

1 Enhanced light trapping in thin-films perovskite 2 solar cells by photonic crystal structures

3 Cite as: AIP Advances 16, doi: 10.1063/5.0303011

4 Submitted: 18 September 2025 • Accepted: 30 December 2025 •

5 Published Online: 9 99 9999

6 Mounir Bouras,¹ Moufdi Hadjab,¹ Maroua Chahmi,¹ Salah Khennouf,¹ Abdelaziz Rabehi,² Takele
7 Ferede Agajie,^{3,a)} and Abdullah K. Alanazi⁴

8 AFFILIATIONS

9 ¹ Department of Electronics, Faculty of Technology, University of M'Sila, University Pole, M'Sila 28000, Algeria

10 ² Laboratory of Telecommunication and Smart Systems (LTSS), Faculty of Science and Technology, University of Djelfa,
P.O. Box 3117, Djelfa 17000, Algeria

11 ³ Department of Electrical and Computer Engineering, Faculty of Technology, Debre Markos University, P.O. Box 269,
Debre Markos, Ethiopia

12 ⁴ Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia

13 a) Author to whom correspondence should be addressed: takele_ferede@dmu.edu.et

14 ABSTRACT

15 To boost light harvesting in perovskite thin-film solar cells, we introduce a dual photonic crystal (PhC) architecture that significantly enhances
16 light trapping and device performance. A one-dimensional photonic crystal (1D-PhC), implemented as a distributed Bragg reflector composed
17 of alternating dielectric layers, functions as a highly reflective and low-loss back mirror. Complementarily, a two-dimensional photonic crystal
18 (2D-PhC) pattern is embedded in a flexible poly-dimethylsiloxane substrate replacing conventional glass, effectively minimizing front-surface
19 reflection. The geometries of both photonic structures are carefully optimized to promote efficient photon diffraction and prolong the optical
20 path within the absorber layer, thereby maximizing light absorption. This hybrid PhC configuration enables superior light trapping and
21 enhances the optical field confinement in the active perovskite layer. In addition, interface engineering is employed to reduce carrier recom-
22 bination losses, further boosting overall device performance. Numerical simulations, conducted using the rigorous coupled wave analysis
23 method via SYNOPSYS RSoft CAD tools, demonstrate a notable improvement in the short-circuit current density (J_{sc}), which increases from
24 21.3 mA/cm² in the planar structure to 39.6 mA/cm², an enhancement of 85%. Correspondingly, the power conversion efficiency rises from
25 15.8% to 26.1%, representing a substantial 65% relative improvement. These results underscore the potential of photonic crystal integration
26 for next-generation high-efficiency perovskite solar cells.

27 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
28 (<https://creativecommons.org/licenses/by/4.0/>). <https://doi.org/10.1063/5.0303011>

32 I. INTRODUCTION

33 Organometal halide perovskite solar cells have attracted con-
34 siderable attention in recent years, achieving remarkable advan-
35 cements in energy conversion efficiency.¹ Within just a few years,
36 their power conversion efficiency (PCE) increased dramatically, ris-
37 ing from 3% in 2009² to over 22%, as reported by Yang *et al.*³
38 Perovskites have emerged as a highly promising light-absorbing
39 material for next-generation solar cells, owing to their key features
40 such as strong absorption in the visible spectrum,⁴ long carrier diffu-
41 sion lengths,⁵ high carrier mobility,⁶ simple fabrication processes,⁷
42 and low production costs.⁶

43 Perovskite solar cells (PSCs) are typically fabricated in two
44 main architectures: planar and mesoporous. More recently, the inte-
45 gration of nanostructures with various dimensions and geometries
46 into different solar cell designs has led to further improvements in
47 efficiency. This approach not only reduces the amount of absorb-
48 ing material required but also introduces more sophisticated cell
49 architectures.^{8,9} The incorporation of nanostructures makes the
50 cells lighter, more flexible, and less bulky, while simultaneously
51 enhancing their efficiency.

52 Nanostructures improve solar cell performance by enabling
53 more effective light trapping within the absorbing medium,¹⁰ facil-
54 itating carrier extraction,¹¹ and concentrating the electromagnetic

55 field in the active layer through different configurations. In light-
 56 trapping structures, modifying the direction of the light path within
 57 the active layer increases the interaction time between light and
 58 material, thereby improving optical absorption.^{12,13} By scattering
 59 light into off-normal directions, the path length of photons within
 60 the active layer is extended, and the probability of reflection at
 61 each interface increases due to angular deviation. Consequently,
 62 light traverses the absorbing layer along multiple pathways, sub-
 63 stantially enhancing the likelihood of absorption.¹⁴ The efficiency
 64 of light-trapping mechanisms depends strongly on the wavelength
 65 of the incident light as well as the size and configuration of the
 66 nanostructures employed.¹⁵

67 The integration of light-trapping structures represents a key
 68 strategy for enhancing solar cell efficiency. Photons that are not
 69 absorbed during their initial pass can be reflected by a back
 70 reflector, thereby increasing their optical path length and enabling
 71 multiple passes through the device before eventual reabsorption.
 72 This process, commonly referred to as photon recycling,¹⁶ signifi-
 73 cantly improves absorption efficiency. Traditionally, metallic layers
 74 such as aluminum (Al) and silver (Ag) have been employed
 75 as back reflectors in thin-film solar cell architectures. However,
 76 semiconductor–metal interfaces often introduce optical losses asso-
 77 ciated with surface plasmon resonance phenomena. Moreover, these
 78 metals typically exhibit limited diffraction capabilities and are prone
 79 to environmental degradation, such as corrosion.¹⁷

80 To maximize the efficiency of perovskite solar cells (PSCs),
 81 research efforts are focused on improving the core perovskite
 82 material and refining the overall device architecture. A key strategy
 83 is the inclusion of specialized transport layers [the electron trans-
 84 port layer (ETL) and the hole transport layer (HTL)], which are
 85 integrated to significantly reduce the rate of charge carrier recom-
 86 bination within the active absorption layer. These layers allow for
 87 the precise tuning of electron and hole mobilities (μ_e and μ_h , respec-
 88 tively) within the cell. Optimal device performance is achieved when
 89 these mobilities are balanced (i.e., $\mu_e/\mu_h \approx 1$), ensuring electrons
 90 and holes travel to their respective contacts at similar velocities.
 91 This balanced transport minimizes the time carriers spend col-
 92 located, thereby reducing recombination probability and leading
 93 to enhanced conversion efficiency.¹⁸ This study specifically investi-
 94 gates the use of dual ETLs and dual HTLs to fine-tune this carrier
 95 mobility balance. The mobilities were characterized using the space-
 96 charge-limited current (SCLC) method on purpose-built electron-
 97 only and hole-only devices (with both single and dual layers), and
 98 the final perovskite solar cells were thoroughly evaluated under
 99 standard solar simulation (AM 1.5 G) to confirm the performance
 100 improvements achieved by advanced layer engineering.

101 In this work, we propose the incorporation of two-dimensional
 102 photonic crystals (2D PhCs) together with a Distributed Bragg
 103 Reflector (DBR) to enhance photon recycling and improve the
 104 efficiency of ultra-thin perovskite solar cells. The performance of
 105 these nanostructured thin-film perovskite solar cells is investigated
 106 through modeling and numerical simulations. The proposed design
 107 integrates 2D PhCs within the perovskite absorber layer, while
 108 the DBR serves as a wavelength-selective back reflector. This con-
 109 figuration enhances photon recycling, thereby strengthening light
 110 absorption within the perovskite thin film. Simulations are carried
 111 out using RSoft's DiffractMOD and Solar Cell Utility, which are
 112 based on the Rigorous Coupled-Wave Analysis (RCWA) algorithm.

These tools are used to evaluate the optical behavior of the pro-
 113 posed architecture and to calculate the resulting power conversion
 114 efficiency (PCE).
 115

II. PROPOSED PEROVSKITE SOLAR CELL DESIGN

116 Contact boundary conditions for perovskite solar cells involve
 117 ensuring a good energy level alignment at the interfaces between
 118 the perovskite layer and the charge transport layers (ETL/HTL) and
 119 electrodes. This is achieved by optimizing material selection, using
 120 surface treatments to passivate defects, and using buffer layers such
 121 as organic hole transport layers (HTLs) to suppress recombination
 122 and facilitate efficient charge extraction.

123 Planar Perovskite Solar Cells (PSCs) are widely utilized because
 124 their structure is relatively easy to manufacture, largely thanks to
 125 the solution processing techniques used to deposit the perovskite
 126 film. This architecture is defined by its simple, layered arrangement
 127 where the light-absorbing perovskite layer is centrally positioned,
 128 effectively sandwiched between two different charge-transporting
 129 layers (CTLs) and finally capped by the electrodes.¹⁹ The specific
 130 organization of these CTLs determines the overall device configura-
 131 tion, which can be one of two main types: conventional (*n-i-p*) or
 132 inverted (*p-i-n*) architecture. The conventional *n-i-p* setup features
 133 the electron transport layer (*n*-type) closer to the transparent elec-
 134 trode, while the inverted *p-i-n* setup places the hole transport layer
 135 (*p*-type) adjacent to the transparent electrode. The choice between
 136 these architectures depends primarily on material compatibility and
 137 the desired device stability characteristics.²⁰

138 To maximize the efficiency of perovskite solar cells, careful
 139 selection and structuring of the perovskite material are essential.
 140 Perovskites typically follow the chemical formula ABX_3 , where
 141 A and B are organic and/or inorganic cations, and X is a halide
 142 anion. Figure 1 shows the crystal structure of the perovskite (PVK)
 143 material. Tuning the size of the A-site cation is crucial not only for
 144 maintaining charge neutrality in the lattice but also for adjusting
 145 the tolerance factor, which influences phase stability and structural
 146 distortions.^{18,21} Adjusting the B–X bond length (and angles) is a
 147 key factor in determining the material's bandgap via changes in
 148 orbital overlap and lattice geometry.²² Among the absorber mate-
 149 rials most commonly used in perovskite solar cells are single-halide
 150 perovskites—such as $CH_3NH_3PbX_3$ —which allow bandgap tuning
 151 by varying the halide (X = I, Br, Cl). Mixed-halide perovskites fur-
 152 ther broaden the possibilities: their photovoltaic performance and
 153 stability depend sensitively on the halide ratio because altering the
 154 composition modifies structural symmetry, lattice constants, the
 155 B–X–B bond angles, and the optical absorption edge.^{23,24}

156 The efficiency of Perovskite Solar Cells (PSCs) is heavily depen-
 157 dent on the choice of the Hole Transport Material (HTL), which

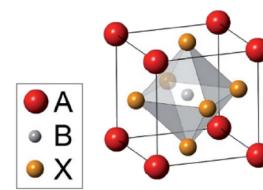


FIG. 1. The ABX_3 perovskite crystal structure.

must meet stringent criteria for optimal performance. An ideal HTL should exhibit high intrinsic hole mobility (μ_h) for efficient charge extraction, possess energy levels that are well-matched with the perovskite absorber to minimize interfacial energy barriers, and demonstrate robust long-term stability against environmental factors such as moisture and oxygen, as well as excellent photochemical and thermal stability. Crucially, for fabrication, especially in the conventional (*n-i-p*) architecture, the material must be solution-processable.²⁰ Poly(3-hexylthiophene) (P3HT) is a prominent, low-cost organic HTL candidate favored for its good charge carrier mobility and optimal bandgap alignment with solar irradiation. However, a key limitation of pristine P3HT is its relatively low electrical conductivity, which frequently results in depressed device conversion efficiencies, necessitating numerous studies dedicated to its conductivity enhancement [e.g., through additives or by using complementary materials such as a ZnS Electron Transport Layer (ETL) to boost overall stability].²⁵ These devices in configuration demonstrated a higher PCE, less hysteresis, and longer charge carrier lifetime. The superior performance was attributed to the improvement in the P3HT absorbance and the charge carrier lifetime to reduce the defects and suppress non-radiative recombination on the perovskite surface.²⁶

Figure 2 illustrates the proposed design of the perovskite solar cell. In this architecture, a 100-nm-thick two-dimensional photonic crystal (2D PhC), formed at a poly-dimethylsiloxane (PDMS)/air interface, replaces the conventional thick glass substrate. PDMS is employed as a transparent medium with negligible absorption in the visible and near-infrared ranges. Beyond its optical transparency, it improves the device's mechanical durability and reduces surface reflections owing to its favorable refractive index. Eliminating the bulky glass substrate further enhances the structural flexibility of the cell compared with traditional planar configurations.

When illuminated from the PDMS side, the structured interface generates an antireflective effect at the air/PDMS boundary,

facilitating greater light penetration into the device and thus improving efficiency. The active layer is composed of organic-inorganic halide perovskites ($\text{CH}_3\text{NH}_3\text{PbX}_3$, where X = Cl, Br, or I) with a thickness of \sim 500 nm. At the rear side, a distributed Bragg reflector (DBR) is incorporated to reflect unabsorbed photons—particularly in the longer wavelength region—back into the perovskite layer. This design compensates for the high bandgap and limited thickness of the absorber, thereby improving light harvesting. Remarkably, the overall device thickness is maintained at only \sim 1.5 μm .

The perovskite layer (region *i*) acts as the primary medium for exciton generation (bound electron-hole pairs) under illumination. The photogenerated charge carriers—electrons and holes—are subsequently extracted through the ETL and HTL, respectively. The efficiency of this collection process depends on the carriers' diffusion lengths as well as the electrical properties of the ETL and HTL. Exciton dissociation predominantly occurs at the ETL/perovskite and perovskite/HTL interfaces. Once separated, electrons are driven toward the ETL (*n*-type region), while holes migrate toward the HTL (*p*-type region). These processes of charge dissociation and transport are facilitated by the built-in electric field established across the ETL and HTL.¹⁸⁻²²

III. METHODS

The performance of the proposed solar cell, including its power conversion efficiency (PCE), was evaluated using RSoft's DiffractMOD and LaserMOD, both of which are based on the Rigorous Coupled-Wave Analysis (RCWA) method. RCWA provides an efficient framework for solving Maxwell's equations in periodic media. In this semi-analytical approach, the longitudinal direction is treated analytically, while the transverse directions are solved numerically, enabling accurate calculations of reflection and transmission from periodic nanostructures. In RCWA simulations, the number of spatial field harmonics plays a critical role in determining accuracy. In Fourier space, both the refractive index profile and the electromagnetic fields are expanded as a function of the number of harmonics. Although increasing the harmonic order generally improves precision, it also significantly raises computational cost in terms of memory and runtime. To ensure an optimal trade-off between accuracy and efficiency, a convergence study was performed by running simulations with different harmonic orders. The results were found to converge and remain nearly stable when five or more harmonics were used. Consequently, a harmonic order of five was selected for all simulations in this study.²⁷

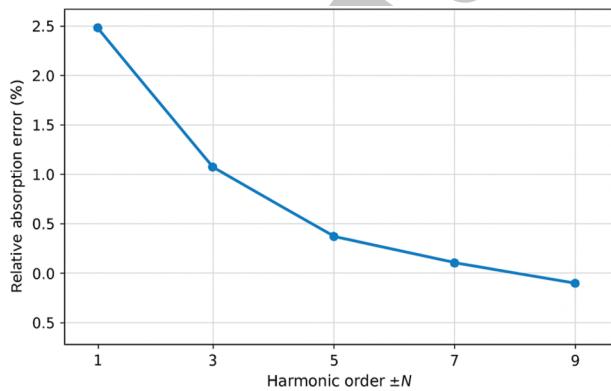
RCWA uses the complex permittivity of the materials to model the full electromagnetic wave propagation and interaction with the structure. The complex refractive index ($n + ik$) is defined by the complex permittivity $\epsilon = \epsilon' + i\epsilon''$, where ϵ' describes the refractive property and ϵ'' describes optical absorption and losses.²⁷

LaserMOD is a photonic device simulation tool originally developed for analyzing the optical and electronic properties of semiconductor lasers through a self-consistent solution of electro-thermal transport and optical field propagation. In this study, LaserMOD was adapted for perovskite solar cell simulation by treating the active region as an absorbing medium rather than a gain medium. The optical intensity distribution, initially computed using the RCWA-based DiffractMOD module, was imported into LaserMOD to define the spatial generation profile within the device. The



FIG. 2. (a) A schematic of the proposed structure of a perovskite on a DBR substrate. (b) Top view of 2D PhC grating layer with air cylinders.

252 software then recalculates the optical field at each bias point to determine
 253 the photogenerated current density under reverse electrical
 254 bias and applied optical excitation. This coupling enables a consistent
 255 evaluation of carrier transport, recombination, and potential
 256 distribution, providing realistic current–voltage (J–V), open-circuit
 257 voltage (V_{oc}), fill factor (FF), and power conversion efficiency (PCE)
 258 characteristics of the designed solar cell structure.^{28,29}


259 LaserMOD includes a complete set of models for carrier mobility,
 260 radiative and non-radiative recombination, thermionic emission,
 261 quantum corrections, etc. The lifetimes for electrons and holes
 262 can be adjusted. The trap energy is a material parameter, which can
 263 be set with respect to the valence band edge. We use the default set
 264 here, which includes SRH and Auger recombination, carrier dependent
 265 losses (such as intervalence band scattering), bulk spontaneous
 266 recombination, and incomplete ionization.²⁹

267 Physical modeling in LaserMOD is based on the MINILASE II
 268 code, which is described in more detail in Ref. 29. Results obtained
 269 using LaserMOD were published in Refs. 29 and 30. A general
 270 overview of the theory and concepts involved in the simulation of
 271 optoelectronic devices is given in Ref. 31.

272 The proposed device was modeled as a multilayer structure
 273 along the vertical (z) direction. The simulation algorithm applies lateral
 274 Bloch periodic boundary conditions and decomposes the solar
 275 cell into a series of thin layers (slices), for which reflection and trans-
 276 mission are computed individually. This layer-by-layer approach
 277 provides both physical insight into the optical response of the device
 278 and computational efficiency.³²

279 The optical field distribution was computed using Diffract-
 280 MOD, which solves the full vectorial Maxwell's equations via the
 281 RCWA algorithm under horizontally periodic boundary conditions.
 282 A square lattice ($a = 0.38 \mu\text{m}$) with Bloch boundaries was used,
 283 and the multilayer stack was discretized into 200 slices along z.
 284 The number of Fourier harmonics was varied from ± 1 to ± 9 using
 285 RSoft's MOST optimizer to ensure convergence. Integrated absorption
 286 and J_{sc} changed by <1% beyond ± 5 harmonics, confirming
 287 convergence; hence, ± 5 orders were used in all reported results
 (Fig. 3).

288 The total number of incident photons per unit area per unit
 289 time at a given solar spectrum $S(\lambda)$ can be expressed as³³

290 FIG. 3. RCWA convergence: absorption error vs Fourier harmonic.

$$N_s(\lambda) = \frac{S(\lambda)}{E_{\text{photon}}(\lambda)} = \frac{\lambda}{hc} S(\lambda). \quad (1)$$

292 The total number of incident photons per unit area per unit
 293 time at a given wavelength, $N_s(\lambda)$, also known as photon flux (pho-
 294 tons $\text{m}^{-2} \text{s}^{-1} \text{nm}^{-1}$), can be calculated from the spectral irradiance
 295 of sunlight, $S(\lambda)$ ($\text{W m}^{-2} \text{nm}^{-1}$), and the photon energy, $E_{\text{photon}}(\lambda)$
 296 = hc/λ , where h is Planck's constant, c is the speed of light, and λ is
 297 the wavelength.

298 The total absorption spectrum of the device, representing
 299 the cumulative absorption across all constituent layers, can be
 300 expressed as the sum of the absorption in each individual layer.
 301 Mathematically, this is given by

$$A(\lambda) = \sum_i A_i(\lambda). \quad (2)$$

303 The absorption spectra were calculated using RSoft's CAD
 304 tool. The number of photons absorbed within each layer can be
 305 determined as

$$N_i(\lambda) = \frac{S(\lambda)A_i(\lambda)}{E_{\text{photon}}(\lambda)} = \frac{\lambda S(\lambda)A_i(\lambda)}{hc}. \quad (3)$$

306 Poisson equations with interface and contact boundary condi-
 307 tions are usually expressed as follows:³⁴

$$\frac{\partial}{\partial x} \left(\epsilon_0 \epsilon_r \frac{\partial}{\partial x} \Phi(x) \right) = q(p(x) - n(x) + N_D^+ - N_D^- \rho_{\text{def}}), \quad (4)$$

$$\frac{\partial}{\partial x} J_p(x) + G(x) - R(x) = \frac{\partial p}{\partial t}, \quad (5)$$

$$\frac{\partial}{\partial x} J_n(x) + G(x) - R(x) = \frac{\partial n}{\partial t}, \quad (6)$$

$$J_p = \frac{\mu_p}{q} p \frac{\partial E_{Fp}}{\partial x}, \quad (7)$$

$$J_n = -\frac{\mu_n}{q} n \frac{\partial E_{Fn}}{\partial x}. \quad (8)$$

315 The model couples Poisson's Eq. (4) with the continuity equa-
 316 tions for electrons (6) and holes (5) to describe charge transport
 317 and electrostatic behavior in the semiconductor. Poisson's equation
 318 relates the electrostatic potential $\Phi(x)$ to the spatial distribution of
 319 charges, including electrons n , holes p , ionized donors N_D , accep-
 320 tors N_A , and the defect charge density ρ_{def} . The continuity Eqs. (5)
 321 and (6) ensure charge conservation by describing how carrier con-
 322 centrations evolve due to current divergence, generation (G), and
 323 recombination (R). The current densities for holes and electrons,
 324 given by Eqs. (7) and (8), depend on the gradients of the respective
 325 quasi-Fermi levels E_{Fp} and E_{Fn} , which govern carrier motion within
 326 the device. Carrier transport is further determined by their mobil-
 327 ities (μ_p and μ_n), while the dielectric constants (ϵ_0 and ϵ_r) define
 328 the material's electrostatic response. Together, Eqs. (4)–(8) provide
 329 a complete framework for modeling internal electric fields, charge
 330 dynamics, and the resulting operating voltage of the device.³⁵

331 The general expression for the net recombination rate U is³⁶

$$U = R - G_{\text{thermal}}, \quad (9)$$

333 where R is the total recombination rate and G_{thermal} is the thermal
 334 generation rate, i.e., the rate at which carriers are generated even
 335 in the absence of light. In thermal equilibrium, $R = G_{\text{thermal}}$, which
 336 makes the net recombination rate $U = 0$. Under illumination in a
 337 solar cell, the total generation rate G_{total} becomes³⁶

$$338 \quad G_{\text{total}} = G_{\text{light}} + G_{\text{thermal}}, \quad (10)$$

339 where G_{light} is the photogeneration rate caused by absorbed photons.
 340 In solar cell operation, the most important contribution is the photo-
 341 generation rate G_{light} since it describes the creation of electron-hole
 342 pairs due to incident light.

343 The position-dependent photogeneration rate $G_{\text{light}}(x)$ is given
 by

$$344 \quad G_{\text{light}}(x) = \int_{\lambda_{\min}}^{\lambda_{\max}} \alpha(\lambda, x) \Phi(\lambda, x) d\lambda, \quad (11)$$

345 where $\alpha(\lambda, x)$ is the absorption coefficient and $\Phi(\lambda, x)$ is the pho-
 346 ton flux at a given wavelength λ and depth x . The limits λ_{\min} and
 347 λ_{\max} define the wavelength range of incident photons that contribute
 348 to photogeneration. This integral accounts for the spectral distri-
 349 bution of light and the material's ability to absorb it, making it
 350 a fundamental expression for modeling optical generation in solar
 351 cells.

351 In simple terms, G_{light} is proportional to the light intensity and
 352 to how strongly the material absorbs light at a given position in the
 353 device.

354 The total recombination rate R represents the sum of all phys-
 355 ical processes through which an electron and a hole recombine
 356 and release energy. In most semiconductors, including perovskites,
 357 three dominant recombination mechanisms are typically consid-
 358 ered: *Shockley-Read-Hall (SRH) trap-assisted recombination*, which
 359 occurs through defect states in the bandgap; *radiative recombi-
 360 nation*, where an electron directly recombines with a hole and
 361 emits a photon; and *Auger recombination*, a three-particle process
 362 where the recombination energy is transferred to a third carrier
 363 instead of being emitted as light. Together, these mechanisms deter-
 364 mine the overall recombination behavior and strongly influence the
 365 performance of solar cells.³⁶

$$365 \quad R_{\text{total}} = R_{\text{SRH}} + R_{\text{rad}} + R_{\text{Auger}}. \quad (12)$$

366 R_{SRH} is a non-radiative, trap-assisted recombination mech-
 367 anism, where electrons and holes recombine via defect (trap) states
 368 within the bandgap. It is often the dominant loss mechanism in dis-
 369 ordered materials, such as polycrystalline perovskites, significantly
 370 affecting carrier lifetime and device performance. R_{SRH} is commonly
 371 expressed as

$$372 \quad R_{\text{SRH}} = \frac{np - n_i^2}{\tau_p(n + n_i) + \tau_n(p + p_i)}, \quad (13)$$

374 where n and p are the electron and hole concentrations, n_i is the
 375 intrinsic carrier concentration, and τ_n and τ_p are the lifetimes of
 376 electrons and holes associated with trap states, respectively. This
 377 expression captures how carriers recombine through defects in the
 378 bandgap, making SRH recombination a dominant loss mechanism

379 in disordered materials such as polycrystalline perovskites, where it
 380 significantly affects carrier lifetime and device performance.

381 Radiative recombination R_{rad} is a band-to-band process in
 382 which an electron and a hole recombine directly, releasing the
 383 energy difference as a photon. This mechanism is the basis for light
 384 emission in LEDs and represents the theoretical minimum recom-
 385 bination loss in direct bandgap materials such as perovskites. The
 386 radiative recombination rate is given by

$$387 \quad R_{\text{rad}} = B(np - n_i^2), \quad (14)$$

388 where B is the bimolecular recombination coefficient, and n ,
 389 p , and n_i are the electron, hole, and intrinsic carrier concentrations,
 390 respectively.

391 Auger recombination R_{Auger} is a non-radiative, three-carrier
 392 process that becomes significant at very high carrier concentrations,
 393 such as under intense illumination or in highly doped regions. In this
 394 mechanism, the energy released by the recombination of an electron
 395 and a hole is transferred to a third carrier (electron or hole), which is
 396 excited deeper into its band instead of emitting a photon. The Auger
 397 recombination rate is expressed as

$$398 \quad R_{\text{Auger}} = C_n n^2 p + C_p p^2 n, \quad (15)$$

399 where C_n and C_p are the Auger coefficients for electron-dominant
 400 and hole-dominant processes, respectively.

401 The short-circuit current density J_{sc} can be expressed as the
 402 integral over all wavelengths of the product of the external quantum
 403 efficiency (EQE) and the spectral photon flux density of the AM1.5G
 404 solar spectrum,³⁷

$$405 \quad J_{\text{sc}} = q \int \text{EQE}(\lambda) \Phi_{\text{AM1.5G}}(\lambda) d\lambda. \quad (16)$$

406 The short-circuit current density J_{sc} is calculated using the ele-
 407 mentary charge $q = 1.602 \times 10^{-19}$, the external quantum efficiency
 408 $\text{EQE}(\lambda)$, which is the fraction of incident photons at wavelength
 409 λ that are converted into electrons, and the spectral photon flux
 410 density of the AM1.5G solar spectrum $\Phi_{\text{AM1.5G}}(\lambda)$ at the same
 411 wavelength λ .

412 Alternatively, for a simplified approximation, the integral can
 413 be scaled using the peak wavelength of the solar spectrum λ_{peak} ,

$$414 \quad J_{\text{sc}} = \frac{q\lambda_{\text{peak}}}{hc} \int \text{EQE}(\lambda) \Phi_{\text{AM1.5G}}(\lambda) d\lambda, \quad (17)$$

415 where h is Planck's constant and c is the speed of light.

416 This formula essentially sums the contributions of all photons
 417 absorbed by the solar cell, weighted by the efficiency with which each
 418 photon generates current.

419 To obtain J_{sc} in mA/cm^2 , divide the result by 1000 if the initial
 420 units are in A/m^2 . The integral is taken over the wavelength range
 421 where the solar cell absorbs light.

422 The overall efficiency $\eta(\%)$ of the solar cell can be computed
 423 using the following expression:

$$424 \quad \eta(\%) = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100, \quad (18)$$

$$425 \quad \eta(\%) = \frac{J_{\text{sc}} \times V_{\text{oc}} \times \text{FF}}{P_{\text{in}}} \times 100. \quad (19)$$

426 The performance of a solar cell can be described in terms of
 427 several key parameters. The output power (P_{out}) represents the elec-
 428 trical power delivered by the cell, while the incident power (P_{in})
 429 corresponds to the incoming solar radiation. The short-circuit cur-
 430 rent density (J_{sc}) quantifies the current per unit area generated when
 431 the cell terminals are shorted, and the open-circuit voltage (V_{oc}) is
 432 the maximum voltage the cell can provide when no current flows.
 433 The fill factor (FF) indicates the ability of the solar cell to deliver
 434 maximum usable power, reflecting the combined effects of J_{sc} and
 435 V_{oc} . Together, these parameters determine the overall efficiency and
 436 performance of the solar cell.³⁵

437 P_{out} corresponds to the electrical power that can be extracted
 438 from the solar cell, while the input power P_{in} is provided by the
 439 incident sunlight. The FF is a critical parameter that reflects how
 440 effectively the device converts the theoretical maximum power into
 441 practical output. In this context, η quantifies the overall capability of
 442 the solar cell to convert solar energy into electrical power.

443 IV. RESULTS AND DISCUSSION

444 Recent advances in hole-transport materials (HTMs) have
 445 focused on two main strategies to enhance device performance:
 446 (i) dopant engineering and dopant-free HTM design to improve
 447 conductivity and stability and (ii) interfacial defect passivation
 448 using self-assembled monolayers or small π -conjugated molecules
 449 to suppress non-radiative recombination. Controlled dopant opti-
 450 mization in spiro-OMeTAD and the development of dopant-free
 451 carbazole or phenothiazine derivatives have improved hole mobil-
 452 ity while minimizing degradation. In parallel, interfacial passivation
 453 layers effectively enhance charge extraction and reduce trap-assisted
 454 losses, leading to higher V_{oc} , fill factor, and long-term stability.
 455 These chemical and interfacial strategies complement our optical
 456 optimization, ensuring that the enhanced photon absorption
 457 achieved through photonic crystal design translates into improved
 458 experimental PCEs.^{22,23}

459 In this study, the reflection, transmission, and absorption coef-
 460 ficients were calculated using the RSoft CAD simulation tool. The
 461 real and imaginary parts of the refractive indices for each electron
 462 transport material (ETM) and hole transport material (HTM) were
 463 obtained from the literature. In our proposed design, the struc-
 464 ture was optimized to determine the most suitable thicknesses of
 465 the alternating layers in order to effectively reflect the target wave-
 466 length range. Each layer of the solar cell was systematically tuned to
 467 maximize light-trapping and enhance optical performance.

478 As summarized in Table I, we analyzed the evolution of both
 479 the real and imaginary parts of the refractive index of each material
 480 as a function of the incident wavelength using the plasma-based
 481 optical model previously described. The specific optical parameters
 482 used for this calculation were assigned to each material according to
 483 the values listed in Table I.

484 This table summarizes the optical constants of the major mate-
 485 rials used within the solar cell structure, specifically the real part of
 486 the refractive index (n) and the imaginary part (k) across the visi-
 487 ble (Vis) and near-infrared (NIR) spectral regions. These parameters
 488 dictate how each layer interacts with incident light by defining its
 489 refraction, absorption, and transparency. Silicon exhibits a high
 490 refractive index in the visible range, combined with strong absorp-
 491 tion (large k) at short wavelengths, which decreases sharply beyond
 492 its bandgap in the NIR region. In contrast, materials such as fused
 493 silica, ZnS, and PDMS feature low absorption (k \approx 0) across the visi-
 494 ble and NIR regions, confirming their roles as transparent or weakly
 495 absorbing layers. P3HT, an organic semiconductor, displays a mod-
 496 erate refractive index with a distinct absorption peak in the visible
 497 spectral region, consistent with its π - π^* electronic transitions. The
 498 perovskite absorber ($\text{CH}_3\text{NH}_3\text{PbX}_3$) shows both a high refractive
 499 index and a high extinction coefficient in the visible spectrum, char-
 500 acteristic of its strong light-harvesting capability and high optical
 501 density.

502 The simulation utilized a comprehensive list of device para-
 503 meters (detailed in Table II) to accurately model and fit the experi-
 504 mental data from the perovskite solar cells (PSCs). The only values
 505 adjusted to achieve this fit were the carrier mobility (μ_e and μ_h) within
 506 the perovskite layer, the trap density (N_t), and the charge
 507 capture coefficients (C_n and C_p). The extracted carrier mobilities
 508 were consistent with established values for $\text{CH}_3\text{NH}_3\text{PbI}_3$ PSCs. Car-
 509 rier losses were modeled through bimolecular recombination in
 510 the bulk perovskite (using a coefficient of $1 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$) and
 511 trap-assisted recombination (SRH) occurring at material interfaces
 512 (HTL/perovskite and perovskite/ETL) and grain boundaries (GBs).
 513 Crucially, the fitted coefficients revealed an asymmetry where the
 514 hole capture probability (C_p) is lower than the electron capture
 515 probability (C_n) ($C_p < C_n$). This asymmetry aligns with the experi-
 516 mental observation of long-lived holes in PSCs, indicating that holes
 517 are less prone to being trapped and lost at defect sites than electrons.

518 A. Application of 2D PhCs' antireflective coating

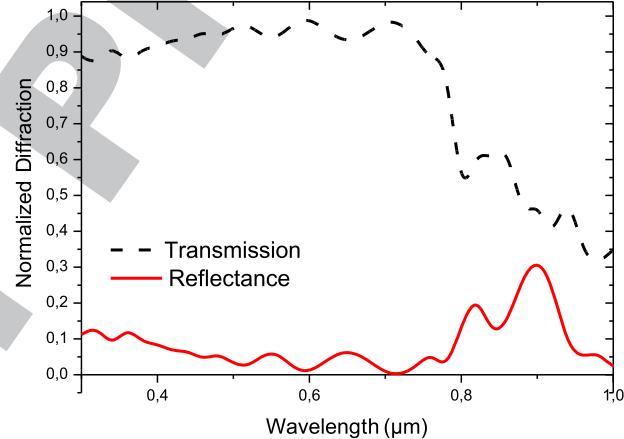
519 2D PhC structures have been proposed as an effective strategy
 520 to control light propagation in thin-film solar cells. In recent years,

468 TABLE I. Summary of dispersion $n(\lambda)$ and $k(\lambda)$.³⁸

469 Material	470 n (Vis/NIR)	471 k (Vis/NIR)
472 Silicon (Si)	473 3.5–6.0	474 High in VIS/UV; \sim 0 in NIR ($>1.1 \mu\text{m}$)
475 Fused silica (SiO_2)	476 1.45–1.50	477 Extremely low (\sim 0)
478 Zinc sulfide (ZnS)	479 2.2–2.5	480 Low (\sim 0)
481 Polydimethylsiloxane (PDMS)	482 1.40–1.43	483 Low (\sim 0)
484 Poly(3hexylthiophene) (P3HT)	485 1.5–2.0	486 High around absorption peak (0.5–0.65 μm)
487 Perovskite ($\text{CH}_3\text{NH}_3\text{PbX}_3$)	488 2.3–2.8	489 High in the visible region

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536**TABLE II.** Electronic parameters of the materials used in the solar cell.²⁴⁻²⁸

Parameters	SnO ₂	PCBM	MAPbI ₃	Spiro-OMETAD
Bandgap (eV)	3.6	2.1	1.55	3
Electron affinity (eV)	4.5	3.9	3.8	2.45
Dielectric permittivity (relative)	9.0	3.9	6.5	3
CB effective density of states (cm ⁻³)	2.2×10^{18}	2.2×10^{19}	10^{19}	2×10^{18}
VB effective density of states (cm ⁻³)	1.8×10^{19}	2.2×10^{19}	10^{17}	2×10^{19}
Electron mobility (cm ² /Vs)	100	10^{-3}	1	2×10^{-3}
Hole mobility (cm ² /Vs)	25	2×10^{-3}	1	2×10^{-3}
Electron lifetime (s)	10^{-7}	10^{-7}	10^{-6}	10^{-7}
Hole lifetime (s)	10^{-7}	10^{-7}	10^{-6}	10^{-7}
Uniform donor density N _D (cm ⁻³)	5.635×10^{17}	5.635×10^{19}	10^{13}	0
Uniform acceptor density N _A (cm ⁻³)	0	0	0	10^{17}


537 PhCs have gained significant attention as a promising approach to
 538 enhance light absorption in ultra-thin photovoltaic devices.^{33,39-41}
 539 A photonic crystal is characterized by a periodic modulation of
 540 the refractive index, with the lattice constant comparable to the
 541 wavelength of incident light. This periodicity allows precise manip-
 542 ulation of light propagation and, in the case of ultra-thin perovskite
 543 solar cells, enables efficient light confinement within the absorber
 544 layer, using interference lithography and nanoimprint technology as
 545 effective techniques for patterning these 2D PhC structures directly
 546 onto the surface of thin membranes made from the promising new
 547 material polydimethylsiloxane (PDMS) for possible application in
 548 solar cells. Such membranes can be simply applied on different
 549 optoelectronic device surfaces and could modify the final optical
 550 properties.⁴²⁻⁴⁴

551 **Figure 2(b)** illustrates the schematic of an ultra-thin perovskite
 552 solar cell incorporating 2D PhCs, where a periodic array of holes is
 553 etched into the PDMS (polydimethylsiloxane) layer. Incident light
 554 couples into Bloch modes that propagate in-plane within the PDMS
 555 layer. When implemented on the front side of the solar cell, the 2D
 556 PhC reduces reflection and improves the coupling of incoming light
 557 into the active region. The cylinder radius of the photonic crystal is
 558 optimized to maximize diffraction, which occurs when the Fourier
 559 components of the dielectric function reach their highest values.

560 Simulations are performed across various configurations by
 561 simultaneously varying the lattice period (a) and the radius-to-
 562 period ratio (r/a) under normal light incidence. Initially, the cell
 563 is modeled with a fixed antireflective coating thickness close to a
 564 quarter-wavelength at the center of the optical spectrum. Specifi-
 565 cally, the thickness is set to $d_0 = 65$ nm at the central wavelength
 566 $\lambda_0 = 530$ nm, corresponding to the peak of the solar emission
 567 spectrum.

568 For all simulations, a two-dimensional square lattice config-
 569 uration is adopted as it can be practically fabricated over large areas
 570 using holographic lithography. Fabrication constraints also dictate
 571 the feasible ranges of geometric parameters: the lattice constant (a)
 572 is varied between 0.3 and 0.7 μm , while the radius-to-period ratio
 573 (r/a) is varied between 30% and 70%.

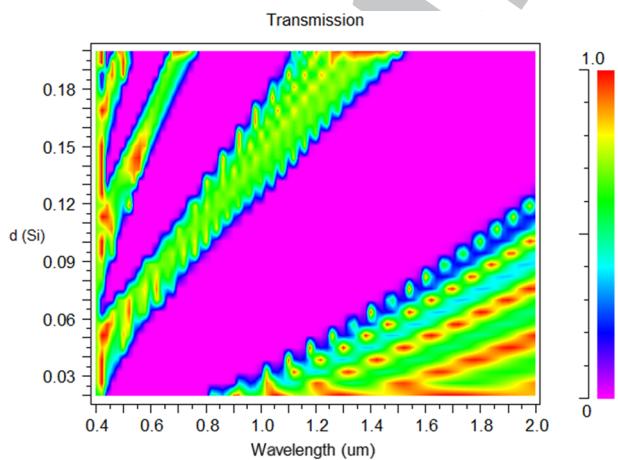
574 For this simulation, the optical index of PDMS is assumed
 575 to remain constant across all regions (n , i , and p). Under
 576 these conditions, the structure achieves a maximum integrated

FIG. 4. Diffraction normalized from the PhC after optimizing the thickness of the layers.

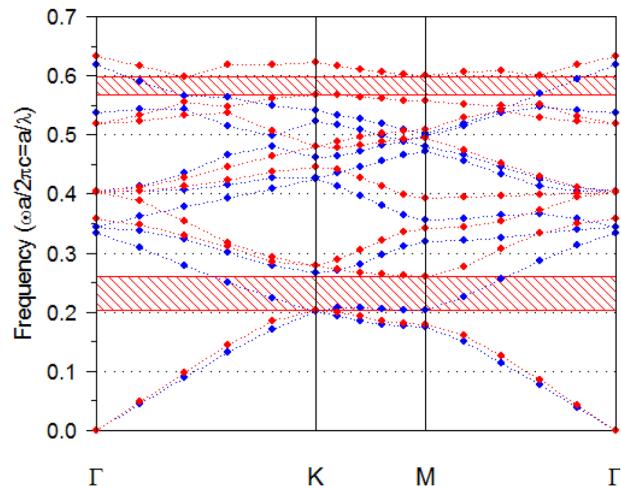
578 transmission of 93% and a minimum integrated reflectance of 5% at
 579 $a = 0.38 \mu\text{m}$ and $r/a = 62.5\%$. Notably, these results are in close agree-
 580 ment with previously reported optimal values for photonic crystals
 581 in solar cells, despite variations in the materials and geometric
 582 configurations considered in this work (Fig. 4).

583 As photons are effectively trapped within the proposed design,
 584 reflection of incident light is significantly reduced, as shown in
 585 Fig. 4. The trapped photons enhance the electric field distribution
 586 within the solar cell, leading to stronger light-matter interaction.
 587 It is observed that up to 90% of the incident photons can be
 588 confined within the extended effective thickness of the absorber
 589 layer (300–800 nm). This confinement minimizes optical parasitic
 590 losses and reflection, thereby increasing the integrated absorption
 591 spectrum of the device.

B. Application of DBR as wavelength-selective reflectors


592 The motivation for this work stems from recent studies by
 593 Sergey and Sajeev John, who demonstrated that light trapping and

598 photon recycling can significantly enhance power conversion efficiency in ultra-thin perovskite solar cells.² Building on this idea, we
 599 investigate photonic crystal-enhanced solar cells, where the conventional metallic back reflector is replaced with a distributed Bragg
 600 reflector (DBR). The DBR consists of a one-dimensional dielectric superlattice formed by alternating layers of silicon (Si) and silicon
 601 dioxide (SiO_2), chosen for their availability, ease of fabrication, and favorable optical and electrical properties. The dielectric contrast
 602 between Si ($n_1 = 3.6$) and SiO_2 ($n_2 = 1.52$) is optimized to generate
 603 a photonic bandgap (PBG) in the desired wavelength range, arising
 604 from the periodic modulation of the refractive index.⁴⁵⁻⁴⁸


605 The DBR structure is modeled as a sequence of alternating
 606 layers (AB)^N, where layer A is Si and layer B is SiO_2 . The thickness
 607 of layer B is determined using the quarter-wave condition,
 608 $n_2 d_2 = \lambda_0/4$, with $\lambda_0 = 530$ nm corresponding to the peak of the solar
 609 emission spectrum. The thickness of layer A is then optimized using
 610 the Multi-variable Optimizer and Scanner Tool (MOST) available in
 611 SYNOPSYS RSoft CAD (Fig. 5).

612 To characterize the optical properties of the DBR, the gap
 613 map method is applied to calculate the photonic bandgap. Figure 5
 614 shows the bandgaps as a function of Si layer thickness (d_{Si}). Several
 615 bandgap regions are identified, offering different options for
 616 tuning the DBR to the desired operational wavelength. Three representative
 617 bandgap regions, highlighted in Fig. 5, are selected for
 618 the subsequent analysis.

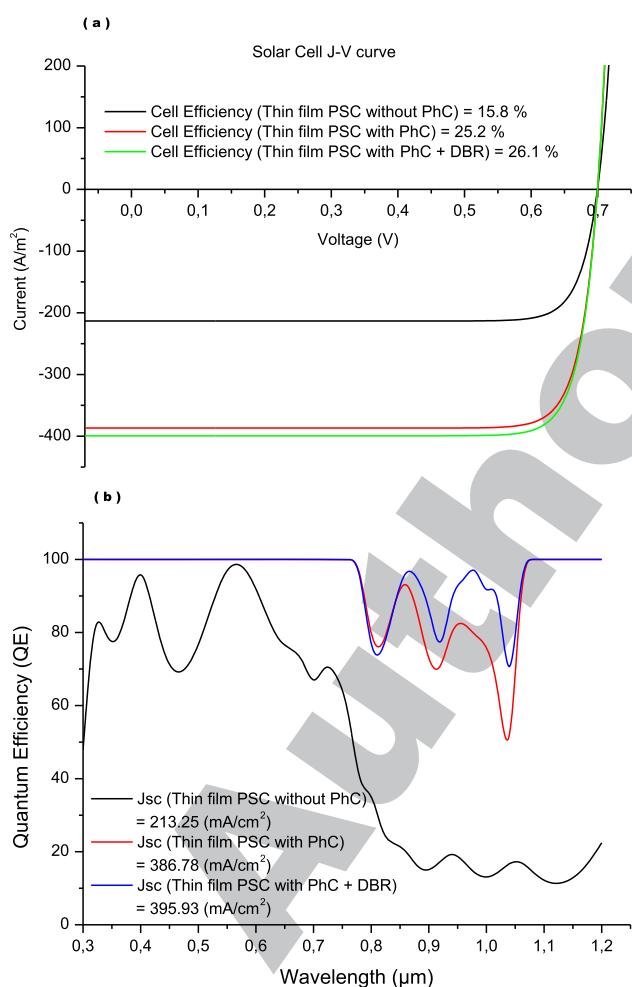
619 It is essential to investigate the optical response of the photonic
 620 crystal reflector across the visible spectrum as such structures
 621 are highly relevant for photovoltaic applications. In particular, the
 622 reflector must provide sufficiently high reflectance over a broad
 623 spectral range in order to maximize photon confinement within the
 624 absorber layer and reduce transmission losses. Figure 5 presents the
 625 reflectivity spectra of the proposed distributed Bragg reflector (DBR)
 626 under transverse electric (TE) polarization. The DBR is designed
 627 with alternating silicon (Si) and silicon dioxide (SiO_2) layers, where
 628 the thicknesses are set to $d_1(\text{Si}) = 35$ nm and $d_2(\text{SiO}_2) = 90$ nm.
 629 These thicknesses were chosen based on the quarter-wave condition
 630 and further optimized to ensure constructive interference at the target
 631 wavelength ($\lambda_0 = 530$ nm). To maintain high reflectance

636 FIG. 5. Bandgap map of 1-D photonic crystal with Si/SiO₂ layers.

637 FIG. 6. Bandgap range achieved after optimization.

638 throughout the broader visible range (400–700 nm), these DBRs
 639 typically require 7–8 pairs of alternating (Si/SiO₂) layers.

640 The results indicate that the reflector exhibits strong photonic
 641 bandgap behavior, with peak reflectance exceeding around
 642 the designed central wavelength. The broad stop band generated by
 643 the periodic Si/SiO₂ structure ensures efficient reflection of incident
 644 photons, thereby enhancing light trapping within the solar cell. Such
 645 high reflectivity across the visible spectrum confirms the suitability
 646 of the DBR as a back-reflector in ultra-thin perovskite solar cells,
 647 where photon recycling and reduced parasitic absorption are critical
 648 for boosting overall device efficiency.


649 Figure 6 presents the reflectivity spectra of the binary photonic
 650 crystal (PhC) optical reflector for the transverse magnetic (TM)
 651 mode. In this study, the structure demonstrates an exceptionally
 652 broad photonic stop band of ~350 nm, achieving high reflectivity
 653 within the visible spectrum for both TE and TM polarizations
 654 and maintaining this performance across a wide range of incidence
 655 angles. This broad and polarization-independent high reflectivity
 656 highlights the potential of the proposed reflector for photovoltaic
 657 applications. The present work is focused on extending and further
 658 optimizing this wavelength range to maximize solar energy
 659 harvesting.

660 The distributed Bragg reflector (DBR) incorporated into the
 661 design diffracts light within the absorber layer and reflects it with
 662 minimal loss. Once inside the absorber, photons undergo multiple
 663 total internal reflections, resulting in strong light confinement. This
 664 process significantly increases the effective optical path length of the
 665 photons, enabling higher absorption even in ultra-thin absorber layers.
 666 Consequently, the DBR efficiently redirects the desired portion
 667 of the incident solar spectrum back into the active region of the solar
 668 cell.

669 This mechanism, commonly referred to as photon recycling,
 670 not only reduces optical losses but also enhances carrier generation
 671 by ensuring that unabsorbed photons have additional opportunities
 672 to interact with the absorber material. By improving the balance
 673 between transmission suppression and absorption enhancement, the

673 proposed DBR structure plays a crucial role in boosting the overall
 674 power conversion efficiency of the solar cell.

675 These reflective structures are generally deposited using thin-
 676 film techniques, with sputtering (particularly magnetron sputtering)
 677 and electron beam evaporation being the most common methods,
 678 offering high film quality. Chemical Vapor Deposition (CVD)
 679 can also be used, although it often requires higher temperatures.
 680 A significant advantage is the DBR's compatibility with flexible sub-
 681 strates, particularly when using low-temperature techniques such as
 682 sputtering. Achieving good mechanical stability and resistance to
 683 bending cycles in flexible devices relies on an optimal DBR design
 684 that balances layer number, maintains low film roughness to pre-
 685 vent light scattering losses, and ensures excellent adhesion to the
 686 substrate.

687 **FIG. 7.** (a) J-V curve of the proposed thin-film perovskite solar cell without photonic
 688 crystal structures (PhCs), with 2D PhCs, and with 2D PhCs + DBR. (b) Quantum
 689 Efficiency (QE) vs wavelength for the proposed thin-film perovskite solar cell
 690 without PhCs, with 2D PhCs, and with 2D PhCs + DBR.

691 **TABLE III.** Comparison of PCE and J_{sc} current for the proposed thin-film perovskite
 692 solar cell with and without PhC as a back reflector.

Device structure	PCE (%)	J_{sc} (mA/cm²)	V_{oc} (V)	FF (%)
Thin film PSC without PhC	15.8	21.3	0.63	58.1
Thin film PSC with 2D PhC	25.2	38.6	1.18	78.49
Thin film PSC with 2D PhC+ DBR	26.1	39.6	1.21	82.85

C. Electrical performance of the proposed nanostructure

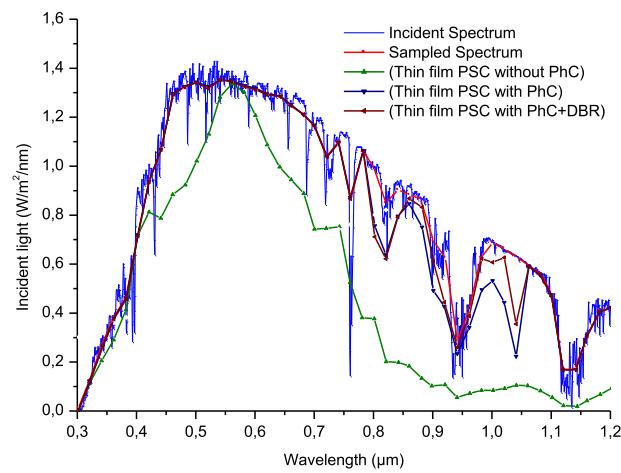
693 Figure 7(a) presents the J-V characteristics of the simulated
 694 devices, with the extracted photovoltaic parameters summarized in
 695 Table III. It is observed that both the reference structure without
 696 2D photonic crystals (2D PhCs) and the configuration incorporating
 697 only the 2D PhCs with a DBR exhibit a relatively lower short-circuit
 698 current density (J_{sc}) of 21.3 mA/cm² than the other investigated
 699 designs. This reduction in photocurrent is consistent with the cor-
 700 responding external quantum efficiency (EQE) response, as shown in
 701 Fig. 7(b), where a noticeable decrease in quantum efficiency is
 702 observed across the visible spectrum.

703 The reduced performance observed in the planar perovskite
 704 solar cell (PSC) without photonic crystals (PhCs) can be attributed
 705 to lower electron and hole mobilities, which limit charge collec-
 706 tion efficiency. In contrast, the structure integrating 2D PhCs alone
 707 demonstrates improved an open-circuit voltage (V_{oc}) of 1.18 V,
 708 a fill factor (FF) of 78.49%, short-circuit current density (J_{sc}) of
 709 32.14 mA/cm², and a resulting power conversion efficiency (PCE)
 710 of 25.2%.

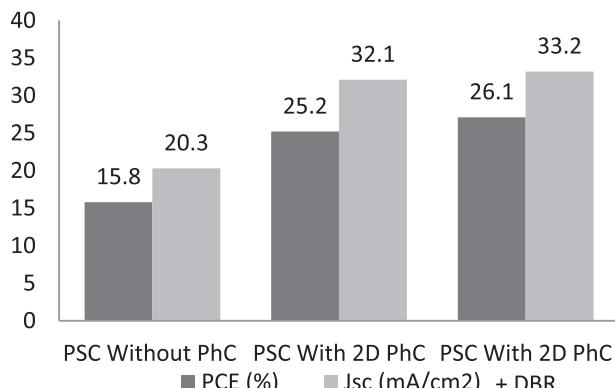
711 The 2D PhCs with a distributed Bragg reflector (DBR) structure
 712 exhibit the best performance, achieving an open-circuit voltage (V_{oc})
 713 of 1.21 V, a fill factor (FF) of 82.85%, a short-circuit current density
 714 (J_{sc}) of 33.28 mA/cm² and a resulting power conversion efficiency
 715 of 26.1%.

716

717


718

719


720

721

722

723 **FIG. 8.** Simulated absorption spectra of the proposed perovskite solar cell with-
 724 out PhCs, with 2D PhCs, and 2D PhCs +DBR structures illustrating increased
 725 absorption across the solar spectrum (0.3–1.2 μm).

FIG. 9. Comparison of the enhancement in final PCE and short circuit current without PhC, with 2D PhC, and with 2D PhC + DBR.

726
727

728 (PCE) of 26.1%. These enhancements arise from reduced reflection
729 and parasitic optical losses, combined with more effective light
730 trapping, which increases absorption within the perovskite layer.

731 The graph in Fig. 8 shows the increased absorption of the inci-
732 dent solar spectrum due to photon recycling upon incorporating
733 the PhC as a light trapping structure. The figure also compares the
734 enhancement in final PCE and J_{sc} with and without the PhC.

735 The final results confirm a substantial enhancement in solar
736 spectrum absorption when PhCs are employed as back reflectors.
737 A direct comparison of devices with and without PhCs (Table III
738 and Fig. 9) shows that both the J_{sc} and overall efficiency nearly double
739 when a PhC is used as a selective wavelength reflector. This
740 clearly highlights the potential of photonic crystal-based designs for
741 boosting the performance of next-generation perovskite solar cells.

742

V. CONCLUSION

743 The results demonstrate that incorporating 2D PhCs as light-
744 trapping structures can substantially enhance the PCE of solar cells.
745 Perovskite solar cells, which already hold strong potential to rival
746 silicon-based technologies, further offer the advantages of low-cost
747 fabrication and high efficiency. Organic-inorganic perovskites, such
748 as $\text{CH}_3\text{NH}_3\text{PbI}_3$, can be readily synthesized from lead halide salts
749 and organic amines, and they exhibit favorable properties such as
750 low defect density—owing to their ionic nature—and a high dif-
751 fusion length-to-absorption length ratio, both of which are critical
752 for achieving large photocurrents. Furthermore, the integration of
753 a tuned DBR enables the design of simple thin-film solar cells suit-
754 able for large-scale industrial production. The significant increase
755 in J_{sc} highlights the enhanced generation of photo-induced carriers
756 through photon recycling.

757 It should be noted, however, that these findings are based on
758 numerical simulations. In practical applications, factors such as con-
759 tact shading and shunting losses—depending on fabrication meth-
760 ods and environmental conditions—must be taken into account.
761 Given the promising simulated performance, future work will focus
762 on fabricating the proposed structure and assessing its behavior
763 under real-world operating conditions.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Mounir Bouras: Conceptualization (equal); Data curation (equal); Software (equal); Writing – original draft (equal). **Moufdi Hadjab:** Conceptualization (equal); Data curation (equal); Investigation (equal); Validation (equal); Writing – review & editing (equal). **Maroua Chahmi:** Conceptualization (equal); Formal analysis (equal); Resources (equal); Software (equal). **Salah Khennouf:** Data curation (equal); Methodology (equal); Validation (equal). **Abdelaziz Rabehi:** Conceptualization (equal); Data curation (equal); Investigation (equal); Project administration (equal); Resources (equal); Visualization (equal); Writing – review & editing (equal). **Takele Ferede Agajie:** Formal analysis (equal); Resources (equal); Software (equal); Writing – review & editing (equal). **Abdullah K. Alanaazi:** Formal analysis (equal); Funding acquisition (equal); Resources (equal); Software (equal); Validation (equal); Visualization (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. R. Lin *et al.*, “Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink,” *Nat. Energy* **4**, 864–873 (2019).
2. A. Kojima *et al.*, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” *J. Am. Chem. Soc.* **131**, 6050–6051 (2009).
3. G. Yang *et al.*, “Stabilizer-assisted growth of formamidinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency,” *Nano Energy* **63**, 103835 (2019).
4. H. Tao *et al.*, “High absorption perovskite solar cell with optical coupling structure,” *Opt. Commun.* **443**, 262–267 (2019).
5. B. Chen *et al.*, “Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems,” *Nat. Commun.* **11**, 1257 (2020).
6. S. R. Kumavat *et al.*, “Two-dimensional $\text{CH}_3\text{NH}_3\text{PbI}_3$ with high efficiency and superior carrier mobility: A theoretical study,” *J. Phys. Chem. C* **123**, 5231–5239 (2019).
7. S. Albrecht and B. Rech, “Perovskite solar cells: On top of commercial photovoltaics,” *Nat. Energy* **2**, 16196 (2017).
8. A. Tooghi *et al.*, “High-performance perovskite solar cell using photonic-plasmonic nanostructure,” *Sci. Rep.* **10**, 11248 (2020).
9. M. H. Mohammadi *et al.*, “ $\text{NiO}@\text{GeSe}$ core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: A numerical study,” *Sol. Energy* **204**, 200–207 (2020).
10. J. Boroumand *et al.*, “Unified electromagnetic-electronic design of light trapping silicon solar cells,” *Sci. Rep.* **6**, 31013 (2016).
11. C. Liu *et al.*, “Strategies for growing perovskite films on nanostructured TiO_2 for high performance solar cell,” in *IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)* (IEEE, 2018), pp. 107–109.
12. Z. Li *et al.*, “Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu_2I_3 single crystal with 1D electronic structure,” *Adv. Funct. Mater.* **30**, 2002634 (2020).

- 816 ¹³L. Zheng *et al.*, "Self-powered flexible TiO₂ fibrous photodetectors: Heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles," *Adv. Funct. Mater.* **30**, 2001604 (2020).
- 817 ¹⁴K. Chen *et al.*, "Light-trapping schemes for silicon thin-film solar cells via super-quadratic subwavelength gratings," *Appl. Opt.* **58**, 8702–8712 (2019).
- 818 ¹⁵S. A. Choudhury *et al.*, "Effect of varying the row and column size of periodic arrays of plasmonic nanoparticles on the energy conversion efficiency of thin-film solar cells," in *International Conference on Electrical, Computer and Communication Engineering (ECCE)* (IEEE, 2017), pp. 44–49.
- 819 ¹⁶Z. Yu *et al.*, "Fundamental limit of nanophotonic light trapping in solar cells," *Proc. Natl. Acad. Sci.* **107**, 17491 (2010).
- 820 ¹⁷J. Nelson, *The Physics of Solar Cell* (Imperial College Press, London, United Kingdom, 2008).
- 821 ¹⁸I. Borriello *et al.*, "Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides," *Phys. Rev. B* **77**, 235214 (2008).
- 822 ¹⁹H. Xiang *et al.*, "Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering," *Chem. Eng. J.* **420**(2), 127599 (2021).
- 823 ²⁰L. P. Lekesi *et al.*, "Developments on perovskite solar cells (PSCs): A critical review," *Appl. Sci.* **12**, 672 (2022).
- 824 ²¹G. E. Eperon *et al.*, "Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells," *Energy Environ. Sci.* **7**, 982 (2014).
- 825 ²²J. Hu *et al.*, "Automated design of hybrid halide perovskite monolayers for band gap engineering," *npj Comput. Mater.* **10**, 140 (2024).
- 826 ²³V. Stacchin *et al.*, "Phenothiazine-based self-assembled monolayer with thiophene head groups minimizes buried interface losses in tin perovskite solar cells," *Adv. Energy Mater.* **15**, 2500841 (2025).
- 827 ²⁴T. Minemoto and M. Murata, "Theoretical analysis on effect of band offsets in perovskite solar cells," *Sol. Energy Mater. Sol. Cell.* **133**, 8–14 (2015).
- 828 ²⁵S. Das and T. L. Alford, "Improved efficiency of P3HT:PCBM solar cells by incorporation of silver oxide interfacial layer," *J. Appl. Phys.* **116**, 044905 (2014).
- 829 ²⁶X. Yang *et al.*, "Simultaneously enhancing the efficiency and stability of perovskite solar cells by using P3HT/PEDOT:PSS as a double hole transport layer," *Nanomaterials* **14**, 1476 (2024).
- 830 ²⁷U. Mandadapu *et al.*, "Design and simulation of high efficiency tin halide perovskite solar cell," *Int. J. Renew. Energy Res.* **7**(4), 1603–1612 (2017).
- 831 ²⁸H.-J. Du *et al.*, "Device simulation of lead-free CH₃NH₃SnI₃ perovskite solar cells with high efficiency," *Chin. Phys. B* **25**, 108802 (2016).
- 832 ²⁹B. Grote *et al.*, "Quantum-well laser diodes: Temperature and many-body effects," in *Advanced Simulation and Analysis of Optoelectronic Devices*, edited by J. Piprek (■, 2004).
- 833 ³⁰B. Grote *et al.*, "Integration of microscopic gain modeling into a commercial laser simulation environment," *Proc. SPIE* **4986**, 413–422 (2003).
- 834 ³¹J. Piprek, *Semiconductor Optoelectronic Devices* (Academic Press, 2003).
- 835 ³²D. Nassim *et al.*, "Magneto-photonic crystal micro-cavities in one dimensional photonic crystals fabricated by sol gel process," *J. Nanoelectron. Optoelectron.* **14**(8), 1189–1193 (2019).
- 836 ³³M. Chahmi *et al.*, "Light trapping for absorption control in perovskite-based photovoltaic solar cells," *Prog. Electromagn. Res. Lett.* **108**, 41–48 (2023).
- 837 ³⁴Y. Raoui *et al.*, "Performance analysis of MAPbI₃ based perovskite solar cells employing diverse charge selective contacts: Simulation study," *Sol. Energy* **193**, 948–955 (2019).
- 838 ³⁵M. Hadjab *et al.*, "A numerical optimization study of CdS and Mg_{0.125}Zn_{0.875}O buffer layers in CIGS-based solar cells using wxAMPS-1D package," *Int. J. Model. Simul.* **42**(2), 179–191 (2022).
- 839 ³⁶S. S. Li, *Semiconductor Physical Electronics*, 2nd ed. (Springer, 2006).
- 840 ³⁷J. Nelson, *The Physics of Solar Cells: Photons In, Electrons out* (Imperial College Press, 2003).
- 841 ³⁸E. D. Palik, *Handbook of Optical Constants of Solids* (Academic Press, San Diego, CA, 1991).
- 842 ³⁹DiffractMod v2015.06 User Guide, Synopsys, Inc., Opt. Solutions Group, New York, 2015.
- 843 ⁴⁰M. Bouras *et al.*, "Efficient magneto-optical TE/TM mode converter in a hybrid structure made with a SiO₂/ZrO₂ layer coated on an ion-exchanged glass waveguide," *Optik* **157**, 658–666 (2018).
- 844 ⁴¹M. Bouras, "High-performance silicon nitride grating-coupled SPR sensors for gas detection and biosensing," *Prog. Electromagn. Res. Lett.* **118**, 93–98 (2024).
- 845 ⁴²D. Pudis *et al.*, "PDMS-based nanoimprint lithography for photonics," *Commun. Sci. Lett. Univ. Zilina* **16**(1), 15–20 (2014).
- 846 ⁴³T. Atouani, M. Mostefaoui, B. Dennai, A. Rabehi, Y. A. Alsabah, and M. Benghanem, "Tension loss analysis at the electrode interface of a dye-sensitized solar cell (DSSC)," *AIP Adv.* **15**(7), 075307 (2025).
- 847 ⁴⁴A. M. Younsi, M. Elbar, and A. Rabehi, "Structural, electronic, and optical properties of perovskites Ca_ATe₃ (A = Zr or Hf): A theoretical investigation," *Semiconductors* **58**(12), 984–992 (2024).
- 848 ⁴⁵R. Daha, M. Bouloudene, A. Khiat, C. V. Gomez, M. La Pietra, I. E. Tibermacine, S. Alleg *et al.*, "Enhancement of cobalt ferrite properties through rare earth ion doping," *Semiconductors* **58**(12), 993–1005 (2024).
- 849 ⁴⁶F. Mekaret, A. Rabehi, B. Zebentout, S. Tizi, A. Douara, S. Bellucci, M. Guermoui *et al.*, "A comparative study of Schottky barrier heights and charge transport mechanisms in 3C, 4H, and 6H silicon carbide polytypes," *AIP Adv.* **14**(11), 115302 (2024).
- 850 ⁴⁷O. Baitiche, F. Bendelala, A. Cheknane, A. Rabehi, and E. Comini, "Numerical modeling of hybrid solar/thermal conversion efficiency enhanced by metamaterial light scattering for ultrathin PbS QDs-STPV cell," *Crystals* **14**(7), 668 (2024).
- 851 ⁴⁸A. Douara, A. Rabehi, M. Guermoui, R. Daha, and I. E. Tibermacine, "Impact of AlN buffer layer thickness on electronic and electrical characteristics of In_{0.17}Al_{0.83}N/GaN high-electron-mobility transistor," *Phys. Solid State* **66**(6), 157–164 (2024).
- 852 ■ 877
- 853 878
- 854 879
- 855 880
- 856 881
- 857 882
- 858 883
- 859 884
- 860 885
- 861 886
- 862 887
- 863 888
- 864 889
- 865 890
- 866 891
- 867 892
- 868 893
- 869 894
- 870 895
- 871 896
- 872 897
- 873 898
- 874 899
- 875 900
- 876 901
- 877 902
- 878 903
- 879 904