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Abstract: Problem statement: The axiom of choice, guarantees that all set could be well-ordered, in 
particular linearly ordered. But the proof in this case was not effective, that was to say, non 
constructive. It was natural to ask if there was mathematics in which we could given a more 
constructive proof. Approach: We work in the Nelson’s IST which was an extension of ZFC 
(Zermelo-Fraenkel set theory with the axiom of choice). In the theory of IST there were two primitive 
symbols st, ∈  and the axioms of ZFC together with three axiom schemes which we call the Transfer 
principle (T), the principle of Idealization (I) and the principle of Standardization (S). Results: In the 
framework of IST we could construct, without the use of the choice axiom, a total order on every set. 
Conclusion: The Internal Set Theory provides a positive answer to our question.   
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INTRODUCTION 

 
 The axiom of choice (Fraisse, 2000; Hrbacek and 
Jech, 1999) is an important and fundamental axiom in 
set theory sometimes called Zermelo's axiom of choice. 
It was formulated by Zermelo in 1904 and it differs 
from the other principles of set theory in that it is not 
effective, that is, a proof requiring the axiom of choice 
is nonconstructive. 

This study is placed in the framework of IS T 
(Diener and Diener, 1995; Nelson, 1977, Nelson and 
Rogers, 1988; Berg, 1992; Vath, 2007). Moreover, to 
prove the result announced above in the abstract,  the 
principal tool is the use, instead of an infinite set X, of a 

finite subset F = {x1, x2,…, xω}⊂ X containing all 
standard elements of X, transfer principle and 
standardization principle.  

 
MATERIALS AND METHODS 

 
 In the proof of the result announced in the abstract, 
we use the following tools: 
 
•  Theorem of Nelson (1977) that affirms: For all set 

X there is a finite set F⊂ X such that for all standard 
x∈ X we have X∈ F. This theorem is one of the 
most interesting consequences of the Idealization 
principle (I) 

•  Standardization principle (S) which one uses, 
generally, to create a new mathematical objects, 
that is to say, it is a principle of construction 

•  Transfer principle (T) who has been used several 
times 

 
RESULTS 

 
Theorem:  On every non empty set X we can construct 
a total order R. In particular, this total order can be 
chosen in such a way that X has a least element or at 
least and a greatest element. 
 
Proof: Let X be any non empty set. Suppose, by 
transfer, that X is standard. If X is finite, then we can 
easily prove the theorem. Indeed, if X = {α1, α2,…, αm} 
is a standard finite set, then every element of X is 
standard and m is standard (Diener and Diener, 1995; 
Nelson, 1977) and we can, for instance, define on X the 
following relation  1 2 m...α α α≺ ≺ ≺   whose graph is  

( ){ }i j i jm i 1 ,  m j i
, | , X

≥ ≥ ≥ ≥
α α α α ∈  . Clearly, this relation is a 

total order. Moreover, the least element is α1 and the 
greatest element is αm. 
 Suppose that X is infinite. Let F = {x1, x2,…, xn} 
be a finite subset of X containing all standard elements 
of X (Diener and Diener, 1995). Let 

( ){ }i j i jN i 1 ,  N j i
G x , x | x ,x F

≥ ≥ ≥ ≥
= ∈  be a subset of X×X and 
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let Gs be the standardization of G. It is known that Gs 

defines a relation R from X to X as follows: 
 

( ) sxRy iff x,y G∈
 

 
 We prove that X is totally ordered by R. Indeed, 
the relation is standard because Gs is also. On the other 

hand, by construction, st x X∀ ∈ ( )x, x G ∈   i.e. st x X∀ ∈

( ) sx,x G ∈  which entails st x X∀ ∈ [ ]xRx . Then by 

transfer x X∀ ∈ [ ]xRx . Hence R is reflexive. 

 Let x, y and t be three standard elements of X, such 
that xRy and yRt. Then, x, y and t are elements of F and

( ) sx,y G∈ ,  ( ) sy, t G∈   i.e.  ( )x, y G∈ and ( )y, t G∈ .  

This implies that in F the index of x is less than or equal 
to the index of y which is less than or equal to the index 
of t. Hence, the index of x is less than or equal to the 
index of t, which shows that (x, t) ∈ G and therefore (x, 
t) ∈ Gs i.e. xRt. So we proved: 
 

( ) ( )st 3x,y, t X xRy and yRt xRt∀ ∈  ⇒    
 
 Then by transfer: 
  

( ) ( )3x, y, t X xRy and yRt xRt∀ ∈  ⇒    
 
Which implies that R is transitive. 
 Let x, y be standard elements of X such that xRy 
and yRx. Then, x, y is elements of F and belongs to Gs 

i.e.  (x, y), (y, x) belong to G.   
 This implies that in F the index of x is less than 
or equal to the index of y and inversely. Hence, the 
index of x equal to the index of y, which shows that 
x = y and consequently R is anti-symmetric. Thus R 
is a partial order. 
 Prove that R is a total order on X. Let (y, z) be a 
standard element of X2, then, y, z

 
are standard elements 

of F. Hence, (y, z) ∈ G or (z, y) ∈ G because in F we 
have one and only one of the two following cases: the 
index of y is less than or equal to the index of z or 

inversely. This signifies that ( )st 2y,z X∀ ∈

( ) ( )s sy,z G or z, y G ∈ ∈    which, by transfer, entails  

( ) 2y,z X∀ ∈    ( ) ( )s sy,z G or z, y G ∈ ∈  i.e. ( ) 2y,z X∀ ∈  

[ ]yRz or zRy  . Therefore, R is a total order on X. 

 So that R has a least element, we choose x1 

standard because in this case we have [ ]st
1x X x Rx∀ ∈ . 

Then by transfer  [ ]1x X x Rx∀ ∈  which shows that x1 is a 

least element for X. Analogously, so that R has a least 
element and a greatest element we choose x1 and xN two 
standard elements. By transfer, we conclude for all X. 

Remark: Recall that by induction it is proven that 
"Every finite system of sets has a choice function" 
(Hrbacek and Jech, 1999). Therefore, when the system 
of sets is finite the existence of the choice function is 
provable and does not need to be deducted by an axiom. 
Let us show in the following how, in the previous 
proof, we choose x1 standard then x1 and xN standard. 
 x1 standard. Consider in this case the finite system 
of sets {X} which is standard. Then there exists a 
choice function f1 which is by transfer standard such 
that f1 (X) ∈ X. Put x1 = f1 (X). Then x1 is by transfer 

standard. Let us take  { }1 2 mF y , y ,..., y=ɶ   a finite subset 

of  { }1X \ x   containing all standard elements of  

{ }1X \ x  . Now, we can take the finite set F given above 

equal to { }1 1 2 mx , y , y ,..., y . Thus, F is a finite set such that 

the element having the smallest index (i.e.  The index 
equals to 1) is standard. 
 x1 and xN are standard. As in the case (a), for the 
system {X} there exists a choice function f1 which is by 
transfer standard such that the element  ( )1 1x f X X= ∈   

is by transfer standard. Now, since  { }1X \ x   is standard 

different from φ then for the system { }{ }1X \ x   there 

exists a choice function f2 which is by transfer standard 

such that the element { }( ) { }N 2 1 1x f X \ x X \ x= ∈ is by 

transfer standard. Let us take { }1 2 qF y , y ,..., y=ɶ a finite 

subset of  { }1 NX \ x ,x   containing all standard elements 

of { }1 NX \ x ,x . Now, we can take the finite set F given 

above equal to  { }1 1 2 q Nx , y ,y ,..., y ,x  . Thus, F is a finite 

set such that the element having the smallest index (i.e. 
the index equals to 1) is standard and the element 
having the greatest index is also standard. 
 

DISCUSSION 
 
 The absence of the axiom of choice, in our above-
stated theorem, called the three axioms of the IST.  This 
shows the fundamental role that plays this axiom in the 
set theory. Moreover, the previous techniques are 
always valid to get other results. 
 

CONCLUSION 
 
 The Internal Set Theory has been adopted by quite 
a number of working mathematicians and this number 
becomes more and more important. This because it 
appears to be an efficient tool in several problems of 
mathematics, where we notice that most of proofs are 
characterized by the fact that they are constructive. 
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 In our case the most decisive tool, next to the other 
principles of IST, is the replacement of an infinite set 
by one of its finite parts which contains all its standard 
elements. In addition of this, we also find that the 
standardization principle is of a particular importance 
because it gives birth to new objects. 
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