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Since fil P, (z) Py, (x) dx = 0 for n # m, then we have:

+oo 1 1
Zt2” </ P2 (z) d:c> = / o dr
-1 -1 1 —2xt —+ t2

n=0
1 2711
=5 [ln(1—2$t+t )]71
1
:¥[ln(1+t)—ln(1—t)]
1 +oo tn+1 400 tn+1
== —1)"
+
2n+1
n=0

By equating the coefficients of ¢*", we find:

1 ) 2
P dx =
/_1 2 () de = 52

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



CHAPTER 2

STURM-LIOUVILLE PROBLEM WITH

TWO-POINT BOUNDARY CONDITIONS

n this chapter, we study a spectral problem for Sturm-Liouville operator with two-point boundary con-
ditions. We introduce some necessary properties regarding: regular boundary conditions and biorthog-
onal systems in a Hilbert space. We make a detailed study of the completeness property and the fundamen-
tal property of the system of root functions. Finally, we introduce the non-self-adjoint spectral problem that

we use in Chapter 3 and which is a key element of a paper published in an international journal [40].

2.1 Sturm-Liouville problem with two-point boundary conditions

We study the linear Sturm-Liouville problem consisting of the equation
W (x) +Mu(z)=0,0<z <1, AeC, (2.1)
and the linear two-point boundary conditions of the general form

Bi (u) = aj1u’ (0) + agou’ (1) + ag3u (0) + arqu (1) = 0,
2.2)

By (u) = aglu’ (0) + CLQQUI (1) “+ assu (O) + ag24u (1) =0,

where B; (u) and By (u) are linearly independent forms with arbitrary complex-valued coefficients.

We consider the linear operator Lu = —u" defined on L? (0, 1) with the domain
D (L) :={ue L*(0,1): By (u) = By (u) =0} .
Definition 2.1 ( [31, Page 193]). A number ) is called an eigenvalue of the operator L if there exists a

17
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function u° € D (£) with u® # 0 such that

Lu° = \udl. (2.3)

0

The function u” is called the eigenfunction, of the operator £, for the eigenvalue \.

Definition 2.2 ([31, Page 193]). A function u,, is called an associated function of the operator £ of order m

m =1,2,...) corresponding to the same eigenvalue )¢ and the eigenfunction u if satisfies the equation
p & & & q
Lu™ = Ngu™ +u™ L (2.4)

The set of functions {u’, u', ...} is called the eigen-and associated functions of the problem (2.1)-(2.2).

From the condition (2.2), we can form the matrix

ailp a2 a3 a4
A:

a21 agzz a23 G24

We denote by A (ij) the matrix composed of the i-th and j-th columns of A, and denote

al; Qa4
Aiji=detA(ij) =] 7|, 1<i<j<4

az;  a2;

Then the general solution of equation (2.1) is given by:
u () = 1 cos (ux) + casin (ux), A = p?,

where c; and c; are arbitrary constants. Substituting the general solution into the boundary conditions (2.2)

for finding ¢; and ¢y, we obtain the system of equations

;

(—alg sin p + “f + a14C°:“> c1+ (all + a19 cos p + a14¥) ey =0,

(2.5)

(—a22 sin p + % + a24co;u) c1+ (a21 + agzcos pu + a24512“) co = 0.
\

Hence, the boundary value problem (2.1)-(2.2) has a nonzero solution if and only if the system (2.5) has a

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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nonzero solution. The eigenvalues of the boundary value problem (2.1)-(2.2) are the roots of the character-

istic determinant

A(y) = —ajgsin pu + af +a14% ail + a2 cosu—i—alfi%
—agzsin i + a% + (124% ao1 + agz cos u + a245i%
Simple calculations show that
sin '
A (,U) = —A13— Aoy + Asy 1% _ <A23 + A14) CcoS |4 + A12M sin p. (26)

Definition 2.3. Two-point boundary conditions (2.2) under one of three conditions

(1) A1z # 0,
(2) A1 = 0, A1g + A3 # 0, (2.7)

(3) A12 =0, A14 + Aoz = 0, Azq # 0.

are called the non-degenerate boundary conditions. Accordingly, if

Ay = Ajg+ Aoz = Azq =0, (2.8)

then the two-point boundary conditions (2.2) are called the degenerate boundary conditions.

Lemma 2.1 ([31]). Let the two-point boundary conditions (2.2) be non-degenerate, that is, one of the three conditions

(2.7) holds. Then, the problem (2.1)-(2.2) has an infinite countable number of eigenvalues.

Example 2.1 ([31, page 196]). Consider the Sturm-Liouville problem

—u"(z) =X u(z), 0<z <1,
2.9)

v (1) —au(l) =0, u(0) =0,

where o € C is a fixed number. From the boundary conditions of the Sturm-Liouville problem (2.9), we

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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have the matrix

01 0 —«
001 O

It is easy to see that for all a the case (2) from (2.7) holds: A2 = 0, Aj4 + A23 = 1. Therefore, the boundary

conditions of the Sturm-Liouville problem (2.9) are non-degenerate.

Example 2.2 ([31, page 195]). We consider the Sturm-Liouville problem

—u () =du(z), 0 <z <1,
(2.10)

uw (0)+au (1) =0, u(0) —au(l) =0,

where o € Cis a fixed number. From the boundary conditions of the Sturm-Liouville problem (2.10), we

have the matrix

1 o 0 O
A=

0 0 1 —«

It is easy to see that for all o, (2.8) holds: A2 = A4 + Azz = Azy = 0. Therefore, the boundary conditions

of the Sturm-Liouville problem (2.10) are degenerate. From (2.10), we have
A(p) = —Aiz — Ay = =140,

Then we obtain that for o # 1 the Sturm-Liouville problem (2.10) does not have eigenvalues, and for

a? = 1 each number \ € C is an eigenvalue of this problem.

2.2 Regular boundary conditions

In this section, we present the concept of regular boundary conditions. This concept was first introduced

by G. D. Birkhoff in his works in 1908 in [9], for n-th order general ordinary differential operators

™ (2) + g2 () u™ D (@) + . H g (@)U (2) 4 gn () u(2) = Mu(z), 0 <z <1, (2.11)
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with n linearly independent boundary conditions of the general form
B; (u) = (ajsu<8> (0) + bjsul® (1)) =0,j=1,...,n,

Rewrite the limit forms B; (u) by the form
kj—1
a;u®) (0) + bju®) (1) + Z (ajsu(s) (0) + bjsul®) (1)) =0,j=1,...,n, (2.12)

s=0

where ]aj]+|bj\ >0,n—1>2k >k >...2>kp kj > kjio.
Definition 2.4 ([31, page 197 ]). We denote by ¢; = exp (12%), j=1,...,n, the roots of order n from 1.

1 In the odd case n = 2m — 1, the "normed" boundary conditions (2.12) are called the regular boundary

conditions if the numbers 0y and 6, defined by the equality

k k k
areyt ... arenty (ag+sbi)elt biglt, L. biel
k k k k k
azey” ... agey;_y (ag +sba)ep? bog,t ... bogy?
Oy + 015 =
k k k k k
aney” angp_y (an +sbp)epr bpey' .. bagpt

are different from zero.

w5 In the even case n = 2m, the "normed" boundary conditions (2.12) are called the regular boundary

conditions if the numbers #; and 6, defined by the equality

k k k b k k k
ajeyt ... aig 4 (a1 +sby) et (a1 + ?1> Emi1l D160 .. bigpt
ko ko k ba \ k2 ko k
65 age® ... agg,r_y  (ag + sby)ey? (ag +2)e 2 begly oo begp?
Oy + 015+ —+ =
s
k k k k
aney” ... apepy (an + sby) ghn (an + b?") Emi1 bnEpivg - - byekn

are different from zero.

An important subclass of the regular boundary conditions, the so-called strengthened regqular boundary

conditions was defined.
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Definition 2.5. 1 In the odd case n = 2m — 1 of equation (2.11) all the regular boundary conditions

are strengthened regular.
= In the even case n = 2m of equation (2.11), we have

1. If 62 — 46105 # 0, the regular boundary conditions (2.12) are called strengthened regular.
2. 1f 2 — 40,05 = 0, the regular boundary conditions (2.12) are not strengthened regular.
For the case of the Sturm-Liouville problem (2.1)-(2.2), wehaven =2, m =1,¢; = —land ex = 1.

Let first A12 # 0. In this case the boundary conditions (2.2) have the normed form. we have a; = a1,

b1 = a12, as = as1, by = ag9, k1 = ko = 1. We calculate the determinant

PP 0y (a1 + sby) 5’;1 (al + b?l) Egl — (a11 + sai2) (CL11 + a%) 4 (S 1>
0 1 — = = = 412 I I
5 (ag + sba) 5]1” (az + bf) 5]2” — (ag1 + sagz) (a1 + %22) s

Then 6y = 0, 01 = A2, 02 = —Aj2. In this case the boundary conditions (2.2) are regular. Since 0(2) — 4010, =
4A3, # 0, in this case the conditions are strengthened regular.
Letnow Aj3 = 0, and |a11|+ |a12| > 0. Then the boundary conditions (2.2) can be reduced to the normed

form

aju (0) + a1t (1)4+  a3u(0) + ajqu (1) =0,
(2.13)

a23U (O) + asqu (1) = 0.

we have a1 = a11, b1 = a19, as = as3, by = asy, k1 = 1, ko = 0. We calculate the determinant

0y |- (a11 +sa12) a;n +*2

1
90—1-015—1—;: :—(s—i—S)(A14—|—A23)—2(A13+A24).

a
ags + sagy  agsy + “#

Then, 6; = 6y = — (A14 + Aa3), 00 = —2 (Ai13 + A24). That is, in this case the boundary conditions (2.13) are
regular under the additional condition A4 4+ A23 # 0. The condition of the strengthened regularity will be

written in the form:
02 — 40105 = (A13 + Agy)? — (A1s + Ag3)? # 0.

Consider the remaining case A2 = 0, with a;; = a12 = 0. Then the boundary conditions (2.2) can be
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reduced to the normed form

a1zu (0) + ajqu (1) =0,

(2.14)
a23U (0) + asqu (1) = 0.
We have a1 = a13, b1 = a14, as = as3, by = asgy, k1 = ko = 0. We calculate the determinant
0 a3 + sayy a3+ 44 1
90+918+£= s :A34<—3>.
azs + sazy a3 + “X
then, 02 = —0; = Asy4, 00 = 0. The inequality Ass # 0 is satisfied in view of the linear independence

of the boundary conditions (2.14). Hence, in this case the boundary conditions (2.14) are regular. Since

02 — 46,0, = 4A%,, these boundary conditions are strengthened regular.
Theorem 2.1 ([31, Theorem 3.105 ]). The boundary conditions (2.2) are regular in the following three cases:
(1) A1z #0,

(2) A1z =0, Ayq + Agz #0, (2.15)

(3) Aig=A13 = A1y = Aoz = Ay =0, Az4 # 0.

Here, the boundary conditions will be strengthened reqular in the cases (1) and (3), and in the case (2) under the

additional condition

Az + Aoy # £ (A1a + Asz) . (2.16)

Corollary 2.1 ([31, Corollary 3.106]). 1. For the case of the Sturm-Liouville equation (2.1), all the regular bound-

ary conditions (2.2) are non-degenerate.

2. Here, the boundary conditions can be non-degenerate and simultaneously irreqular in the case when

Ajg = Aa+ A3 =0, Aga # 0, and |Asz| + |Ara] + |A2z| + |A24] > 0

F. Mihoubi Study of some inverse problems associated with certain boundary value problems
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Example 2.3 ([31, Example 3.107]). Consider the spectral problem

—u () =dMu(z), 0 <z <1,
2.17)

v (0) —au(l) =0, u(0) =0,

where a € C is a fixed number. It is easy to see that for all & # 0 in case (3) from (2.7) holds: A;2 = 0,
A1g + Aoz =0, A3y = a # 0. Therefore, the boundary conditions of the problem (2.17) are non-degenerate.
Here, the determinant A;3 = 1 is not equal to zero since condition (3) from (2.15) does not hold. Hence,

the boundary conditions of the problem (2.17) are not regular.

For convenience of use we reformulate Theorem 2.1 in terms of coefficients of the boundary conditions

2.2).

Theorem 2.2 ( [31, Theorem 3.108]). The boundary conditions (2.2) are regular, if one of the following three condi-

tions holds:

(1) airage — a2a21 # 0,
(2) ar1ag2 — a12a21 = 0, |ai1| + |aiz| > 0, aj1a24 + aj2a23 # 0, (2.18)

(3) a11 = a2 = ag1 = aze =0, ajza — aysazz # 0.

The reqular boundary conditions are strengthened reqular in the first and third cases, and in the second case under

the additional condition

a11a23 + a12a24 # a11024 + a12023 (2.19)

2.3 Regular but not strengthened regular boundary conditions

From Theorem 2.1 and (2.19), the boundary conditions (2.2) are called regular but not strengthened regular

boundary conditions, if the following conditions are hold:

A1 =0, Ajg+ Az #0, A1z + Aoy = £ (A1g + Az3) .
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From Theorem 2.2, the regular but not strengthened regular boundary conditions (2.2) can be written in the

form

ajiu’ (0) + apev’ (1) +  a13u (0) + ajqu (1) =0,

(2.20)
ao3U (0) —+ agqu (1) =0,
when |ai1| + |ag2| > 0 and two conditions
ai1az4 + aizaz # 0, (2.21)
aiiags + ajpazs = £ (a11a24 + ai2a23), (2.22)

simultaneously hold. Indeed, condition (2.22) can be written in the form:

(a11 £ a12) (ag3 £ az) = 0.

Theorem 2.3 ( [42]). If the boundary conditions (2.2) are reqular but not strengthened regular, they can be always
reduced to the form (2.20) (with |a11| + |agz| > 0) of one of the following four types:

(1) a1 = a1z, ag3 # —asu;
(2) a11 = —a12, a3 # ag4;
(2.23)

(3) ass = aw, a1 # —a12;

(4) a3 = —aga, ai1 # a2

Corollary 2.2 ([31, Corollary 3.110]). All reqular, but not strengthened reqular boundary conditions can be reduced
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to one of the four forms:

w(0)—u (1)+ au(0)+bu(l)=0, |« (0)+u (1)+ au(0)+bu(l)=0,

u(0) +ou(l) =0, u(0) —ou(l) =0,

u(0)+au (1)+ au(0)+bu(l)=0, [u'(0)—au' (1)+ au(0)+bu(l)=0,
u(0) —u(l) =0, u(0) +u(l) =0,

where o« # 1, and the coefficients a and b can be arbitrary. For o = 1, these boundary conditions are degenerate and

consequently, are not regular.

2.4 Biorthogonal systems in Hilbert spaces

Definition 2.6. Let H be a Hilbert space. Two systems of elements (xj) and (y;) are said to be biorthogonal

systems in H if the relation

1, ifi=j
(Ti,y;) = 6i5 = (2.24)
0, ifi#j,

holds for all values of the indices 7 and j. Here §;; is the Kronecker delta.

Definition 2.7. A system of elements of a Hilbert space H is said to be a complete system if any vector

orthogonal to all vectors of this system is equal to zero.

Definition 2.8. A system of elements of a Hilbert space H is said to be a Riesz basis in H if there exist two

constants m, M > 0 such that for any f € H, the following inequality holds:

+oo
m |15 <D< MIflly (2.25)
1=0

2.5 A non-self-adjoint boundary value problem

In this section we consider main properties of eigen- and associated functions of a non-self-adjoint bound-

ary value problem for a second-order ordinary differential operator.

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



2.5. A NON-SELF-ADJOINT BOUNDARY VALUE PROBLEM

27

In L? (0, 1), we consider the operator £ given by:

LX =-X"(2)=XX(2), 0< 2 <1,

and nonlocal boundary conditions:

By (X) = BX' (0) - X' (1) =0, [8] < L.

(2.26)

(2.27)

where B; (X)) and By (X) are linearly independent forms. It is easy to justify that the operator £ is a linear

operator on L? (0, 1) defined by (2.26) with the domain

D(L)={X € L*(0,1): B; (X)=DBs(X)=0}.

Remark 2.1. From case (3) in Theorem 2.3, the boundary conditions in (2.27) are regular but not strength-

ened regular.

Proposition 2.1. The adjoint problem of the boundary value problem (2.26)-(2.27) is given by:

LYY =-Y"(x) =AY (z), 0<z <1,

with nonlocal boundary conditions

Bi (Y) =Y (0)-pY (1) =0, [B] <1,

By (Y)=Y'(z)— Y’ (1) = 0.

Proof. The operator £* defined by (2.28) is a linear operator on L? (0, 1) with the domain

D(£*)={X € L*(0,1) : B} (X) = B3 (X) =0} .

(2.28)

(2.29)
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Let X € D(L£)and Y € D (L"), by integration by parts twice, we obtain

1
(LX,Y) = — / X" (2)Y (2) da
0
1
—X OV (0) =Y W]+ XO [V () -V 0] - [ X (@)Y (@)do
0

=(X,L'Y),

then, £* is the adjoint operator of the operator L. Since, the problem (2.28)-(2.29) is the adjoint problem of

the problem (2.26)-(2.27). O

Remark 2.2. Obviously D (£) # D (L£*) then, the spectral problems (2.26)-(2.27) and (2.28)-(2.29) are not

self-adjoint.
Proposition 2.2. We have
1. The two spectral problem (2.26)-(2.27) and (2.28)-(2.29) have the same double eigenvalues \;, = (27rk)2 (except

for the first \g = 0). The set of eigenfunctions of the problems (2.26)-(2.27) and (2.28)-(2.29) are the following:

Xo (a:) = by; Xok_1 (QZ) = A cos (271']{7:6') , k€ N*, bo, A € R, (230)

Yo (z) = aj <:c + 1_%) ; Yor (z) = By sin (2nkz), k € N*, af, Bj, € R. (2.31)

2. The sets of eigenfunctions { X (z) , Xox—1 ()} and {Yy (x), Yo (x)}, k € N¥, are not complete in the space
L%(0,1).

Proof. 1. We have:

(@) If A = 0in (2.26) and (2.28), then Xy (z) = apx + by and Yy (z) = apz + bj,. From (2.27), we obtain:

X (0)=X(1), - bo = ap + b - .
ag = U,

BX'(0) = X'(1) Bag = Bag
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then X (0) = by. On other hand,

Y (0) =Y (1), by = B (ap + bp) Bay

Y'(0)=Y"(1) ap = ag

then, Y (z) = q <x + %)

(b) If A = u?, the general solutions of equations (2.26) and (2.28) are given by :
Xog—1 (x) = Ag cos (ux) + By sin (ux) , Yo (z) = A} cos (ux) + By sin (uzx), Ay, B, A}, B, € R.
From boundary conditions (2.27), we have:

Xop-1(0) = Xop—1 (1), A (cospp — 1) + By sinp = 0,
. (2.32)

BX5. 1 (0) =X, (1). —Agsinp+ By (cosp— ) = 0.

The system (2.32) admits a non-trivial solution, then the determinant of this system is zero.
Therefore, we have:

cospu —1 sin u o .
A(p) = =2(B+1)sin” (u/2) =0 & pg = 2wk, k € N,

—sinpy  cospu— 3

then N\, = (27r/-e)2 are multiple eigenvalues and From (2.32), we obtain By = 0. Then, X9, =

Ay, cos (2mkz) are eigenfunctions.

From boundary conditions (2.29), we have:

Yor (0) = BYar (1), A (Beosp—1) + Bjsinp =0,
o (2.33)

Y5, (0) =Y, (1). —Aj sinp+ By, (cosp— 1) = 0.

The system (2.33) admits a non-trivial solution, then the determinant of this system is zero.
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Therefore, we have:

Becosp —1 sin p

A (p) =2(2—(8—1)cosp)sin®(u/2) =0 < pp = 2nk, k €N,

—sinpg cosp—1

then )\, = (27rl<:)2 are multiple eigenvalues and from (2.33), we obtain A} = 0. Then, Y3, =

By sin (2mkx) are eigenfunctions.

c) If A = —pu?, with ;1 # 0, the general solutions of equations (2.26) and (2.28) are given by :
24 q & y
Xok (.1‘) = Cret® + Dpe M, Yor_1 = C,lceuz + D;Ce_’“", Cy, Dy, C]/ml)],f e R.
From boundary conditions (2.27), we have:

Xoi, (0) = Xoi (1), (e"=1)Cr+ (e7" —=1) Dy =0,
o (2.34)

B, (0) = Xy, (1). (e# — B) Ci + (B — e#) Dy = 0.

The system (2.34) admits a non-trivial solution, then the determinant of this system is zero.

Therefore, we have:

A(p) = =2(B+1)(coshp—1) =0,
et —p B —eH
then, ;= 0 (impossible).

From boundary conditions (2.29), we have:

Yor—1(0) = fYa,—1 (1), (Bet —1)Cp + (Be ™ = 1) Dy, =0,
N (2.35)

Y31 (0) = Yo, 4 (1). (" —1)Cy+ (1 —e ") D} =0.

The system (2.35) admits a non-trivial solution, then the determinant of this system is zero.

Therefore, we have:

A(p) = per L gl =2(B8+1)(coshpy—1) =0,

et —1 1—eH
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then, . = 0 (impossible).

2. Let f () = 2sin (2rkz) and g (z) = 2 cos (2mkx). We have:

1 1
(Xogp—1(z), f(z)) = / 2ay, cos (2mkx) sin (2nkz) dz = / ay sin (4mkz) de = 4(7%@ [cos (47rk::p)](1) =0,
0 0

and

1 1 /
(Yor, (), g (x)) = / 2a). sin (2rkz) cos (2rkx) do = / aj sin (4rkx) dow = :—kk [cos (47k)]g = 0,
0 0

7

then, sets of eigenfunctions { Xo, Xox_1 (z)} and {Y (), Yo, (z)}, k € N*, are not complete in L? (0, 1).
0

To make the set { X (7), Xox_1 ()}, k € N*, a complete set on L? (0, 1), we have to look for the associ-

ated eigenfunctions Xy, (z). According to Definition 2.2, we have to solve the following spectral problem:

— X0 (2) = M Xog () + Xop—1 (2), 0 <z < 1, 236

Xok (0) = Xor (1), BX, (0) = X5, (1)

The solution of spectral problem (2.36) is given by:

A 1
> cos (2mkx) + —~ ( + x> sin (2rkx) ,

Ay,
Xop () = (C’“ * Tom2i2 Amk \ B —1

where A, Cj, € R and k € N*. Similarly for the set {Yj (x) , Yai, (z)}, k € N*, we have to solve the following

spectral problem:

—Y2/]/€_1 (.%') = MYor_1 (IL‘) + Yo (:B) , 0<x <1, (2 37)

Yor-1(0) = BY2r-1 (1), Yoy (0) = Y5y (1)
The solution of spectral problem (2.37) is given by:
Yor—1(2) = — | m——= — *(2k)+D+& sin (2mkx)
ok—1(x) = x | cos (2mkx 3 167212 sin (27kzx) ,

where By, D, € R and k € N*,
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To show that the two systems of functions { Xy (), Xox—1 () , Xog ()} and {Yy (z), Yor—1 (z), Yor (2)}

are biorthogonal, we must explicitly determine the coefficients by, ag, Ai, Bk, Ck and Dy. According the

biorthogonality condition:

(Xo0,Y0) =1, (Xop_1,Yor—1) =1, (Xog, Yor) =1, (Xog, Yor—1) = 0. (2.38)

From the first condition we get

1

1 2
B T P (1+5)
1 = (X, Yo) = boal L Vdr =boa) | = + | = boaho
< 0, 0) boao/o <$+1—5 dx boao 5 +1—,8 . b0a02(1_6)
Then, by = 2 and aj, = % In this case, we have:
Xo(x) =2, Yo () = azx +b, (2.39)
where @ = 1 1+ﬂ B and b = m
We use the second condition from (2.38):
AyB Ay, B .
1 =(Xok_1,Yo_1) = 4k kk 0 ( + x) cos? (2mkx) dx + o5 <Dk + 167r§k:2> /0 sin (4rkzx) dx
_ ApBy AkBk B
= dx — drkx)d
Sk 0< x) Sk 0(5—1 x | cos (drkx) dx
291 . 1 1 ..
_ ApB, | Bx oz + AL By, B o) 50 (Arkz) +/ sin (47kx) dr
8tk | —1 2 8k 5—1 Ak 0 0 4k
_ ABr(B+1)
167k (B —1)°
Then, A, = 4and By, = %ﬁﬁ). In this case, we have:
Xok—1 (z) = 4cos (2mkx) , Yor—1 () = (ax + b) cos (27kx) + (Dk — ﬁ) sin (2rkx) , (2.40)
T
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where D, € R. We use the third condition from (2.38):

B! A L ApB, 1 1 .
1= (Xog, Yop,) = 7’“ (C’k + 167r]2€k2> /0 sin (4rkx) dx + 4];]{’“ /0 <ﬁ—1 + ;U) sin? (2rkx) dx

llkB;IC ! 1 AkB]/g /1 1
= _— — 4
ek /0 5_1—1—:1: dz sk ), B_l—l—m cos (4nkz) dz

 AxBy, [ x mz]l
0

5f1+ 2
_ ABp B +1
- 16rk -1

- 87k 2

Then, B;, = 1and 4; = %. In this case, we have:

Xok (z) = <C’ - %) cos (2rkx) +4 (1 — b — ax)sin (2wkx) , Yor (z) = sin (2mkz), (2.41)

where C € R. We use the fourth condition from (2.38), and from (2.40), (2.41) we have:

Ik
_ <Ck_“) [/01 (am+b)d1:+/01 (a:z:—|—b)cos(47rkx)dm]

+2(D,fﬁ> [/01(1bax)d:p/01(1baaz)cos(47rk::p)d1:]

“a) (P )

a ! 9 a ! . 9
0= (Xok, Yor—1) = (C’ — —) / (ax + b) cos” (2mkx) dx + 4 (Dk - —) /0 (1 —b—ax)sin” (2rkx) dx
0

Then, we have:
Cy, = 4Dy. (2.42)
Thus, from (2.39)-(2.42), the system given by:

Xo () =2, Xog_1 (x) =4cos (2mkx), Xoi () =4 (Dk - ﬁ) cos (2mkx) +4 (1 — b — ax)sin (27wkx)

(2.43)
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will be biorthogonal to the system

Yo (x) = ax + b, Yop_1 () = (ax + b) cos (2wkx) + (Dk - %) sin (27kz), Yor () = sin (27kx). (2.44)

We calculate the norms of elements of the biorthogonal systems (2.43) and (2.44).

2 a \2 4 a 8 3 9
1X0ll = 2, | Xkl = 2v2, 1Xanl® =8 (Di = o) + == (D= o7 ) — 5 (26" = 362 +3b— 1),
a

a® + 3b% 4 3ab 5 1 a \2
Yol = o/ 2000y :—(D ——)—
1Yol 3 ¥ar-1]" = 5 (D =

V2
5

a2

a 1
yos (Dk - ﬂ) team T (a + 3ab + 3b%) ,

1 Yar|| =

Using [31, Theorem 3.151], we check for which of the constants D, the necessary and sufficient condition of
the unconditional basis holds.

If the sequence (Dy,) is unbounded. Then,
(Xl [Yar]| = +oo, im [ Xop—a| [|Yor—1]| = +o0.

Hence, the requirement of the criterion in [44, Theorem 3.151] for an unconditional basis does not hold.
Therefore, the systems (2.43) and (2.44) does not give an unconditional basis in L? (0, 1).

In the case when the sequence Dy, is bounded, we get
khm | Xok || 1Yokl < +o0, hm [ Xok—1l [|Yor—1]] < +oc.

Then, we obtain the following result for the systems (2.43) and (2.44).

Lemma 2.2. If Dy, = ;% with k € N*, then the systems
Xo () =2, Xop—1 () =4cos (2rkx), Xop, =4 (1 — b— ax)sin (27kz), (2.45)
and
Yo = ax + b, Yop—1 () = (ax + b) cos (2rkz) , Yoi, (x) = sin (27kx) , (2.46)

are bi-orthonormal in L? (0, 1).
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Proof. 1t is easy to show that the systems (2.45) and (2.46) form a bi-orthogonal system on [0, 1], i.e

1 lifi = j,
(X, Y;) = / X ()Y (z) de =
0 0if i # J.

Lemma 2.3. The systems of functions (2.45) and (2.46) are complete in L* (0, 1).

Proof. Let f € L?(0,1) be orthogonal with the system of functions (2.45). f (z) can be presented by the

series

+00
= Z By, sin (2mnz), (2.47)

n=1

which converges in L? (0, 1). Since f (z) is orthogonal with (2.45), we have

1
0= / 4(1—0b—ax) f (x)sin (27kx) dx
0
1
= Z Bn/ 4(1 —b— ax)sin (2rkx) sin (2mnx) dv = By, k € N*.
0
From (2.47), f (z) = 0. Then, (2.45) is complete in L2 (0, 1). O
The following theorem is valid:

Theorem 2.4. The system of functions (2.45) forms a Riesz basis in L? (0, 1).

Proof. From [31, page 211], the system (2.45) is a Riesz basis in L? (0, 1) if there exist two constants m, M > 0

such that for any f € L?(0,1), the following inequality holds:

m | fl|Z2(0,1) < Zfz < M|f[IZ201)

where

/ f(2)Y;(z) drand f; = (f, X / fla (2.48)
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For i = 0, and using the Cauchy-Schwarz inequality we have

f2= (¥ = [/Olyom)f(:c)dxrs/ln%)dx/olm dr

148+ 8
3(1+p)?

1/ 1Z20,1) -

For i = 2k — 1, and using the Bessel inequality we obtain:

+oo
Zka 1= (5 Yar1)? < YarallZz o) 112200

k=1
. 2
_T-1B+7B

2
s e Moy

For ¢ = 2k, and using the Bessel inequality we obtain:

1
Zka; = Z (. Y2k < VakllZ200) 1F 12200y < 5 1£11Z2 001 -

k=1

From (2.49)-(2.51), we have

+00 I =
fo =2+ Zf%k,l + ngQk <M ||f||%2(o,1)’
=0

k=1 k=1

_ 4—p+4p?
where M = LR

On the other hand we have:

72 = (£, X0 [/ Xo(a dx] < 4)If12s0n)-

Using the Bessel inequality, we obtain:

“+o00
Zka L= Z (f, ng_1>2 <38 ||f||?:2(0,1)’
k=1

oo 8(1+p8+p°
Zf% = ; (f, Xop)? < W ||f||%2(0,1) :

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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Then, from (2.53)-(2.55) we have:

P2 44+806+4452
Zf 3(14 B)?

112200 (2.56)
Using the Cauchy-Schwarz inequality and (2.56), we get

£ 22000y = (F> )

400 _
= Z fifi
l:_:)oo 1/2 riog 1/2
T
i=0 i=0

o 71/2
44 1 808 + 44821 "/? R

< |2 | Wl |2 2]
i=0

3(1+p)*

Consequently, we have:

,  3(1+p)?
meHLm)_wa = 15808 + 4432

(2.57)

From (2.52) and (2.57), the system (2.45) is a Riesz basis in L? (0, 1). O

Corollary 2.3. From Lemma 2.2 and Theorem 2.4, the systems (2.45) and (2.46) are equivalent bases in L? (0, 1).

F. Mihoubi Study of some inverse problems associated with certain boundary value problems



CHAPTER 3

AN INVERSE TIME-DEPENDENT SOURCE

PROBLEM

n this chapter, we study the inverse time-dependent source problem (2)- (4) and (5). The peculiarity of
this inverse problem is that the system of eigenfunctions is not complete, but the system of eigenfunc-
tions and associated functions forms a basis in L? (0, 1). Under certain natural conditions of regularity and
consistency of the input data, the existence, uniqueness, and continuous data dependence of the solution
are shown using the generalized Fourier method, Mittag-Leffler function estimates, and the Banach con-
traction principle. This chapter is a draft of an article titled "An inverse time-dependent source problem for a

time-fractional diffusion equation witn nonlocal boundary conditions" published in an international journal [40].

3.1 Statement of the problem

In this section, we are interested with an inverse source problem of recovering a time-dependent source

term r (t) and u (z, t) for the one-dimensional time-fractional diffusion equation given by (5) such that:
D Pu(@,t) = tez + 1 (1) f (,1), (2,1) € Qr, 3.1
supplemented with the initial condition

u(z,0)=p(), 0<z <1, (3.2)

38
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and nonlocal family of boundary conditions

w(0,t) =wu(l,t),
0<t<T, (3.3)

ﬁum (O,t) = Ug (Lt) ,

where —1 < 8 < land Qp := {(z,t): 0 <z <1, 0 <t < T} for some fixed T > 0, “D;"* stands for left-
sided generalized Caputo fractional derivative of order 0 < o < 1, p > 0 is a real constant, ¢ (z) and f (z,t)
are given functions on [0, 1] and Qr respectively.

In the physical sense, the first condition in (3.3) means the equality of the distribution densities at the
ends of the interval [0, 1], and the second condition in (3.3) means the proportionality of fluxes across op-
posite boundaries, where /3 is a coefficient characterizing the proportionality of the flux at one end and the
rate of change of the average of flux over of the interval [0, 1].

The direct problem is to find the solution u (x,t) that satisfies (3.1)-(3.3), when the function r (t) is
known. The structure of the source term r () f (x,t) in (3.1) arises in microwave heating processes, where
r (t) is proportional to the power of the external energy source, and f (x,t) represents the local conversion
rate of microwave energy. The external energy is delivered to the target at a controlled level by microwave-
generating equipment. The inverse source problem for such a model provides insight into how the total
energy content can be externally controlled. However, our focus is on determining the pair of functions

{u(z,t),r ()} from (3.1)-(3.3), subject to an integral over-determination condition

/1u(m,t)dac:g(t),03t§T, (3.4)
0

where ¢ (t) is a given function representing the total amount of diffusion in the interval [0, 1]. The integral
condition (3.4) arises naturally and serves as supplementary information for identifying the source term.
This type of condition is capable of modeling various physical phenomena in the contexts of chemical
engineering, thermo-elasticity, heat conduction and diffusion processes, and fluid flow in porous media
[21].

We aim to solve the direct problem (3.1)-(3.3) using the Fourier method, commonly known as the
method of separation of variables. The spectral problem associated with the corresponding homogeneous
form of (3.1)-(3.3) is given by the boundary value problem (2.26)-(2.27). Recall that this boundary value

problem is non-self-adjoint, and the set of eigenfunctions corresponding to the spectral problem (2.26)-
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(2.27) is not complete in the space L? (0, 1). We supplement the set of eigenfunctions with associated eigen-
functions to form a complete system in L? (0,1). Another complete set of eigenfunctions and associated
eigenfunctions of the adjoint problem (2.28)-(2.29) was obtained in Proposition 2.1 to construct a biorthog-
onal system of functions.

A regular solution to the inverse time-dependent source problem is a pair of functions {u (z,t),r (t)}

such that
u(-t) €C*(0,1), “DYPu(z,-) € C(0,T) and r € C(0,T),

and which satisfy equations (3.1)-(3.4).

Our strategy is primarily based on Fourier’s method, constructing a series solution using a biorthogonal
system of functions derived from the eigen-and associated functions (2.45) and (2.46) of the spectral problem
(2.26)-(2.27) and its conjugate problem (2.28)-(2.29). Under suitable regularity and consistency conditions on
the input data, and by employing estimates of the Mittag-Leffler function along with Banach’s contraction
mapping principle, we establish the existence, uniqueness, and stability of the solution to the inverse time-

dependent source problem (3.1)-(3.4).

3.2 Main results

3.2.1 Existence and uniqueness of the solution

In this subsection, we present the main result on the existence and uniqueness of the solution to the inverse

time-dependent source problem (3.1)-(3.4).

Theorem 3.1 ( [40]). Let the following assumptions be satisfied
(A1) ¢ €C*(0,1), ¢ (1) = ¢ (0), ¢' (1) = B¢’ (0), " (1) = ¢" (0), ¢" (1) = B&" (0);

(A2) f(x,:) € C[0,T)and fort € [0,T), f (,t) € C*[0,1]; £(0,¢) = £ (1,%); fu (1,t) = Bfr (0,2); fuz (0,2) =
faoz (1, 1)) faozz (1,t) = B fraz (0,1); fol f (z,t) dz # 0 and there exists a constant M > 0 such that

-1

0< < M;

/Olf(x,t)d:v

(A3) g € C1(0,T), and g satisfies the consistency condition fol () dx = g (0).
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If the following condition

a1+ 5\
T<<MC’]1—B[ ) (3.5)

where C" is defined in (3.22), then the inverse time-dependent problem (3.1)-(3.4) has a unique solution.

Proof. According to assumptions (A1)-(A3), there are positive constants, L1, Lo, M;, ¢ =0, ..., 2, such that

tP tP — sP @
Li:= rilaix €a <p,)\k> , Lo := jHi)iTEa,a {_Ak ( P ) ] , Mo := HTHC(O,T);

My = max (Hfo”c 0,T)

180 ) - M= e ol o)

o N 2

The proof of this theorem takes place in three steps:
Step 1: Construction of solution . By applying the Fourier’s method, the solution u (x,t) of the direct
problem (3.1)-(3.3), can be developed in uniformly convergent series form using the eigenfunctions (2.45)

in L2 (0,1) as follows

u(w,t) = 2ug (t +Zu2k 1 (t) Xok—1 ( +ZU2k ) Xog (2 (3.6)

We define the coefficients ug (t), uox—1 (t) and ugy, (¢) for k& € N* by multiplying (3.6) by the eigenfunctions

of (2.46) and integrating over [0, 1] and using Lemma 2.2, we get

uo () = (u(,1), Yo (), ugk—1 (t) = (u(,1), Yop—1 (2)) , war (t) = (u(2,1), Yo, (2)) , 3.7)

where (-, -) represents the inner product in L? (0, 1).

The expansion coefficients of the functions f (z,¢) and ¢ (x) into eigenfunctions (2.46) are given by

fo @) = {f (2,1), Yo (2)), for—1 (1) = ([ (2,1), Yar—1 (2)) , for (1) = {f (z,1) , Yor (2)), (3-8)

and

o = (¢ (7), Yo (2)), par—1=(p(2),Yor—1(2)), o = (¢ (x), Yor ()) . (3.9)
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From (3.1), (3.7)-(3.9), Lemma 2.2, integration by parts twice and (3.3), we obtain

Dy o (1) = (t) fo (1),
(3.10)
Uuo (0) = o,
Dy ugg () + Auzk (t) =7 (t) for (1),
(3.11)
uzg (0) = Qo
Dy Punp—1 (t) + Myuge—1 (t) = —Amakugy, (t) + 7 (t) for—1 (2) ,
(3.12)
ugg—1 (0) = pog—1.
Applying Z;"* on (3.10) and using Theorem 1.3, we obtain
1 trp —gp ! ds
wi =t [ () @R 5 6.1
Applying Theorem 1.7 on (3.11) and (3.12) , we obtain:
tP t P — gP d
) = e () 4 [ o (F2T ) 10 ) 6.14)
and
t* t P — sP ds
Ugk—1(t) = P2r—1€a <7)\k> +/ €a,a <7)\k> 7 (s) fak—1(s) e
P 0 P (3.15)

t tP — gP d
— 47rak/0 Ca,a < P ® ,)\k> uzg, (8) s:P'

After substituting expressions ug (), uag (t), and uag_1 (t), respectively described by (3.13), (3.14), and (3.14),
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into (3.6), we have:

¢ A s
wwt) =20t s [ (F2F) T r e S

I (a) p
+o00 ¢ B
+ = {@2"?6@ <tpp’)‘k> +/0 Ca,a <tp ; 507)%) 7 (8) far () silsp} Xoy, (z)
, o ] (3.16)
P tP — s S
+ ; {‘P% 1€a < >‘k> /o Caa <p,>\k> r(s) fae-1(5) 7=,

t P — gP d
—47mk/0 €aa ( P i ,)\k> Usg (8) slfp } Xop—1 (z),

Taking the generalized Caputo fractional derivative “D;"” of the over-determination condition (3.4), and

integrating the equation (3.1) on [0, 1] and using (3.3), we obtain

r(t):CD?p (f)+(;;ilu$(0t where/ f(z,t)d Zangk
of

and

oo ¢ _
0,t) = Z87Tk(1 —) <<P2k6a <t:,)\k> +/0 Ca <tp : sP’)\k> 7 (8) for (8) S?i) :

k=1

Hence, we get following implicit representation of r (t)

r () = n(t) + Zfzk ] / K (t > (3.17)
where
Dy (t) + a > 325 8mkparea (5, A
iy 0 i Srboncn (§ ) (318
fo (z,t)dzx
and

a—1+ «
K(t,s):a<tp_ p) Z87rk:f2k [—/\k (tp_sp> } (3.19)
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Step 2: Existence of the solution. We consider the following map:

2fo (t Zazf% ] / K (t d

on the space C [0, T'| with ||¢|| := mtax |¢ (t)|. To show P is well defined. Since, under the assumptions (A1),

P(r (1)) =mn(t) +

(A2) and integration by parts four times, for ¢, s € [0, 7], we obtain

+oo +oo I ’@é?‘
Z 87[-]{7@2]660( ( )\k> = Z 271'3]{33 9 (3.20)
k=1 k=1
+oo a1 400 Ly | W (S)’
P —sP 2 ‘ 2k
k Eaa - S T 5_37.3 .
;sw for (5) Ea, [ k< . ) } ; IR (321)

where goglt) = 01 ©@ (z)sin (2rkz) dz and f2(2) (t) = fol % sin (27kx) dz.

Using the Cauchy-Schwarz and Bessel inequalities, we obtain

(4) 1/2 1/2
+oo +0o0 “+o0o
§ b 7 6] _ 58 1w )] - C' 0'f (,1)
prt 2m3k3 — 476 k6 prt - 9zt 201
where c is a constant independent of ¢t and k. Thus, we have
R P — P\ O f (x,t)
ZSkagk (s) Ena {—)\k ( ) ] < C'=cmax || —5,— (3.22)
P p 0<t<T or £2(0,1)

By (3.20) and (3.21), the series functions

= t — P\ “ = %

Z87Tk:f2k (s) Ea,a [—)\k ( 5 ) ] and ZSWkapgkea <7)\k>
p

k=1

k=1

are uniformly convergent. Then, n(t) and K (¢, s) are continuous functions on [0,7] and [0,7] x [0,77],
respectively. Hence, the operator P is well defined.

Let ry,ro € C(0,T). From (3.22) and the change of variable 7 = , we get

MC'|1 - B| TP
all+ Bl p*

[P (r1) =P (r2)]l < [ =72 (3.23)

With the condition (3.5), % < 1, then the mapping P is a contraction. Consequently, by Banach
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fixed point theorem, the mapping P has a unique fixed point » € C [0, 7.

To establish the regularity of the obtained solution, it remains to show

w(z,t), ug (2, ), Ugy (x,t) ,“DiPu (z,t) € C(Qr).

Under assumptions (A1)-(A2) and integration by parts four times, we have

@
_ S () —1 a (4
for () = T2 Foner () = T (L (O + =15 ) -
(4) '
P —1 4 a 4
P2k = Tg gt P21 = g (9"512 1t k¢§k))

From (3.13)-(3.15), (3.24) and (1.1), we get

MyM;TrP
= My, t€ 0,7,
poT (v +1)
L1 M5 + LgMoMlTpa/apa
t T (3.25)
1671'4]{34 ) € [O’ ]7

L1 M5 + LoMoM{TP*/ap®) (1 + |a| + |a| CT?
jusgs (1)) < Mt MM/ aP) QA W WICTD) |y 1 7y e,

luo ()] < Mo +

|ugk ()] <

By using (3.6) and (3.25), following relations hold for = € [0, 1] and ¢ € [¢, T'| with € > 0 such that

LlMQ + LQMOMlTpa/Oép ) (1 + ]a| + \a| CTP/p)
u (x, t)|<2M1+Z y
k=1

N f (1+ [b] + |a]) (L1 My + Lo Mo My TP /ip®)
— 4kt ’

,(m<§@mwmmmwwwu+mwmmm
A 23 k3

(3.26)
= (lal + 27k (1 + 16| + |al)) (1 + [b] + |a]) (L1 M3 + LaMo My TP /ap®)

Akt

= (LaMy + LoMo My TP Jap®) (1 4 |a] + |a| CT*/p)
mk?

Uz (2,1)] <

+
§N¢EM i

(a+ 7k (14 [b| + |a])) (L1 Ma + Lo Mo My TP [ap® )
3 k3

+

B
Il
—
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From (3.10)-(3.12), (3.25) and for t € [¢, T], we have

675 uo (t)] < MoMa,
MyM, LM + LQMoMlTpa/Oépa

6D uan ()] < 167 422 ’
D Pugy 1 (1)) < (1+la|) MoMz  (LiMz + LoMo My TP /ap®) (1 + |al + |a| CT"/p)
1674k4 472k2
\a| (LlMg + LQMOMlTpa/Oép )
A3 k3

Consequently,

2 + ’b| + 2 |CL|) MOM2

P
SD&Py (2, 1)| < 2Mo M, +Z =

a| (L1 Mo + Lo MoM1TP%/ap®
+ZH(12 o Mo M TP | ap®)

o (3.27)

k=1
Z L1M2 + LQMOMlTpa/Oép ) 2 + ’b’ +2 \a| + \a! CTp/p)
m2k2 ’

k=

From (3.26), (3.27) and by Weierstrass M-test, the series corresponding to u (z, t), uz (z,t), uzy (z,t), §D; " u (z, t)
are uniformly convergent on [0, 1] x [¢, T] for € > 0. Hence, u (z,t), uy (z,t), uzs (z,t), §D; " u (z,t) are con-
tinuous functions on Q.

Step 3: Uniqueness of the solution . Let {u (z,t),71 (t)} and {v (z,t),72(t)} be two solution sets of the

inverse problem (3.1)-(3.4). By using (3.6), we obtain

u(z,t) —v (2, t) =2 (up (t) — vo (1)) + Z ugk—1 (t) — vag—1 (1)) Xok—1 (2)
(3.28)

+o0o
+ > (unk () = var (8)) Xt (@),
k=1

Due to the estimate (3.23) and condition (3.5), we have r; = 73, and by substituting 7y = r in (3.28) and

(3.13)-(3.15), we obtain u = v. O
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3.2.2 Continuous dependence of the solution on the data

Let H be the set of triples {¢, f, g} where the functions ¢, f and g satisfy the assumptions of Theorem 3.1

and

”80||c4(0,1) < My, ||f||c4(QT) < Ms, ||9||cl(0,1) < M.

For ¢ € H, we define the norm

&l = llelleaoy + I1fllcaar + 119llero,n) -

By using the Cauchy-Schwarz and Bessel inequalities, the series functions

2 |50 ()
2 ’27r3k3) < M,
=1

is uniformly convergent, where fQ(:) (s) are the coefficients of the sine Fourier expansion of the function

Ot f(x,5)
oxt

Theorem 3.2. The solution {u (z,t) ,r (t)} of the inverse problem (3.1)-(3.4) under the assumptions of Theorem 3.1,

all+5]p" )l/"“‘

depends continuously upon the data for T' < < MCT1—7]

Proof. Let {u(x,t),r(t)} and {a (z,t),7 (t)} be two solution sets of the inverse problem (3.1)-(3.4), corre-
sponding to the data ¢ = {¢, f,g} and ¢ = {gﬁ, f, g}, respectively.

For g,§ € C' (0,T), we have

16779 =6 D dlleo.ry < Msllg = dller o,y
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where Mg = pl_%_(p;fa)' From (3.18), we have

+oo «
- t
“+a Z 87‘(’/{3 ((pgk — gng) Ea <_>\k <,0>

k=1

DG ( (/fxtda;—/fxtda;)
+a287rk<p2kE< ( )></fxtdx—/fxtd:p>].

k=1
From (3.24), we have
1 ohy — Ph
o= P = [ (@) = 5 (a) Yo () do = R

We have the estimate

In=ill < Nillg = Bllesoy + Mo | £ = F|| .+ Nsllg = dllenon

C(Qr)

where Ny = M? |a| L1C*, Ny = M? (|a| L1 M7 + MgMg), N3 = M?M;Ms.

From (3.17), we have the estimate

~ ~ MMQ ’CL‘ TP H (4) ~(4)H M \a| C/Tpa ~
_ < _ [ bl B _ PR i _
Ir =7l < =l + == 2 || £ = FOf ==l
M?2MyC'Tr .
ap c(Qr)

Due to the estimate of || — 7||, we have

M |a|C"TP™ - 3
(1 - apa> Ir =7 < Nille = Bllesgo
M My |a| TP MQM C’T”O‘
+ <N2 + olal - ) Hf f

ap® ap

Cc4(Qr)

+ Nsllg = dllcro) -
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Hence

<1 M |a| C'TP
[0}

~ 7l < Nalle -],
L =< vafo- 3],

(o1

a 1/pa
12 2 / a
where N, := max {Nl, Ny + MM§|“|T 4 MEMCTTP ,N3}. ForT < <%) , we have

p ap®
. Ny -
I =71l < — e ¢~ 4],
~MaC

From (3.6), a similar estimate can be also obtained for the difference v — :

= leay) < Vs o=,
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CHAPTER 4

AN INVERSE TIME-DEPENDENT COEFFICIENT

PROBLEM

n this chapter, we study an inverse problem of determining the time-dependent coefficient in one-
dimensional time-fractional reaction-diffusion equation with nonlocal boundary and overdeterminar-
ion conditions. The time-fractional derivative is described in the conformable sense. Under some assump-
tions on the input data, the well-posedness of this inverse time-dependent coefficient problem is shown by

using Fourier’s method and Banach’s contraction mapping principle.

4.1 Statement of the problem

In this section, we consider the time-fractional reaction-diffusion equation
DI w (x,t) = wee (2,1) — p () w (2,8) + S (2,8), (2,1) € Qr, 4.1)

where Dga) represent the left-conformable fractional derivative of order 0 < a < 1 with respecttot, S (x,t)
is the source term and w (z, t) represent the temperature in a segment slab [0, 1] over time interval |0, 7 |
with T > 0, p (t) describes the coefficient of heat capacity.

For ao = 1, equation (4.1) is a classical reaction-diffusion equation. Suppose the unknown function w

satisfy the following initial condition

w(z,0)=¢(z), 0<z <1, (4.2)

50
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and nonlocal family of boundary conditions

w(0,t) =w(1,t),
0<t<T, 4.3)

me (Oat) = Wy (17t) )

where ¢ are given function and f is a real number such that -1 < g < 1.

When the coefficient p (¢) is given, the problem of finding w (x,t) from the equation (4.1), initial con-
dition (4.2) and boundary conditions (4.3) is referred to as the direct problem. In the case when the func-
tion p (¢) is unknown, the inverse problem we are interested in consists in determining a pair of functions
{w (x,t),p(t)} satisfying equation (4.1), initial condition (4.2), boundary conditions (4.3) and overdetermi-

nation condition
1
/ w(x,t)de=E(t), 0<t<T, (4.4)
0
where F () is a given function. We begin our investigation with a pair of transformations:
t
v(z,t) =p(t)w(x,t), p(t) =exp </ so‘_lp(s)ds> ,0<a<1,te0,T]. (4.5)
0

Then, the inverse time-dependent coefficient problem given by (4.1)-(4.4) transforms as

Dy (2,) = vap (,1) + (1) S (z,1), (2,t) € Qp, (4.6)
v(2,0)=p(z), z€0,1], (4.7)

v(0,8) =v(L,t), Bua(0,t) = v, (1,8), t € [0,T], (4.8)
/Olv(x,t)d:c:u(t)E(t),te[O,T], 4.9)

where 1 (0) = 1 and p (t) > 0 for t € [0,T]. Solving the inverse time-dependent source problem given by

(4.6)-(4.9) for the solution pair (v (x,t), p(t)) yields afterwards the original solution (w (x,t),p (t)) for the
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inverse time-dependent coefficient problem given by (4.1)-(4.4) from

w (z,t) = p(t) = 20 (4.10)

4.2 Well-posedness of the problem

4.2.1 Existence and uniqueness of the solution

In this subsection, we present the main result on the existence and uniqueness of the solution to the inverse

time-dependent source problem (4.6)-(4.9).
Theorem 4.1. Suppose that the following assumptions hold:
(A1): 9 €C0,1]; ¢ (0) = ¢ (1); ¢’ (1) = B (0); " (0) = ¢" (1); " (1) = By (0),

(A2): S(-,t) € C*[0,1], forall t € [0,T); S(0,t) = S(1,t); Sp (1,t) = BSz(0,1); Sux (0,8) = Spx (1,1);
Sxx:v (Lt) = 5830&:38 (O,t),

(A3): Eis a—differentiable and DY E € C[0,T), E (t) # 0, fo )dxz € C[0,T], forall t € [0,T].
If the following condition hold:

1/a

T < am : 4.11)

w(l—
M i 50 g

/Sxtdaj

S2k / Spzaz (2, 1) sin (27kz) dx.

where m = min |F (t)|, M = max
0<t<T 0<t<T

W—st)

Then, the inverse time-dependent source problem (4.6)-(4.9) has a unique solution {v (z,t) , u (t)}.

Proof. According to assumptions (A;) — (As), there are positive constants

Mo := lpllepo.ry» Mn := max (r

J#)

ey 158 g ) - = e

0,1]’

The proof of this theorem takes place in three steps:
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Step 1: Construction of solution . By applying the standard procedure of the Fourier method, we obtain
the following representation for the solution of the direct problem (4.6)-(4.8) for ;1 is a—differentiable on

0,77,
v(z,t) = 2vo (t +Z712k 1(t) Xog—1( +Zv2k ) Xo, (2 (4.12)

We define the coefficients vy (), vor—1 (t) and voy, (t) for k € N* by multiplying (4.12) by eign-and associated

functions of (2.46) and integrating over [0, 1] and using Lemma 2.2, we get

vo () = (v (x,1), Yo (2)) ; var—1 (8) = (v (2,1) , Yog1 (2)), vap (8) = (v (2,1) , Yor (2)) , (4.13)

where (-, -) represents the inner product in L? (0, 1).
The expansion coefficients of the functions S (z,t) and ¢ () into eigen-and associated functions (2.46)

are given by
So (t) = (S (x, 1), Yo (), Sap—1(t) = (S (z,1), Yor—1 (x)) , Sox () = (S (x,1), Yor (2)), (4.14)

and
wo = (¢ (x),Y0 (), par—1 = (¢ (), Yar-1 (), P2 = (@ (), Yar (2)) . (4.15)

From (4.6), (4.12)-(4.15), Lemma 2.2, integration by parts twice and (4.8), we obtain

Do (t) = (1) So (1) ,
;w0 () = (t) So (t) 16)
vo (0) = o,
Dga)vgk,1 (t) + Agvor—1 (t) = —4Amkavgy (t) + w (t) Sox—1 (t) ,
4.17)
vog—1 (0) = par—1,
D vgy, (1) + Mo (£) = (1) Sap (1),
(4.18)
| V2 (0) = wax,
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Applying Z,, on (4.16) and using Lemma 1.2, we obtain

t
w(®) =+ [ 1S o5 (4.19)

Applying Theorem 1.8 on (4.17) and (4.18) , we obtain:

te t s¢ —t@ ds
vak—1 (t) = par—1xp <—>\ka) - 47Tka/ exp </\k = > vak (5)
0

81—04
t (4.20)
+/ exp (M) 1 (s) Sops (5) -2
0 p k o H 2k—1 81—&’
and
te t R ds
vag () = por exp <_)\k> +/ exp <>\k > 11 () Sak (8) = (4.21)
a 0 a s

After substituting expressions vy (), var—1 (t), and vgy, (t), respectively described by (4.19), (4.20), and (4.21),

into (4.12), we have:

t ds
vlat) =200 +2 [ () S0() g
0
~+00 t
te s% — @ ds

Z [@21«—1 exp (—M») — 47rk‘a/ exp <>\k ) vak (8) 7
1 «Q 0 (6% S

. o« o p (4.22)

s — S

+ [ ow (Ak ) 4 (5) Soir (5) ] Xot1 (@)

0 (6% S
+oo t

te s% — ¢ ds

{‘P% exp (-M) +/ exp <)\k > 11 () Sax (s) 1_a] Xog () .

1 « 0 « S

Taking the conformable fractional derivative D,E“) of the over-determination condition (4.9), and integrating

the equation (4.6) on [0, 1] and using (4.8) and (4.22), we obtain the Cauchy problem involving a fractional

integro-differential equation given by:

DI () = (t) + 0 (8) (1) + i K (t5) o (s) ds, (4.23)
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where
n(t) = —EL? f ko), exp <_)\kt:> : (4.24)
5 (t) = Jo 8 (1) gx@; DiE ), (4.25)
K (t,s) = —;72;’) 2 kSar, (5) exp (Ak s ~ ta> so 1, (4.26)

Using Lemma 1.2, the Cauchy problem (4.23) is equivalent to the following linear integral equation

,u(t):l—i-/otso‘_l [77() /KST dT:|d. (4.27)

Step 2: Existence of the solution. From (4.27), we define on the space C [0, T'| the following operator:

D (p(t)) = 1+/0tsa—1 [n( )+ / K (s,7) dT} ds. (4.28)

To show @ is well defined. Under the assumptions (A4;) and (A3), and from (4.24), (4.26) and using integra-

tion by parts, we have:

oo (4) ‘

t 87Tkag02k o1 s* a ‘90%
/0 s)ds = Z/ —— =% exp (—)\ka) ds < ; S5 B (4.29)

and

/ [/ K (s,7) dT] ds = Z/ ol [/ SWkQS;’f(S)“(T)Talexp (A,fa . sa> dr] ds

N 4
_ Foo aT || pllepo ‘Sék) (T)‘

- Smamdkd ’
k=1

where gogk fo oW () sin (2rkz) dz and Séi) (s) = fol ‘347*2 (x,s)sin (2mkz) dz. From (4.29) and (4.30), the

series functions

—+o00 t

k (0%
Z/ 8TRAPk ot o (05 ) ds
—Jo E (s) o
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and

g / e [ | 8”’““5;’“((;))““)# exp (Ak T2 )d] ds

are uniformly convergent. Then, t v [J s®~15)(s)dsand t + [} s®~' [[* K (s,7) u (7) d7] ds are continuous
functions on [0, T, respectively.

Under assumption (A3) and using (4.25), we obtain ¢ — fg s*715 () u (s) ds is continuous function.
Hence, the operator ® is well defined. Now we prove that ® is a contraction operator in the space C [0, 7).

Let p11, p2 € C[0, T, using (4.28) and (4.30) we obtain

@ (p1 (1) = @ (2 (1)) S/O 770 (s) | (s) — p2 ()] ds

+/0 [ G () = ()] | s

T CLHSQi HC[OT] X1
D e S T g

IN

om 8md
k=1
T 1)
< o M+ g 155 ~ oy
L1 - I [
+oo 1
where Z == w. Hence,
k=1
1 ) — ® (1) epom < o | M+ 380 | i s (431)
M1 H2)llclo, = o 871'5 1+/8 clo.r H1 = H2llcfo,1 - .

With the condition (4.11), 2 [M + 8w§11 5% H s H } < 1, then the mapping @ is a contraction. Conse-

clo,r
quently, by Banach fixed point theorem, the mapping ® has a unique fixed point » € C [0, T7.

To establish the regularity of the obtained solution, it remains to show

v(2,1), vy (2,8), Vaw (2,1), DI (2,8) € C(Qr).
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Under assumptions (A1) — (A2) and integration by parts four times, we have

(4)
_ Pop _ 1 @ , o (@
P2k = Tomtpd” P21 T T6ripd (“02'6*1 MLl +> ’ (432)
0 s SAYC) a o (4)
S () = “2E g, S (8) = 7o (SSLy (0 + =S5 (1))
From (4.19)-(4.21) and (4.32) we get
Ta
|Uo (t)| < My + ;M()Ml =Ms, te [O,T] ,
M2 CLMQ MOM1 3CLMOM1
1)< 4.33
a1 O < {5500 57505 T Ganoks T GanThT (.33)
Mo MoyM;
) < .
oz (O] < Tapa T 33080
By using (4.12) and (4.33), following relations hold for = € [0, 1] such that
M2 (2 - b) GMQ (3 - 2()) MOM1 3aM0M1
t)| < 2M:
vz, 2)l 3 kz [ PE T T T R T
M2 2 — b 5CLM2 M()M1 (3 — 21)) CLM()Ml
< .
v (. )] Z[ 2B | dripa 8mOkD 2m6k6 |7 (434)
000 (0.9) My(2—b) 3aMy MMy (3—2b)  5aMoM,;
AT = — w2k2 w3k3 4mikA 4mdk5
From (4.16)-(4.18), (4.33) we have
D g (75)‘ < Moy,
() ‘ My 3aMy  MoM; | 3aMoM,;
D 1)<
e vk ()] S 42k + 4m3k3  8mikt 8mok5 7
a Mo 3MoyM,
D oy (¢ ‘ < ,
e e TR Ty
Consequently,
() Mg (2 — b) 3aM2 MOM1 (5 — 3b) 3CLMOM1
‘Dt v (e, t)‘ < 2Mo M + Z < P — e e (4.35)

From (4.34), (4.35) and by Weierstrass M-test, the series corresponding to v (z,t), v (z,t), vz (x,t) and
Dgo‘)v (x,t) are uniformly convergent on Q7. Hence, v (z,t), vy (2,1), vz (2,t) and DS% (x,t) are continu-

ous functions on Q7.
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Step 3: Uniqueness of the solution. Let {u(z,t),p1 (1)} and {v (x,t),u2 (t)} be two solutions of the

inverse problem (4.6)-(4.9). By using (4.12), we obtain

u(w,t) — v (x,t) =2 (ug (t) —vo (t)) + Z ugk—1 (t) — vag—1 (t)) Xok—1 (2)
(4.36)
+ Z (ugp (t) — var (1)) Xog () .

By the estimate (4.31) and condition (4.11), we have 11 = po. Substituting ;11 = p2 into equation (4.36) and
(4.13)-(4.15), it follows that u = v. O]

4.2.2 Continuous dependence of the solution on the data

In this subsection, we give the main result on continuous dependence upon the data of the solution pair
{v(z,t), p(t)} of the inverse time-dependent source problem (4.6)-(4.9). Let B be the set of triples {¢, S, E'},
where the functions ¢, S and FE satisfy the assumptions of Theorem 4.1 and

= max
0<t<T

/Sxtda:— DY E E(t)|, m= min |E(¢)|.

0<t<T

For ¢ € B, we define the norm

1915 == ||90Hc4[0,1] + HSHC4[0,1]><C[O,T} + HE”C[O,T} : (4.37)

Theorem 4.2. The solution {v (z,t),u (t)} of the inverse time-dependent source problem (4.6)-(4.9) under the as-

sumptions of Theorem 4.1, depends continuously upon the data if T verified the condition (4.11).

Proof. Let{v (z,t),u(t)}and {v (x,t), it (t)} be two solutions of the inverse time-dependent source problem
(4.6)-(4.9), corresponding to the data {¢, S, £} and {gb, S, E}, respectively.
From (4.27), we have

7;:
I/\

(4.38)

+
&
\
fo?
\]
S~—
=
—~
2
|
=
—
)
2
=
S
~—
S8
\]
—_
QU
»

ol [
o
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Using (4.24), the first integral of (4.38) becomes

/Ot Ly (s) — i (5)] ds = §8wka /Ot s*Lexp (—)\ki> J_j?p?l;) - ;?’;J ds

r _ - (4.39)
— L et s*\ | por — P P2 (E (s) - E (5)>
:ZSﬂka/ s exp (—)\k> — = ds.
=1 0 o E(s) E (s)E (s)
Under assumptions (A1) — (A3) and from (4.32), (4.39) we obtain
b ~
@ ds < M Ms|(|E — FE 4.40
| 06 = 7 1ds < Mallo = Slesnm + M5 BB, (440)
where
+oo
a 1 GHSOHC‘l[Ol
My = 7r5m;k:5’ ST T Bmm Zk:5
Using (4.25), we have
—5(s) < —E 441
O S e chec P 4
where
Mg =1/m, M; = rnax{l/m, M/mﬁl} .
With (4.41), the second integral (4.38) becomes
t
~ MT
a—1 _ < .
/0 7 [85) 1 (s) = B )i (5)] ds < T = llgom + M| - oy =10 [E-E] 0 @92
where
MgT‘“ M7T°‘
Mg = HM”C[O 1) My = ——— HMHCOT}
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The third integral of (4.38) becomes

/Ot [/0 (K (5.7 p(r) = K (s,7)

=
—~
2
—
U
\]
| S
QL
w
Il
N
2
v
7
—_
| e— |
o
w
—~
)
3
=
—~
\]
S~—
\
=
—~
\]
N~—
QU
\]
| S
L
o

Using (4.26), the first integral of (4.43) becomes

awT™

/ s [ | K en @ -am) df} ds < gami’ LI\~ o (4.44)

and the second integral of (4.43) becomes

O\“
w
Q
iR
| u— |
O\F};
=

(1) (K (s,7) — f((s,r)) dr] ds < Mg HS - S

R

C4[0,1]><C[0,T]
where
o\ f
1 C4[0,1]xC[0,T]
07 90am’ T T 20amim '

From (4.38), (4.40), (4.42) and (4.43)-(4.45), we have the estimate

T« ~
_ 7 < — 5 _
= (0 2 582y )] = ety = 30 = Bl + M2 |5 = 8]

(4.46)

M HE _E ,

+ M3 ca0,1]
where My = Mg + My, M3 = My + M;j;. From (4.11) and (4.37), we get
@ ~ 7
1T (v ) e e <2,
where M4 = max { My, M3, M;3}. From (4.11) and (4.37), we have

i = ilegom < Ms | = 9, (4.48)
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where

My

M5 =
TD(
—m(M+;7;‘g

o)

Under assumptions (A1) — (A3) and using (4.12), we obtain

v ="2lle(q,) < Mislle — @llca ] T Mz 1f = Fliga —rmxcor) T Mis [ = ﬁ”c[o,T] ) (4.49)
(@r) (=] [=m,7]xC[0,T]
where
4 T |l Il TS| 1 fllga
Mg =1+ My — cor | W) cio,yxclor) N/ llerjo,xclo,r)
10 o 10 o 10

From (4.48) and (4.49), we get

o = lle(a) + la = Alle < Mio [0 =4 .

where Mg = max {M;5, Mig, Mi7, Mig}. Then, the solution of the inverse problem (4.6)-(4.9) is depends

continuously upon the data. O
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CHAPTER 5

FINITE DIFFERENCE APPROXIMATION FOR

THE INVERSE TIME-DEPENDENT SOURCE

PROBLEM

n this chapter we investigate the finit difference methods for an inverse time-dependent source problem
for a time-fractional diffusion equation with nonlocal boundary and integral over determination con-
ditions.
Let T' > 0 be a Fixed number and Dy = {(z,t) : 0 <z < 1, 0 < t < T'} we are concerned with the following

fractional differential equation in Dy :

DY (u(w, 1)) = waa (1) + (1) f (1), (5.1)
with the initial condition
u(z,0) =p(x), 0 <z <1, (5.2)
and the boundary condition
uw(0,t) = u(l,t), uz(1,t) = Pugy(0,t), 0Kt T, e R—-{-1,1} (5.3)

and the over deternmination condition

1
/0 u(z, t)dz = g(t) (5.4)

wehere CDgf the Katugampola fractional derivative of order 0 < a < 1, and r(t), ¢(z), f(z,t) and g(t) are

given function.

62
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5.1 The finite difference scheme

In this section,we payourattention on a numerical approach to generalized Caputo-Katugampola fractional

differential equation. The finite difference scheme. from [45] we sub-divide the intervals [0,1] and [0, T

with
1
Ty = (Zk)ﬂ,i—(),l, , M
t] = (]h)%7]:0717 7N
where
1 TP
k= — h=
M’ N
n+1

are the spatial and temporal step sizes, respectively. We denote u
u(zi tn1), ritl = 7(tp+1) and fz‘n+1 = f(@istnt1)-

1. The initial boundary conditions (5.2)-(5.3), are discretizedas

the numerical approximation to

7

0 _
ui_(ph

ugt™ =l (5.5)

1 1 1 1
=y =B (T -

the over deternmination condition

1 M-—1
gltny1) = g" = / u(x, tpyer)de = kugﬂ +k Z u?“, n=0,1,...,N -1, (5.6)
0 i=1
where
1
Wt = g (B ).

2. The approximation of the Caputo-Katugampola fractional derivative “D{** in (5.1) is given by the

following scheme ( [45]):

Comarp hlfapafl i1 j
Dy Wi, thp1) = m b; (U - U) ) (5.7)
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where
tiy
b= It ((n i+ D~ (n —j)l_a) L j=0,1,...n. (5.8)
tiv1 —
and

ODP Ui, tnr1) = DUl + G ph®

3. For ug,(z,t), the well known formula is:

n+1 n+1 n+1
i1 —2u; oty

U U i—1

5 + vk (5.9)

Ugax (xiy tn—i—l) =

Now, By using the time-fractional approximation (5.7) and (5.9) we obtain the following numerical

approximation to equation (5.1),

1—a ja—1 M +1 +1 +1
Rl po ZbA (u]."H B u]> _ U?-i-l QU? + U?—l 4 T,n+1fn+17
I (2 - a) = J g ? k2 i
n—1 ) )
— At (b 4 20w = P = b =) 0y (ug“ - ug) + N2t gntl (5.10)
§=0
where
[(2—a)het
A= ————
paflkZ

foreachn € {0,1,...,N —1},and i € {0,1,..., M}.
eForn=0,andi=1,.... M — 1,

— Xty 4 (bo 4+ 20) uf — Auj_q = bowi + M2t £l (5.11)

eForn>0,andi=1,... M — 1,

n

— Al (b 220w = = Z (bj — bj_1) u} + bowi + N2t frtl (5.12)
j=1

The above equation (5.11) and (5.12) can be written as

A()Ul = bogo + F1
n . , (5.13)
AU = 5 (b — bj_1) U7 + by + Ft!
j=1
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where,
bot2V— 25 -x 0 0 i
—A bp+2X —X 0 e 0
A, = (5.14)
0 e 0 —X b,+2A -
A8
— 22 0 0 =X by+2h— gy
and
uf ©1 A2 L f
ul Ne2pntl gn
Un = ‘2 5 so = <p‘2 9 Fn = f2
u'ty_q YM-1 N2t f
Proof.

Lemma 5.1. The matrice (5.14) is inversible and the matricial system (5.13) has a unique solution if

1
al_wﬁ+u>w
T < (2221 ) 5.15

_<02p 18— 1] 615

M—-2 M—2 Y )
(UMY AU = b, Y (@) +A) 0 (ulyy —ull) +§(u1—u§(4_1)
i=2 i=2
A8 A 2 A A 2
o=t 2 b~ ——+ 5 ) (uhr_1)®
+<b 313 (u1)+< 1+5+2)(M1)
where b, = C, T~" > 0, A= —c2 _pla=lp 5 (.
If b, — 1+B+ A > (0andb, 1+B+ A > (), then b, Z%H Therefor, we find that

i
T < (20”pa1 8+ 1’) o0
c2 16 -1
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Hence,

(U™ A, U" > 0.
So the system (5.13) admits a unique solution. O
New, integrating equation (5.1) with respect to = from 0 to 1 and using (5.3) and (5.4), we obtain

Dy (1) + (1 - B) us (0,1)

r(t) = 5.16
(1 e (5.16)
see ] .
The finite difference approximation of (5.16) is
l—ap . j j - n n
hr(2 @) Z (o7 =) + (lkﬁ) (up ™t —ug ™)
ol — J=0 5.17
(Fin)"t! 617)
where (Fin)" ™! fo Zytpi1)de = kf, ”+1 +k Z f”Jrl =0,1,....,N — 1.
Forn =0,
(=B) (1 _ 1
’I"l — k (ul uO) (518)
(Fin)!

5.2 Stability analysis of finite difference scheme

Now, we analyze the stability via mathematical induction method, we suppose that @}, for¢ = 0,1,2,..., M,
and n = 0,1,2,..., N is the approximate solution of (5.11), (5.12), the error €' = @} — u}. From (5.11) and
(5.12), we have
Forn =0,
—Aeir + (o + 2N ef = Ael_y = bo (&1 — i) + ARP(F f =7 £,
Forn > 0,
n

S By 20 T A = 3 (b by) (@ - )
j=1

Lo (@i — i) + AE2 ( n+1fn+1 n+1f;1+1) ‘

Let {u/"',r"*1} and {a"!,#+1} be two solution of the scheme (5.11), (5.12) and (5.17) for the inverse
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problem (5.1)-(5.4 ), corresponding to the data ‘IJ?H = {cpi, ff“, gl },
Let 1 be the set of triples {¢;, /"', g"*1} where the functions ¢;, f/'*! and g"*! satisfy the assumptions
of Theorem 4.1,

for QS?H € H and gb?“ = {gpi, g”“} , we define the norm

168 e = eill + flg™ 1

where
lpill = max il [|o™ ] = | _max |9
for U/ € Hand U/ = {¢I*!, 7'}, we define the norm
1w 5, = max {67 |y 1L 1}

where

174 = s 7]
0<n<N-1

Theorem 5.1. Let the following assumptions be satisfied
(A1) po = om, oy — pm—1 = B (p1 — ¥o)
(A2) fo 0 = s I = It =B (T = )

and there existe a constant Mz such that

-1
= |Fin™ | < Mj.

1
0< ‘/ f(:L‘,thrl)dl'
0

M-1
(A3) g satisfies the consistency condition g° = fol o(x)dr = ﬁ Bor +om—1)+k D i

=1
(AD) [[reH || = Mo, [[£7H] = M, [l ]| = Mo,
If

1
T<< Cu |1+ 8] 5~ )w
200k M M3 |B —1[(|B]+1) )

The discretised scheme (5.11), (5.12) and (5.17) for the inverse problem (5.1)-(5.4 ) is conditionally stable.

Proof. We have prove that

57| < €

n+1 Tn+1
-

H
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where ||| = max [l = |7
1<i<M—1
- For n = 0, we have
boler] = —Alet|+ (bo+2)) |e| = Alef]

< “Aeta| + (o + 20 [ei | = Mgl

< =Xl + (bo +20) &) — Aepy|

< bolgr— il + 22 (|77 -t )

< wolg— il - xk2 (| f| 17 =7+ - )

since
‘Tl_rl‘ _ ‘14_5‘ (W nt+l _ n+1‘+ Jq\m/ltll_~]7/[t11‘>
MRS (et e
Hh——— =1
(Fin)'| ;< )
1-p 1
Wkaﬂ( )
and
1 Al 1-k  |Bl+1 n+1 ~n+1H
I =70 < katoads (S 4 P [ -
1- 5|
+m&ku+||m+1k\
then

boler] < bollgi — will

1—k |B8]+1
k> My | kMM 1
) O[ ' 3< k +|ﬁ+1|)+]

+2>J<:M1M3: : (181 + 1) €}

e

a—1 % .
If bg — 2\kM; M3 HJFg} (18] +1) >0,ie <T < (202’€J\§fll\ilz,r\g|—pl|(|m+1)> p) we find that

et < € [wrt —ap
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bo-+Ak2 My [kM1M3(1 +l8l )+1]
_ EESN
where & = bo—2\k My M3 1151 1 :
0 1 M3 75 (181+1)
and

8l+1
kMo Ms ( t |5+1|> H\IJ?—H _ \i,;H—lH

|rt =7 < .
M. H
+2 3k|1 (|6’+1)

- For n > 1,we assum that

HaJH <e; H\IJ?“ _ \iJ?HHH, i=0.1,...n.

bler ™| = AL (o + 20 [T = A

IN

=M el ] + (bn 4 2X) [T = M ef Tt

< A 4 (b +2X) et = A

IN

Z bj—1) &l +bo (1 — @) + AR (rnﬂflnﬂ _ ,Fn—i-lflnqu)

.
—_

3

n+1 fn+1 ~n+1fn+1

IN

i

Z (bj — bj_l) ’Eg‘ + by ‘(pl — 951’ + )\kz r

—

<.

which gives

bn |7 T < |bn = bo ‘6{‘ +boler — @il

fn-i-l |f"+1 n+1‘+ ’TnJrl‘

AR ( el _ oot D . (5.19)
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since

o
_ k‘(Fin)n—&-l“l—l—,@‘ (Iﬁ\

n+1 rm+1
o= et

n+l _ fn+l
M-1 M-1

M-1

Z (fin+1 B J?in—i-l)

=1

!
+k

‘ (F’Ln)nJrl ‘

bnfl ’gn—I—l . gn-ﬁ-l‘

hl—apa—l L ~ - M-1 -
+ +borrg [ Bller — oul + o1 — Gmral+ 30 [wi — @il
((Finy | D2=a) | o =
+ 20 [bj—1 = bl g7 — 7|
j=1

1 -8 +1
2My—— 1) e,

then

HT”+1 _ ,,:n—i—lH

|rn+1‘ < 2|B|

IN

k

frt— H

%%M—U)

bnfl Hgn+1 _ §n+1H

+bo g (18] + M) [lpi — @il
+ |bn71 _ b0| Hgn-l-l _ gn—f—l”

hl—apa—l
‘(Fm)"“) T2 a)

+

‘1_B‘ n+1
+2My—— +1

218 1-k
ot (1775 + (757

pl-apo-1 (2b,—1 — bo) Hgn+1 _ ~n+1H

+7
FE=a) 0 by ke (1814 1) e — @il

IN

1 rm+1
et =

‘1 /6‘ n+1
+2Mzs—— (18] + 1
3]€|1+B| (| ‘ )’51 ’

o (2 (1)) oo ],

n+1 n+1 |1 - ﬁ| n+1
b; b; HH+2Mgk|1+ﬂ| (18] + 1) |7

IN

+M, ‘

where M, = max {2bn_1 — bo, bouTkm (18] + %)} .
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this is amplies that

Hrn+1_7zn+1H < [kM0M3(2W +<1_k>>+M4} H\IJ?H_@?HHH

11+ 3] k
1-53 .
+2M3k||1+ﬁ|| (18] + 1) |ef | - (5.20)

According to (5.19), we imply

b ‘6 +1‘

IN

|br, — bo ’6{’ + bo |1 — @i

[1+3]
1
+2M31l|1+65|\ (18] +1) e

+)\k2|rn+1‘ fnkl n+1’

[kMOMg < 208 (1 k)) —|—M} H\I,n—l-l \I,n+1H

+ K2 H

Jfln—O—l ’

l l

IN

(b — bo) € || w1 = @;LHH +bo |

e _anHH
1 (]
kMyMs3 <|12fﬂl\ + (1 k)) -|-M] H\I}nﬂ \1/n+1H

1
+2Ms =B (18] 4 1) [ep |

e n+1 H

H

+AE2 M, H

FARZM, ‘

IN

],

+2NE2 M, M 1- 4l

1
RTs 1 181+ DI

where Ms = (b — bo) € + bo + MMy (kMoMy (7225 + (S2)) + Ma) + M2

this is amplies that

1-
by — 20K M My 5L ) [en+t] < My H\I/"“ \If"+1H :
( g (414 ) e "

: a1 2 :
If by — 202 My My 2L (18] +1) > 0, e <T < { ekt ) ”) we find that

)

‘Elnﬂ‘ <e, H‘I’:‘LH _ \i,;l-&-lH
H

M5
bn—2\k2 My Mg =Lk (18]+1)

where ¢,, =
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According to (5.20), we imply

e o (52) )
[1— 5|
+2M3m (18l +1) €&,

1|

\I,;H-l _ \I,;LH H
H

IA

”

where Mg = kMyMs; (% + (%)) + My + 2M3% (18] +1) €.

The proof is complet. O

5.3 Convergence of the approximate scheme

In this section, we discuss the convergence of the approximate scheme (5.11), and (5.12).

Let u (x4, t,,) be the exact solution of the time fractional diffusion equation (5.1)-(5.2)-(5.3) at mesh points
(x4, tn) where (i =0,1,2,...,M;n=0,1,2,...,N).

Define e = u (z;,t,) — uf, and " = (e}, e3,...,e4 ;) . Using ¢® = (0,0,...,0)". Substitution u} =

u(xi, t,) — el into (5.11), (5.12) leads to:

1. For n = 0, the approximate scheme (5.11), gives

—)\611+1 + (bo + 2)) €il — )\614171 = —Au(®it1,t1) + (2N + bo) u (x4, t1)
— Mu(wim1,t1) = bopi — APt £}
= R.L

7

2. For n > 0, the approximate scheme (5.12) gives

el 42X+ by) et = de !
n

= Z (bj — bj_l) 6{ + R?—H,
j=1
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where
R?‘H = — Z (bj — bjfl) u (x;, tj)
j=1
= (Zig1, tn1) + (A + bn) u (@4, tag1) — Au(Tio1, ty)
—bowi — Ak fr
then

n

RN = 3 by (@ ty) — u (@i ty))
=0
=X (w (Tit1, tng1) — 2u (x4, tng) + w (@iz1, ths1))

—AkQTn+1f~n+1.
From (5.1) we have

RZT."H = \k? (CDf’pu(xi, tnt1) — Upe (i, tps1) — r"+1fi"+1 — Ca,th_a + 7k‘2)
= M (=Caph®™ + k)
re-a

— ?h%1 (—=Caph*™* +vk?)

Hence, there exist C(; p > 0, such that

‘R?‘Fl’ S Cé’pha—l (h2—a + k2> ,

where CL, = "2=8 max {|Cy ], 1]}

Lemma 5.2. Forn =0,1,2,..., N,we have

He;l'FIH S Cgﬁb;lhoc—l (h2—a + kQ) )

n+1

i

P?’OOf. Let He?JrlH = ‘B;H_l‘ = mMaxj<i<mM-1 ‘6 ,and ‘6” = maxi<;<mM-1 ‘EH .
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Forn = 0, we get
bolef] = —Alef| + (bo+2)) |ef| — Alef]

< =Alefy] + (bo +2X) |ef| — Alef_]

imply
dl < 'R}

let| < bptCh pT (B2 4R

For n > 0, suppose that ‘e‘lj‘ < (Z’Clyﬂol)].:llib‘J‘*1 (R**+ k%), (j=1,...,n), we get

|€?+1} < Cl b*lhozfl (bnbo_l) (h27a + k2) )

a,p’n

because b;fl < bal forj =1,...,n, then

‘€?+1‘ < 02 b—lhoc—l (hQ—a + k2) ’

a,p”n

where
1 .
) a,p? ifn=20
Cop =
CL,(bubp"), ifn>1

We can prove that lim (tpbﬁl)al = 0, there exist a constant ¢ > 0 suth that

n—oo
e

then
n+1 2 tg ot a—1 2—« 2
e ™ < CZ ¢ 5 Tn hH (R + k%)
because
tp a—1
(o N n) pe—1 — gola=1) < ela-1),
h n -
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Is finite we have

lui — u (4, tn)] < C'g,p (hQ_O‘ + k2)
Then we obtain the following theorem:

Theorem 5.2. Let u be the approximate value of u(z;, t,) computed by use of the difference scheme (5.11) and (5.12).

Then there is a positive constant C3 | such that

a,p?

lul — u (2, tn)| < C’f’w (h270‘ + kz) .

5.4 Illustrative examples

In this section, we present some examples to illustrate the usefulness of our main results.

Consider the inverse problem (5.1)-(5.4)

[ DL (1)) = s, ) + (D) f(2,1), 0< <1,
u(0,t) = u(l,t), ug(1,t) = fuy(0,t), 0<t<T, feR—-{-1,1}
u(z,0) = p(x), 0<z<l,

Jy ule, t)ydz = g(¢t),

r (t) — C’Dt%pg (t) + (1 - 6) Uy (Ovt)
fol f(x, t)dx .

with

Fx,t) = (1— (1 — B)x)sin (2rz) (%% + (27)? ;:;5)
—4r (B —1) ;Zié cos (2mx)
o(x)=(1-(1-p)z)sin(27x)
1—

g(@) =32 +1)

It is easy to Check that the exacte solution is

{r@t),u(z,t)} ={t*+2,(1— (1 —B)x)sin (27z) (" +1)}.

n+1(s+1)

)

The system of equation (??), (??) and (??), (??) can be solved the Gauss elimination method and «

is determined. If the differnce of values between two iterations reaches the perscribted tolerance, the itera-
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tion is stopped and we accept the corresponding values r"+(s+1) u?H(SH), i=1,2,...,M.asrtt, uf“, i=
1,2,..., M. on the (j + 1) th time step, respectively. In virtue of this itiration, we can move from level j to
level j + 1.

Figures 5.1,5.2,...5.11 and 5.12 represent the comparison between the analytical solution and its approx-

imation for different values of h.

u(x, t100)
1

4t

Analytical solution
*  Numerical solution for h=0.02

-5

-6

0 0.2 0.4 06 08 1
T

Figure 5.1: Graphical comparison between the analytical solution and it approximation with a = 0.9, rho =
2, beta = 2, k = 0.002 and h = 0.02.

; : :
— Analytical solution

* Numerical solution for h=0.002

u(z, t100)

i i i i
0 0.2 0.4 0.6 0.8 1
X

Figure 5.2: Graphical comparison between the analytical solution and it approximation with o = 0.9, rho =
2, beta = 2, k = 0.002 and h = 0.002.
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Analytical solution
*  Numerical solution for h=0.02

u(x, t100)

02 0.4 06 0.8 1

Figure 5.3: Graphical comparison between the analytical solution and it approximation with o = 0.9, rho =
2, beta = —2, k = 0.002 and h = 0.02.

Analytical solution
*  Numerical solution for h=0.002

S
>

u(x, t100)

02 0.4 06 0.8 1

Figure 5.4: Graphical comparison between the analytical solution and it approximation with a = 0.9, rho =
2, beta = —2, k = 0.002 and h = 0.002.
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T T 4 T
— Analytical solution Analytical solution
38r *  Numerical solution for h=0.02 387 *  Numerical solution for h=0.002
as) a5l
34 34
a2f 2ol
—~ —~
E 3 E 3
< <
28} 28l
26 26
24} oal
22} 2ol
5 i i i 5 i i i
0 05 1 1.5 0 05 1 1.5
t t

Figure 5.5: Graphical comparison between the analytical solution of (t) and it approximation with o = 0.9,
rho =2, beta = 2, k = 0.002 and h = 0.02.

r(t)

— Analytical solution
*  Numerical solution for h=0.02

0.5 1 15

t

(%)

— Analytical solution
* Numerical solution for h=0.002

0.5 1 15

t

Figure 5.6: Graphical comparison between the analytical solution of r(¢) and it approximation with o = 0.9,
rho =2, beta = —2, k = 0.002 and h = 0.02.
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Analytical solution
*  Numerical solution for h=0.02 |

w(x, tso0)

02 04 0.6 0.8 1

Figure 5.7: Graphical comparison between the analytical solution and it approximation with o = 0.5, rho =
3, beta = 1.2, k = 0.002 and h = 0.02.

Analytical solution
*  Numerical solution for h=0.002

u(x, tso)

02 04 0.6 0.8 1

Figure 5.8: Graphical comparison between the analytical solution and it approximation with o = 0.5, rho =
3, beta = 1.2, k = 0.002 and h = 0.02.
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Analytical solution
141 *  Numerical solution for h=0.02

w(x, ts0)

02 04 0.6 0.8 1

Figure 5.9: Graphical comparison between the analytical solution and it approximation with o = 0.5, rho =
3, beta = —1.2,k = 0.002 and h = 0.02.

0.9

Analytical solution
0871+ Numerical solution for h=0.002

w(x, ts0)

02 04 0.6 0.8 1

Figure 5.10: Graphical comparison between the analytical solution and it approximation with a = 0.5,
rho = 3, beta = —1.2, kK = 0.002 and h = 0.002.
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35 T T T 35
,,»///
3 5 3
e
—~ —~
N N
S S )
251 1 251 /
—— Analytical solution —— Analytical solution
— Numerical solution for h=0.02 —— Numerical solution for h=0.002
2 ; I I 2 ; I I
0 0.5 1 15 2 0 0.5 1 15 2
t t

Figure 5.11: Graphical comparison between the analytical solution of r(¢) and it approximation with o =
0.5, 7ho = 3, beta = 1.2, k = 0.002 and h = 0.02.

3.6 T T T 3.6

r(t)
r(t)

2 — Analytical solution 1 2 — Analytical solution
— Numerical solution for h=0.02 —— Numerical solution for h=0.002
18 ; I I 18 ; I I
0 05 1 15 2 0 05 1 15 2
13 13

Figure 5.12: Graphical comparison between the analytical solution of r(¢) and it approximation with o =
0.5, 7ho = 3, beta = —1.2, k = 0.002 and h = 0.02.
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CHAPTER 6

A NUMERICAL METHOD FOR SOLVING AN

INVERSE TIME-DEPENDENT COEFFICIENT

PROBLEM

n this chapter, we propose a numerical method for solving an inverse time-dependent coefficient prob-

lem associated with a time-fractional reaction-diffusion equation subject to nonlocal boundary and
overdetermination conditions. The time-fractional derivative is considered in the conformable sense. By
employing the Shifted Legendre collocation method, the inverse problem is transformed into a linear sys-
tem of first-order differential equations, which is then solved using the Backward Euler method. Through
two illustrative examples, we conduct a comparative analysis between the proposed algorithm and existing
numerical methods from the literature. The results demonstrate that our approach achieves highly accurate

approximations using a relatively small number of collocation points.

6.1 Shifted Legendre polynomials of the first kind

To use the polynomials given in Section 1.5 on the interval [0, 1], we define the so-called shifted Legendre

polynomials of the first kind by introducing the following change of variable:

z=2r—1ouzxz=—-(z+1).

1
2
In this case, the shifted Legendre polynomials P} (x) of order n in x are defined on [0, 1] by:

Pr(x)=P,(2) =P, (2x—1). (6.1)

82
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With (6.1) and Proposition 1.2, the shifted Legendre polynomials of the first kind P (z) verify the following

recurrence formula, see [13]:

(

Fy(z) =1,

Pf(x) =2z —1, (6.2)

| i (@) = 220~ VP (@) - 21 Pi(0), ne N

n n

Using (6.1) and (1.12), we obtain the explicit form of the shifted Legendre polynomials of the first kind

P (x) of degree n in x given by:

f(p) = N (1)t Pintk+l)
P"()_,;O( D I'(n—k+1)(C(k+1)> =N (©3)

where I' (+) is Euler’s Gamma function. We note that
(6.4)

According to (6.1) and Lemma 1.3, the polynomials P} (x) are orthogonal on the interval [0, 1], that is:

1 o, if i =4,
(PF(z), P () = / P (2) P (2)de = 4 °7) ’ (6.5)
0 0, if i .

Let ® € L% (0, 1) be expressed in terms of shifted Legendre polynomials of the first kind such that
®(x) =) P (@), (6.6)
i=0
where the coefficients ¢; ; i € N are given by:

1
¢ =(20+1) /0 ¢ (z) P’ (z) dz. (6.7)
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In practice, only the first shifted Legendre polynomials (m + 1)-terms are considered. Then, we have:
Oy () = Y Py (x). (6.8)
i=0

6.2 Legendre collocation method

In this section, we apply Legendre collocation method to the inverse time-dependent coefficient problem

(4.1)- (4.4). Let wy, (z,t) be the approximation of w (z, t) given in the following form:
Wy, (z,1) = Z ci (1) Pz* (), (6.9)

1=0

By replacing (6.9) into the equation (4.1). Using (4.3)-(4.4) and (1.9), we obtain:

Ztl_%; (t) P (x) = Z ci (t) Ri (x,t) + S (w,t),
= wl , (6.10)
p(t) = 5 [(6 — 1)25(:1 (t) (P) (0) +/0 S (z,t)dz — DIV E ()] .

We putin (6.10) z = 5,5 = 1,...,m — 1 the roots of the Legendre polynomial P,,,_; (z), we have

S TG () P (20) = > i (8) Ri (ws,) + S (s, 1)
=0

i=0
p(t) = g [(6 -1 éc (t) (P7) (0) + /01 S (x,t)de — DV E (1)] . o
where
R; (z4,t) = (PX) (x5) —p(t) P (zs), i=0,1,...,m, s =1,...,m — 1. (6.12)
From (6.9), (4.3) and (6.4), we obtain
i [1 - (—1)1} ci(t)=0 (6.13)
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and
Z [1 —B(=D)"Hi(i+1) ¢ (t)=0. (6.14)

We introduce the vectors

X )= (co(t),e1(t),...,em ()T,
X () = (ch (8),¢; (8) 1. n (1)) (6.15)

Ft)=(S(z1,t),8 (z1,8),...,S (m-1,1),0,0)" .

By combining equations (6.11), (6.12), (6.13) and (6.14), we find the following matrix form

X(O):(CO(O)761 (0)7"'7cm(0))T7 (6.16)
_L _ S . +/ ! T > — (@)
PO =5 (G- DL a@E O+ [ sEoa-2 B

where A (t) is the damping matrix given by

i Py (1) Py (z1) ... Pyn(x) ]
Py (z2) Py (z2) ... Py(x2)
A =i | A : : 6.17)
Py (xm-1) Pir(tm-1) .. Pun(tm-1)
0 0 0 0
I 0 0 0 0 |
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and B (t) is the stiffness matrix given by

| Ry (x1,t) Ry (z1,t) ... Ry, (x1,t) ]
Ro (1‘2, t) R1 (:L‘z, t) Ce Rm (ZL‘Q, t)
B(t) = (6.18)
Ry (zpm—1,t) Ri(xm-1,t) ... Ry (xm—1,1)
0 2 1— (-1
0 0 (1=8C1" ") m(m+1)

6.2.1 Backward Euler method

For positive integer N, At = T'/N, denotes the step size of the variable ¢t. So we define t; = jAt in which

j =0,1,..., N, and we introduce the following notations c; (¢;) = cf, FI = (S (x1,t5) .., S (@1, tj))T

, o \T
and X7 = (cg), Ay ) . The system (6.16) is discretized in time by the backward Euler method [35] and

takes the following linear system

m

=0

’m

X0 = (3,,....,2)".

p(ti+1) = B [(5 —1) Y eiltin) (B

[A(tj+1) — AtB (tj+1)] X7 = A(tj41) X7 + AtFIT 5 =0,1,...,N — 1,

1
) (0) + /0 S (. tjs1) do — DV E (ti1) | (6.19)
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Algorithm 1 (Algorithm of the Method)

1: Initializations:

. Give the values of T', @ and 8.

Give the values of time step 7 = T'/N; and the step value of the space h = 1/N,.
Give the initial condition ¢ (x) and the reaction coefficient pe, ().

Give the source term S (z,t) and the integral fol S (x,t)dx.

Give the functions E (t) and DY E (t).

Give the shifted Legendre polynomials Py (z), P} (z), ..., Py, ().

Give the second derivatives of (P"); (z), (P")] (z), ..., (P");, ().

Give 21, z2, ..., ;m—1 the roots of shifted Legendre polynomial P _; (z).

Give the exact solution to the problem u., (x,t).

2: For each time step:

9.

Compute the mass matrix A7T!, the stiffness matrix B/™! and the source term Fj;.
Calculate the matrix D/t = 47! — 7 B! and the right-hand side G/ ™! = AU, 1 + 7Fj 4.
Solve the system D/ U, 1 = Gj41.
m
We set co = Uj41 (1), c1 = Ujt1 (2),..., cm = Ujq1 (m), and we set u,, = Z ¢ Pl (z).
i=1
Draw in the same figure, the graphs of u,, () and e, (x,tj11).
Calculate the Ly norm: ||u, — u€x||L2(0’1) and the L*™ norm: ||u,, — uex||Loo(071).
Calculate the approximate reaction:

m

1
(B=1)3 e (tyun) (B 0+ [ 5 Gutyen) do = D[V (t11)

1=0

p(tjy) = m

Draw in the same figure, the graphs of p (¢;41) and pe, (tj41)-

Calculate the norm: |p (tj+1) — Pex (tj41)]-
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Example 6.1 ( [23]). We consider the following data:

S (x,t) = 472 cos (2mz) e 47t 4 2t (1 + cos (2mx)) e~ 47 108
¢ (z) =1+ cos (2mx),

BE(t) = e,

a=1,=0.
\

For these data, the inverse time-dependent coefficient problem (4.1)- (4.4) is given by:

up (z,t) = gy (z,t) —p (H)u(x,t) + S (z,t),

u (1'70) = (x) ) (6 20)

w(0,t) =u(l,t); ug (1,¢) =0,

J)u(z,t)de = E(t).
This example was studied in [23] by different numerical method. In this case, the exact solution is given by:
u(z,t) = (1 + cos (2mx)) e 4t p (t) = 4n? + 210’

We apply Algorithm 1 for m = 8 with the numerical solution defined by:

Table 6.1 compares error and relative error obtained by our algorithm and with the numerical method
studied in [23]. In Table 6.2, we compare the L? errors at different values of 7" with 7 = 0.0025 and A = 0.005
with the results obtained by the method studied in [23]. From this comparative study, we can conclude that
the numerical solutions obtained by our algorithm are very good. the curves of the exact and numerical

solutions of p(t) and u(x,t) are given by Figure 6.1 and Figure 6.2.
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Table 6.1: Error and Relative error of p (t) with 7 = 0, 0455, h = 0, 005.

Our Method M. Ismailov and F. Kansa [23]
Times Error Relative error | Error Relative error
0.0455 | 9.66E-13 2.44E-14 0.0650 0.0016
0.0909 | 9.52E-13 2.40E-14 0.0647 0.0016
0.1364 | 1.25E-12 3.12E-14 0.0606 0.0015
0.1818 | 1.63E-12 4.09E-14 0.0588 0.0014
0.2273 | 1.76E-12 4.38E-14 0.0576 0.0014
0.2727 | 2.10E-12 5.18E-14 0.0561 0.0013
0.3182 | 2.27E-12 5.51E-14 0.0544 0.0013
0.3636 | 4.82E-12 1.14E-14 0.0524 0.0012
0.4091 | 1.58E-12 3.61E-14 0.0503 0.0011
0.4545 | 2.29E-11 4.90E-13 0.0485 0.0010
0.5000 | 3.64E-11 7.04E-13 0.0480 0.0009

oy RN PR e .
: : Exact Salution :

— ® — - Appraximate Solution

i ......... ........ |

i L L L i
0os 01 015 02 02% 03 035 04 045 05

3o
a

Figure 6.1: Exact and approximate of p ()
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Table 6.2: Error of u (z,t) with "= 0.5, 7 = 0,00025, h = 0, 0005.

Our Method | M. Ismailov and F. Kansa [23]

Times Error Error
0.000250 0.00009 0.0079
0.050250 0.00013 0.0057
0.100250 0.00019 0.0034
0.150250 0.00024 0.0020
0.200250 0.00029 0.0014
0.250250 0.00034 0.0053
0.300250 0.00039 0.0062
0.350250 0.00044 0.0004
0.400250 0.00049 0.0080
0.450250 0.00054 0.0084

Exact Solution
— — — - Appraximate Solution

Figure 6.2: Exact and approximate of u (x, t)
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Example 6.2. We consider the following data:

T =20,r(t) =€, p(z) = (z - x2)2,E(t) = ¢! /30,

S (z,t) = (e +a) e (z— x2)2 —2(1 -6z 4 62?) ", (6.21)

.. 2
Exact solution is u, = e'” (z — 2?)

ww For o = 0.5, the exact and approximate solution of u (z,t) and p () are given by:

: Exact Solution : ‘ Exact Solution
: : : : — — —Approximate Solution BOFeierereeeee —*—'Appruximatg Solution
T=4 70
: : : =3 :
_ 501
303 [ =
= T=2 40
: : =1 : :
: a0k
D‘]_ ok
10p-
] i I ; | I | I ; i ; 0 i 1 i | I | 1 L i |
0 o1 02 03 04 05 06 07 08 08 1 il 2 4 & g 10 12 14 16 18 20
S t

Figure 6.3: Exact and numerical solutions of Figure 6.4: Exact and numerical solutions of p (¢).
u(z,t).

ww For o = 0.9, the exact and approximate solution of u (z,t) and p () are given by:

«10°
457 - 3r :
Exact Solution : Exact Solution
sl ———App:ruxwmate Su\uh.un : — % — - Approximate Solution
35F :
3t 21
_ 25} :
= =215 :
1 :
1r : : : : : :
0sr :
0 0 0 4 - i -
0 . 1 0 2 4 & g 10
® t

Figure 6.5: Exact and numerical solutions of Figure 6.6: Exact and numerical solutions of p (t).
u (z,t).
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ww For o = 0.1, the exact and approximate solution of u (z,t) and p () are given by:

121
: : : T=5 Exact Solution
[ SRR == T
: : : . — % — - Approximate Solution
[ 1= ] S P 3 =o 10+ -
LRI =
014t Bl
= 02 pe [ETTT
Z E
= o1
: : : : ar
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Figure 6.7:
u (z,t).

Exact and numerical solutions of Figure 6.8: Exact and numerical solutions of p ().
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Conclusion générale

In this thesis, we have studied various inverse problems related to time-fractional diffusion and reaction-
diffusion equations with nonlocal and overdetermination conditions. Our main focus has been on
the identification of time-dependent parameters—namely, source terms and coefficients—appearing

in such models.

We first examined the inverse problem of determining a time-dependent source term in a time-fractional
diffusion equation. A key challenge in this problem is the lack of completeness of the eigenfunction system.
However, by employing the system of eigenfunctions together with their associated functions, which forms
a basis in L? (0, 1), we established well-posedness results. Under suitable assumptions on the input data,
we proved the existence, uniqueness, and continuous dependence of the solution using a combination of
the generalized Fourier method, Mittag-Leffler function estimates, and the Banach fixed-point theorem.
The results of this study formed the basis of a research article published in an international journal [40].

Subsequently, we investigated an inverse problem aimed at identifying a time-dependent coefficient in a
one-dimensional time-fractional reaction-diffusion equation. Here, the fractional derivative was considered
in the conformable sense. Using Fourier analysis and Banach’s contraction mapping principle, we showed
that this problem also admits a unique and stable solution under appropriate conditions.

From a numerical standpoint, we proposed and analyzed a finite difference approximation scheme for
the time-dependent source inverse problem. Furthermore, we developed an efficient numerical algorithm
based on shifted Legendre polynomials. This approach transforms the inverse problem into a linear system
of first-order differential equations, which is solved using the Backward Euler method. Several numerical
examples were provided to validate the accuracy, robustness, and effectiveness of the proposed algorithm.
Overall, this thesis contributes to both the theoretical analysis and numerical resolution of inverse problems
involving time-fractional partial differential equations. The methodologies employed offer a solid frame-
work for tackling a wide range of related problems in applied mathematics, physics, and engineering.
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