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Preface 

This handout complies with the ministerial outline for the Fluid Mechanics 2 

course offered in third year S5_ Bachelor's degree LMD at Algerian universities. It is a 

continuation of the course given second year S3_ Bachelor's degree LMD . 

Fluid mechanics is one of the most difficult disciplines to assimilate. It requires 

both theoretical mathematical knowledge (tensor calculus, divergence and gradient 

operators......) and basic physics (Archimede force, Bernoulli equation, notion of 

similarity, etc.). 

This course is structured in three chapters. The first deals with fluid kinematics, in 

which theoretical mathematical knowledge is first used (differential equations, 

divergence and gradient operators, integrals), the conservation of mass equation and 2D 

plane flows in the incompressible and irrotational case, as well as the complex potential 

function. 

The second chapter deals with integral conservation laws. The Reynolds transport 

theorem is applied to the equation of continuity of momentum and energy. 

The notion of dimensional analysis and similarity seems essential and this is the subject 

of the third chapter. 
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Chapter I 

Fluid kinematics 

 

I.1 Introduction  

The study of fluid mechanics includes: 

- Fluid statics, in which we study the fluid at rest (course S3) and the essential law is the 

fundamental relation of statics. 

- Fluid kinematics, is the analytical description of a system in motion. In other words, 

we're interested in the movements of fluids in relation to time, independently of the causes 

that provoke them, i.e. without taking into account the forces that are at their source.  

- Fluid dynamics, in which fluid motion is studied in the context of interacting forces. 

I.2 Mathematical concepts for fluid mechanics 

I.2.1 Differential of a function 

 

Given a function f which depends on the variables x, y and z, f=f(x ,y, z)  

The total differential df is written: 

       df =
𝜕𝑓

 𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 

𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
𝑒𝑡

𝜕𝑓

𝜕𝑧
  Are the partial derivatives of f with respect to x, y and z 

 

I.2.2 Vector analysis operators 

 Operator Nabla 
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 Gradient of a scalar field 
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 Divergence of a vector field 
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 Rotation of a vector field 
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 Laplacian of a function 
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   

 

I.3 Description of a moving fluid 

I.3.1 The fluid particle 

 

The fluid particle is chosen as the elementary entity for a complete description of flows: 

It is a "packet" of molecules surrounding a given point M; these are then assumed to all 

have the same velocity at the same instant. 

In the study of fluid motion, we generally define at each point M: velocity, density ρ and 

pressure P (and possibly temperature T). Describing the motion of a fluid calls on notions 

that differ from those developed in point or solid mechanics. Fluid motion is a flow in 

which there is continuous deformation of the fluid. In a similar way to solid mechanics, we 

can isolate (by thought or by finding a means of visualization, coloring for example) a 

restricted part of the fluid called a particle and "follow" it over time, i.e. know its position 
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at each instant. This position will be known, for example, by its Cartesian coordinates x 

(t,x0, y0, z0), y(t,x0, y0, z0) and z(t,x0, y0, z0) where x0,y0and z0 represent the coordinates of 

the selected particle at time t0.  

The particle's velocity will have the following components: 

t

z
wet

t

y
v,

t

x
u
















                                                                                  (I.1)
 

The velocity of the fluid particle is then defined by : 

)t,r(V

t

z
w

t

y
v

t

x
u

V 0








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



































                                                                                 (I.2)

 

Different types of fluid flow regimes can be observed.

 

 Permanent (or stationary) regime: quantities do not depend on time 0
t





V


=V


(M)   (so for ρ and P)(this does not mean that the fluid has a constant velocity 

everywhere, only that the fluid velocity at a given point is the same at every instant. 

 Uniform regime: velocity does not depend on the point considered = (t) 

 Laminar regime: fluid layers slide relative to each other, velocities are continuous. 

 Turbulent regime: velocities are discontinuous, fluid layers interpenetrate aleatory. 

I.3.2 Lagrange description - Euler description  

The fluid in motion can be described in two equivalent ways. We can choose to follow the 

fluid particles as they move (Lagrange point of view) and the variables r0=(x0, y0, z0) and t 

are called Lagrange variables.   

The Lagrange point of view consists in focusing on the trajectory of the fluid particles.  

We can take a snapshot at a given instant of the velocity field of all fluid particles 

(Euler's point of view). Euler's point of view focuses on the evolution of fluid properties at 

different points and over time. 

Lagrange's method proves tricky in most cases, since it's not easy to keep track of the 

particles: it's rarely used. 
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Euler's method consists in knowing the velocity of the particles over time t at a given point 

determined by its coordinates, for example Cartesian x, y and z.  The three projections of 

the velocity of the fluid particle passing through point M at time t are called Euler variables. 

This method is more widely used than Lagrange's, as knowledge of the velocity field is 

sufficient to describe the fluid in motion. 

I.4 Trajectories and path lines 

I.4.1 Trajectory: 

The trajectory of a fluid particle is defined by the path followed by this particle in the 

course of time, i.e. the set of successive positions of this particle in the motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trajectory can be visualized by injecting a drop of dye and following its movement. 

Trajectories are generally calculated by eliminating time from the expressions expressing 

the position of a fluid particle at each instant: 

 

 

 

If we know the velocity in Eulerian description, we can determine the particle 

trajectories by integrating this velocity with respect to time. 

 

Given the velocity:  



















)t,z,y,x(w

)t,z,y,x(v

)t,z,y,x(u

)t,z,y,x(V)t,r(V


 

in Eulerian description  

By definition 

Figure 1 Particle trajectory 

P(t1) 

P(t0) 

P(t2) P(t3) 

The particle 

trajectory 

))t(z),t(y),t(x()t(rOM 
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dz
z

dt

dy
y

dt

dx
x

dt

rd
V

.

.

.


                                                                                                    (I.3) 

This gives us the differential system: 































)t,z,y,x(w
dt

dz

)t,z,y,x(v
dt

dy

)t,z,y,x(u
dt

dx

                                         (I.4)

 

 

Integrating this system with initial conditions r0 =( x0=x(t0), y0= y(t0), z0=z(t0)), we obtain 

the position at each instant dt)t,r(Vr))t(z),t(y),t(x()t(r
t

0

00 


 

By eliminating time, we obtain a relationship between the variables (x, y, z) 

corresponding to the equation of the particle's trajectory. 

 

I.4.2 Streamlines: 

Let's adopt Euler's approach and assume that at each instant t we know the velocity vector 

of a fluid particle located at M. The velocity vector then designates a vector field. 

)t,M(V


. 
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By definition, a streamline, or flow line, is a field line of the velocity vector, i.e. a 

curve C such that at a fixed instant t, for any point M ∈C, )t,M(V


 is tangent to C at M. 

When the velocity field does not depend on time, flow lines do not evolve over time: the 

flow regime is said to be stationary or permanent.  

 

Let dM  a  flow line element,
),,( dzdydxdM 

 , dM is parallel at M to the velocity: 

At the velocity )t,M(V


, Md // V


0VMd 


 

Or  



























































0

0

0

udyvdx

wdxudz

dzvwdy

VMd

)t,z,y,x(w

)t,z,y,x(v

)t,z,y,x(u

)t,z,y,x(V)t,M(V


          (I.5)

 

Finally, we obtain the relationships defining the stream lines 

 

 

)t,z,y,x(w

dz

)t,z,y,x(v

dy

)t,z,y,x(u

dx


                              (I.6) 
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Note 

 Streamlines are generally time-dependent, so they deform over time.  

 In steady state (stationary flow), velocities no longer depend on time, and the two 

previous conditions coincide with : 

 

)z,y,x(w

dz

)z,y,x(v

dy

)z,y,x(u

dx


                                   (I.7)

 

 

The particles continuously follow the same trajectories, generating the same streamlines. 

In this particular case, trajectory and streamlines are identical. 

Other quantities characterizing fluid motion can also be defined: 

I.4.3 Current tube: 

A current tube is defined as the set of current lines supported by a closed contour.  

 

 

 

 

 

 

 

 

 

I.4.4 Emission lines: 

Emission lines are the set of all particles having coincided at an earlier instant with a fixed 

point E. 

 

 

 

 

Figure I.3 Stream lines over an obstacle 

 

Figure 4 Current tube 
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To visualize emission lines, we can inject dye continuously at point E. The colored 

curves correspond to the emission lines. 

 

I.5 Particular derivative 

 

Consider a local physical quantity G(M, t) attached to a fluid particle located in M at time 

t . We can think of temperature, pressure, density…. Let's calculate the rate of change of 

this quantity as we follow the particle. This quantity is called the particular derivative and 

is denoted DG/Dt. 

The fluid particle at time t+dt will be at the point with coordinates x+udt, y+vdt, z+wdt 

The variation of the function G will therefore be equal to: 

 

dt
t

G
wdt

z

G
vdt

y

G
udt

x

G
)z,y,x(G)wdty,vdty,udtx(GdG



















  

The derivative 
𝐝𝐆

𝐝𝐭
 , denoted 

𝐃𝐆

𝐃𝐭
 and called the particular derivative, is equal to :

t

G
GgradVdt

t

G
w

z

G
v

y

G
u

x

G

dt

dG

Dt

DG




























                                 (I.8)

 

 

This derivative appears as the sum of two terms: 

 The first, called convective or advective, is due to the non-uniformity of the flow, 

 The second, called temporal, is due to the unsteady nature of the flow. 

 

Figure 5 Emission lines 
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I.6 Particle acceleration 

Let's calculate the acceleration of a fluid particle from the Eulerian velocity field )t,M(V


. 

Acceleration is the rate of change of the velocity field as it follows a fluid particle. We 

There fore we have: 

Calculons l’accélération d’une particule de fluide à partir du champ de vitesse Eulérien 

)t,M(V


. L’accélération est le taux de variation du champ de vitesse en suivant une 

particule de fluide. On a donc : 

w
Dt

Dw
v

Dt

Dv
u

Dt

Du

Dt

VD
a 




                                                                                  (I.9)
 

 

The velocity ,

dt

dz
w

dt

dy
v

dt

dx
u

V


































 



























































































































t

z
.

z

w

t

y
.

y

w

t

x
.

x

w

t

w

dt

dw
a

t

z
.

z

v

t

y
.

y

v

t

x
.

x

v

t

v

dt

dv
a

t

z
.

z

u

t

y
.

y

u

t

x
.

x

u

t

u

dt

du
a

a

z

y

x



                                              (I.10)

 

 























































































z

w
w

y

w
v

x

w
u

t

w
a

z

v
w

y

v
v

x

v
u

t

v
a

z

u
w

y

u
v

x

u
u

t

u
a

a

z

y

x



                                                                 (I.11) 

This gives : 
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
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
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
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a
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t

v
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a

u).V(
t

u

Dt
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a

z

y

x




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                                                              (I.12)

 

The acceleration can be broken down as follows: 

 

 The first term (∂/∂t): is related to the non-permanent nature of the velocity. It is called 

the local term. 

 The second term .V


: the convective derivative indicates the non-uniform nature of 

the velocity. It is called the convective term. 

I.7 Volume flow and mass flow 

To solve problems in fluid mechanics and hydraulics, we often use the concepts of flow 

rate and mean flow velocity. 

Volume flow qv measured in (m3/s) or (l/s) 

Mass flow rate qm measured in (kg/s) 

Volume flow rate is the volume of fluid δv passing through a given area per unit time 

(m3/s). 

δvtrav= qvdt                                                 (I.13) 

  

  The total volume traversing the surface considered during a period of time (t2-t1) is 

given by: 


2t

1t

vtrav dtqv

                                                                                                             (I.14)

 

 The discharge for a constant vertical velocity on a section of pipe or duct ( perfect fluid) 

is as follows: 

                                                qv=V.S                                                                         (I.15) 

                                 
                                                     qm=ρV.S= ρ.qv                                                          (I.16) 

 (ρ the density of the fluid) 
 

 Expression of qv as a function of the velocity field on the surface 

The volume flow rate is the flow of the vector across the surface considered:  
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
s

v dsn.Vq


                                                                                                     (I.17) 

 

 

 

 

 

 

 

 

 If the flow is in the same direction as the surface normal vector: qv> 0, otherwise 

qv<0 

 The mass flow rate is the mass of fluid passing through a given surface per unit of 

time ( Kg.S-1). 

        
                   δmtrav=qmdt                                                                                            (I.18)      

       

 The total mass passing through the surface in question over a period of time (t2-t1) is 

given by : 

            


2t

1t

mtrav dtqm

                                                                                       (I.19)

 

 

The mass flow rate is the vector flux passing through a given surface: 

                   

s

m dsn.Vq


                                                                                                 (I.20)      

 

 If the flow is in the same direction as the surface normal vector  

     qm>0, otherwise  qm<0 
 

The V


  field thus appears as the mass current density, or surface mass flow. 

 

 In the particular case of a permanent conservative flow through a current tube, the 

mass flow rate  is conserved: qm1 =qm2 

 If the fluid is also incompressible: qv1=qv2 

I.8 Continuity equation    

The continuity equation translates the principle of conservation of mass: 

The change in mass over time dt of a fluid volume element dv = dx dy dz must be equal to 

the sum of the masses of incoming fluid, minus that of outgoing fluid. 

On considère alors un élément de volume de fluide dv 

                                  dv=dx.dy.dz 

Figure 6 Velocity flux through a surface 
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The mass m=∭ 𝝆𝒅𝒗
𝒗

 of a portion of fluid volume bounded by a surface (S) that we 

follow in its motion remains constant, so its particle derivative is zero. 

 

 

 

                                              (I.21)                           

             

 

 

 

 

          (I.21) 

 

 

 

 

I.8.1 Green-Ostrogradsky theorem or divergence theorem  

 

The flux of a vector field )M(A


 through a closed surface (S) is equal to the integral over 

the volume (v) bounded by (S) of the divergence of the vector field.  

                                                                             

(I.22) 

 

 

 

So we can write : 

 

                                                  (I.23) 

 

0dv)V(divdv
tdt

dm

v v





  





                                                                (I.24) 

 Or still : 

 

 

    0dv)V.
t

(
v











                                                                                             (I.25) 

Then : On an arbitrary volume (the integral must be zero) this relationship becomes : 

  

A.Adivet

dv).M(AdivdS.n).M(A
S v







 

  
vS v

dv)V.(dv).V(divdS).n.V(




Local derivative 

    Convective derivative 

  





Sv v

0dS)n.V(dv
t

dv
dt

d

dt

dm 




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                                                                  (I.26) 

 

 

 

0Vdiv
t




 



                                                                                                       (I.27) 

Is the continuity equation                                                     
 

In Cartesian coordinates, this equation is written : 

0
z

)w(

y

)v(

x

)u(

t



















 
 

 

 This is the general continuity equation, applicable to all types of flow, and all types of 

compressible and incompressible fluids. 

If the fluid is in permanent motion, the density is independent of time, and 

this becomes: 

 

0
z

)w(

y

)v(

x

)u(














 

   
0)V(divor 




  
The equation obtained indicates that the flow through the closed surface is zero 

(conservation of mass flow). 

 

 

 

For a two-dimensional plane flow we write : 

 

0
y

v

x

u











 
 For one-dimensional flow in the x direction 

 

cteuSqcteu0
x

u
v 





 
 

(S flow cross-section) 

 

Special case of an incompressible fluid : 

 

In this case the density is ρ =cte  
 

So the continuity equation reduces to :                   0Vdiv 


                                 (I.28) 

0Vdiv
t

V.
t









 







   0dS).n.V(dv).V(div
S v




0
t






V




0Vdiv0
t








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I.8.2 Divergence of a velocity field  

I.8.2.1 Definition : 

Velocity field divergence ( Vdiv


 ) is a differential operator with scalar values that measures 

changes in the volume of a continuous medium.  A positive (resp. negative) value is 

associated with expansion (resp. compression). In Cartesian coordinates, it is written : 

i

i
3

1i i

i

x

v

x

v

z

w

y

v

x

u
Vdiv
























 




 

In cylindrical coordinates, it is written : 

z

vv

r

1

r

)rv(

r

1
Vdiv zr





















 

We can say that the divergence of the velocity field gives us information about the change 

in volume of a fluid element we're following as it moves. If this element maintains a 

constant volume, the divergence is zero. If this is true at any point in the fluid, then the 

volume of all fluid elements will remain constant throughout the flow: such a flow is said 

to be incompressible. 

I.9 Some flow examples  

I.9.1 Uniform Flow 

In the absence of deformation and rotation, the flow is said to be uniform. This movement 

corresponds to solid translational motion.  

 

 

 

 

 

 

 

 

The pure rotational movement takes place without deformation and is therefore comparable 

to solid rotation, as shown in the following figure.  

 

t=t1 t=t2 

 
M1 M’1 

M2 
M’2 

Figure 7 Uniform flow without  deformation or rotation 
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I.9.2 Rotational Flow 

The rotational velocity field of a flow Vrot


 is a vector-valued differential operator that 

measures twice the rate of rotation of fluid particles on themselves. 

In cartesian coordinates, the vortex vector is written as: 

 

V

y

u

x

v
x

w

z

u

z

v

y

w

Vrot
























































                                                                             (I.29)

 

 

A rotational flow is characterized by the vortex vector Ω such that: 

 

           
V


 2
                                                                                               (I.30)  

 

And ω is the rate of rotation 

In cylindrical coordinates with
)u,u,u(V zr 



 ,we have : 

 

                           





































r

zr

z

u

r

)ru(

r

1
r

u

z

u
z

uu

r

1



                                                                      (I.31)

 

 

For a plane flow, this vector has only one non-zero component since   

ω =0 and u and v do not depend on z : 

A B 

D 
C 

B’ 

C’ 

D’ 
α α 

Figure 8 Fluid flow rotation without deformation 
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                       ze
y

u

x

v
Vrot





















                                                                             (I.32) 

 

I.9.3 Stream Function–Incompressible flow 

I.9.3.1Definition: 

If the flow of an incompressible fluid is conservative, then the continuity equation is:

0V.


 (eq (I.28)). 

 

If we put       

 

A


 Is called potential vector 

In Cartesian coordinates: 

 

 

 

 

 

                                                          I.33)    

 

                                                       

If we consider a flow in the plane  to Oz, and therefore invariant by translation along z, 

then: from which : 

 

x

A
vet

y

A
u zz









   then : )y,x()y,x(Az  , the function ψ is called stream 

function. therefore : 

 

                        




















x
v

y
u





                                                                                         (I.34) 

    Is the velocity field in Cartesian coordinates. 

 

In cylindrical coordinates, this velocity field is written as:  

                                                

0)A.(thenA,AV 




w
y

A

x

A

v
x

A

z

A

u
z

A

y

A

A

A

A

z

y

x

AV

xy

zx

yz

z

y

x















































0
z

et0w 




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                       

















r
u

r

1
u r







 Or ψ(r, θ)                                                                        (I.35) 

 

I.9.3.2 Properties of the stream function 

As we posed 
x

v,
y

uet0
y

v

x

u
V.






















 

 

Then:   

 

                 
xyyx

22








 
 

                                                                                         

This relationship constitutes Schwartz's theorem. And so dψ is an exact total differential: 

               

dy
y

dx
x

d











  

In the plane (x, y), the set of points for which the value of ψ is constant ψ(x,y) = cte 

corresponds to the curve y(x) along which dψ=0 

On this curve, check that:  

                                                                                                                                                

 

                                                                   (I.36)

 

 

 

Or  : 
u

v

dx

dy
0udyvdx   

ψ(x,y) = cte  then  y(x) is as : 

 

 

 

                                                   (I.37)                                                 
 

 

 

0udyvdxdy
y

dx
x

d 













 

Vvitesse

vecteurdupente
)x(fy

courbedelapente

u

v

dx

dy






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Let's calculate the flow between two infinitely adjacent current lines: 

Let ψ(x,y) be the current function L and ψ+dψ the adjacent current function M. The 

velocity vector V is perpendicular to the line AB and has components u and v in the x 

and y directions. 

We know that the flow rate   dsn.Vqv


 

Flow through AB= flow through AO+flow through OB 

        Vds= udy-vdx 

 


ddx
x

dy
y

Vds 










 

And so dqv =dψ therefore, between any two current lines of constants ψA and ψB  :  

     
AB

B

A

B

A

vv ddqq   
                                                                                 (I.38) 

 

x 

y 

u 

v  

Stream functio ψ(x,y) 

Figure 9 Qualitative representation of the stream function in the (x, y)plan 
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I.9.4 Irrotational flow – Velocity potential  

I.9.4.1 Definition:  

Flow is said to be irrotational when the fluid particles do not undergo pure rotations:  

Ω=0, i.e. 0Vrot


 

 

 

 

 

  

In other words, the rotation rate ω is zero in an irrotational flow.  

Or,  from the mathematical relation   ,0)(


 

We can define a scalr  φ   such that : 


V  , φ is called the velocity potential.  

In the cartesian reference frame and considering plan flow, we can write: 

z
w

y
v,

x
uV

















 et


                                                          (I.39) 

If we assume that the fluid is incompressible, we must verify : 

 

Figure 10 Flow two points and its relationship  to the stream function 
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This leads to the relationship :  

 

                                 0                  Laplace equation  

 

We therefore conclude that the velocity potential must satisfy Laplace's equation.  

 

Note : 

If the flow is irrotational, the stream function must also satisfy Laplace's equation :  


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

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







 

I.9.4.2 Properties of the velocity potential  

When the flow is plan the equation         teC),( yx   defines in the plan  flow a curve 

called « equipotential ».  

A long of this curve, since    teC),( yx  , we must verify : 0d   

Or, la différentielle peut s’écrire : y
y

x
x

ddd











  

And as along an equipotential 0d   , then :  

0y
y

x
x

d 








 dd


 0yvxu  dd

 

v

u

x

y


d

d

                                                          (I.40) 

 

So       
v

u

x

y


d

d

 
  relationship to be verified at any point on the equipotential. 

At any point M(x,y) in the flow plane, the streamline and equipotential are orthogonal.  

 

0
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












 
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I.9.4.3 Equations de Cauchy Riemann 

We can conclude from what we have seen above that : 

 The velocity potential(φ) exists only for an irrotational flow. 

 The stream function(ψ) is applied for rotational and irrotational flow (stationary and 

incompressible). 

 In the case of irrotational flow, the stream function and velocity potential both 

satisfy Laplace's equation. 

 Therefore, for an irrotational and incompressible flow, the following relationship 

can be verified:

xy
v

yx
u

























                                                                        (I.41) 

 These equations are called Cauchy-Riemann equations.    

 

I.9.4.4 Calculating the length of an arc element along a stream line  

 

We want to calculate the arc on the stream line (ψ(x,y)=cste). 

We have : 22 yxs ddd teC



    

Or :         

yvxu

y
y

x
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ddd


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
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







 

M 

Figure 11 Qualitative representation of the path line and the 

equipotential in the (x, y) plan 

x 

y 

u 

v V

 

                  ψ(x,y)=Cste 
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In addition, along the stream line we have ψ(x,y)=cste , i.e.: u

v

x

y


d

d

 therefore:
x

u

v
y dd 

 

by replacing we then obtain   

x
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v
xu

2

ddd   y
v

vu 22

d



                                                                           (I.42)                          

 

 

 

There fore  : dd
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                                                                           (I.43) 
 

 

So:  
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
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d teC
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 The distance between two equipotential is inversely proportional to the flow velocity.  

 One of the properties of the current function is that the difference in the stream function 

between two points represents the fluid flow through any line joining the points.  

 If two points lie in the same streamline, in this case there is no flow between these two 

points and therefore ψ -ψ12 =0 we then have ψ(x,y)=cste 

 Similarly, φ=cste , represents the case where the velocity potential is the same at each 

point, and is said to represent an equipotential line. 

Given two curves φ=cste and ψ=cste , these two curves intersect at every point. 

At the point of intersection of these curves, the slopes are: 

 

For the curve φ=cste : the slope =
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For the curve  ψ=cste : the slope =
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The product of the slopes of these curves is:  
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1
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v

u


 
This shows that equipotential lines and current lines form an orthogonal network at all 

points of intersection. 

I.10 Flow representation by complex functions  

Many classical plane flows can be represented by complex functions. Let  

)y,x(i)y,x()z(f    where z=x+iy  is the complex variable associated with the complex 

potential function f(z) (φ and ψ represent the potential and stream functions respectively). 

For this function f(z) to be analytic, its derivative must be defined everywhere, i.e.  
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 And ,  z can be made to tend towards 0 in the following two ways: 

 

therefore :  
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yix
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
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
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
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


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 yy
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
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                                                      

     x

f

x
i

x 











 
                        

y

f
i

yy
i

















 

Then  :  

   
yy

i
x

i
x 
















 
  , d’où : 

xyyx 















 
et  

This system of equations constitutes the Cauchy-Riemann relations which verify the 

relations found above. 

Finally, for )y,x(i)y,x()z(f   , to be an analytic function. ),( yx  et  )y,x(  must 

verify these Cauchy.  

For a plan flow, which can be described by means of a stream function )y,x(  and a 

velocity potential )y,x(  , these  Cauchy relations are well verified:   
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xy
v

yx
u






















et  

Consequently, the flow can also be described by means of the complex analytical 

function:  

:   

                 )y,x(i)y,x()z(f                   where             yixz   

This function is known as the "complex velocity potential". 

Properties : 

We have seen that for a flow to be described by means of a stream function ψ and a velocity 

potential φ, these two functions must verify Laplace's equation (Δψ=0 and Δφ=0). 

 Let there be two flows such that : 






















2i22

1i11

22

11

)z(f

)z(f

0and0

0and0








 

Since the Laplacian operator is linear, this implies that: 









 22112211

22112211

)(

)(




 

We put :

















0

0

2211

2211








 

And then : )z(f)z(f)z(f 2211i    , f(z) describes the flow resulting from the 

superposition of the two flows f1 and f2 . Consequently, several elementary flows can be 

superimposed to create more complex flows, simply by adding the corresponding complex 

potentials. 

I.10.1 Uniform flow  

Consider the plane flow modeled by the complex velocity potential:  

Uz)z(f   

We have :    UyiUx)yix(U)y,x(i)y,x(    

By identification, we obtain:  

                     
Uy)y,x(

Ux)y,x(








 

The stream lines are such that:  te
C Uy)y,x(  

 xy  teC  : these are horizontales lines  

The equipotentials are such that: te
C Ux)y,x(  

yx  teC  these are vertical lines  
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Determining the velocity field :  


































0
xy

v

U
yx

u

v





 

The velocity is uniform : 
xeUv


  

Stream lines : te
C Uy)y,x(  xy  te

C  (horizontal lines)  

equipotentials : te
C Ux)y,x(  yx  te

C  (vertical lines)  

the velocity field : 

xeUV


  

 

 

 

 

 

 

  

 

 

 

  I.10.2 Plane flow around a source or sink 

Consider the plane flow modeled by the complex velocity potential:  

zzf lnC)(                     where   
ieryixz  et   C is a real constant 

  irierzf 




 lnClnC)(  

We can then deduce the current function and velocity potential :  





C),(

lnC),(





r

rr
 

The stream lines are such as : te
CC),(  r  

r teC  these are straight lines passing through the origin 

 

V


V


V


V


V


V


V


xx 

yy 
te

C

te
C

V


xe


ye


Figure 12 Uniform flow   Uz)z(f   

 



26 

 

 

The equipotential are such that: teClnC),(  rr   

 teCr These are concentric circles centered on the origin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determining the velocity field :  































rr
v

rr
rv

v










1

1


 

Or  









0v

rv
v

rC
re

r
V

 C
  

The velocity is therefore radial and inversely proportional to distance from the origin.  

If C>0, then flow is directed outwards 

 Divergent flow source at origin. 

If C<0, then the flow is directed towards the origin 

Ψ=cste 

φ=cste 

x 

y 

xe


ye


Figure 13 uniform flow with complex potential  zzf lnC)(   
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     convergent flow sink at origin. 

Physical meaning of the constant C :  

The volume flow of this radial flow (source or sink) is calculated:  

 



S

SnVvq d.


     where S is a closed surface surrounding the origin.  

rr enandte
r

C
V


  

This is a linear flow taking place in the direction to the z axis, in the (xy) plane we can 

consider as the integration surface a cylinder of height z=1, and therefore : 

 


 dd z

S

S

 

Since the flow is on a plane, we integrate on a circle of any radius r centered on the 

origin. 






d. rnVzvq  


d.

2

0

nVrz


 où 








ren

rerV



C

 




d
C



2

0 r
rzvq  




2

0

d
C

r
rz z C2                                                                                                                                    

volumetric flow rate per unit height  

 

2
vq

 C  and therefore : zvq
zf ln)(

2
  qv>0 : source flow rate 

                                                                             qv<0 : sink flow rate 

 

I.10.3 Vortex or free vortex  

Consider the plane flow modeled by the complex velocity potential:  

zlni)z(f C    where ieryixz   and   C is a real constant 

  riiriierizf lnCClnClnC)( 




   

We can then deduce the current function and the velocity potential:  

1 
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







rr

r

lnC),(

C),(




 

The stream lines are such as : teClnC),(  rr   

 teCr  these are concentric circles centred on the origin origin Th Les 

the equipotentials are such that : teCC),(   r  

r teC  these are straight lines passing through the origin 

Determining the velocity field :  

 































rr
v

rr
rv

V










1

1


 

Soit : 













r
v

rv

V C

0




 e

r
V

 C
  

Velocity is therefore ortho-radial and inversely proportional to distance from the origin.  

If C>0, then the flow is around the origin in the trigonometric direction.  

If C<0, then the flow is clockwise around the origin.  

 

Physical meaning of the constant C :  

Let's calculate the velocity "circulation" around the origin:  

 




d.V      Where runs an arbitrary stream line, i.e. a circle of radius r.  

With  : e
r

V
 C

  et  er





dd  





2

0

r
r

d
C

C2  
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 and therefore
zln

2
i)z(f





 where is the vortex circulation (free vortex). 

so 
2

C


   and therefore zln
2

i)z(f



 where   is the circulation (free vortex).libre) 

If  >0,  the vortex rotates in the trigonometric diretion. 

If  <0,  the vortex rotates  clockwise. 

 

I.10.4 Corners and stopping points  

A "stopping point" is a point where the velocity is zero.  

Consider the plane flow modeled by the complex velocity potential:  

1mz)z(f  C      where  
2
1m  

In cylindrical coordinates : ierz   and then )1m(i1m er)z(f  C  

Then we have : 
 
 















)1m(sinr),r(

)1m(cosr),r(
1m

1m

C

C
 

Ψ=cste 

φ=cste 

x 

y 

xe

ye


Figure 14 Uniform flow with complexe potential 

zlni)z(f C  
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The velocity fields is obtained by :      






























rr

1
v

r

1

r
v

V
r













 

We find  :  

 
 













 )1m(sinr)1m(v

)1m(cosr)1m(v
V

m

m

r

C

C
 

Note that vr = v = 0 for r = 0    the origin is the stopping point.  

The stream line passing through the stop point must therefore verify :  

A

te
C  ),r(          where              0)1m(sinr),r(

1m




AAAAA C   

The equation for this current line is then written :  

  0)1m(sinr 1m  C
 









r0)1m(sin

0r




   stop Point  




 r
)1m(

n
 rn)1m(     

si n=0 : r 0  half - right Ax  

 

Since stream lines can be likened to impassable barriers, those passing through the 

stopping point form "corners": these are the stopping corners.  

.  

 

 

 

 

 

 

 

 

 

 

 

Let's now analyze the fluid flow between these stop wedges for a few specific values of m.  

x 

y 

α 

2α 

A 
x 

y 

α 

2α 

A 
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1 mzzf C)(  où 
2
1m  

 Case where m=1  

  teCsinC)(r,   22r   and 



21




m
right angle corner 

teCcossinCcossinC)(r, 


x

r

y

rr  222

teCCteC)(r,  yx2                   

x
y

te
C

   inside this corner, the current lines are hyperbolas 

 

As equipotentials are at all points, they are also hyperbolas.  

 

 

 

 

 

 

 

 

 

 

 Case where m>1    
21


 




m
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y 

x 
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 Case where 0<m<1  









12 m

 

 

 

 

 

 

 

 

 

 

 

 Case where 
2
1 <m<0, 


 2

1





m
 

  

 

 

 

 

 

 

x 

y 

x 

y 
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 Case   2  

 

 

 

 

 

 

I.10.5 Doublet and dipôle  

We know that for a flow to be described by a stream function and a velocity potential, both 

functions must satisfy Laplace's equation :  

0     Et 0    i)z(f   

Let's consider 2 flows such as:  

 01   et 01  111 i)z(f    

02   et 02  222 i)z(f    

Since Laplace's equation is linear :  

0)( 22112211    

0)( 22112211    

So  if we put 2211    et 2211     then: 

0  Et 0 )z(f)z(fi)z(f 2211    

Consequently, f(z) describes the flow resulting from the superposition of the two flows f1 

and f2 

Several elementary flows can therefore be superimposed to create more advanced flows, 

simply by adding the corresponding complex potentials. 

I.10.6 Association of a source and a sink:  

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a 

sink with flow rate -q, located at x=-a.  

The resulting complex potential is written as:  

)azln(
2

q
)azln(

2

q
)z(f 


  let’s put: 









2

1

i

22

i

11

razz

razz




e

e
 

Hence :  

2
1m 
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   
221121 irlnirln
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
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





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
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2

q
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r
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2

q
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







   then, the stream lines are such as : 

te
C )(

2

q
21 


  

                                 

 

 

         

 

 

 

Let's extend the distance between the well and the source to 0.  

)ln()ln()( az
q

az
q

zf 
 22






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1
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Then   




  21

2
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q
zf ln)(


 za
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Let’s put 2aq = p be the dipôle moment :  
z

p
zf

2

1
)(  

z

p
zf

2

1
)(




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r
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ir

p  e

e 2

1

2

1
 


sin-cos i

r

p

2

1
  i  

hence



















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1
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1

 tete
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
 sin

r

p

2

1
 

                                                                stream line equation  

Figure 15 stream lines  for a source and a sink 
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te
Csin  

r

1 2rr te
Csin   )(teC 22 yxy  )(teC 22 yxy   
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stream lines are circles all centered on the y axis, and all passing through the origin.   

Flow generated by a dipole      
z

p
zf
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I.10.7 Uniform flow around a circular cylinder with circulation 

Let's consider a uniform flow around a circle in the presence of a circulation  centered at 

the origin. The complex potential function is written: zln
2

i
z

a
zV)z(f

2

0














 

In view of the logarithmic singularity, the complex plane will be equipped with the half-

axis cutoff       

 

The complex velocity of this flow is expressed as: 

z2
i

z

a
1V)z(V

2

2

0












        It cancels out at points with affixes zA such that : 

0az
V2

iz 2

A

0

2

A 




   

This provides two stopping points:  

  
22

2
2

0

'AA

0
V4

a4
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1

V2
izz










 

There are several cases depending on the descriminant. 

 Case 1 

Figure 16 stream lines for a dipole  

0aV40  

0x 
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The discriminant is then positive and the affixes of the two points have the same 

modulus: 
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V16V16
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The two stopping points are therefore on the circle of radius a, in symmetrical positions 

with respect to axis Oy. They are marked by the polar angles and π- respectively with: 

0aV4
sin




 

 

The general flow configuration is shown in figure (I.17). 

Without circulation, there are two stopping points at the intersection of the circle and 

the real axis. We can therefore see that the influence of traffic is equivalent to shifting 

the two stopping points symmetrically with respect to Oy by an ordinate proportional 

to the value of the traffic. 

 Case 2 

For this critical circulation value, the two stop points merge with the intersection of the 

circle and the Oy axis( =π/2). This gives the configuration shown in figure (I.18). 

Figure 17 flow around a cylinder with circulation (low circulation) 

0aV4 
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  Case 3 

The discriminant of the equation of the affixes of the stopping points is then negative, so 

the roots take the form: 

 
0

2222

'AA aV4/Va4izz
0

 
 

These are pure imaginary, which means that the two stopping points are on the oy axis. 

The product of the roots is worth in modulus a2 . This leads to the configuration shown in 

figure(I.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 flow over cylinder with circulation (critic circulation) 

Figure 19 flow around cylinder with circulation (strong circulation) 

0aV4 
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I.11. Applications 

Exercise 1 :  

The velocity field of the two-dimensional flow is given by : 

jt3xyit4xy23V 22


)()(   
Find the velocity and the acceleration at point (1,2) after 2s. 

Exercise2:  

The two-dimensional velocity vector field are given by :  jx3iy2V 2


 In (x,y,z)=(2,2). 

Calculate: 

 l /Local velocity  

2/Local acceleration 

3/ Convective acceleration 

Exercise3:  

Determine the expressions of the streamlines for the following velocity fields: 

kz8jy4V4

kx3iz2V3

kx9iz4V2

kz6ix3V1

















/

/

/

/

 
Exercise4:  

The components of the velocity field of the two-dimensional, incompressible flow are 

given by the following equations:

 







)(

)(

1x2yv

x1xyu 2

 
Show that the flow is irrotational and satisfies the continuity equation. 

Exercise 5:  

The velocity distribution for a two-dimensional incompressible steady flow is given by : 

 
2222 yx

y
v

yx

x
u









  

a- show that this distribution satisfies the continuity equation? 

b- show that the flow satisfies Laplace's equation if the velocity field is derived from a 

potential. 

Exercise 6:  

The components of the velocity field of the two-dimensional incompressible flow are given 

by the following equations 








)(

)(

1x2yv

x1xyu 2

 

Show that the flow is irrotational and satisfies the continuity equation. 

Exercise 7:  

The y-direction velocity component of a two-dimensional flow is given by: yxxy3v 2   
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Determine the component of the velocity in the x direction that satisfies the continuity 

equation 

Exercise 8: 

A two-dimensional flow is defined by the velocity coordinates  

U=-4m/s, v=-2m/s. 

- Determine the corresponding stream function and velocity potential. 

- Draw the equipotential line through the origin. 

Exercise 9: 

Determine the corresponding stream function for the following velocity potential: 

φ =x3-3xy2 

- Plot the stream function ψ=0, which passes through the origin. 

Exercise 10: 

For a two-dimensional flow, the velocity potential is given by : 22 yx   

- Determine the components of the velocity in the x and y directions. 

- Show that the velocity satisfies the continuity and irrotationality conditions. 

- Determine the stream function and the flow rate between the current functions (2,0) and 

(2,2). 

Show that the stream functions and equipotentials form an orthogonal network 

perpendicular to the point (2,2). 

Exercise 11: 

Consider a plane flow modelled by the following complex potential velocity function : 

zlnK)z(f   

  where z is the complex variable and K is a real constant.  

1/ Write f(z) in complex form. 

2/ Give the expression of the stream function and the velocity potential. 

3/ Determine the components of the velocity(vr,vθ). 

Exercise 12: 

A two-dimensional fluid flow is described by the following stream function: 

 xy
L

U








 where U and L are constants. 

1. Show that this flow has a potential and deduce the components of the velocity. 

2. Give the expression for the velocity potential. 

3. Give the expression for the complex potential function. 

4. Determine the stagnation points and the stream function passing through the stagnation 

point. 
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CHAPTER II 

Integral Conservation Laws: Reynolds Transport Theorem (RTT) 

 

II. Integral Conservation Laws 

The integral conservation laws are the fundamental principles in physics and 

engineering that describe the conservation of certain physical quantities, such as mass, 

momentum and energy within a system or control volume. These laws are expressed in 

the form of integral equations that consider the variations of these quantities within a 

volume as well as the flows across these boundaries.  

The Reynolds Transport Theorem (RTT) is an essential mathematical tool that relates 

the time derivative of a volume integral to surface dynamic integrals, thus facilitating 

volumes that may be mobile, fixed or deformable the analysis of dynamic systems. It is 

particularly useful when working with control. 

II.1 Control volume 

A control volume, often referred to as V(C) is a fixed or moving region of space chosen 

for the analysis of a fluid flow. This volume can be real or imaginary, and its size, shape 

and position are defined to study the phenomena occurring within it. The control volume 

allows the study to be focused on a subset of the space where variables such as mass, 

velocity, temperature or energy are measured and analyzed. It is an imaginary volume 

through which fluid can flow. The focus is on the physical quantities passing through 

the surface. 

There are two types of control volume: 

- Fixed: The volume remains stationary in space, and the fluid passing through its 

boundaries is observed. This type is common in industrial applications, for example in 

turbines or fluid pipes. 

- Mobile: The volume moves with the fluid, and the boundaries of the volume change 

over time. This approach is often used to study the behavior of specific fluid particles. 
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Figure 1 control volume                            

Figure 2 Control volume : mobile, deformable and non-deformable 

 

II.2 Control Surface 

The control surface, often referred to as the S(C) is the boundary of the control volume. 

It completely surrounds the control volume and delimits the region where flows (such 

as those of mass, momentum or energy) enter and leave. It plays a key role because 

conservation laws often involve surface integrals calculated on this boundary.  

The control volume and its control surface allow conservation equations to be applied 

in a simplified way: 

 Conservation of Mass: By analysing the inflow and outflow of mass through the 

control surface, the changes in mass in the control volume can be calculated. 

 Conservation of momentum: Using the flow of momentum through the control 

surface, we can determine the forces acting on the control volume. 

 Conservation of Energy: The energy exchanged across the control surface helps 

to calculate the internal energy variations of the volume. 
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Figure 3 Control surface 

 

II.3 Material volume 

A material volume V(M) is a region of the fluid that always contains the same fluid 

particles over time. Unlike the control volume, the material volume moves and 

deforms with the fluid flow, following the particles as they move through the velocity 

field. It is also referred to as a ‘set of particles’ or a ‘slice of fluid’ that is followed as it 

moves. 

Characteristics of a material volume: 

 Consisting of a fixed group of particles: The material volume always retains the 

same fluid particles within it, regardless of the deformations or movements 

undergone by the fluid. 

 Deformation and movement: The material volume changes shape and position 

according to variations in velocity and the internal forces of the fluid. 

 Lagrangian approach: This approach makes it possible to study the specific 

behaviour of a slice of fluid, which is useful for analysing the internal changes 

(e.g. deformation or internal energy) of fluid particles. 

 

 

 

 

                                       Figure 4 Material volume 

 

The closed system V(M) is associated with Lagrangian kinematics, while the open 

system V(C) with the Eulerian approach. 
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Figure 5 Closed system and opening system 

 II.4 Material surface 

The material surface S(M) is the boundary of a material volume and is a closed surface 

always containing the same fluid particles on its boundary. Like the material volume, 

the material surface moves and deforms with the fluid particles, maintaining the initial 

particles present at the boundary. 

Characteristics of the material surface: 

 Composed of the same particles over time: The particles that are on the material 

surface at the start remain on that surface during movement. 

 Deformation as a function of forces: The material surface undergoes the same 

deformations as the material volume, because it is subjected to the tensile, 

compressive or shear forces of the fluid. 

 Zero flow through the surface: By definition, no fluid particle flow passes 

through the material surface, because the surface contains a fixed set of particles. 

This differs from open control surfaces, where fluid can flow in or out. 

 

 

 

 

 

 Figure 6 Material surface 

The material volume and material surface allow a tracking approach for particles in 

a fluid flow, making it possible to analyse the transformations undergone by the particles 
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themselves. They are therefore complementary to the concepts of control volume and 

control surface, which remain fixed in space and enable a more global integral analysis 

of fluid systems. 

II.5 Examples: 

1. Material Volume 

Suppose we are studying the dispersion of a drop of ink in a moving container of water. 

If we choose a material volume that initially contains only the ink molecules, this 

volume will follow these specific molecules as they disperse in the water. 

- Material volume: The volume containing the ink will expand and deform over time 

as a result of movement and mixing in the water. 

- Study of internal properties: By following this material volume, we can observe how 

the ink concentration changes, how it is diluted, and how diffusion acts on the particles 

in the surrounding fluid. 

2. Material Surface 

Imagine an air bubble in a glass of water. The material surface of this bubble is the 

boundary between the air inside the bubble and the water outside. 

- Material surface: The surface of the bubble always contains the same air particles on 

its boundary, even if the bubble rises into the water or changes shape due to pressure 

forces. 

- Deformation analysis: This surface can be used to study the effects of water pressure 

on the shape of the bubble and observe how it deforms under the forces of tension and 

compression. 

II.6 Reynolds transport theorem (RTT) 

Before looking at the Reynolds Transport Theorem, we need to introduce a few 

basic concepts. 

II.6.1 Flow concept 

To measure the quantity of matter passing through a surface (S) per unit of time and 

surface area, we introduce the notion of flow: flow of mass, momentum, energy, etc. 

 Volume and mass flow 

The elementary volume flow dqv through a surface dS is the volume of fluid dv that 

passes through this surface in a time interval dt, i.e.: 
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Then, the total volum flow  qv over a surface S is : 

 ds.n.Vqv


                                                                                                                               (II.1) 

Likewise for mass flow: qm=qv  or again        

  ds.n.V
dt

dm
q m




          then:      

 ds.n.Vqm


                                                                                                                                         (II.2)

 II.6.2 Intensive quantities and extensive quantities 

1. Intensive Quantities 

An intensive quantity is a physical property that does not depend on the size or amount 

of the system or substance. These quantities remain constant regardless of how much 

material is present in the system. 

Characteristics: 

 Scale-independent: Dividing the system into smaller parts does not change the 

value of an intensive property. 

 Examples: 

o Temperature (T) 

o Pressure (P) 

o Density (ρ) 

o Specific heat (Cp,Cv ) 

o Specific volume (v) 

2. Extensive Quantities 

An extensive quantity is a physical property that depends on the size, amount, or 

extent of the system or substance. These quantities scale with the system's size or 

volume. 

Characteristics: 

 Scale-dependent: Dividing the system into smaller parts reduces the value of 

the extensive property proportionally. 

 Examples: 


s

v dsn.Vq


ds.n.Vsd.V
dt

dv
q v



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o Mass (m) 

o Volume (V) 

o Energy (E) 

o Enthalpy (H) 

o Entropy (S) 

II.6.3 Formulation of the Reynolds Transport Theorem, RTT 

The intensive quantities, are independent of the mass of the system. In particular, we'll 

be looking at quantities associated with mass m, momentum mV and energy E. 

To do this, we reduce each of the properties (m, mV, E) by the mass m, to obtain the 

intensive quantities (1, V, e). 

These relationships can be generalized for any extensive quantity B with a 

corresponding intensive quantity, i.e. per unit mass, b = B /m: 


v

bdvB 

                                                                                                                     (II.3) 

1.The net flow of B 

Consider a volume V(C) (fixed) bounded by S(C), through which flows a fluid carrying 

B.The net flow of B through the control surface S(C) can therefore be written as:

 
SiSo

dsVbdsVb
dt

dB
B


                                                                                                     (II.4)                            


Sc

net dsVbB


                                                                                                                                                        (II.5) 

With b=B/m                                                                                                               (II.6) 

 

 

 

 

 

 

The flow rate through the surface of a control volume corresponds to the quantity of B 

that ‘accumulates’ (negative or positive) per unit of time in the control volume. This 

variation in B in the control volume can be written as: 
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








VcVc

bdv
dt

d

dt

dB
                                                                                                                                (II.7) 

Accumulation over time in the control volume. 

2. Balance of a control volume 

For a control volume, in the absence of sources (sinks), we recognize the following 

principle: 

   Accumulation in V(c) + balance of flows(through S(c)=0 

In mathematical form, we write the above principle as. 

 

 

0 
ScVc

ds)n.V(bbdv
dt

d

dt

dB 
                 (II.8) 

 

   

  = + 

 

This relationship was presented for a fixed control volume. 

sfluidrel VVV


                                                                                                                                      (II.9) 

If the control volume deforms, consider the relative velocity between the velocity V of 

the fluid and that Vs of the volume Vc 

  b is the intensive property, 
m

B
b   

 ρ is the density, 

 𝑉⃗  is the velocity field, 

 𝑛⃗  is the unit normal vector at the control surface (CS), 

 Vc is the control volume, 

 Sc is the control surface. 

 

 

  Vs=0 if  Vc is fixed 

B b=B/m     

Mass                  m 1 

Momentum       mV V 

Energie                 E e 

Time variation of B when 

following the system 

Time variation of B in the 

control volume 

Net flow of B through surface 

Sc of volume Vc 
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B: Extensive property. A quantity in the closed system  

b: Intensive property. Property B per unit mass 

ρ: density of the fluid 

 V: velocity of the fluid 

VVrel


  : if the surface of the control volume is fixed 

srel VVV


 : if the surface of the control volume is moving with velocity  

dS : aire élémentaire sur la surface de contrôle, Sc 

n


 : outward unit normal of the elementary SC dS 

dv: volume element in the Vc 

II.7 Conservation of mass (continuity equation) 

II.7.1 Application of RTT for the mass 

In this case, let's analyses the conservation of mass with B=m and b=B/m=1. 

Even if the material volume deforms, the mass in it remains the same over time. 

0q
dt

dm

dt

dB
m

systemsystem

                                                                                                                (II.10)                   

(The mass of a system remains constant over time) 

Since there is no accumulation (or loss) of mass takes place in the control volume. The 

sum of positive and negative flows (volumes) is zero. 

The conservation of mass equation takes the form: 

0ds)n.V(dv
dt

d

ScVc

 


                                                                                                                     (II.11) 

 We have    m

Sc

qds)n.V(


  sum of mass flow. (II.12) 

**If the control volume is fixed, 0Vs 


  and VVrel


   (the flow velocity) and the flow 

is steady-state, then: 

0ds)n.V(dv
dt

d

ScVc

 


  

0ds)n.V(
Sc






            (II.13) 
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0dv
dt

d

Vc

 
                                                                                                                    (II.14) 

 If the fluid is incompressible ρ=cte, then we have, even in unsteady conditions, 

In the case of uniform inputs and outputs (1D), the previous equations become: 

 
inlets

j

outlet

ij

inlets

jji

outlets

ii

Sc

qmqmSVSV0ds)n.V( 


 (Mass flow rates)           (II.15) 

 
inlet

j

outlet

ij

inlets

ji

outlets

i

Sc

qvqvSVSV0ds)n.V(


(volume flows)     (II.16) 

In practice, we often find applications with a single inlet and a single outlet, such as a 

pipe carrying water, or a passage for ventilation in a building. These types of problems 

are modelled using the notion of a flow tube. 

This is a conceptually fictitious pipe (which can sometimes be correspond to a physical 

tube) with an inlet cross-section Ai, an outlet cross-section Ao , both plane, and side 

walls Ap tangent to the velocity vector. 

 

 

 

 

 Figure 7 Example of current tube 

 

Given that at side walls n.V


=0, the surface integral only needs to consider the inlet 

and outlet, i.e. : 





0

SwSoSiSc

dA)n.V(dA)n.V(dA)n.V(dA)n.V(



    

In incompressible conditions (ρ=cste) and if the velocities ue and us are considered to 

be uniform, then: 

iii

Si

QvAudA)n.V( 


     Inlets  

ooo

So

QvAudA)n.V( 


   Outlets 

oiiioo QvQvAuAu   (Constant volume flows) 

When cste, we have     ρiui Ai = ρouo Ao 
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II.8 Conservation of momentum 

II.8.1 Application of RTT for momentum 

For any extensive property B, the RTT states: 

 

 
Sc

rel

Vcsystem

ds)n.V(bbdv
dt

d

dt

dB 
                with  

VVrel




                                                

For momentum   VmB


  VmB


 and then V
m

B
b


  the RTT gives: 

 
ScVcsystem

ds)n.V(VdvV
dt

d

dt

)Vm(d 


                                                                                        (II.17) 

  
ScVc

syst ds)n.V(VdvV
dt

d
F


                    (II.18) 

 

(since at an instant t, the (moving) material volume coincides with the (fixed) control 

volume, we have the expression): 

 

 
 
ScVc

VC ds)n.V(VdvV
dt

d
F




                                                          (II.19) 

 

 

 

 

 

**Note that the forces on the control volume are sources (+) or sinks (-) of momentum. 

A source (force experienced by the fluid) corresponds to an increase in its momentum. 

A sink (force exerted by the fluid) corresponds to a decrease in its momentum. 

The momentum equation is a vector equation, so it can be written for the 3 velocity 

components u, v and w, or in index notation for Vi with i=1,2,3. 

 
Sc

rel

Vc

VC ds)n.V(VdvV
dt

d
F


                                                                                       (II.20) 

 
Sc

reli

Vc

isyst ds)n.V(VdvV
dt

d
F


                                                                                      (II.21) 

 syst

systemsystem

F
dt

)Vm(d

dt

dB 


Forces exerted on the 

VC 

Variation in momentum 

in the VC 

Flow of momentum 

through the SC 
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Where Vi are the u, v and w components 

Fi are Fx, Fy, Fz 

If the control volume does not deform, 
VVrel




and if the flow is permanent, we have: 

 
Sc

rel

Vc

VC ds)n.V(VdvV
dt

d
F


                                                                        (II.22) 

If, in addition, the inputs and outputs have uniform speeds, the integral over the Sc  is 

replaced by the balance of the incoming and outgoing flows: 

 
SC qmSc

dsn.VVds)n.V(V 


  then  
inlets

jj

outlets

iiVC VqmVqmF


                                (II.23) 

Note: The summations over i and j correspond to the number of inlets/outlets 

In the case of a single input and output we have: 

)VV(qmF inletoutletVC


                                                                                         (II.24) 

We can use the current tube as an example. 

 

11112222VC V)AV(V)AV(F


                                                                            (II.25) 

rpFppFpFpFPF 21VC


                                                                            (II.26) 

 

                                                                                     

 

 

 

 

 

 

Figure 8 Momentum  of current tube 

 

II.9 Conservation of energy 

II.9.1 Application of RTT for Energy 

For the energy equation, it expresses the conservation of energy for a control volume, 

relating it to the fluxes across its boundaries and sources within the volume. 



52 
 

For any extensive property B, the RTT states: 

 
Sc

rel

Vcsystem

ds)n.V(bbdv
dt

d

dt

dB 
  

b is the intensive property : 
m

B
b  , B=e then b=e/m=E      

The extensive quantity b is then the total energy of the system, only mechanical and 

thermal energy exchanges are taken into account. 

For the energy equation, the conserved extensive property is the total energy (E), 

which includes internal energy (U), kinetic energy (KE), and potential energy (PE): 

 
VC

2

dv)gz
2

V
u(PEKEUE                                                                       (II.27)       

 Applying RTT, 

  
ScVcsystem

ds)n.V(eedv
dt

d

dt

de 
                                                                         (II.28) 

 

 

Where   is the specific total energy (per unit mass).  

 

This equation represents the rate of change of total energy in the system. 

Including Heat Transfer and Work 

The energy equation must also account for heat transfer (Q˙) and work done (W˙), 

such as shaft work or boundary work: 

 out

ScVc

WQds)n.V(eedv
dt

d 
                                                                   (II.29) 

Here: 

is the heat added to the system. 

is the work done by the system. 

Expanded Energy Equation in Terms of Fluxes 

   
VC SCScVc

dsV.dvqds)n.V(eedv
dt

d 



                                                       (II.30) 
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where: 

 𝑞̇ represents volumetric heat generation, 

 𝜏̇ is the stress tensor accounting for work contributions. 

The RTT for the energy equation bridges the system and control volume perspectives, 

allowing energy conservation to be expressed in terms of temporal changes within a 

control volume, fluxes across boundaries, and external energy sources or sinks. It is 

fundamental in solving engineering problems involving heat transfer and fluid flow. 

II.10 Applications 

Exercise1: 

a continuous flow of water in a tank containing several inlets and outlets (fig1). 

1/ Specify the control volume. 

2/ Determine the velocity in section3.  

We give A1=0.05m2, A2=0.01m2, A3=0.06m2 

?

)/(

)/(







3

2

1

V

smj8V

smi4V







 

Exercise2: 

Under normal conditions, air enters a compressor at a flow rate of 0.3m3/s (fig2) and 

exits the tank through a section with a diameter of 3cm and a density of 0.0511kg/m3. 

Determine the rate of change with respect to time of the density in the tank. 

 

 

 

 

Exercise3: 

Estimate the filling time (in minutes) of the cone-shaped tank 

(fig3) with a height of 5m, a top diameter of 5m and a flow rate 

of Qv=2.67m3/min.  
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Exercise4: 

A channel of width 3m is provided with an inlet of uniform velocity V and an outlet 

whose velocity distribution is given by  

u=4y-2y fig(4). Determine the velocity V at the inlet. 

  

 

 

Exercise5: 

The water flows through a 20° elbow with a flow rate of 0.025m3/s (fig5). The effects 

of viscosity and gravity are assumed to be negligible and the pressures in sections (1) 

and (2) are P1=150KPa and P2=14.5KPa respectively. Determine the components of the 

force required to hold the elbow in place.  

 

 

 

 

                              (fig5) 
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Chapter III 

Dimensional analysis and similarities 

 

III.1 Introduction 

Dimensional analysis is a practical method for checking the homogeneity of a physical 

formula through its dimensional equations, i.e. the decomposition of the physical 

quantities it involves into a product of basic quantities: length, duration, mass, electrical 

intensity, etc., all of which are irreducible. 

Dimensional analysis is used to:  

- Determine the unit of a quantity  

- Check the homogeneity of a formula  

- Predict the form of a physical law in order to find the solution to certain problems 

without having to solve an equation: for many of the physical phenomena studied, we 

can express a characteristic quantity of the phenomenon and deduce an order of 

magnitude.  

Dimensional analysis can be applied in almost all areas of engineering. It is also a very 

useful additional tool in modern fluid mechanics. It is based on the principle of 

dimensional homogeneity and uses the dimensions of the relevant variables affecting 

the phenomenon in question. 

III.2 Dimensions 

The various physical quantities used in fluid mechanics can be expressed in terms of 

fundamental or primary quantities. 

In the International System, the primary or fundamental physical quantities are mass, 

length, time and sometimes temperature (compressible flows) and are designated 

respectively by the letters M,L,T,θ.  Quantities that are expressed as a function of the 

fundamental quantities are called secondary or derived quantities (speed, area, 

acceleration....). The expression of a derived quantity as a function of the fundamental 

quantity is called the Dimension of the physical quantity. 

A quantity can be expressed dimensionally as M,L,T or F,L,T. 

Example: 
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Flow = velocity x area= 13
3

2 T.L
T

L
L.

T

L   

Kinematic viscosity υ=µ/ρ we have
dy

du
  and 

T

1

aire/force

L

1
x

T

L

eintcontra

dy

du



  
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M

T

1
xTL
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T

1
xL

T

L
Mx

T

1
airex

lerationmassexacce   

3

3
ML

L

M

volume

mass   

Then the kinematic viscosity, 22

3

11

TML
ML

TML 









  

II.3. Principle of dimensional homogeneity 

An equation is considered to be dimensionally homogeneous if the form of the 

equation does not depend on the units of measurement, or if the two terms of the 

equation have the same dimensions. 

III.4 Dimensional analysis method 

The use of dimensions enables us to determine whether a literal expression is 

homogeneous or not. This makes it possible to identify any errors. But dimensional 

analysis can also be used to find or guess physical laws when the theoretical solution is 

too complex. 

When the system under study is too complex to allow a complete resolution of the 

fundamental equations, or when its behaviour is chaotic, dimensional analysis provides 

simple access to relationships between the various quantities characterising the system.  

By grouping these different quantities into dimensionless numbers, it is also 

possible to establish similarities between the behaviour of similar but different systems 

(prototype/model). 

The application of dimensional analysis to a practical problem is based on the 

assumption that certain variables affecting the phenomenon are independent. The 

number of variables characterising the problem is equal to the number of independent 

variables plus one. One is the number of dependent variables. 
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Dimensional analysis is used to obtain a functional relationship between the 

dependent variables and the independent variables. 

The first step in dimensional analysis is to determine the variables involved in the 

problem. Naming these variables requires a good understanding of the phenomenon. 

The second step is to form the adimensional groups of these variables. 

The Vachy-Buckingham -π method (π Buckingham theorem) is the most 

commonly used method in dimensional analysis. 

Let's take the example of determining the regular head losses in a cylindrical pipe: 

Les différentes grandeurs qui interviennent sont : 

       L

Pt
 La perte de charge par unité de longueur, 

D Le diamètre de la conduite, 

ε La rugosité de la conduite, 

v La vitesse moyenne de l’écoulement (ou le débit), 

μ La viscosité du fluide, 

ρ La masse volumique du fluide. 

Par conséquent, il existe une relation entre ces différentes grandeurs : 

),,,,(  vDf
L

Pt 


 

The function f can be difficult to find, so dimensional analysis will enable us to 

establish a simpler relationship between a smaller number of dimensionless quantities. 

A systematic method will enable us to find 3 dimensionless numbers: 

     



 

2

t

1
V

D

L

p
        Re

VD
2 




                     r3

D



   

This will enable us to establish      ),( 321    
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t 



















  

 The dimensional analysis shows that the regular head loss depends solely on the 

The dimensional analysis shows that the regular head loss depends solely on the 

Reynolds number and the relative roughness of the pipe.  
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III.5. Vachy-Buckingham π-theorem 

The π-Buckingham method expresses the resulting equation in terms of non-

dimensional groups (π-terms). According to this theorem, if a phenomenon drives p 

variables: a1,a2,a3,.....,.ap such that one variable a1depends on the other independent 

variables a2,a3,.....,.an, the general functional relationship between the dependent 

variables and the independent variables can be expressed as follows: 

a1=f(a2,a3,...................ap)                                                                               (III.1) 

Expression (III.1) can be written mathematically as: 

       ( a2,a3,.........ap)=0                                                                                 (III.2) 

 That is, if an equation with p variables is homogeneous, it can be reduced to a relation 

between (p-q) dimensionless independent products, where q is the minimum number of 

dimensions required to describe the p variables, and we write:  

f(π1, π2, π3,................................ πp-q)=0                                                       (III.3) 

In problems where all fundamental dimensions are considered, it is recommended to 

select the repeated variables using the following guidelines: 

 Select the first variable from those describing the flow geometry. 

 Select the second repeated variable representing the fluid properties. 

 Select the third variable repeated with those characterising the movement of the 

fluid.  

To illustrate this statement, let's go back to the previous example: 

We had p=6 variables (which require a minimum of q=3 dimensions (M,L,T). 

22t TML
L

p 







,   LD  ,   L ,   1LTV  ,   11TML  ,   3ML  

Consequently, the equation linking the 6 variables can be reduced to an equation linking 

p-q = 3 dimensionless products: 





 

2

t
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D

L

p
, Re

VD
2 




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


   

Buckingham's π theorem therefore allows the passage: 
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L

p t 
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
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In order to apply this theorem, we need to use a systematic method: 

 List the variables in the problem p 

 Write the equation in dimensions for each of the p variables 

 Determine q, and therefore p-q the number of dimensionless products 

characterising the problem. 

 From the p variables, choose a number q that are dimensionally independent q 

primary variables 

 Form the p-q products π by combining the p-q non-primary variables with the q 

primaries so as to obtain dimensionless quantities.   

  Formulate the relationship between the p-q products π found. 

We will apply the method to the example of flow around a vertical plate to write the 

drag force exerted by the flow on this plate in dimensionless form. 

The drag force is the force exerted by a flow on an object in the direction parallel to the 

flow. We will study the case of a rectangular flat plate. 

The variables of the problem are: F,h,L,,ρ p = 6 

F: drag force 

h: plate height 

L: plate width 

v: mean flow velocity 

        µ: fluid viscosity 

      ρ: fluid density 

1.  The variables F,h,L,V,µ,ρ p = 6 

M,L,T  q=3 

2. Equations in dimensions: 

       2TMLF    

       11TML   

       1LTV   

       Lh   

       LL   

        3ML        

D
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3. Number of products π dimensionless: (p- q) = 6 - 3 = 3    

4. Choice of q= 3 dimensionally independent primary variables:  

(For example h, ρ and V) 

5. Formation of the 3 π products: by combining the primary and non-primary 

variables.           

 

 

6. Formulate the relationship between the 3 products p found: 

 

 

With:         
vh

3



             

221
hv

F


  ,                           

h

L
2   

                             

Either :      

                                                        

 

                  Form factor 

                                                   Nature of flow 

III.5.1 Illustration of the benefits of the method: 

If F1 is the drag force measured on a plate of dimensions L1 x h1 when subjected to a 

flow of velocity v1, then: 

)Re1,hL(
hv

F
1112

1

2

1

1 


 where 


 11
1

hv
Re   

 

Dimensional analysis using Buckingham's theorem shows that for a plate with 

dimensions L2 x h2 such that: 

   1122 hLhL   Similarity of form 

If 2122111

2

1
2 ReRehvhvv

h

h
v    Hydrodynamic similarity 

 

Scale factor 

111 cba

1 vhF   222 cba

2 vhL   333 cba

3 vh  
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And then )Re1,hL()Re1,hL( 222111    
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III.6 Usual dimensionless coefficients  

There are a number of dimensionless quantities which can characterise the nature of a 

flow: 

 The Reynolds number   


VL
Re     

 forcesitycosisv

 forcesinertia
                           (III.4) 

General importance for all types of flow        

 Tne Froude number 
gL

V
Fr 

 forcesgarvity 

 forces inertia                       (III.5) 

           Importance for free surface flows. 

 The Euler number
2V

p
Eu






forces inertia 

forces pression                        (III.6) 

Important if there are large pressure differences within the flow 

 The Mach number 
c

V
Ma   

forcesility compressib

forces inertia                   (III.7) 

Importance for compressible fluid flows, c is the speed of sound 

 The Strouhal number 
V

L
St




forces inertia convective

forces inertia locals                (III.8) 

Importance for non-stationary flows 

III.7. Similitude in differential equations 

To carry out a complete analysis of a flow, it is first necessary to make the appropriate 

simplifying assumptions. Evaluating the various dimensionless coefficients relating to 

the flow (Reynolds, Froude, etc.) will simplify the equations to be solved. 

Consider the conservation of momentum equations (the Navier-Stockes equations) for an 

incompressible flow along x, y and z, written in the form: 
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Let's consider the (z) equation (III.11) component of these equations and write it in 

dimensionless form: 
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Let's introduce some dimensionless variables:  
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Where L, V, p0, t are characteristic quantities of the system under study. 
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By replacing in our equation we obtain: 
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Divide the whole expression by: 
L

V 2
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This can be interpreted as follows: 

 If St is very small: the instantaneous derivative can be neglected and the flow 

can be considered stationary. 

 If Eu is very small: the pressure gradient can be neglected. 

 If Re is very large: the viscosity of the fluid can be neglected and it can be treated 

as a perfect fluid. 

 If Fr is very large: the effects of gravity can be neglected. 

III.8. Similarity and model tests 

To find out about the performance of mechanical or hydraulic structures or machines 

(pumps, turbines, ....) before they are built or manufactured, the study is carried out on 

a scale model, which is a representation on a different scale of the system or structure 

(prototype) that you wish to test. 

 The model with small-scale reproducing the actual structure 

 The prototype is the structure or machine 

 

 

 

 

 

Virtual model     Laboratory model                Prototype     
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The study of fluid mechanics and hydraulics problems leads to: 

 Geometric similarity 

 Kinematic similarity 

 Dynamic similarity     

III.8.1 Geometric similarity 

For geometric similarity to exist between a model and a prototype, the length ratios 

must be the same and the angles between the dimensions must also be the same.  

Lm: the length of the model 

Hm: the height of the model 

Dm: diameter of the model 

Am: the area of the model 

vm: the volume of the model 

And let Lp,Hp ,Dp ,Ap and vp be the corresponding values of the prototype. 

For a geometric similarity we have: 

Lr is called the scaling factor 

r

p

m A
A

A
 , Ar is the ratio of the areas 

r

p

m v
v

v
 , vr is the ratio of the volumes 

III.8.2 Kinematic similarity 

Kinematic similarity is the similarity of motion.  

If, at the points corresponding to the model and the prototype, the velocity and 

acceleration ratios are the same, as well as the velocity in the same directions, the two 

flows are said to be kinematically similar. 

(V1)m : the fluid velocity at point 1 of the model  

(V2)m : the fluid velocity at point 2 of the model  

(a1)m : the fluid acceleration at point 1 of the model  

(a2)m : the fluid acceleration at point 2 of the model 

and (V1)p,(V2)p,(a1)p ,(a2)p, the corresponding speeds and accelerations at the points in 

the prototype fluid. 

 For kinematic similarity we have : 
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             (III.16) 
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Vr is the velocities ratio                                         
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1                                                                                                 (III.17) 

 

ar is the accelerations ratio 

The direction of the velocity in the model and in the prototype must be the same. 

III.8.3 Dynamic similarity 

Dynamic similarity is the similarity of forces. The forces in the model and the prototype 

are similar. 

If at the corresponding points the identical types of force are parallel and give the same 

ratio. 

(Fi)m: the force of inertia at the model point 

(Fv)m: the viscous force at the model point 

(Fg)mthe for: the force of gravity at the model point 

 And (Fi)p, (Fv)p, (Fg)p are the forces corresponding to the prototype. 

For dynamic similarity we have: 

r

pg

mg

pv

mv

pi

mi F
)F(

)F(

)F(

)F(

)F(

)F(
                                                                                     (III.18) 

Fr is the forces ratio 

The directions of the forces in the model and in the prototype must be the same. 

To ensure dynamic similarity between the model and the prototype, the dimensionless 

numbers of the model and the prototype must be the same. 

 This condition cannot be satisfied for all dimensionless numbers, so the models are 

designated on the basis of the forces that dominate them. This flow situation is called 

the law of similarity. 

 Reynolds Model Law  

In a flow situation where, in addition to inertial forces, viscous forces predominate. The 

similarity in the flow of the model and the prototype can be established, if the Reynolds 

numbers are the same for both systems. 

(Re)model=(Re)prototype                                                                                            (III.19) 
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Where the different index quantities r represents the scaling ratios. 

In the same way: 

The time scale 
r

r

r
V

L
T   

The acceleration scale 
r

r

r
T

V
a   

The force scale  Fr= (mass X acceleration)= mr.ar= ρrArVr.ar=ρrLr
2V2

r.                     (III.21) 

The flow rate scale qr= (ρAV)r=ρrArVr= ρrLr
2Vr                                                                                 (III.22) 
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Dimensional formulae of some derived quantities                                                         
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III.9 Applications 

Exercise1: 

Determine the coefficients A and B that appear in the homogeneous dimensional 

equation. 0Bx
dt

dx
A

dt

xd
2

2

  

   with x a length and t time 

Exercise2: 

The pressure difference ΔP in a tube of diameter D and length l depends on the flow 

velocity V, the viscosity cinématique υ, the density ρ and the roughness ԑ of the tube 

surface. Using Buckingham's theorem to write the expression for ΔP in dimensionless 

form. 

Exercise3: 

Oil with a density of 920kg/m3 and a kinematic viscosity of υ=0.003Ns/m2 was 

discharged at a rate of 2500 l/s through a 1.2mm diameter tube. The tests were carried 

out in a 12cm diameter tube at 20°C. If the viscosity of water at 20°C is 0.01Ns/m2, 

find : 

1/ the flow velocity 

2/ the flow rate in the model 

Exercise4: 

A geometrically similar model of an air duct is built at 1:25 scale and tested with 

water, which is 50 times more viscous and 800 times denser than air. When tested 

under conditions of dynamic similarity, the pressure drop in the model is 2 bar. Find 

the corresponding pressure drop in the prototype. 

Exercise 5: 

The equations of motion of a stationary flow on a flat plate are: 

The equation of continuity :  0
y

v

x

u





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The equation of momentum:  
2
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If the reference quantities are u0, ρ0,μ0,L0.  Write these equations in dimensionless form 

and determine the characteristic parameters 
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