

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH
HASSIBA BENBOUALI UNIVERSITY OF CHLEF
FACULTY OF TECHNOLOGY
MECHANICS AND ENERGETICS LABORATORY
IN COLLABORATION WITH
UNIVERSITY ABBES LAGRHOUR OF KHENCHELA

CERTIFICATE OF ATTENDANCE

This is to certify that

Fares KHALFALLAH

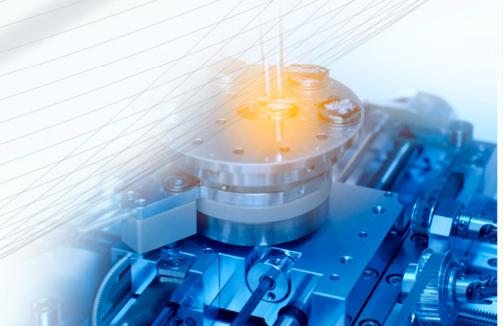
University Mohamed Boudiaf of M'sila, Faculty of Sciences

In recognition of attending the

3rd NATIONAL CONFERENCE ON MATERIALS SCIENCES AND ENGINEERING (MSE'25)

held at Hassiba Benbouali University of Chlef, from June 11-12, 2025, with the theme of Online communication:

“Characterization of Friction Welded Joints between AA 2017A Aluminum Alloy and AISI 316L Stainless Steel”


Co-Author(s): Laid MAHDI, Elhadj RAOUACHE, Razik BENDERRADJI

President of Seminar
Chairman of MSE'25
Dr. Azeddine BELALIA

President of the Scientific Committee
Prof. HADJ MELIANI Mohammed

**3rd NATIONAL CONFERENCE ON
MATERIALS SCIENCES
AND ENGINEERING**

Characterization of Friction Welded Joints between AA 2017A Aluminum Alloy and AISI 316L Stainless Steel

Fares Khalfallah¹, Laid Mahdi¹, Elhadj Raouache² and Razik Benderradj¹

¹ Department of Physics, Faculty of Sciences, University of M'sila, Algeria

² Mechanical Engineering Department, Faculty of Sciences and Technology, University of Bordj Bou Arreridj, Algeria

*Corresponding author: fares.khalfallah@univ-msila.dz

ABSTRACT

The joining of dissimilar metals, such as aluminum and steel, has received considerable attention in modern industry due to its ability to reduce weight, enhance energy efficiency, and promote environmental sustainability. Among modern welding processes, rotary friction welding (RFW) is a very effective process for joining dissimilar materials. In this solid-state process, welding heat is generated through mechanical friction between a rotating workpiece and a stationary one. The properties of RFW joints are influenced by parameters such as welding time, applied pressure, and rotational speed. This experimental study explores how variable rotational speed affects the thermal behavior and mechanical properties of dissimilar joints between AISI 316L stainless steel and AA 2017A aluminum alloy produced by RFW process. The welding was performed using a milling machine as a rotary friction stir welding machine with varying the rotation speeds across the different welds. To evaluate the properties of the joints, experimental tests were conducted including temperature measurement, tensile testing and microhardness measurements. The results confirmed the successful formation of dissimilar AISI 316L/AA 2017A joints through rotary friction welding and revealed a clear relationship between rotational speed and joint properties. Mechanical performance was significantly affected by changes in rotational speed, while thermal analysis provided insights into how maximum temperatures reached during welding are related to the resulting mechanical properties of the joints.

Keywords: *Rotational friction welding; Rotational speed; Stainless steel; Aluminum alloys; Mechanical properties.*