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ABSTRACT
In this study, we investigate a nonlinear viscoelastic wave equation
subject to acoustic boundary conditions and a nonlinear distributed
delay feedback acting on the boundary. The asymptotic behaviour
of solutions is analysed by considering a general kernel formulation
and imposing suitable assumptions.
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1. Introduction

The study of the asymptotic behaviour of a viscoelastic wave equation with nonlinear
distributed delay and acoustic boundary conditions is fundamental to advancing our
understanding of complex dynamical systems [1–8]. Several studies have investigated the
asymptotic behaviour of viscoelastic wave equations with boundary feedback. Al-Mahdi
and Al-Gharabli [9] analysed the energy decay properties of a viscoelastic equation incor-
porating past history and boundary feedback, providing conditions for stability.Messaoudi
and Al-Gharabli [10] established a general decay result for a similar model, demonstrating
the influence of memory effects on energy dissipation. Further advancements were made
by Al-Gharabli et al. [11], who examined a viscoelastic system with nonlinear boundary
feedback and a logarithmic source term, deriving decay estimates under suitable condi-
tions. In a related study, the same authors [12] obtained general and optimal decay results
for a viscoelastic equation with nonlinear boundary feedback, refining existing stability
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criteria. These contributions provide a solid theoretical foundation for understanding the
long-term behaviour of viscoelastic wave equations with boundary interactions.

This study addresses key theoretical challenges in the modelling of materials exhibiting
both elastic and viscous properties, particularly within the framework of partial differential
equations and control theory. By incorporating acoustic boundary feedback and nonlinear
distributed delays, the analysis provides deeper insights into the stability and long-term
behaviour of such systems. In addition to advancing the fundamental understanding of
wave propagation in complex media, this work has significant implications for various
scientific and engineering applications.

The below stated equation will be investigated in this work

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt −�z(t)+
∫ t

0
L (t − κ)�z(κ) dκ = 0, in A × R+,

∂z
∂υ

−
∫ t

0
L (t − κ)

∂

∂υ
z(κ) dκ + J (zt) = Dt , y ∈ �0, t > 0,

zt + I (y)Dt + N (y)D = 0, y ∈ �0, t > 0,
z(y, t) = 0, on�1 × R+,
z(y, 0) = z0(y), zt(y, 0) = z1(y), in A,
zt(y,−t) = v0(y, t), in�0 × (0, ϕ2),
D(y, 0) = D0(y), y ∈ �0,

(1)

where

J (zt) := U1J1(zt)+
∫ ϕ2

ϕ1

U2(j)J2(zt(t − j)) dj. (2)

In this study, we consider a bounded domain denoted by A ⊂ RM withM ≥ 1, possess-
ing a smooth boundary ∂A = �1 ∪�0. Here, �1 and �0 are disjoint, closed subsets of
∂A. The outward unit normal vector to � is denoted by υ, while U1 represents a posi-
tive constant. Furthermore, we consider two non-negative constants ϕ1 and ϕ2 satisfying
ϕ1 < ϕ2. The function U2 : [ϕ1, ϕ2] → R characterizes the distributed time delay, while
the memory kernel is represented by a positive function L . Additionally, the functions
J1 and J2 are introduced to describe specific aspects of the formulation.

Time delay has been recognized as a crucial factor in various physical and natural phe-
nomena, as it directly affects the response to external forces, material transport processes,
and the evolution of system states, all of which are inherently dependent on temporal
dynamics. In recent years, the study of delay effects has gained significant attention in sci-
entific research. Extensive investigations have been conducted on this form of damping
due to its fundamental role in determining system stability and ensuring the existence of
solutions.

In the absence of acoustic boundary conditions, where J 1(�) = J 2(�) = �, this
term can manifest in several forms: delay (zt(y, t − ϕ)) as described in [13–16], time-
varying delay (zt(y, t − ϕ(t))) as detailed in [17–20], and distributed delay (

∫ ϕ2
ϕ1

U (j)zt(t −
j) dj) as explored in [21–24]. Numerous studies have investigated various issues related to
the functions J 1 and J 2, particularly those involving delays within the equation or the
boundary feedback.



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 3

The following problem has been investigated in [25]:

ztt −�z +
∫ t

0
h(t − j)�z(j) dj + φ1g1(zt)+ φ2g2(zt(t − ϕ) = 0, (3)

in which the authors focussed on the existence and stability of the global solution. In [26],
the author considered the below

ztt −�z = 0,

z(y, t) = 0, on�0 × R+,
dz
dυ

+ φ1zt + φ2zt(t − ϕ) = 0, on�1 × R+,

(4)

where the author proved that the general energy is exponentially stable under suitable
supposition (φ2 < φ1). In [20], the the below stated problem is considered:

ztt −�z +
∫ t

0
h(t − j)�z(j) dj + φ2g2(zt(t − ϕ) = 0,

z(y, t) = 0, on�0 × R+,
dz
dυ

+ φ1g1(zt) = 0, on�1 × R+,

(5)

where the authors established results for global existence and asymptomatic behaviour of
the problem (5). The idea of viscoelasticity has been studied in numerous research work,
including ([27–31]).

Conversely, the acoustic boundary conditions introduced by Ingard and Morse in their
work [32] have been widely adopted in various problems, contributing to substantial
advancements. Several researchers have extended their work, leading to a wide range of
significant findings. For a more comprehensive understanding, we refer readers to the fol-
lowing studies: [13,17,32,33]. Additionally, for problems related to boundary dissipations,
we recommend consulting [23,34,35]. In a recent study, the authors in [23] investigated
problem (1) without considering acoustic boundary conditions, focussing on the gen-
eral decay behaviour, particularly in the presence of a general kernel. Building upon and
extending these findings, our objective is to analyse a specific problem that incorporates
a nonlinear distributed delay within the boundary feedback while integrating acoustic
boundary conditions. This key distinction differentiates our work from previous studies.
By imposing appropriate assumptions on the involved functions, we will establish results
concerning the asymptotic behaviour of the solutions.

Our work is organized as follows: The lemmas, concepts, and assumptions necessary for
investigating the problem are presented in Section 2. Section 3 outlines the main findings
of the study, while the general conclusion is provided in Section 4.

2. Preliminaries

In this section, we will presents the below stated assumptions for U2,I ,N ,L ,J1
and J2:
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(A1) L : R+ → R+ is a non-increasing S1 functions, which satisfies

L (0) > 0, ζ0 =
∫ ∞

0
L (κ) dκ < ∞, 1 − ζ0 = ζ > 0. (6)

(A2) Assume a non-increasing S1 function ∃ϑ : R+ → R+ which satisfies

ϑ(t)L (t)+ L ′(t) ≤ 0, ∀t ≥ 0. (7)

(A3) Take a convex and increasing function P : R+ → R+ and a non-decreasing S1

function J1 : R → R and P : R+ → R+ with S1(R+) ∩ S1(]0,∞[) which sat-
isfies

P(0) = 0,

P is linear on [0,ω], or P′(0) = 0 and P′′(t) > 0 on ]0,ω],
(8)

and
r0|j| ≤ J1(j) ≤ r1|j| if |j| ≥ ω,

j2 + J 2
1 (j) ≤ P−1(jJ1(j)) if |j| ≤ ω,

(9)

in which P−1 indicates the inverse of P function and ω, r0, r1 represents positive
constants.

(A4) Let us take an odd non-decreasing S1 function J2 : R → R with ∃ξ1 > 1
2 and

r2, ξ2 > 0,

|J ′
2(j)| ≤ r2,

ξ1jJ2(j) ≤ Q(j) ≤ ξ2jJ1(j),
(10)

where Q(j) = ∫ j
0 J2(ς) dς .

(A5) U2 : [ϕ1, ϕ2] → R is a bounded function, which holds

2ξ2
∫ ϕ2

ϕ1

|U2(j)| dj < U1. (11)

(A6)

∃Ij ,Nj > 0(j = 0, 1), with I0 ≤ I (y) ≤ I1,

N0 ≤ N (y) ≤ N1, ∀y ∈ �0. (12)

Let

(L ◦ κ)(t) :=
∫
�

∫ t

0
L (t − κ)|κ(t)− κ(κ)|2 dκ dy.

Considering the following variables, as stated in [24]

η(y, ν, j, t) = zt(y, t − jν), (y, ν, j, t) ∈ D = �1 × (0, 1)× (ϕ1, ϕ2)× R+

which satisfy {
jηt(y, ν, j, t)+ ην(y, ν, j, t) = 0,

η(y, 0, j, t) = zt(y, t).
(13)
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Problem (1) can also be stated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt −�z(t)+
∫ t

0
L (t − κ)�z(κ) dκ = 0, in A × R+,

∂z
∂υ

−
∫ t

0
L (t − κ)

∂

∂υ
z(κ) dκ + U1J1(zt)

+
∫ ϕ2

ϕ1

U2(j)J2(η(y, 1, j, t)) dj = Dt , y ∈ �0, t > 0,

zt + I (y)Dt + N (y)D = 0, y ∈ �0, t > 0,
jηt(y, ν, j, t)+ ην(y, ν, j, t) = 0, onD,
z(y, t) = 0, on�1 × R+,
z(y, 0) = z0(y), zt(y, 0) = z1(y), in A,
η(y, ν, j, 0) = v0(y, νj), in�0 × (0, ϕ2),
D(y, 0) = D0(y), y ∈ �0,

(14)

The energy functional is provided below.

Lemma 2.1: Energy functional E, stated as

E(t) = 1
2
‖zt‖22 + 1

2

(
1 −

∫ t

0
L (κ) dκ

)
‖∇z(t)‖22 + 1

2

∫
�0

N (y)D2 d�

+ 1
2
(L ◦ ∇z)(t)+

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|Q(η(y, ν, j, t)) dj dν d�, (15)

satisfies

E′ (t) ≤ −φ1
∫
�0

ztJ1(zt) d�+ 1
2
(L ′ ◦ ∇z)(t)

−
∫
�0

I (y)D2
t d�− 1

2
L (t)‖∇z(t)‖22

− φ2

∫
�0

∫ ϕ2

ϕ1

|U2(j)|η(y, 1, j, t)J2(η(y, 1, j, t)) dj d� ≤ 0, (16)

where φ2 = 2ξ1 − 1 > 0 with φ1 = U1 − 2ξ2
∫ ϕ2
ϕ1

|U2(j)| dj > 0.

Proof: From (14) through mathematical skills, we have the following

1
2
d
dt

{
‖zt(t)‖22 + (1 −

∫ t

0
L (κ) dκ)‖∇z(t)‖22 + (L ◦ ∇z)(t)+

∫
�0

N (y)D2 d�
}

+ U1

∫
�0

ztJ1(zt) d�− 1
2
(L ′ ◦ ∇z)(t)+ 1

2
L (t)‖∇z(t)‖22

+
∫
�0

I (y)D2
t d�+

∫
�0

∫ ϕ2

ϕ1

|U2(j)|J2(η(y, 1, j, t))zt dj d� = 0. (17)

Next, multiplying (14) by |U2(j)|J2(η(y, ν, j, t)), and integrating over �0 × (0, 1)×
(ϕ1, ϕ2), and using (13)2, we get

d
dt

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|.Q(η(y, ν, j, t)) dj dν d�
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= −
∫
�0

∫ 1

0

∫ ϕ2

ϕ1

|U2(j)|.J2(η)ην dj dν d�

= −
∫
�0

∫ 1

0

∫ ϕ2

ϕ1

|U2(j)| ddνQ(η(y, ν, j, t)) dj dν d�

=
∫
�0

∫ ϕ2

ϕ1

|U2(j)|
(
Q(η(y, 0, j, t))− Q(η(y, 1, j, t))

)
dj d�

=
(∫ ϕ2

ϕ1

|U2(j)| dj
) ∫

�0

Q(zt) d�

−
∫
�0

∫ ϕ2

ϕ1

|U2(j)|.Q(η(y, 1, j, t)) dj d�. (18)

Combining (17) and (18), we have (16) and the below

E′(t) = −U1

∫
�0

ztJ1(zt) d�+ 1
2
(L ′ ◦ ∇z)(t)− 1

2
L (t)‖∇z(t)‖22

+
∫
�0

I (y)D2
t d�−

∫
�0

∫ ϕ2

ϕ1

|U2(j)|J2(η(y, 1, j, t))zt dj d�

+
(∫ ϕ2

ϕ1

|U2(j)| dj
) ∫

�0

Q(zt) d�

−
∫
�0

∫ ϕ2

ϕ1

|U2(j)|.Q(η(y, 1, j, t)) dj d�. (19)

Let Q∗ denote the conjugate function of the convex function Q, which is given by

Q∗(�) = sup
t≥0
(�t − Q(t)).

Here, Q∗ is the Legendre transform of Q, see (Arnold [36, p. 61–62]):

Q∗(�) = �(Q′)−1(�)− Q[(Q′)−1(�)], ∀� ≥ 0, (20)

and Q∗ also satisfies the generalized Young inequality as follows:

�t ≤ Q∗(�)+ Q(t), ∀�, t ≥ 0. (21)

Now, through Q, we get

Q∗(�) = �J −1
2 (�)− Q(J −1

2 (�)), ∀� ≥ 0. (22)

Hence, by (22) and (10), we have

Q∗(J2(η(y, 1, j, t)) = η(y, 1, j, t)J2(η(y, 1, j, t))− Q(η(y, 1, j, t))

≤ (1 − ξ1)η(y, 1, j, t)J2(η(y, 1, j, t)). (23)

Applying (21), (23) and (10), we have

E′(t) ≤ −U1

∫
�0

ztJ1(zt) d�+ 1
2
(L ′ ◦ ∇z)(t)− 1

2
L (t)‖∇z(t)‖22
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+ (1 − ξ1)

∫
�0

∫ ϕ2

ϕ1

|U2(j)|η(y, 1, j, t)J2(η(y, 1, j, t)) dj d�

−
∫
�0

I (y)D2
t d�+ 2

(∫ ϕ2

ϕ1

|U2(j)| dj
) ∫

�0

Q(zt) d�

−
∫
�0

∫ ϕ2

ϕ1

|U2(j)|.Q(η(y, 1, j, t)) dj d�,

≤ −
(
U1 − 2ξ2

∫ ϕ2

ϕ1

|U2(j)| dj
) ∫

�0

ztJ1(zt) d�−
∫
�0

I (y)D2
t d�

+ (1 − 2ξ1)
∫
�0

∫ ϕ2

ϕ1

|U2(j)|η(y, 1, j, t)J2(η(y, 1, j, t)) dj d�

+ 1
2
(L ′ ◦ ∇z)(t)− 1

2
L (t)‖∇z(t)‖22. (24)

By setting φ1 = U1 − 2ξ2
∫ ϕ2
ϕ1

|U2(j)| dj and φ2 = 2ξ1 − 1, we achieve (16). Consequently,
we get that E is a non-increasing function by the relations (6)–(11). �

In the next step, using the Faedo-Galerkin approach and combining the results from
[37–39], we prove the following result.

Theorem 2.2: Assume (6)–(11) holds. Then, there exists a weak solution (z, η,D) of prob-
lem (14), for any z0, z1 ∈ P1�0

(A) ∩ B2(�), v0 ∈ B2(�0 × (0, 1)× (ϕ1, ϕ2)) and D0 ∈
B2(�0), with

z, zt ∈ S(]0,Y [, P1�0
(A)) ∩ S1(]0,Y [,B2(A)),

ztt ∈ S(]0,Y [,B2(A)),

η ∈ S(]0,Y [,B2(�0 × (0, 1)× (ϕ1 × ϕ2))),

D ,Dt ∈ B2(R+,B2(�0)).

The below stated Lemma will be utilized, in order to get the result.

Lemma 2.3 (Jensen’s inequality): If P represents a convex function on [a, a1], L : � →
[a, a1] and take an integrable function i on � such that i(y) ≥ 0 and

∫
� i(y) dy = L > 0,

then

P
(
1
L

∫
�

L (y)i(y) dy
)

≤ 1
L

∫
�
P(L (y))i(y) dy. (25)

3. General decay

The proof of the general decay result of the system (14) will be presented in this section.
We will proceed in the following manner

�(t) :=
∫

A
z(t)zt(t) dy +

∫
�0

zD d�+ 1
2

∫
�0

I (y)D2 d�, (26)
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�(t) := −
∫

A
zt

∫ t

0
L (t − κ)(z(t)− z(κ)) dκ dy, (27)

and

ϒ(t) :=
∫
�1

∫ 1

0

∫ ϕ2

ϕ1

je−νj|U2(j)|.Q(η(y, ν, j, t)) dj dν d�. (28)

Lemma 3.1: Functional�(t) stated in (26) holds, for any ω1,ω2,ω3 > 0

�′(t) ≤ −(k − 2ω1 − (ω2 + ω3)rp)‖∇z‖22 + ‖zt‖22 −
∫
�0

N (y)D2 d�

+ r(ω1)

∫
�0

J 2
1 (zt) d�+ r(ω1)

∫
�0

D2
t d�+ r(ω2)(L ◦ ∇z)(t)

+ r(ω3)

∫
�0

∫ ϕ2

ϕ1

|U2(j)J 2
2 (η(y, 1, j, t)) dj d�. (29)

Proof: From (26) and (14)1,3, we have the following

�′(t) = ‖zt‖22 +
∫

A
zttz dy +

∫
�0

zDt d�+
∫
�0

ztD d�+
∫
�0

I (y)DtD d�

= ‖zt‖22 −
(
1 −

∫ t

0
L (κ) dκ

)
‖∇z‖22 −

∫
�0

N (y)D2 d�+ 2
∫
�0

zDt d�︸ ︷︷ ︸
I0

+
∫

A
∇z(t)

∫ t

0
L (t − κ)(∇z(t)− ∇z(κ)) dκ dy︸ ︷︷ ︸

I1

− U1

∫
�0

zJ1(zt) d�︸ ︷︷ ︸
I2

+
∫
�0

z
∫ ϕ2

ϕ1

(
U2(j)J2(η(y, 1, j, t)) dj

)
d�︸ ︷︷ ︸

I3

. (30)

We estimate the last four terms on the right-hand side of (30). By applying Young’s,
Hölder’s, and Poincar’e’s inequalities, along with (6), for ωj > 0, j = 1, 2, 3, we have

I0 ≤ ω1‖∇z‖22 + r(ω1)

∫
�0

D2
t d�,

I1 ≤ ω1‖∇z‖22 + r(ω1)

∫
�0

J 2
1 (zt) d�,

(31)

and

I2 ≤ ω2rp‖∇z‖22 + r(ω2)(L ◦ ∇z)(t). (32)

In similar manner, we achieve

I3 ≤ ω3rp‖∇z‖22 + r(ω3)

∫
�0

∫ ϕ2

ϕ1

|U2(j)J 2
2 (η(y, 1, j, t)) dj d�. (33)

Combining (31)–(33) and (30), we get (29). �
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Lemma 3.2: The functional �(t) stated in (27) holds, for any ρ1, ρ2 > 0 as

�′(t) ≤ −
(∫ t

0
L (κ) dκ − ρ2

)
‖zt‖22 + ρ1(2 − k)‖∇z‖22 − r(ρ2)(L ′ ◦ ∇z)(t)

+ r(ρ1)(L ◦ ∇z)(t)+ r
∫
�0

J 2
1 (zt) d�+ r

∫
�0

D2
t d�

+ r
∫
�0

∫ ϕ2

ϕ1

|U2(j)J 2
2 (κ(y, 1, j, t)) dj d�. (34)

Proof: From (27) and (14), we have the following

�′(t) = −
∫

A
ztt

∫ t

0
L (t − κ)(z(t)− z(κ)) dκ dy

−
∫

A
zt

∫ t

0
L ′(t − κ)(z(t)− z(κ)) dκ dy −

(∫ t

0
L (κ) dκ

)
‖zt‖22

=
∫

A

[
�z −

∫ t

0
L (t − κ)�z(κ)) dκ

] [∫ t

0
L (t − κ)(z(t)− z(κ)) dκ

]
dy

−
∫

A
zt

∫ t

0
L ′(t − κ)(z(t)− z(κ)) dκ dy −

(∫ t

0
L (κ) dκ

)
‖zt‖22

=
∫

A
∇z

∫ t

0
L (t − κ)(∇z(t)− ∇z(κ)) dκ dy︸ ︷︷ ︸

J1

−
∫

A

(∫ t

0
L (t − κ)∇z(κ) dκ

)
.
(∫ t

0
L (t − κ)(∇z(t)− ∇z(κ)) dκ

)
dy︸ ︷︷ ︸

J2

−U1

∫
�0

J1(zt)
(∫ t

0
L (t − κ)(z(t)− z(κ)) dκ

)
d�︸ ︷︷ ︸

J3

−
∫
�0

(∫ ϕ2

ϕ1

|U2(j)|J2(η(y, 1, j, t)) dj
)(∫ t

0
L (t − κ)(z(t)− z(κ)) dκ

)
d�︸ ︷︷ ︸

J4

−
∫

A
zt

∫ t

0
L ′(t − κ)(z(t)− z(κ)) dκ dy︸ ︷︷ ︸

J5

−
(∫ t

0
L (κ) dκ

)
‖zt‖22

+
∫
�0

Dt

(∫ t

0
L (t − κ)(z(t)− z(κ)) dκ

)
d�︸ ︷︷ ︸

J6

. (35)

From (35) and (6) through Young’s, Poincaré’s, and Hölder’s inequalities, we have

J1 ≤ ρ1‖∇z‖22 + r(ρ1)(L ◦ ∇z)(t), (36)
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and

J2 ≤
(∫ t

0
L (κ) dκ

) ∫
A

(
∇z(t)

∫ t

0
L (t − κ)(∇z(t)− ∇z(κ)) dκ

)
dy

−
∫

A

(∫ t

0
L (t − κ)(∇z(t)− ∇z(κ)) dκ

)2

dy

≤ ρ1(1 − k)‖∇z‖22 + r(ρ1)(L ◦ ∇z)(t), (37)

Similarly, we have

J3 ≤ r
∫
�0

J 2
1 (zt) d�+ r(L ◦ ∇z)(t),

J4 ≤ r
∫
�0

∫ ϕ2

ϕ1

|U2(j)J 2
2 (η(y, 1, j, t)) dj d�+ r(L ◦ ∇z)(t),

J5 ≤ ρ2‖zt‖22 − r(ρ2)(L ′ ◦ ∇z)(t),

J6 ≤ r
∫
�0

D2
t d�+ r(L ◦ ∇z)(t).

(38)

Putting (36)–(38) into (35), gives (34). �

Lemma 3.3: The functional ϒ(t) given in (28) satisfies as

ϒ ′(t) ≤ −ψ1

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|.Q(η(y, ν, j, t)) dj dν d�+ U1

∫
�0

ztJ1(zt) d�

− ψ1ξ1

∫
�0

∫ ϕ2

ϕ1

|U2(j)|η
(
y, 1, j, t

)
J2(η

(
y, 1, j, t

)
) dj d�. (39)

Proof: From ϒ(t) and (14) through mathematical skills, we have

ϒ ′(t) = −
∫
�0

∫ 1

0

∫ ϕ2

ϕ1

e−jν |U2(j)|.ηνJ2(η(
(
y, ν, j, t

)
) dj dν d�

= −
∫
�0

∫ 1

0

∫ ϕ2

ϕ1

je−jν |U2(j)|.Q(η(y, ν, j, t)) dj dν d�

−
∫
�0

∫ ϕ2

ϕ1

|U2(j)|
[
e−jQ(η

(
y, 1, j, t

)
)− Q(η

(
y, 0, j, t

)
)
]
dj d�.

Using η(y, 0, j, t) = zt(y, t) and noting that e−j ≤ e−jν ≤ 1 for any 0 < ν < 1, and setting
ψ1 = e−ϕ2 , we have

ϒ ′(t) ≤ −ψ1

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|.Q(η(y, ν, j, t)) dj dν d�

− ψ1

∫
�0

∫ ϕ2

ϕ1

|U2(j)|Q(η
(
y, 1, j, t

)
) dj d�
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+
(∫ ϕ2

ϕ1

|U2(j)| dj
) ∫

�0

Q(zt) d�,

by (10) and (11), we found (39). �

For some positive constantsM,P whichwill be determined later, define the functional

W(t) := ME(t)+�(t)+ P�(t)+ ϒ(t). (40)

Lemma 3.4: There exists Cj , t0 > 0, j = 1, . . . , 5 which satisfies the following

W ′(t) ≤ −C1E(t)+ C2

∫
�0

J 2
1 (zt) d�+ C3(L ◦ ∇z)(t), ∀t ≥ t0. (41)

and

C4E(t) ≤ W(t) ≤ C5E(t). (42)

Proof: Since the function L is continuous and positive for all t0 > 0, we get

∫ t

0
L (κ) dκ ≥

∫ t0

0
L (κ) dκ := L0, ∀t ≥ t0.

By differentiating (40) and utilizing (16), along with Lemmas 3.1, 3.2, and 3.3, one have

W ′(t) := ME′(t)+�′(t)+ P�′(t)+ϒ ′(t)

≤ − (P(L0 − ρ2)− 1) ‖zt‖22 −
∫
�0

N (y)D2 d�

− (MI0 − rP − r(ω1))

∫
�0

D2
t d�

− (
(k − 2ω1 − rp(ω2 + ω3))− Pρ1(2 − k)

) ‖∇z‖22
+ (r(ω2)+ Pr(ρ1)) (L ◦ ∇z)(t)+

(M
2

− Pr(ρ2)
)
(L ′ ◦ ∇z)(t)

+ (r(ω1)+ rP)

∫
�0

J 2
1 (zt) d�− (φ1M − U1)

∫
�0

ztJ1(zt) d�

+ (r(ω3)+ Pr)
∫
�0

∫ ϕ2

ϕ1

|U2(j)|J 2
2 (η(y, 1, j, t)) dj d�

− ψ1

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|L2(j)|.Q(η(y, ν, j, t)) dj dν d�

− (φ2M + ψ1ξ1)

∫
�0

∫ ϕ2

ϕ1

|L2(j)‖η(y, 1, j, t)J2(η(y, 1, j, t)) dj d�. (43)
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Choosing ωj , j = 1, 2, 3 small enough that

k1 := k − 2ω1 − rp(ω2 + ω3)) > 0.

Let

ρ2 = L0

2
,

now pick P large enough with

L0

2
P − 1 > 0,

then, we choose

ρ1 = k1
2(2 − k)P

.

Hence, the above (43) becomes

W ′(t) ≤ −d1‖zt‖22 − d2‖∇z‖22 + d3(L ◦ ∇z)(t)+
(M

2
− r

)
(L ′ ◦ ∇z)(t)

+ d4
∫
�0

J 2
1 (zt) d�− (φ1M − U1)

∫
�0

ztJ1(zt) d�−
∫
�0

N (y)D2 d�

+ d5
∫
�0

∫ ϕ2

ϕ1

|U2(j)|J 2
2 (η(y, 1, j, t)) dj d�− (MI0 − r)

∫
�0

D2
t d�

− ψ1

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|.Q(η(y, ν, j, t)) dj dν d�

− (φ2M + ψ1ξ1)

∫
�0

∫ ϕ2

ϕ1

|U2(j)|η(y, 1, j, t)J2(η(y, 1, j, t)) dj d�. (44)

By using (10), we get

W ′(t) ≤ −d1‖zt‖22 − d2‖∇z‖22 + d3(L ◦ ∇z)(t)+
(M

2
− r

)
(L ′ ◦ ∇z)(t)

+ d4
∫
�0

J 2
1 (zt) d�− (φ1M − U1)

∫
�0

ztJ1(zt) d�−
∫
�0

N (y)D2 d�

− ψ1

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

j|U2(j)|.Q(η(y, ν, j, t)) dj dν d�− (MI0 − r)
∫
�0

D2
t d�

− (φ2M + ψ1ξ1 − r2d5)
∫
�0

∫ ϕ2

ϕ1

|U2(j)|η(y, 1, j, t)J2(η(y, 1, j, t)) dj d�.

(45)

From (26)–(28), and by applying Poincaré’s, Hölder’s, and Young’s inequalities, we obtain

|W(t)− ME(t)| ≤ 1
2
‖zt(t)‖22 + rp‖∇z(t)‖22 +

(
I1

2N0
+ 1

2N0

) ∫
�0

N (y)D2 d�



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 13

+ P

2
(‖zt(t)‖22 + rp(L ◦ ∇z)(t)

)
+

∫
�0

∫ 1

0

∫ ϕ2

ϕ1

je−νj|U2(j)|.Q(η(y, ν, j, t)) dj dν d�. (46)

Utilizing that e−νj < 1, we get

|W(t)− ME(t)| ≤ SE(t). (47)

Hence

(M − S)E(t) ≤ W(t) ≤ (M + S)E(t). (48)

Now, selectingM large enough with

M − S > 0, φ1M − U1 > 0,
M
2

− r > 0, φ2M + ψ1ξ1 − r2d5 > 0,

MI0 − r > 0.

Exploiting (15), estimates (45) and (48), respectively, gives (41) and (42). �

Theorem 3.5: Let (6)–(11) holds, then one can find constants λ1 > 0, λ2 > 0, t0 and ω0 ∈
(0,ω] with energy of (14) fulfilling:

E(t) ≤ λ1P−1
{
λ2

(
1 +

∫ t

t0
ϑ(ς) dς

)}
, ∀t ≥ t0, (49)

where

P(t) :=
∫ 1

t

1
H(�) d�, (50)

with

H(t) =
{
t, if P is linear on [0,ω],
tP′(ω0t), if P′(0) = 0 and P′′ > 0 on (0,ω], (51)

Proof: Multiplying ϑ(t) with (41), utilizing (6) and (16), we have

ϑ(t)W ′(t) ≤ −C1ϑ(t)E(t)+ C2ϑ(t)
∫
�0

J 2
1 (zt) d�+ C3ϑ(t)(L ◦ ∇z)(t)

≤ −C1ϑ(t)E(t)+ C2ϑ(t)
∫
�0

J 2
1 (zt) d�− C3(L

′ ◦ ∇z)(t)

≤ −C1ϑ(t)E(t)+ C2ϑ(t)
∫
�0

J 2
1 (zt) d�− 2C3E′(t). (52)
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As, the function ϑ(t) non-increasing, then we have

d
dt
(ϑ(t)W(t)+ 2C3E(t)) ≤ −C1ϑ(t)E(t)+ C2ϑ(t)

∫
�0

J 2
1 (zt) d�. (53)

Let

V (t) := ϑ(t)W(t)+ 2C3E(t) ∼ E(t). (54)

Therefore, we get

V ′(t) ≤ −C1ϑ(t)E(t)+ C2ϑ(t)
∫
�0

J 2
1 (zt) d�, ∀t ≥ t0. (55)

Now, the last term of the inequality (55) will be evaluated for our main results. For this,
take the following

�1
0 :=

{
y ∈ �0 : |zt| > ω

}
and �2

0 :=
{
y ∈ �0 : |zt| ≤ ω

}
. (56)

By (9) and (16), we have

C2ϑ(t)
∫
�1

0

J 2
1 (zt) d� ≤ C2ϑ(0)

∫
�1

0

J 2
1 (zt) d� ≤ −λ3E′(t), (57)

where λ3 = C2r1ϑ(0)
φ1

.
Now, the below two cases will be discussed.

Case 1: P is linear on [0,ω]: According (9) and (16), we get

C2ϑ(t)
∫
�2

0

J 2
1 (zt) d� ≤ C2ϑ(0)

∫
�2

0

J 2
1 (zt) d� ≤ −λ4E′(t), (58)

where λ4 = C2rϑ(0)/φ1. Putting (57) and (58) into (55), and by (51)1, we find

V ′
1 (t) ≤ −C1ϑ(t)E(t)

= −λ5ϑ(t)H
(
E(t)
E(0)

)
, ∀t ≥ t0, (59)

where

V1(t) = (V (t)+ λE(t)) ∼ E(t), (60)

and λ = λ3 + λ4, λ5 = C1E(0).
Integrating (59) over (t0, t) and using (60), we get (49).

Case 2: P is nonlinear: From (9), (16) and by Jensen’s inequality (25) with� = �2
0, i(y) =

1 and v(y) = P−1(zt(y)J1(zt(y))), we get

λ2ϑ(t)
∫
�2

0

J 2
1 (zt) d� ≤ λ2ϑ(t)

∫
�2

0

P−1(ztJ1(zt)) d�
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≤ λ2ϑ(t)|�2
0|P−1

(
1

|�2
0|

∫
�2

0

ztJ1(zt) d�

)

≤ λ2ϑ(t)|�2
0|P−1

(
− E′(t)
φ1|�2

0|
)
, (61)

Substituting (57) and (61) into (55), we find

V ′
2 (t) ≤ −C1ϑ(t)E(t)+ λ6ϑ(t)P−1

(
− E′(t)
φ1|�2

0|
)
, ∀t ≥ t0, (62)

where

V2(t) = (V (t)+ λ3E(t)) ∼ E(t), (63)

and λ6 = λ2|�2
0|.

Now, for 0 < ω0 < ω and ρ0 > 0, according (62), (20) and (21), we have

{
P′

(
ω0

E(t)
E(0)

)
V2(t)+ ρ0E(t)

}′

= ω0
E′(t)
E(0)

P′′
(
ω0

E(t)
E(0)

)
V2(t)+ P′

(
ω0

E(t)
E(0)

)
V ′
2 (t)+ ρ0E′(t)

≤ −C1ϑ(t)P′
(
ω0

E(t)
E(0)

)
E(t)+ λ6ϑ(t)P′

(
ω0

E(t)
E(0)

)
P−1

(
− E′(t)
φ1|�2

0|
)

+ ρ0E′(t)

≤ −C1ϑ(t)P′
(
ω0

E(t)
E(0)

)
E(t)+ λ6ϑ(t)P∗

(
P′

(
ω0

E(t)
E(0)

))

− λ6ϑ(t)
φ1|�2

0|
E′(t)+ ρ0E′(t)

= −C1ϑ(t)P′
(
ω0

E(t)
E(0)

)
E(t)+ λ6ϑ(t)P′

(
ω0

E(t)
E(0)

)
ω0

E(t)
E(0)

− λ6ϑ(t)P
(
ω0

E(t)
E(0)

)
− λ6ϑ(t)
φ1|�2

0|
E′(t)+ ρ0E′(t)

≤ −(C1E(0)− λ6ϑ0)ϑ(t)P′
(
ω0

E(t)
E(0)

)
E(t)
E(0)

+
(
ρ0 − λ6ϑ(0)

φ1|�2
0|

)
E′(t). (64)

Next, taking ω0 in a way that

λ7 := C1E(0)− λ6ω0 > 0,

and select ρ0 large such that

ρ0 − λ6ϑ(0)
φ1|�2

0|
> 0.
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Hence, we find{
P′

(
ω0

E(t)
E(0)

)
V2(t)+ ρ0E(t)

}′
≤ −λ7ϑ(t)P′

(
ω0

E(t)
E(0)

)
E(t)
E(0)

= −λ7ϑ(t)H
(
ω0

E(t)
E(0)

)
∀t ≥ t0. (65)

Now, we take the following

V3(t) =
⎧⎨
⎩

V1(t), if P is linear on [0,ω],

P′
(
ω0

E(t)
E(0)

)
V2(t)+ ρ0E(t), if P′(0) = 0 and P′′ > 0 on (0,ω],

Then, from (59) and (65), we get

V ′
3 (t) ≤ −λ8ϑ(t)H

(
ω0

E(t)
E(0)

)
∀t ≥ t0. (66)

Since V3(t) ∼ E(t), ∃ℵ1,ℵ2 > 0 such that

ℵ1V3(t) ≤ E(t) ≤ ℵ2V3(t). (67)

Introducing the functional

W (t) := ℵ1
V3(t)
E(0)

, (68)

by (67), we obtain

W (t) ≤ E(t)
E(0)

< 1. (69)

From (66), (68) and (69) with the increasing nature of P, we have

W ′(t) ≤ −ℵ1λ8

E(0)
ϑ(t)H

(
E(t)
E(0)

)

≤ −λ9ϑ(t)H
(
E(t)
E(0)

)
. (70)

Integrating (70) over (t0, t) and utilizing P′(t) = −(1/H(t)), we obtain

P(W (t))− P(W (0)) ≥ λ9

∫ t

t0
ϑ(ς) dς . (71)

The decreasing nature of P−1 implies

W (t) ≤ P−1
(
P(W (0))+ λ9

∫ t

t0
ϑ(ς) dς

)
, ∀t ≥ t0. (72)

As a result, the equivalence W (t) ∼ E(t), gives (49) which completes the proof.

�
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4. Conclusion

The primary motivation for this study was to investigate the asymptotic behaviour of
solutions to viscoelastic wave equations with nonlinear distributed delay in the bound-
ary feedback, particularly under acoustic boundary conditions. This framework represents
a significant class of mathematical models commonly employed in applied and experi-
mental sciences, especially in viscoelasticity theory. Future research aims to extend this
work by incorporating additional damping mechanisms and terms, such as Balakrishnan-
Taylor damping, dispersion effects, and logarithmic corrections, with a focus on nonlinear
settings.
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