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1. Introduction

The study of the asymptotic behaviour of a viscoelastic wave equation with nonlinear
distributed delay and acoustic boundary conditions is fundamental to advancing our
understanding of complex dynamical systems [1-8]. Several studies have investigated the
asymptotic behaviour of viscoelastic wave equations with boundary feedback. Al-Mahdi
and Al-Gharabli [9] analysed the energy decay properties of a viscoelastic equation incor-
porating past history and boundary feedback, providing conditions for stability. Messaoudi
and Al-Gharabli [10] established a general decay result for a similar model, demonstrating
the influence of memory effects on energy dissipation. Further advancements were made
by Al-Gharabli et al. [11], who examined a viscoelastic system with nonlinear boundary
feedback and a logarithmic source term, deriving decay estimates under suitable condi-
tions. In a related study, the same authors [12] obtained general and optimal decay results
for a viscoelastic equation with nonlinear boundary feedback, refining existing stability
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criteria. These contributions provide a solid theoretical foundation for understanding the
long-term behaviour of viscoelastic wave equations with boundary interactions.

This study addresses key theoretical challenges in the modelling of materials exhibiting
both elastic and viscous properties, particularly within the framework of partial differential
equations and control theory. By incorporating acoustic boundary feedback and nonlinear
distributed delays, the analysis provides deeper insights into the stability and long-term
behaviour of such systems. In addition to advancing the fundamental understanding of
wave propagation in complex media, this work has significant implications for various
scientific and engineering applications.

The below stated equation will be investigated in this work

r t
z — Az(t) +/ Lt — x)Az(30)dse =0, in?A x Ry,
0
gz / L(t— )—z(%)d%—l— (@) =D, ye Aopt>0,
v
Zt+j(y)9t+/\[(y)@—0 }/EAo,t>0, (1)
z(y,t) =0, on A1 x Ry,
Z(y’ 0) = ZO(y)) Zt()’, 0) = Zl(y)) in A,
z(y, —t) = vo(y, 1), in Ag x (0,92),
[ 2(y,0) = Do (y)s y € Ao,

where
P2
(@)= U Fi(a) + / W) fo e — ) di @)
?1

In this study, we consider a bounded domain denoted by 2 © R with M > 1, possess-
ing a smooth boundary 020 = A; U Ag. Here, A and Ay are disjoint, closed subsets of
02. The outward unit normal vector to A is denoted by v, while %/ represents a posi-
tive constant. Furthermore, we consider two non-negative constants ¢; and ¢, satisfying
@1 < ¢2. The function %4 : [¢1, 2] — R characterizes the distributed time delay, while
the memory kernel is represented by a positive function .Z. Additionally, the functions
F1and _Z, are introduced to describe specific aspects of the formulation.

Time delay has been recognized as a crucial factor in various physical and natural phe-
nomena, as it directly affects the response to external forces, material transport processes,
and the evolution of system states, all of which are inherently dependent on temporal
dynamics. In recent years, the study of delay effects has gained significant attention in sci-
entific research. Extensive investigations have been conducted on this form of damping
due to its fundamental role in determining system stability and ensuring the existence of
solutions.

In the absence of acoustic boundary conditions, where / 1(E) = / 2(E) = E, this
term can manifest in several forms: delay (z;(y,t — ¢)) as described in [13-16], time-
varying delay (z;(y, t — ¢ (t))) as detailed in [17-20], and distributed delay ( f gf U (j)z:(t —
7) dj) as explored in [21-24]. Numerous studies have investigated various issues related to
the functions #'1and _¢# 2, particularly those involving delays within the equation or the
boundary feedback.
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The following problem has been investigated in [25]:

t
Zy — Az + /0 h(t — ) Az() dj + d181(21) + Paga(z:(t — 9) =0, (3)

in which the authors focussed on the existence and stability of the global solution. In [26],
the author considered the below

Zi — AZ = 0)

z(y,t) =0, onAg x Ry, @)
dz

o d1ze + Pzt — ) =0, onA; x Ry,

where the author proved that the general energy is exponentially stable under suitable
supposition (¢, < ¢1). In [20], the the below stated problem is considered:

¢
zy — Az + / h(t — j)Az(j) dj + P22 (2z:(t — 9) =0,
0
z(y,t) =0, onAp x Ry, (5)

4 + ¢181(zr) =0, on Ay x Ry,

do
where the authors established results for global existence and asymptomatic behaviour of
the problem (5). The idea of viscoelasticity has been studied in numerous research work,
including ([27-31]).

Conversely, the acoustic boundary conditions introduced by Ingard and Morse in their
work [32] have been widely adopted in various problems, contributing to substantial
advancements. Several researchers have extended their work, leading to a wide range of
significant findings. For a more comprehensive understanding, we refer readers to the fol-
lowing studies: [13,17,32,33]. Additionally, for problems related to boundary dissipations,
we recommend consulting [23,34,35]. In a recent study, the authors in [23] investigated
problem (1) without considering acoustic boundary conditions, focussing on the gen-
eral decay behaviour, particularly in the presence of a general kernel. Building upon and
extending these findings, our objective is to analyse a specific problem that incorporates
a nonlinear distributed delay within the boundary feedback while integrating acoustic
boundary conditions. This key distinction differentiates our work from previous studies.
By imposing appropriate assumptions on the involved functions, we will establish results
concerning the asymptotic behaviour of the solutions.

Our work is organized as follows: The lemmas, concepts, and assumptions necessary for
investigating the problem are presented in Section 2. Section 3 outlines the main findings
of the study, while the general conclusion is provided in Section 4.

2. Preliminaries

In this section, we will presents the below stated assumptions for %5,.7,N,.%, B

and _#):
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(A1) .Z: R4 — Ry isanon-increasing S! functions, which satisfies
o
Z(0) > 0, (oz/ ZL(x)dsx <00, 1—(9=¢ > 0. (6)
0
(A2) Assume a non-increasing S! function 39 : Ry — R which satisfies
YL )+ L' () <0, Vt>0. (7)
(A3) Take a convex and increasing function P: R4y — Ry and a non-decreasing S!
function _#; : R = Rand P: Ry — R4 with S1(Ry) N S8'(J0, oo[) which sat-
isfies
P(0) = 0, "
P islinearon [0,w], or P(0)=0 and P’(f) >0 on]0,m],
and
roljil < A1() < nljl if |jl > o, ©)
P < PTGAG) il <o,
in which P~! indicates the inverse of P function and , o, r1 represents positive
constants.
(A4) Let us take an odd non-decreasing S ! function F2: R — R with 3¢, > % and
1,6 > 0,
PZOIE 10)
&ji 20 < 20) < &Hj A3,
where 2(j) = fé Ja(¢)dg.
(A5) % : [@1,92] > Risabounded function, which holds
92
26 [ 1014 < . (1)
91
(A6)
34,,N, > 0(; =0,1), with % < I (y) < A,
M <N@) <M, VyeA,. (12)
Let
t
(&L ox)(t) = / / Lt — »)|(t) — k(50)|* dsedy.
rJo
Considering the following variables, as stated in [24]
77()’) U)j; t) = zt(y)t_j‘)): (%V’]') t) eD= Ay x (0> 1) X ((Ply (PZ) X R-f-
which satisfy
{jm(y,v,j, B+ m (v, t) =0, )
n(,0,j,1) = z(y, 1).
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Problem (1) can also be stated as

t
z — Az(t) —l—/ Lt — 2)Az(3)dsc =0, in?A x Ry,
0

/ Lt = 55260 doe + 8 i (2)

+ / W) />0 Lj ) di= D y€ Aoyt > 0,

zt—l—,ﬂ(y)@t—l—/\f(y)_@zo, y € Ao, t > 0,
s vsjst) + 0 (0,5 8) = 0, on D,

z(y,t) =0, onA; x Ry,
z(y,0) = z0(y),  z:(»,0) = z1(p), in%,
n(y,v,)>0) = vo(y, ), in Ag x (0,92),
[ Z(,0) = Zo(y), y € Ao,

The energy functional is provided below.

Lemma 2.1: Energy functional E, stated as

E(t) = _||Zt||2 ( / Z(x) d%) V()13 + / Ny 2*dA

1 . . . .
+ E(go Vz)(lf)—l—/Ao/0 /q)1 %) L2y, v,j, 1)) djdv dA,

satisfies

E () < —¢1/A 2t J1(z) dA + %(‘,2”/ o Vz)(t)

- [ 7 an - 201013

Ao
92
- ¢2/A / % (G, 1,5, L2 (1 1,4, 1) djdA <0,
091
where ¢ =25 — 1 > 0 with ¢y = U — 25 f(p(plz %) dj > 0.

Proof: From (14) through mathematical skills, we have the following

(14)

(15)

(16)

14 I (t)||2+(1—/t.z( ) dso)[IVz(D) 3 + (& V)(t)+/ N@)2*dA
S | 12O x) dx)||Vz(t)|3 oVz %

% / 2 f1(z) dA — —(z' o V2) (1) + z(t)uv.z(t)nz

+ J(y)@zd/\+// % ()| _F2(1(y 1,j, )z djdA = 0.

(17)

Next, multiplying (14) by |2 (j)|_Z2(n(y,v,j,t)), and integrating over A x (0,1) x

(91, ¢2), and using (13),, we get

d L ro2
—/ / / W% MH.20,v,j, 1) djdv dA
dt AO 0 ¢1
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- —/A/()l/; (). F2(mmy djdv dA

L roo d
== [ [ [ iy 200mg0 didv aa
Ao O Joy v

P2
_ / / LG (2010, 0,,0) — 200 1,j,1)) djdA
Ao J o1

_ (/; |%0>|dj) /A D(z)dA

P2
- [ [ lewo.nimdaa (18)
Ao J o1
Combining (17) and (18), we have (16) and the below

E'() =~ /A a1 AN+ (L0 V(D) — S L1203

2
+ | S»)2dA - / / 1% ()1 22(n(y, 1., 1))z dj dA
Ao Ao J o1

@2
+(/¢ |02/z(z>|dj) /A D(z)dA

P2
- / / (). 2013, 1), 1)) dj dA. (19)
Ao

?1

Let 2* denote the conjugate function of the convex function 2, which is given by

2*(0) = stulg(gt — 2(1)).

Here, 2* is the Legendre transform of 2, see (Arnold [36, p. 61-62]):
2%(0) =0(@) (@) - 20(2) @) Yez0 (20)
and 2* also satisfies the generalized Young inequality as follows:
ot < 2%(p) + 2(1), Vo,t>0. (21)
Now, through 2, we get
2@ =0t (@ —-2(7 @) Yez0 (22)
Hence, by (22) and (10), we have
2 (2 Lj, ) =00, Lj: ) f2(n(ps 1), ) = 21 1., 1)
< (=G, Lj,6) f2(n(, 1,5, 1)). (23)
Applying (21), (23) and (10), we have

E'(t) < —02/1/A zi_J1(z) dA + %(3/ o V2)(t) — %.Z(t)HVz(t)H%
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P2
- / DG i 1) F2(n(n1j, 1) didA

Ao J o1

92
- f(y)@fdAJrz(/ I%(i)ldj)/[\ D(z)dA

Ao o1

(%]
- / / ()1 201, 1,j, D) djdA,
Ao J o1

- (% _ 2 / " I%(J’)Idj) /A 2 (2 dA — /A F() P2 dA
@ 0 0

1

P2
+(-28) / D)1 1) F2(n(n 1, 1) dj dA

Ao J o1
1 1
+ (Lo V() - Ef(t)IIVz(t)H%- (24)

By setting ¢; = %1 — 2& f{;’f |%,(j)| dj and ¢, = 2&; — 1, we achieve (16). Consequently,
we get that E is a non-increasing function by the relations (6)-(11). |

In the next step, using the Faedo-Galerkin approach and combining the results from
[37-39], we prove the following result.

Theorem 2.2: Assume (6)-(11) holds. Then, there exists a weak solution (z, n, Z) of prob-
lem (14), for any zp,z1 € P}\O(Ql) N BT, vo € B*(Ao x (0,1) x (¢1,92)) and Dy €
%2(/\0), with

2,z € S0, Z [, P\, () N S'(J0, ¥ [, B> (),

zie € S(10, ¥ [, B*()),

n e SU0, Y[, B*(Ao x (0,1) x (91 X 92))),

D, D, € B*(Ry, B*(Ay)).

The below stated Lemma will be utilized, in order to get the result.

Lemma 2.3 (Jensen’s inequality): If P represents a convex function on [a,a,], £ : ¥ —
[a,a] and take an integrable function i on T such that i(y) > 0 and [ i(y)dy = L > 0,
then

1 , 1 .
P(Z/z-f(y)l(y) dy) < Z/ZP(f(y))l(y) dy. (25)

3. General decay

The proof of the general decay result of the system (14) will be presented in this section.
We will proceed in the following manner

Q) := / z(H)z(t) dy +/ zD dA + ! I () D*dA, (26)
A Ao 2 Ao
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t
E(t) := —/ zt/ Lt — 2)(z(t) — z(32)) dse dy, (27)
A 0
and
L ro2 )
Y(t) := / / / je " NU (NI Ly, v,j, 1)) dj dv dA. (28)
A1 JO Joy
Lemma 3.1: Functional Q(¢) stated in (26) holds, for any w,, w,, w3 > 0

Q1) < —(k— 201 — (@3 + o)) VIR + 2] - /A NG)P*dA
+ r(a)l)/ jlz(zt) dA + r(a)l)/ 93 dA + r(@)(Z o V2)(¥)
A() AO

P2
+rw) [ [ 1906 7700150 dan. (29)
0/ o1
Proof: From (26) and (14), 3, we have the following

Q/(t) = ||Zt||§ +/ ZttZ dy +/ Z@t dA +/ Zt@ dA + j(y)@t@ dA
A Ao Ao

Ao
t
= |z |3 - (1—/ 2(%)(1%) ||Vz||§—/ N(y)@sz—l—Z/ 2P dA
0 Ao Ao
Io

t
+ /91 Vz(t)/0 Lt — ) (Vz(t) — Vz(x)) dsedy

L

P2
—m / 2 71z dA + / . / (W0 S0 1i ) d) dA. (30)
Ao Ao Jo

1

I I

We estimate the last four terms on the right-hand side of (30). By applying Young’s,
Holder’s, and Poincar’e’s inequalities, along with (6), for w, > 0, j = 1,2, 3, we have

Io < o1l V2l + r@r) / P2 dA,
Ao

(31)
hsallVal+ren [ G dn,
Ao
and

I < a1p)| Vall3 + r(@2) (£ o V2) (). (32)

In similar manner, we achieve

P2
L oVeli+r@) [ [ 1%0 sa0imdda. 6
Ao J 1

Combining (31)-(33) and (30), we get (29). |



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING e 9

Lemma 3.2: The functional Z(t) stated in (27) holds, for any p1, p2 > 0 as
t
=) < - ( | #eaax- Pz) 12l + 912 = RIV2IE = r(p2) (2" o V2) (0
0

+r(p1)(govZ)(t)+r/A Iz dA +r A P} dA

92
+r /A / % () 73 (3, 1,j, 1)) dj dA. (34)
0Jo1
Proof: From (27) and (14), we have the following
Z() = —/Q[ztt/ot,jf(t — ) (2(t) — z(>0)) dsedy
t t
—/ zt/ L't — 32)(z(t) — z(5)) dsedy — (/ ZL(5) d%) [EALE:
A Jo 0
t t
= / [Az — / Lt — ) Az()) d%] [/ Lt — 2)(z(t) — z(»)) d%] dy
2A 0 0
t t
_/ zt/ L't — 3)(2(t) — z(5)) dsedy — (/ L (5) d%) [EALE:
A Jo 0

= / Vz/t,f(t — 2)(Vz(t) — Vz(3¢)) dse dy
A 0
h

t t
—/ (/ Lt — x)Vz(sx) d%) . (/ Lt — )(Vz(t) — Vz(x)) d%) dy
2 \Jo 0

Jp)

t
_%1[\0 /I(Zt) (/0 .iﬂ(t—%)(z(t)_z(%))d%) dA

I3

@2 t
- / (/ I?/z(i)lfz(n(y,l,ﬂt))dj)(/ f(t—x)(z(t)—z(z»d%)dA
Ao ® 0

1

Ja

t t
_/Zt/ ,i”’(t—%)(z(t)—z(%))d%dy—(/ L) d%) 212
A 0 0

J5

t
+ /Ao Dy (/0 Lt — 2)(z(t) — z(x)) d%) dA. (35)

Jo

From (35) and (6) through Young’s, Poincaré’s, and Holder’s inequalities, we have

I < p1llVall3 + r(p) (L o V2)(b), (36)
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t t
L=< (/0 L (5) d%) /Ql (Vz(t)/o Lt — 2)(Vz(t) — Vz(x)) d%) dy

¢ 2
— / ( / g(t—%)(Vz(t)—Vz(%))d%) dy
A 0

< p1(1=0)[Vz]3 + r(p1)(Z o V2)(1), (37)

and

Similarly, we have

Iz < r/A /lz(zt) dA + (& o V2)(b),

®2
Ji<r /A / 2G)_ 72010, 1j,0) ddA + (L 0 V2) (1),
091

(38)
Js < palizell; — r(p2) (L 0 V2)(b),
Jo<r [ DPAA+1(L o V2)(b).
Ao
Putting (36)-(38) into (35), gives (34). |

Lemma 3.3: The functional Y (t) given in (28) satisfies as
1 (pz
s [ [ [ iwoLeapimdadn s [ e
Ao /O Jo Ao
P2
—widr [ [T 1260 6100 A2l (1) i (39)
091
Proof: From Y (t) and (14) through mathematical skills, we have
1 re2
T'(t) = —/A /0 / e U G) . FL2(n((y:v,)o 1)) djdv dA
0 ?1
L res )
—— [ [ [ e arewe.im didvan
Ao JO Joy
®2 .
~ [ [T o[ 20 0:150) - 201 6:0.5)] an.
0v @1

Using 7(,0,j,£) = z:(y, ) and noting that e/ < ¢/ < 1forany 0 < v < 1, and setting
w1 = e %2, we have

1 ro
() < - /A /O / N()1 210, v,), ) dj dv dA
0 ?1

P2
—n [ [T G126 ) dida
091
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P2
+(/¢ I%(/)Idj) /A 2(z)dA,

by (10) and (11), we found (39). |
For some positive constants M, &2 which will be determined later, define the functional
W(t) := ME@) + Q) + ZEZ(@) + Y (b). (40)

Lemma 3.4: There exists €,,tg > 0, y = 1,...,5 which satisfies the following

W'(t) < —€1E(t) + cz/ /f(zt) dA + &3(ZL o V2)(1), Vt > 1. (41)
Ao

and

CE@) < W() < GE(). (42)

Proof: Since the function .% is continuous and positive for all #) > 0, we get

t t
/ L) dsx > OZ(%)d}tzz %, Vt>t.
0 0

By differentiating (40) and utilizing (16), along with Lemmas 3.1, 3.2, and 3.3, one have
W () := ME(t) + Q(t) + 2Z'(t) + Y'(t)

< (P (Lo - p) =Dl - /A NG)Z*dA

- MIy —rP — r(w)) P} dA

Ao
— (k=201 — rp(@2 + @3)) — Pp1(2 — k)) | V2|3

+ 0o + o) (2 Va0 + (= 21 (2 Va0
+ () + ) / Py dA — (M — ) / 2 F1(z) dA

A() AO

®2

+ (Hw3) + 21) / / G2 (1 1j, 1)) dj dA

Ao J o1

1 ro

- /A 0 /0 /¢ L1200, 1) djdo A

?2
— (oM £ &) /A / LD In0n L) Fa(nGLj ) didA.  (43)
0 P1
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Choosing ®,, ; = 1,2, 3 small enough that

ki ==k = 2w1 — rp(w2 + w3)) > 0.

Let

)

P2 = -
now pick & large enough with
?3@ —1>0,

then, we choose

ki

=50 —kno

Hence, the above (43) becomes
/ 2 2 M /
WO < il = I Vel + (2 o Va0 + (5 1) (2o Vo
+ds / ) dA — (M — ) / 2 i@ dh - [ NP2 dA
Ao Ao Ao

P2
+ ds /A / () F20 Ljy ) didA — (MIy—1) | Z2dA
0 @1

Ao
L ro2
-y /AO/O /401 W% ()H).2(y,v,j, 1) djdv dA
(%]
— (M + wlfl)/ / |2 () n(ys 1,5, ) _Z2(n(y, 1, j, 1)) dj dA. (44)
Ao J o1
By using (10), we get
/ 2 2 M /
WO < <l = el ot} + (2 0 Va0 + (5 = 1) (20 20
+dy / ey dA — (LM — ) / o 1 (z) dA - / NG)Z?dA
Ao Ao Ao
L ro2
_ : . . ) B B )
w1 /Ao/o /@1 W%(MH.2H @y, v,j, 1) djdv dA — (M.F r)/AO P dAA

P2
— (oM + yi& — Vzds)/A / |2y, 1Lj, 1) Z2(n(y, 1,j, 1)) dj dA.
oo
(45)

From (26)-(28), and by applying Poincaré’s, Holder’s, and Young’s inequalities, we obtain

B4
W(t) — ME(t)] < %uzt(t)n% + 1l V()13 + ( Ny)2*dA

1
m%—m) Ao
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P
+ (lze (D13 + ro(ZL o V2)(1))

L rp2 )
+ /A / / je N U (.2 (y,v,j, 1) dj dv dA. (46)
070 ?1

Utilizing that ™" < 1, we get
IW(t) — ME(®)| < SE(). (47)

Hence
(M =8)E@) < W(@) < (M + SE@®). (48)

Now, selecting M large enough with

M-8>0, ¢1M—%1>0, %—r>0, ¢2M+l//1(_,rl—7‘2d5>0,
Mﬂo—r> 0.

Exploiting (15), estimates (45) and (48), respectively, gives (41) and (42). [ |

Theorem 3.5: Let (6)-(11) holds, then one can find constants A1 > 0,1 > 0,ty and wy €
(0, w] with energy of (14) fulfilling:

t
E(t)szlp—1|zz(1+/ﬂ(g)dg)], vt = b, (49)
to
where
LS|
P(t) := ——dp, 50
(®) . H@ 0 (50)
with

H(t) = t, if P is linear on [0, w],
| tP'(wot), ifP(0)=0 and P’ >0 on(0,w],

(51)
Proof: Multiplying ¥/ (¢) with (41), utilizing (6) and (16), we have
FOW'(t) < —€19 (HE(t) + 6219(1‘)/ jf(zt) dA + &390 () (Z o V2)(1)
Ao

< —CIORO + &I [ FiH)dh =6 e Va0

< —COWED) + €00 [ FG) AN - 26E 0. (52)
Ao
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As, the function ¥ (t) non-increasing, then we have

d
T (W (OW(H) + 2GE(1) < -0 (DE®) + Qi219(f)/A F(z) dA. (53)

Let
V(1) = (OW() + 2E3E(t) ~ E(1). (54)

Therefore, we get
V' (t) < —€19(H)E() + 6219(1‘)/ JEz)dA, V> 1. (55)
Ao

Now, the last term of the inequality (55) will be evaluated for our main results. For this,
take the following

A} = {rero: lzl>w} and Aj = rero: lzl<o}. (56)
By (9) and (16), we have

Qi) [ AR [ e s -uE0. 6]

where 13 = &1V

Now, the below two cases will be discussed.
Case 1: Pislinear on [0, w]: According (9) and (16), we get
0 (1) / i FE(z) dA < €9(0) / i JE(z)dA < —14E @), (58)
AO AO

where 14 = €119 (0)/¢,. Putting (57) and (58) into (55), and by (51);, we find

() < €9 (BE()

. E(?)
= —As(t)H (TO)) , Vt>t, (59)
where
(1) = (Y (1) + AE(t)) ~ E(1), (60)

and 1 = A3 + A4, A5 = €E(0).
Integrating (59) over (ty, t) and using (60), we get (49).

Case2: Pisnonlinear: From (9), (16) and by Jensen’s inequality (25) with £ = A%, i(y) =
land v(y) = P~ (z:(y) _Z1(z:(»))), we get

100) [ sRGan < 10 [ PG aA
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2p=1f 1
< 20 ()| AglP (|A_%| /A% zi _Z1(z) dA)

21p—1 [ _ E'(5)
< LY D|AGIP ( ¢1|A3I)’ (61)

Substituting (57) and (61) into (55), we find

Y5(t) < —€19 (HE(t) + A6V (P! (— E/(t)z ) Vvt > 1o, (62)
d11AG]
where
Y (t) = (V(t) + A3E(1)) ~ E(1), (63)

and 1 = A2|AJl.
Now, for 0 < wy < w and py > 0, according (62), (20) and (21), we have

E /
P(mﬁg)%m+mmﬂ

o0 (EDY 4 (0 E0) 30+

“E0 \"E0 "E(0)
< —¢19(H)P (a)o%) E(t) 4+ A0 ()P (wo%) p! (—%) + poE (t)
< =€ ()P (a)o%) E(t) + gV (t)P* (P’ (wo%))
- jﬁjf/ig)l E'(t) + poE (t)
= —-C ()P (wo%) E(t) + A9 ()P’ (a)g %) wo%
— 169 (1)P (wg%) - ;?i\(%)l E/() + poE/(¢)
< —(€1E(0) — A6190)9 ()P’ (wo%) % + (po - ;611'9/52 ) E(1). (64)

Next, taking wp in a way that
/17 = Q:lE(O) — /166()0 > 0,

and select pg large such that

L6 (0)
P11AG]

Po
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Hence, we find

{P/( ()) Y5 (1) +p0E(t)] -2 ﬁ(t)P/( E(t)) 11;:(_t)

"E(0) "E(0)] E(0)
__ E®)
= -0 (H (COQ E(O)) Yt > 1. (65)
Now, we take the following
1), if Pislinear on [0, ],
%(t) = P/ ( ) 7/ f / _ //
o E(O) 5(t) + poE(t), if P'(0)=0 and P’ >0 on(0,w],
Then, from (59) and (65), we get
E
7/3/(1') < —Ag¥(t)H (w()%) vVt > to. (66)
Since #5(t) ~ E(t), 3N, Ny > 0 such that
Ny 73(t) < E(t) < X 75(0). (67)
Introducing the functional
A0
V() =R —— ) (68)
by (67), we obtain
E@®)
W(t) < E(O) < 1. (69)

From (66), (68) and (69) with the increasing nature of P, we have

W(t) < — Msﬁ(tm (@)

E(0) E(0)
< —1ed (DK (E((é))) (70)

Integrating (70) over (to, t) and utilizing P'(t) = —(1/H(t)), we obtain
P(W (t)) — P(W(0)) = 29 /totﬁ(g) de. (71)
The decreasing nature of P! implies
v <e (poros [ tﬂ(g)dg), vt > 1o 72)
0

As a result, the equivalence 7/ (t) ~ E(t), gives (49) which completes the proof.
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4, Conclusion

The primary motivation for this study was to investigate the asymptotic behaviour of
solutions to viscoelastic wave equations with nonlinear distributed delay in the bound-
ary feedback, particularly under acoustic boundary conditions. This framework represents
a significant class of mathematical models commonly employed in applied and experi-
mental sciences, especially in viscoelasticity theory. Future research aims to extend this
work by incorporating additional damping mechanisms and terms, such as Balakrishnan-
Taylor damping, dispersion effects, and logarithmic corrections, with a focus on nonlinear
settings.
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