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Preface

This handout complies with the ministerial outline for the Fluid Mechanics 2
course offered in third year S5_ Bachelor's degree LMD at Algerian universities. It is a

continuation of the course given second year S3_ Bachelor's degree LMD .

Fluid mechanics is one of the most difficult disciplines to assimilate. It requires
both theoretical mathematical knowledge (tensor calculus, divergence and gradient
operators......) and basic physics (Archimede force, Bernoulli equation, notion of

similarity, etc.).

This course is structured in three chapters. The first deals with fluid kinematics, in
which theoretical mathematical knowledge is first used (differential equations,
divergence and gradient operators, integrals), the conservation of mass equation and 2D
plane flows in the incompressible and irrotational case, as well as the complex potential

function.

The second chapter deals with integral conservation laws. The Reynolds transport

theorem is applied to the equation of continuity of momentum and energy.

The notion of dimensional analysis and similarity seems essential and this is the subject
of the third chapter.
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Chapter |
Fluid kinematics

1.1 Introduction
The study of fluid mechanics includes:

- Fluid statics, in which we study the fluid at rest (course S3) and the essential law is the
fundamental relation of statics.

- Fluid kinematics, is the analytical description of a system in motion. In other words,
we're interested in the movements of fluids in relation to time, independently of the causes
that provoke them, i.e. without taking into account the forces that are at their source.

- Fluid dynamics, in which fluid motion is studied in the context of interacting forces.

1.2 Mathematical concepts for fluid mechanics
1.2.1 Differential of a function

Given a function f which depends on the variables x, y and z, f=f(x ,y, z)
The total differential df is written:

_or or of
df—axdx+aydy+6zdz

of 0 3} . L .
a , o et a Are the partial derivatives of f with respect to x, y and z
dx dy 0z

1.2.2 Vector analysis operators

» Operator Nabla

<
I

,Q,)|Q)%>|Q)$<)|Q)



> Gradient of a scalar field
of
OX
of
oy
of
0z

grad(f) = Vf =

» Divergence of a vector field

. oV,
div(V)=V.V = OV, +—Y 4 v,
oXx oy oz

> Rotation of a vector field

N,

oy 0z
— . - - |0V, oV
rot(V)=VaV=—X_-""%

0z OX

Ny vy

oX oy
» Laplacian of a function

. — o’y 0°¢p 0%

A=V =div(gradp) =— +—+
b=V (grad¢) o oy T o

1.3 Description of a moving fluid
1.3.1 The fluid particle

The fluid particle is chosen as the elementary entity for a complete description of flows:

It is a "packet" of molecules surrounding a given point M; these are then assumed to all
have the same velocity at the same instant.

In the study of fluid motion, we generally define at each point M: velocity, density p and
pressure P (and possibly temperature T). Describing the motion of a fluid calls on notions
that differ from those developed in point or solid mechanics. Fluid motion is a flow in
which there is continuous deformation of the fluid. In a similar way to solid mechanics, we
can isolate (by thought or by finding a means of visualization, coloring for example) a

restricted part of the fluid called a particle and "follow" it over time, i.e. know its position
2



at each instant. This position will be known, for example, by its Cartesian coordinates x
(t,Xo, Yo, 20), Y(t,Xo, Yo, Zo) and z(t,Xo, Yo, Zo) Where Xo,yoand zo represent the coordinates of
the selected particle at time to.

The particle's velocity will have the following components:

OX oy 0z
u=—,v =— w=—
ot ot ot (1.1)
The velocity of the fluid particle is then defined by :
(4= )
ot
- ay =
V=lv=—|=V(n,t
o |=V(t)
welt
Y (1.2)

Different types of fluid flow regimes can be observed.

» Permanent (or stationary) regime: quantities do not depend on time% =0V=V

(M) (so for p and P)(this does not mean that the fluid has a constant velocity
everywhere, only that the fluid velocity at a given point is the same at every instant.
» Uniform regime: velocity does not depend on the point considered = (t)
» Laminar regime: fluid layers slide relative to each other, velocities are continuous.

» Turbulent regime: velocities are discontinuous, fluid layers interpenetrate aleatory.

1.3.2 Lagrange description - Euler description
The fluid in motion can be described in two equivalent ways. We can choose to follow the
fluid particles as they move (Lagrange point of view) and the variables ro=(Xo, Yo, Zo) and t
are called Lagrange variables.
The Lagrange point of view consists in focusing on the trajectory of the fluid particles.
We can take a snapshot at a given instant of the velocity field of all fluid particles
(Euler's point of view). Euler's point of view focuses on the evolution of fluid properties at
different points and over time.

Lagrange's method proves tricky in most cases, since it's not easy to keep track of the
particles: it's rarely used.



Euler's method consists in knowing the velocity of the particles over time t at a given point
determined by its coordinates, for example Cartesian x, y and z. The three projections of
the velocity of the fluid particle passing through point M at time t are called Euler variables.
This method is more widely used than Lagrange's, as knowledge of the velocity field is
sufficient to describe the fluid in motion.

1.4 Trajectories and path lines
1.4.1 Trajectory:

The trajectory of a fluid particle is defined by the path followed by this particle in the

course of time, i.e. the set of successive positions of this particle in the motion.

The particle

v trajectory

/7

P(t2) P(/tg’/

Figure 1 Particle trajectory

The trajectory can be visualized by injecting a drop of dye and following its movement.
Trajectories are generally calculated by eliminating time from the expressions expressing
the position of a fluid particle at each instant:

OM = r(t) = (x(t), y(t), 2(t))

If we know the velocity in Eulerian description, we can determine the particle

trajectories by integrating this velocity with respect to time.

Given the velocity:
u(x,y,z,t)
V(rt)=V(x,y,z,t)=|v(x,y,z,t) | in Eulerian description
w(X,Y,z,t)
By definition



This gives us the differential system:

(%=u(x,y,z,t)\
%=v(x,y,z,t)
k%=w(x,y,z,t))

(1.3)

(1.4)

Integrating this system with initial conditions ro =( Xo=X(to), Yo= Y(to), z0=z(t0)), we obtain

t
the position at each instant r(t) = (x(t),y(t),z(t)) =ro +j'\7(ro,t)dt
0

By eliminating time, we obtain a relationship between the variables (x, y, z)

corresponding to the equation of the particle's trajectory.

1.4.2 Streamlines:

Let's adopt Euler's approach and assume that at each instant t we know the velocity vector

of a fluid particle located at M. The velocity vector then designates a vector field.

V(M,t).



Stream lines at t=to

Streamm lines at t=t

Figure 2 Stream lines

By definition, a streamline, or flow line, is a field line of the velocity vector, i.e. a
curve C such that at a fixed instant t, for any point M €C, (M, t) is tangent to C at M.

When the velocity field does not depend on time, flow lines do not evolve over time: the

flow regime is said to be stationary or permanent.

Let dM a flow line element, dM = (dx,dy,dz) ,d—Ni is parallel at M to the velocity:

At the velocity Y(M:D) dM //V < dM AV =0

Or
u(x,y,z,t) wdy —v dz 0
V(M) =V(x,y,zt)=|v(x,y,z;t) |[=dM AV =| udz—wdx |=|0
w( X,y,z,t) vdx — udy 0 (1.5)
Finally, we obtain the relationships defining the stream lines
dx ~dy dz
u(x,y,z,t)  v(x,y,z,t) w(x,y,zt) (1.6)



Figlre +.3 Stream lines over an obstacle -
Note

» Streamlines are generally time-dependent, so they deform over time.

> In steady state (stationary flow), velocities no longer depend on time, and the two
previous conditions coincide with :

dx  dy  dz
u(x,y,z)_v(x,y,z)_W(x,y,z)

(1.7)

The particles continuously follow the same trajectories, generating the same streamlines.
In this particular case, trajectory and streamlines are identical.

Other quantities characterizing fluid motion can also be defined:
1.4.3 Current tube:
A current tube is defined as the set of current lines supported by a closed contour.

‘/Contour [\

Figure 4 Current tube

1.4.4 Emission lines:
Emission lines are the set of all particles having coincided at an earlier instant with a fixed
point E.



_ Trajectory Trajectory
Trajectory at t at ¢
at f, 4 i
b H :

Trajectary
at g
A

Trajectary of the paricle
Po emitted in E at to

o

emission line
relative to E att

Figure 5 Emission lines

To visualize emission lines, we can inject dye continuously at point E. The colored

curves correspond to the emission lines.

1.5 Particular derivative

Consider a local physical quantity G(M, t) attached to a fluid particle located in M at time
t . We can think of temperature, pressure, density.... Let's calculate the rate of change of
this quantity as we follow the particle. This quantity is called the particular derivative and
is denoted DG/Dt.

The fluid particle at time t+dt will be at the point with coordinates x+udt, y+vdt, z+wdt

The variation of the function G will therefore be equal to:

dG=G(x+ udt,y+vdt,y+Wdt)—G(x,y,z):ﬁudtﬁL@thﬁL@Wdt+@dt
OX oy oz ot

dG DG . — .
The derivative I denoted Dt and called the particular derivative, is equal to :

DG:dG:aGu+an+aGW+ aGdt=\7ﬁG+§

This derivative appears as the sum of two terms:

e The first, called convective or advective, is due to the non-uniformity of the flow,

e The second, called temporal, is due to the unsteady nature of the flow.



1.6 Particle acceleration

Let's calculate the acceleration of a fluid particle from the Eulerian velocity field V(M, t) .

Acceleration is the rate of change of the velocity field as it follows a fluid particle. We
There fore we have:

Calculons I’accélération d’une particule de fluide a partir du champ de vitesse Eulérien
V(M,t). L’accélération est le taux de variation du champ de vitesse en suivant une
particule de fluide. On a donc :

DV Du Dv Dw

d=—=—U+—V+—W
Dt Dt Dt Dt (1.9)
[ dx
u=—
dt
The velocity V = v=3—>t/ :
dz
W=—
\dt)
[, _du_ou oudx oudy audz)
* dt 6t ox ot oy ot oz ot
sola V¥ v oy ¥ oa

YT dt ot ox ot oy ot oz et
g 2dw _ow ow ox ow dy ow oz
* dt ot ox ot oy ot o6z ot

(1.10)
( du odu ou  ou )
a,=—+U—+V—tW—
a lax Vay s
R ov ov ov ov
A=| a = — 4+ U— VW
Yoot ox oy oz
ow ow ow ow
&, =—— 4 U—F Vet W—
Tt T ey e
(1.11)

This gives :



( A
aX=Du ou + (V)
Dt 6t
a, = m_@ﬂVV)v
Dt ot
a =W _W  IT)w
\ Dt ot )

(1.12)
The acceleration can be broken down as follows:

e The first term (0/0t): is related to the non-permanent nature of the velocity. It is called

the local term.

e The second term\7.§: the convective derivative indicates the non-uniform nature of

the velocity. It is called the convective term.

1.7 Volume flow and mass flow
To solve problems in fluid mechanics and hydraulics, we often use the concepts of flow

rate and mean flow velocity.
Volume flow gy measured in (m®/s) or (I/s)
Mass flow rate gm measured in (kg/s)
Volume flow rate is the volume of fluid 6v passing through a given area per unit time
(m3/s).
OVirav= Qvdt (1.13)

The total volume traversing the surface considered during a period of time (tz-t1) is

given by:
t2
Virav = IQth
1 (1.14)

The discharge for a constant vertical velocity on a section of pipe or duct ( perfect fluid)

is as follows:
Qv=V.S (1.15)

Qm:pVS: pqv (|16)
(p the density of the fluid)

e Expression of qv as a function of the velocity field on the surface

The volume flow rate is the flow of the vector across the surface considered:

10



q, =§f V.fids
(1.17)

Figure 6 Velocity flux through a surface
e |f the flow is in the same direction as the surface normal vector: qv> 0, otherwise

gv<0
. The mass flow rate is the mass of fluid passing through a given surface per unit of
time ( Kg.S?).

amtraVZdet (|18)

e The total mass passing through the surface in question over a period of time (t>-t1) is
given by :

t2
My = J.qmdt
t (1.19)
The mass flow rate is the vector flux passing through a given surface:
Am = ﬁ pV.fids
s (1.20)

e |f the flow is in the same direction as the surface normal vector
qm>0, otherwise qm<0

ThePV field thus appears as the mass current density, or surface mass flow.

» In the particular case of a permanent conservative flow through a current tube, the
mass flow rate is conserved: qmi =Qm2
> If the fluid is also incompressible: qvi=qv2

1.8 Continuity equation
The continuity equation translates the principle of conservation of mass:

The change in mass over time dt of a fluid volume element dv = dx dy dz must be equal to
the sum of the masses of incoming fluid, minus that of outgoing fluid.
On considére alors un élément de volume de fluide dv

dv=dx.dy.dz

11



The mass m=[ff pdv of a portion of fluid volume bounded by a surface (S) that we

follow in its motion remains constant, so its particle derivative is zero.

(1.22)

%—T:%”jpdv=H_[%dv+”p(\7.ﬁ)d8=0

(I .21)
Local derivative I

Convective derivative T

1.8.1 Green-Ostrogradsky theorem or divergence theorem

The flux of a vector field A(M ) through a closed surface (S) is equal to the integral over

the volume (v) bounded by (S) of the divergence of the vector field.

[[AM)fids=[[[divAMm).dv
S Y (1.22)
et divA=V.A

So we can write ;

[[p(V.R).ds = [[[div(pV).dv = [[[(V.pV)dv (1.23)
dm 0 .-
o =j!ja—‘t’dv+j!jdw(pV)dv= 0 (1.24)
Or still :
j!j(%ﬁ.p\*/)dv:o (1.25)

Then : On an arbitrary volume (the integral must be zero) this relationship becomes :

12



(1.26)

% V.p\7=@+di\/pV=O
ot
op .
—+divpV =0
ot p (1.27)

Is the continuity equation

In Cartesian coordinates, this equation is written :
op_ 0(pu) , 0(pv) . O(pw) _
ot OX oy 0z

This is the general continuity equation, applicable to all types of flow, and all types of

compressible and incompressible fluids. op

If the fluid is in permanent motion, the density is independent of E: time, and

this becomes:

o(pu) . 9(pv) . 0(pw)

OX oy 0z
The equation obtained indicates that the pV flow through the closed surface is zero
(conservation of mass flow).

=0 or div(pV)=0

ISI = m div (pV).dv = [[ p(V.i).ds =0

For a two-dimensional plane flow we write :
ou ov
— 4 —=
oxX oy
For one-dimensional flow in the x direction

0

6_u=0:>u=cte:>qv=uS=Cte
OX

(S flow cross-section)
Special case of an incompressible fluid :

= % =0=>divV=0
In this case the density is p =cte

So the continuity equation reduces to : divV =0 (1.28)
13



1.8.2 Divergence of a velocity field
1.8.2.1 Definition :

Velocity field divergence ( diw ) is a differential operator with scalar values that measures

changes in the volume of a continuous medium. A positive (resp. negative) value is

associated with expansion (resp. compression). In Cartesian coordinates, it is written :

ou v ow Kov, ov,
+—t—=) —t=—l

ox oy 0z 4“Tox. Ox

In cylindrical coordinates, it is written :

divy = 2OV 1V, | oV,
r or rodo oz

We can say that the divergence of the velocity field gives us information about the change
in volume of a fluid element we're following as it moves. If this element maintains a
constant volume, the divergence is zero. If this is true at any point in the fluid, then the
volume of all fluid elements will remain constant throughout the flow: such a flow is said
to be incompressible.

1.9 Some flow examples
1.9.1 Uniform Flow
In the absence of deformation and rotation, the flow is said to be uniform. This movement

corresponds to solid translational motion.

t=t1 t=t2

Figure 7 Uniform flow without deformation or rotation

The pure rotational movement takes place without deformation and is therefore comparable
to solid rotation, as shown in the following figure.

14



Q o

A B
Figure 8 Fluid flow rotation without deformation

1.9.2 Rotational Flow
The rotational velocity field of a flow OtV is a vector-valued differential operator that
measures twice the rate of rotation of fluid particles on themselves.

In cartesian coordinates, the vortex vector is written as:

(0w o)
oy oz
G=rotv =| M_MWI_gav
0z OX
o _ou
X %) (1.29)

A rotational flow is characterized by the vortex vector Q such that:
Q=20=VAV (1.30)

And o is the rate of rotation

In cylindrical coordinates Withv(ulr Ug Uz ) ,we have :

lou, ou,
r oo o0z
G| e U
0z or
1/6(u,) _du,
ri or 00
(1.31)

For a plane flow, this vector has only one non-zero component since

® =0 and u and v do not depend on z :

15



H\”/:(Z—V-Z—”]éz
X ¥ (1.32)

1.9.3 Stream Function-Incompressible flow

1.9.3.1Definition:
If the flow of an incompressible fluid is conservative, then the continuity equation is:

VV =0 (eq (1.28)).

If we put V=VAA ¥V Athen V. (VAA)=0

A Is called potential vector
In Cartesian coordinates:

d oA, Ay
& AX ay 0z
V =VAA= aiAAy |9 A _,
y A 0z OX 1.33)
0 2 [0Ay  BA,
oz ox  dy

If we consider a flow in the planeL to Oz, and therefore invariant by translation along z,
then: o from which :

w=0 et — =0
oz

_A
oy

function. therefore :

u etv= —aaﬁ then : A, (X,y)=w(Xx,y), the function v is called stream
X

_dv
=5y
1.34
_oy (3
OX
Is the velocity field in Cartesian coordinates.

u

V=

In cylindrical coordinates, this velocity field is written as:

16



1oy

U =-—
" ro0
0, =_";_‘4: Or y(r, 6) (1.35)

1.9.3.2 Properties of the stream function

As we posed V=M N gty Y
ax oy oy ox

Then:

o’y o’y
oxdy  oydx

This relationship constitutes Schwartz's theorem. And so dy is an exact total differential:
oy oy
dy =—dx+—d
V= By y
In the plane (X, y), the set of points for which the value of v is constant y(X,y) = cte
corresponds to the curve y(x) along which dy=0

On this curve, check that:

dw=g—\)|(jdx+a—wdy=—vdx+udy =0
o (1.36)

Or : —vdx+udy=0:>0|—y=X
dx u

y(X,y) = cte then y(x)isas:

dy \Y

dx u (1.37)
pente dela courbe pente du vecteur
y=Ff(x) vitesse V

17



Y a Stream functio y(x,y)

v

X
Figure 9 Qualitative representation of the stream function in the (x, y)plan

Let's calculate the flow between two infinitely adjacent current lines:
Let y(x,y) be the current function L and y+dy the adjacent current function M. The

velocity vector V is perpendicular to the line AB and has components u and v in the x
and y directions.

We know that the flow rate g, = [ V.7ids

Flow through AB= flow through AO+flow through OB
Vds= udy-vdx

oy oy
Vds = —dy+—dx=d
Y y P v
And so dqv =dy therefore, between any two current lines of constants ya and Y :

B B
q, =[da, = [dy=yg-v,
" " (1.38)

18



Path lines

Figure 10 Flow two points and its relationship to the stream function

1.9.4 Irrotational flow — Velocity potential

1.9.4.1 Definition:
Flow is said to be irrotational when the fluid particles do not undergo pure rotations:

Q=0, i.e. rotV =0

0 -Q, Q Q,
Q= Q, 0 -Q/(=0 = Q=0
-Q, Q0 Q,

= H=1VAV=0
In other words, the rotation rate ® is zero in an irrotational flow.
Or, from the mathematical relation V A (Vo) =0, Vo
We can define a scalr ¢ suchthat: V=Vo , @ is called the velocity potential.

In the cartesian reference frame and considering plan flow, we can write:

V=Vp = u=— |, v=@ et W=a—(p (1.39)
OX oy 0z

If we assume that the fluid is incompressible, we must verify :

VV=0 = 6_u+g+_=0
ox oy o0z
19



This leads to the relationship :

2 2 2
6?+6?+6?=0
ox® oy° oz

= Ap=0 Laplace equation

We therefore conclude that the velocity potential must satisfy Laplace’s equation.

Note :
If the flow is irrotational, the stream function must also satisfy Laplace’s equation :
oY /oy 8/6x oV /oy
V={-0¥/0x etVAV=0 =|8/dy|a|-0¥/ox|=0
0 0 0
- J
Y
2 2
av=0 « -2 9T _j
aXZ ay2

1.9.4.2 Properties of the velocity potential
When the flow is plan the equation o(x,y)=C' defines in the plan flow a curve
called « equipotential ».

A long of this curve, since  p(x,y)=C'® , we must verify : dp=0

Or, la différentielle peut s’écrire : do = a—(de + a—(pdy
OX oy
And as along an equipotentialdp =0 , then :

d(p=@dx+a—q)dy=0 = udx+vdy=0
oy

OX
d u
L dy__u
dx Vv (1.40)
dy u _ _ .. : . .
So d_ =—— relationship to be verified at any point on the equipotential.
X Vv

At any point M(x,y) in the flow plane, the streamline and equipotential are orthogonal.

20



4 — W(x,y)=Cste

o(x,y)=Cste

v

Figure 11 Qualitative representation of the path line and the
equipotential in the (X, y) plan

1.9.4.3 Equations de Cauchy Riemann

We can conclude from what we have seen above that :

>
>

The velocity potential(¢) exists only for an irrotational flow.

The stream function(y) is applied for rotational and irrotational flow (stationary and
incompressible).

In the case of irrotational flow, the stream function and velocity potential both
satisfy Laplace's equation.

Therefore, for an irrotational and incompressible flow, the following relationship

u=90 _ov
can be verified: X % (1.41)

v=_00__ov

oy OX

These equations are called Cauchy-Riemann equations.

1.9.4.4 Calculating the length of an arc element along a stream line

We want to calculate the arc on the stream line (y(X,y)=cste).

We have : ds,,_. =/dx*+dy’

Or:

do= a—(pdx+a—(de
OX oy

= udx + vdy
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dy _v dy = !dx
In addition, along the stream line we have y(x,y)=cste , i.e.:dX U therefore: u

by replacing we then obtain

2 2 2
d(p=udX+V—dX 4ty dy
u v (1.42)
Y
There fore : dy=———do
us+v
u
dx = d
wZave 7
Then:
u?+v? d (1.43)
dS e = dX2 +dy2 = dq)z =—(P .
¥=c \/iuz +V° iz \/m
: do
So: ds\l‘:C‘e =v

e The distance between two equipotential is inversely proportional to the flow velocity.

e One of the properties of the current function is that the difference in the stream function
between two points represents the fluid flow through any line joining the points.

e |f two points lie in the same streamline, in this case there is no flow between these two
points and therefore y -y12 =0 we then have y(x,y)=cste

e Similarly, @=cste , represents the case where the velocity potential is the same at each
point, and is said to represent an equipotential line.

Given two curves @=cste and y=cste , these two curves intersect at every point.

At the point of intersection of these curves, the slopes are:

Op

ox _U

op v

OX

oy

oX _ -V _ \'
oy u  u
ox

The product of the slopes of these curves is:

oy
X

For the curve @=cste : the slope =
oy
oX

For the curve w=cste : the slope =— =
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YU V_4

\' u

This shows that equipotential lines and current lines form an orthogonal network at all
points of intersection.

1.10 Flow representation by complex functions

Many classical plane flows can be represented by complex functions. Let

f(2) = o(X,y) +iy(x,y) Where z=x+iy is the complex variable associated with the complex
potential function f(z) (¢ and v represent the potential and stream functions respectively).

For this function f(z) to be analytic, its derivative must be defined everywhere, i.e.

Alimo(i—];) tends towards the same value regardless of howA z tends towards 0.

AX—>0 Ax=0
Ifweput: Az—50 <

Ay=0 Ay —0

And , A z can be made to tend towards 0 in the following two ways:

therefore :
. [ Af . Ap+1AY . Ap+iAY df
im| — |[=lm| —/———— |=lim| ——— |=—
A0\ Az 0 AX +1Ay froacy AX + 1Ay dz
Ilm(—@+|£) , Iim(—| (p+£]
Ax-0\ AX AX Ay—0 Ay Ay
U U
o9 ;0¥ _of %o, 0¥ _ ot
oXx Ox oOX oy oy oy
Then
B0, 0¥ __0p 0¥ . .0p 0¥ . do_ 0¥
oX  OX oy oy ox oy oy OX

This system of equations constitutes the Cauchy-Riemann relations which verify the
relations found above.

Finally, for f(z) = o(x,y) +i ¥(x,y), to be an analytic function. ¢(X,y) et ¥(x,y) must
verify these Cauchy.

For a plan flow, which can be described by means of a stream function ¥ (x,y) and a
velocity potential ¢(x,y) , these Cauchy relations are well verified:
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u=a_(P=6_\P et v =6_(p:_6_\11

ox oy oy OX
Consequently, the flow can also be described by means of the complex analytical
function:

f(2)=o(x,y)+i¥(X,y) where Z=X+iy
This function is known as the "complex velocity potential”.
Properties :

We have seen that for a flow to be described by means of a stream function y and a velocity
potential ¢, these two functions must verify Laplace's equation (Ay=0 and A¢=0).
Let there be two flows such that :
{A!//l =0 and 4¢, =0 :{ f.(z)=0.v,
Ay, =0 and A4p, =0 f,(2)=9,.v,
Since the Laplacian operator is linear, this implies that:

{A(MWl +A,W,) =LAy, + LAy,
Ay @ A, 0,) = LA, + 1, AQ,

= A + A Ay =0
We put :{t// W1+ A2y 2 :{ v
Q=Mp1+ 1202 Ap=0

And then:f(z)=o,v =Af(2)+A,f,(2), f(z) describes the flow resulting from the

superposition of the two flows f1 and f. . Consequently, several elementary flows can be
superimposed to create more complex flows, simply by adding the corresponding complex
potentials.

1.10.1 Uniform flow

Consider the plane flow modeled by the complex velocity potential:

f(z)=Uz

We have :  o(x,y)+i¥P(x,y)=U(Xx+iy)=Ux+iUy

By identification, we obtain:

o(x, y) = Ux
P(x y)=Uy

The stream lines are such that: W(x,y) = Uy =C®
= y=C" Vx : these are horizontales lines
The equipotentials are such that: ¢(x,y) = Ux =C"*
= x=C"Vy these are vertical lines
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Determining the velocity field :

Lo00_o¥ _
V= ox oy
V=a_(p=_a_‘{]=0
oy oX

The velocity is uniform : v=UEg,
Stream lines : W(x,y) = Uy =C® =y=C" vx (horizontal lines)

equipotentials : ¢(x,y) =Ux =C* =>x=C" vy (vertical lines)

the velocity field : Yo, | ©=C"®
- R [ R T T [ T
V =U gy T T T T TR T T T
t—t—r——T 71T ¥=C’
A N A e
v v 1 1 1 1 1 N 1 1 1
N T R T T TR R R
: :\7:: —t— :l: —t—1
| ~
HEEEEETEEE
N T R T T TR R R
11 3 L1 Ll L L L
T T T T T T
VA T T T T 2 N T
[ N T
11 LI G B
~ A I . 1 | 1 [ | | 1
ST v W o VI o
e 1 r 1 117’

Figure 12 Uniform flow f(2)=Uz
1.10.2 Plane flow around a source or sink

Consider the plane flow modeled by the complex velocity potential:

1@t C isareal constant

f(z)=Clnz Z=X+iy=re

where
= f(z)=CIn(rei‘9)=C(lnr+i6)

We can then deduce the current function and velocity potential :

o(r,0)=Clnr
Y(r,0)=C¥o

The stream lines are such as : ¥(r,0)=C0= cte

= 0=C" vr these are straight lines passing through the origin
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The equipotential are such that: ¢(r,0)=ClInr = cte

= r=C' vgThese are concentric circles centered on the origin.

v

Figure 13 uniform flow with complex potential f(z)=ClInz

Determining the velocity field :
op 10¥
Vr ==
V= or r oo
10¢p oY
Vg =———=

roo  or

vp =C/r -
Or \7={ r=¢/ V=S¢
vg =0 r

The velocity is therefore radial and inversely proportional to distance from the origin.
If C>0, then flow is directed outwards

= Divergent flow= source at origin.
If C<0, then the flow is directed towards the origin
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= convergent flow=> sink at origin.

Physical meaning of the constant C :
The volume flow of this radial flow (source or sink) is calculated:

Qy = HV nAdS  where Sis a closed surface surrounding the origin.
S

C_
—€
r

V="¢ andt fi=¢

r

This is a linear flow taking place in the direction_L to the z axis, in the (xy) plane we can

consider as the integration surface a cylinder of heightA z=1, and therefore :

ﬁ...d3= f...w
S 1

Since the flow is on a plane, we integrate on a circle of any radius r centered on the

origin.
2r 7 5
- = . |V=C
QV=AZ§V.ﬁrd0 =Aer‘V.ﬁd¢90u{ﬁ C/rér
‘ 0 n=¢€r
27zC c 2r
:>qV=Aer' —d0=Azr—J'd9 \ =27CAz
o rJo

volumetric flow rate per unit height

=C-= g_v and therefore : f(z)= g—"lnz gv>0 : source flow rate
T T

gv<0 : sink flow rate

1.10.3 Vortex or free vortex

Consider the plane flow modeled by the complex velocity potential:

f(z)=—iClnz where z=x+iy=re” and C isa real constant
:>f(z)=—iCIn(rem)=—iC(Inr+i6’)=C¢9—iCInr

We can then deduce the current function and the velocity potential:
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o(r,0)=Céo
¥(r,0)=-ClInr

The stream lines are such as : ¥(r,0)=-ClInr = cte
— r=C' vg these are concentric circles centred on the origin Les
the equipotentials are such that : ¢(r,0)=C 6 = cte

= 0=C'"®vr theseare straight lines passing through the origin

Determining the velocity field :

op 10¥

Vr ==

V = or r o0
v, Lo0 _ 0¥

r oo or

Velocity is therefore ortho-radial and inversely proportional to distance from the origin.
If C>0, then the flow is around the origin in the trigonometric direction.
If C<0, then the flow is clockwise around the origin.

Physical meaning of the constant C :
Let's calculate the velocity "circulation” around the origin:

= iv.d? Where runs an arbitrary stream line, i.e. a circle of radius r.
(/‘

2n

With :V:%é@ et d/ =rdogy = r=j %rd6=27rC

0
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Figure 14 Uniform flow with complexe potential
f(z)=-iCInz

f(z)=-i £ Inz _ _ _
and therefore 2n wherel is the vortex circulation (free vortex).

so C= ZL and therefore f(z) = —iZLIn zwhere T is the circulation (free vortex).libre)
T T

If T'>0, the vortex rotates in the trigonometric diretion.
If T'<0, the vortex rotates clockwise.

1.10.4 Corners and stopping points
A "'stopping point" is a point where the velocity is zero.

Consider the plane flow modeled by the complex velocity potential:

f(z)=Cz™ where m> —%

In cylindrical coordinates : z = re!? and then f(z) = Crmg!mo

(r,0) = Cr™* cos[(m+1)6]

Then we have : )
(r,0) = Cr™sin [(m+1)6]
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_Op_1o¥

V. = =

o _ . ) o _J " or r oo

The velocity fields is obtained by : V= . 109 0¥
““ree or

We find :
T {vr = C(m+1)r" cos[(m+1)6]

vV, =—C(Mm+1)r"sin [(m +1)6]
Note that vi = vg=0forr =0 = the origin is the stopping point.
The stream line passing through the stop point must therefore verify :
¥(r,0)=C* =¥, where ¥, =¥(r,,0,)=Cr,"™sin[(m+1)6,]=0
The equation for this current line is then written :

r=0vo0

Cr™sin[(m+16]=0= {sin [(m+16]=0Wr

stop Point

= nVr & (m+1)0=nnVr
(m+1)

sin=0: 6 =0Vr= half - right Ax

Since stream lines can be likened to impassable barriers, those passing through the

stopping point form "corners": these are the stopping corners.

Let's now analyze the fluid flow between these stop wedges for a few specific values of m.
30



f(z)=cz™ oy mZ—%

» Case where m=1

T

¥(r,0)=Crsin[20]=c'® and a=L1— > = right angle corner
m+

= ‘I’(r,9)=2Cr2sin6’cos€=2Crsin6’rcos«9=Cte
Y S
y X
¥(r0)=C® & 2cxy=cte
cte .
y= — inside this corner, the current lines are hyperbolas

As equipotentials are_L at all points, they are also hyperbolas.

T T
» Casewherem>1l aog=——<=

m+1 2
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T T
» CasewhereO<m<1l Z<ag=—""—-<r1
m+1

> Case where —%<m<0, 7r<a=L< 2

m+1

v~ il
\ 4

32



» Case m=-—

N
R
Il
N
e

1.10.5 Doublet and dipdle
We know that for a flow to be described by a stream function and a velocity potential, both
functions must satisfy Laplace's equation :
A¥=0 EtAp=0 = f(@)=¢+iV¥
Let's consider 2 flows such as:
AY,=0 ot Ap =0=> f,(2)=0¢,+i'V,
AY, =0 et AP, =0=> f,(2)=09,+1,
Since Laplace's equation is linear :
A(A @, +Ay0,) =M AQ, +X,Ap, =0
AQLY, + 1, F,) = LAY, + L,AY, =0
So if we put o=A0, +1,0, et ¥= ¥ + oW then:
A¥Y=0 Et Ap=0=>T(2)=0+iI¥Y =71, (2)+A,T,(2)

Consequently, f(z) describes the flow resulting from the superposition of the two flows f1
and f,

Several elementary flows can therefore be superimposed to create more advanced flows,
simply by adding the corresponding complex potentials.

1.10.6 Association of a source and a sink:

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a
sink with flow rate -q, located at x=-a.

The resulting complex potential is written as:

R, )
f(@) =+ In(z=a) - -I(z+a) let'sput: """ rle.e
27‘5 27‘5 ZZ=Z+a=r2eI2

Hence :
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f&):é%ﬂn4;4n5)=é%0nq+my—mQ—JGJ

_ a4,
o =y
= f(z)=2i Inr—l+|(61—62) = ér 2
T
; Y= (0-62)
T
2n T, then, the stream lines are such as :

\P=2%T(61_92)

w=1(p,-0,)=C"
27

Figure 15 stream lines for a source and a sink

Let's extend the distance between the well and the source to 0.

f(Z)=+iln(z—a)—i|n(z+a)=im(z;a)_im[z(l—a/z))
2 27

27 \z+a) 2z \z(1+a/z)

q,[(l-a/z . 1
f(z)=—1I 0 >1-
(2) 27 n(1+a/z) y l1+a/z a-0 3/2

g 2 q q a q a

Then f ~—I| [1— i|=—2| 1- r—2——|~—2 ——

(2) 27zn( a/z) 2r n( a/z) 27r( Z] 27r( Z]
Let’s put 2aq = p be the dip6le moment : f(z)= _Zig

T

f(z)=—i£=—i P =—i£e_i‘9=—i£(cos¢9-isin0)=go+i‘1’
27 Z 27rre|9 27 r 27 r
=—i£cose 1p
hence 12” r ¥Y=C* < —Tsino=C"
w=—""Pging /’—' 2t
27 r

stream line equation
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= %sinezcte: rsing=C®r2= y=Cte(x2+y2):> y=Cte(x2+y2)

= x2+y2—Ctey=0:>x2+y2—Ky=0:Kx2+(y—K/2)2=(K/2)j2
p-cle . . . S .
- equation of a circle with center (0,K/2) and radius K/2

stream lines are circles all centered on the y axis, and all passing through the origin.

Flow generated by a dipole  f(z)=——P
2w 7

Figure 16 stream lines for a dipole

1.10.7 Uniform flow around a circular cylinder with circulation
Let's consider a uniform flow around a circle in the presence of a circulationT" centered at

2
the origin. The complex potential function is written: f(z) = Vo(z + a_] —i ZL In z
z T

In view of the logarithmic singularity, the complex plane will be equipped with the half-

axis cutoff
x>0

The complex velocity of this flow is expressed as:

2
V(z) =V, [1— a—zJ - i2L It cancels out at points with affixes za such that :
z nz
r
ZZ —1 Z a2 =0
A 2ny, A

This provides two stopping points:

2 =2, =i 4a2—r—2
AR Tomy, T2 4n*V?

There are several cases depending on the descriminant.

e Casel 0<T< 4naVO
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The discriminant is then positive and the affixes of the two points have the same

modulus:

Figure 17 flow around a cylinder with circulation (low circulation)

5 > :|.67'l:2a2V02 -I? I?
X Y. = 2\ /2 + 2\ /2
1677V, 1677V,

The two stopping points are therefore on the circle of radius a, in symmetrical positions

with respect to axis Oy. They are marked by the polar anglesp and n-p respectively with:

sinp =
g 4maV,

The general flow configuration is shown in figure (1.17).
Without circulation, there are two stopping points at the intersection of the circle and
the real axis. We can therefore see that the influence of traffic is equivalent to shifting
the two stopping points symmetrically with respect to Oy by an ordinate proportional

to the value of the traffic.

o Case? I = 4naV,
For this critical circulation value, the two stop points merge with the intersection of the

circle and the Oy axis( B=n/2). This gives the configuration shown in figure (1.18).
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Figure 18 flow over cylinder with circulation (critic circulation)

o Case3 I' > 4naV,
The discriminant of the equation of the affixes of the stopping points is then negative, so

the roots take the form:

Z,=2, = i(Fi Y2 —4a’n’V? )/41raV0

These are pure imaginary, which means that the two stopping points are on the oy axis.
The product of the roots is worth in modulus a? . This leads to the configuration shown in
figure(1.19).

Figure 19 flow around cylinder with circulation (strong circulation)
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1.11. Applications
Exercise 1 :

The velocity field of the two-dimensional flow is given by :
V = (3+2xy+4t3)i +(xy? +3t)]
Find the velocity and the acceleration at point (1,2) after 2s.
Exercise2:
The two-dimensional velocity vector field are given by : V =2y?i +3xj In (x,y,2)=(2,2).
Calculate:
| /Local velocity
2/Local acceleration
3/ Convective acceleration
Exercise3:
Determine the expressions of the streamlines for the following velocity fields:
1/V =3xi +6zk
2/V =4zi +9xk
3IV =2zi +3xk
4N =4yj +8zk
Exercise4:
The components of the velocity field of the two-dimensional, incompressible flow are
given by the following equations: {u =y’ =x(1+X)
v=y(2x+1)
Show that the flow is irrotational and satisfies the continuity equation.
Exercise 5:
The velocity distribution for a two-dimensional incompressible steady flow is given by :
X —y
x2 + yz V= X2 4 y2
a- show that this distribution satisfies the continuity equation?
b- show that the flow satisfies Laplace's equation if the velocity field is derived from a
potential.
Exercise 6:
The components of the velocity field of the two-dimensional incompressible flow are given

u=

_v2_
by the following equations {u =y = x(1+X)
v=y(2x+1)

Show that the flow is irrotational and satisfies the continuity equation.
Exercise 7:
The y-direction velocity component of a two-dimensional flow is given by: v =3xy+x*y
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Determine the component of the velocity in the x direction that satisfies the continuity
equation
Exercise 8:
A two-dimensional flow is defined by the velocity coordinates
U=-4m/s, v=-2m/s.
- Determine the corresponding stream function and velocity potential.
- Draw the equipotential line through the origin.
Exercise 9:
Determine the corresponding stream function for the following velocity potential:
¢ =x3-3Xy2
- Plot the stream function y=0, which passes through the origin.
Exercise 10:
For a two-dimensional flow, the velocity potential is given by : ¢ = x* — y?
- Determine the components of the velocity in the x and y directions.
- Show that the velocity satisfies the continuity and irrotationality conditions.
- Determine the stream function and the flow rate between the current functions (2,0) and
(2,2).
Show that the stream functions and equipotentials form an orthogonal network
perpendicular to the point (2,2).
Exercise 11:
Consider a plane flow modelled by the following complex potential velocity function :
f(z)=Klinz
where z is the complex variable and K is a real constant.
1/ Write f(z) in complex form.
2/ Give the expression of the stream function and the velocity potential.
3/ Determine the components of the velocity(vr,v0).
Exercise 12:
A two-dimensional fluid flow is described by the following stream function:

W = (%)xywhere U and L are constants.

1. Show that this flow has a potential and deduce the components of the velocity.

2. Give the expression for the velocity potential.

3. Give the expression for the complex potential function.

4. Determine the stagnation points and the stream function passing through the stagnation
point.

39



CHAPTER Il

Integral Conservation Laws: Reynolds Transport Theorem (RTT)

Il. Integral Conservation Laws

The integral conservation laws are the fundamental principles in physics and
engineering that describe the conservation of certain physical quantities, such as mass,
momentum and energy within a system or control volume. These laws are expressed in
the form of integral equations that consider the variations of these quantities within a
volume as well as the flows across these boundaries.

The Reynolds Transport Theorem (RTT) is an essential mathematical tool that relates
the time derivative of a volume integral to surface dynamic integrals, thus facilitating
volumes that may be mobile, fixed or deformable the analysis of dynamic systems. It is
particularly useful when working with control.

11.1 Control volume

A control volume, often referred to as V(C) is a fixed or moving region of space chosen
for the analysis of a fluid flow. This volume can be real or imaginary, and its size, shape
and position are defined to study the phenomena occurring within it. The control volume
allows the study to be focused on a subset of the space where variables such as mass,
velocity, temperature or energy are measured and analyzed. It is an imaginary volume
through which fluid can flow. The focus is on the physical quantities passing through
the surface.

There are two types of control volume:

- Fixed: The volume remains stationary in space, and the fluid passing through its
boundaries is observed. This type is common in industrial applications, for example in
turbines or fluid pipes.

- Mobile: The volume moves with the fluid, and the boundaries of the volume change

over time. This approach is often used to study the behavior of specific fluid particles.
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Control volume

Figure 1 control volume

deformable V(C)

Figure 2 Control volume : mobile, deformable and non-deformable

1.2 Control Surface

The control surface, often referred to as the S(C) is the boundary of the control volume.
It completely surrounds the control volume and delimits the region where flows (such
as those of mass, momentum or energy) enter and leave. It plays a key role because
conservation laws often involve surface integrals calculated on this boundary.
The control volume and its control surface allow conservation equations to be applied
in a simplified way:
» Conservation of Mass: By analysing the inflow and outflow of mass through the
control surface, the changes in mass in the control volume can be calculated.
» Conservation of momentum: Using the flow of momentum through the control
surface, we can determine the forces acting on the control volume.
» Conservation of Energy: The energy exchanged across the control surface helps

to calculate the internal energy variations of the volume.
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Figure 3 Control surface

11.3 Material volume

A material volume V(M) is a region of the fluid that always contains the same fluid
particles over time. Unlike the control volume, the material volume moves and
deforms with the fluid flow, following the particles as they move through the velocity
field. It is also referred to as a ‘set of particles’ or a ‘slice of fluid’ that is followed as it
moves.

Characteristics of a material volume:

» Consisting of a fixed group of particles: The material volume always retains the
same fluid particles within it, regardless of the deformations or movements
undergone by the fluid.

» Deformation and movement: The material volume changes shape and position
according to variations in velocity and the internal forces of the fluid.

» Lagrangian approach: This approach makes it possible to study the specific
behaviour of a slice of fluid, which is useful for analysing the internal changes

(e.g. deformation or internal energy) of fluid particles.

YasL(e,)
. — & Masse b

Q. de mouv.

@ Energie

Figure 4 Material volume

The closed system V(M) is associated with Lagrangian kinematics, while the open
system V(C) with the Eulerian approach.
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closed system ¢cvm) opening system (vc)

Figure 5 Closed system and opening system

1.4 Material surface

The material surface S(M) is the boundary of a material volume and is a closed surface
always containing the same fluid particles on its boundary. Like the material volume,
the material surface moves and deforms with the fluid particles, maintaining the initial

particles present at the boundary.
Characteristics of the material surface:

» Composed of the same particles over time: The particles that are on the material
surface at the start remain on that surface during movement.

» Deformation as a function of forces: The material surface undergoes the same
deformations as the material volume, because it is subjected to the tensile,
compressive or shear forces of the fluid.

» Zero flow through the surface: By definition, no fluid particle flow passes
through the material surface, because the surface contains a fixed set of particles.

This differs from open control surfaces, where fluid can flow in or out.

SM(t,)

SM(1)

Figure 6 Material surface

The material volume and material surface allow a tracking approach for particles in

a fluid flow, making it possible to analyse the transformations undergone by the particles
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themselves. They are therefore complementary to the concepts of control volume and
control surface, which remain fixed in space and enable a more global integral analysis
of fluid systems.

11.5 Examples:

1. Material Volume

Suppose we are studying the dispersion of a drop of ink in a moving container of water.
If we choose a material volume that initially contains only the ink molecules, this
volume will follow these specific molecules as they disperse in the water.

- Material volume: The volume containing the ink will expand and deform over time
as a result of movement and mixing in the water.

- Study of internal properties: By following this material volume, we can observe how
the ink concentration changes, how it is diluted, and how diffusion acts on the particles
in the surrounding fluid.

2. Material Surface

Imagine an air bubble in a glass of water. The material surface of this bubble is the
boundary between the air inside the bubble and the water outside.

- Material surface: The surface of the bubble always contains the same air particles on
its boundary, even if the bubble rises into the water or changes shape due to pressure
forces.

- Deformation analysis: This surface can be used to study the effects of water pressure
on the shape of the bubble and observe how it deforms under the forces of tension and
compression.

11.6 Reynolds transport theorem (RTT)

Before looking at the Reynolds Transport Theorem, we need to introduce a few
basic concepts.

11.6.1 Flow concept

To measure the quantity of matter passing through a surface (S) per unit of time and

surface area, we introduce the notion of flow: flow of mass, momentum, energy, etc.

e Volume and mass flow
The elementary volume flow dqy through a surface dS is the volume of fluid dv that

passes through this surface in a time interval dt, i.e.:
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qy = ﬁ\7.ﬁds qy = = Vds = Viids
S

Then, the total volum flow qyv over a surface Siis:
qy = j Viids (IL.1)

Likewise for mass flow: qm=pqv Or again

dm -
=—=|pV.nds
Im ="t I P then:

Ay = j pV.ids (11.2)

11.6.2 Intensive quantities and extensive quantities
1. Intensive Quantities

An intensive quantity is a physical property that does not depend on the size or amount
of the system or substance. These quantities remain constant regardless of how much
material is present in the system.
Characteristics:
« Scale-independent: Dividing the system into smaller parts does not change the
value of an intensive property.
o Examples:
o Temperature (T)
o Pressure (P)
o Density (p)
o Specific heat (Cp,Cv)
o Specific volume (v)
2. Extensive Quantities
An extensive quantity is a physical property that depends on the size, amount, or
extent of the system or substance. These quantities scale with the system's size or
volume.
Characteristics:
» Scale-dependent: Dividing the system into smaller parts reduces the value of
the extensive property proportionally.

o Examples:

45



o Mass (m)

o Volume (V)

o Energy (E)

o Enthalpy (H)

o Entropy (S)
11.6.3 Formulation of the Reynolds Transport Theorem, RTT
The intensive quantities, are independent of the mass of the system. In particular, we'll
be looking at quantities associated with mass m, momentum mV and energy E.
To do this, we reduce each of the properties (m, mV, E) by the mass m, to obtain the
intensive quantities (1, V, e).
These relationships can be generalized for any extensive quantity B with a

corresponding intensive quantity, i.e. per unit mass, b = B /m:

B=Ipbdv
\

(1.3)
1.The net flow of B

Consider a volume V(C) (fixed) bounded by S(C), through which flows a fluid carrying
B.The net flow of B through the control surface S(C) can therefore be written as:

. dB - -
Bzazé[prds—é[prds (11.4)
B j PbVds (11.5)
Sc
With b=B/m (11.6)

inlet flus Se=Si+ So

outlet flux

The flow rate through the surface of a control volume corresponds to the quantity of B
that ‘accumulates’ (negative or positive) per unit of time in the control volume. This

variation in B in the control volume can be written as:
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dB d
(F]w -d Vj obdv (11.7)

Accumulation over time in the control volume.

2. Balance of a control volume

For a control volume, in the absence of sources (sinks), we recognize the following
principle:

Accumulation in V(c) + balance of flows(through S(c)=0

In mathematical form, we write the above principle as.

closed system Ouvert: perméable
S—— dB d - -
——=— [ pbdv+ [ po(V.ii)ds =0 (11.8) L" pe ) (@ mas
dt dty, s X
Time variation of B when — Time variation of B in the + Net flow of B through surface

Sc of volume V¢

following the system control volume

This relationship was presented for a fixed control volume.

Vi = Vi — V. (1.9)

S

If the control volume deforms, consider the relative velocity between the velocity V of
the fluid and that Vs of the volume V¢
. . . B
e b is the intensive property, b = -
e p is the density,
o V is the velocity field,
e 71 is the unit normal vector at the control surface (CS),
e \/c is the control volume,

e Sc is the control surface.

B b=B/m
Mass m L1 Vs=0if Ve is fixed
Momentum  mV \4
Energie E €
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B: Extensive property. A quantity in the closed system
b: Intensive property. Property B per unit mass

p: density of the fluid

V: velocity of the fluid

V., =V :if the surface of the control volume is fixed

V., =V -V,: if the surface of the control volume is moving with velocity

dS : aire élémentaire sur la surface de contréle, Sc
A : outward unit normal of the elementary SC dS
dv: volume element in the V¢

11.7 Conservation of mass (continuity equation)
11.7.1 Application of RTT for the mass

In this case, let's analyses the conservation of mass with B=m and b=B/m=1.

Even if the material volume deforms, the mass in it remains the same over time.

dB
dt

_dm

=S| = =0 (11.10)

m

system system

(The mass of a system remains constant over time)
Since there is no accumulation (or loss) of mass takes place in the control volume. The
sum of positive and negative flows (volumes) is zero.

The conservation of mass equation takes the form:
d _
— | pdv+ | p(V .A)ds=0 .11
o Vf P SI p(V .n) (1.11)
We have jp(\7 Ai)ds =g, sum of mass flow. (11.12)
Sc

**|f the control volume is fixed, V, =0 andV,, =V (the flow velocity) and the flow

Is steady-state, then:

d -

— | pdv + V .n)ds=0
o VI p SI p(V .n)

[p(V fyds=0
5 (11.13)
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a I pdv =0
dt 3 (11.14)
If the fluid is incompressible p=cte, then we have, even in unsteady conditions,

In the case of uniform inputs and outputs (1D), the previous equations become:

Ip(\7 A)ds=0= > pV;S; =D pV,;S; = D am =) gm; (Mass flow rates) (11.15)
Sc

outlets inlets outlet inlets

[(V i)ds=0= 3V,S, = >V;S; = > qv, = qv, (volume flows) (11.16)

Sc outlets inlets outlet inlet

In practice, we often find applications with a single inlet and a single outlet, such as a
pipe carrying water, or a passage for ventilation in a building. These types of problems
are modelled using the notion of a flow tube.

This is a conceptually fictitious pipe (which can sometimes be correspond to a physical
tube) with an inlet cross-section Ai, an outlet cross-section Ao , both plane, and side
walls Ap tangent to the velocity vector.

Weni=0 impermeable wall
r p

u-n>0

impermeable wall

Figure 7 Example of current tube

Given that at side walls V .ii =0, the surface integral only needs to consider the inlet
and outlet, i.e. :

j o(V 7i)dA = j o(V i)dA+ j p(V fi)dA+ j o(V 7i)dA

=0

In incompressible conditions (p=cste) and if the velocities ue and us are considered to
be uniform, then:

.|.(\7 fA)A=-uA =Qv, Inlets

[(V i)dA=u,A =Qu, Outlets

So
=u A =u,A = Qv, =Qv, (Constant volume flows)
Whenp= cste, we have  piui Ai = polo Ao
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11.8 Conservation of momentum
11.8.1 Application of RTT for momentum

For any extensive property B, the RTT states:

a8 j pbdv + j Pb(V, A)ds with Ve =V

dt dt

system

For momentum B=mV B=mVand then b— -V the RTT gives:

d(mv) =1jp\7dv+jp\7(\7 fi)ds (11.17)
dt Ve Sc
system
dB| _d(mV) _ = dg oo S
- “SE, = Fa = [ Vv [ pV(V i)ds (11.18)
dt system dt system Z - dt Ve Sc

(since at an instant t, the (moving) material volume coincides with the (fixed) control
volume, we have the expression):

. dg oo S
Y Fe = & [pVav+ [pV(V fiyds
Ve Sc (”19)

PN ~

Flow of momentum

Variation in momentum

Forces exerted on the in the VC

VC

through the SC

**Note that the forces on the control volume are sources (+) or sinks (-) of momentum.
A source (force experienced by the fluid) corresponds to an increase in its momentum.
A sink (force exerted by the fluid) corresponds to a decrease in its momentum.

The momentum equation is a vector equation, so it can be written for the 3 velocity

components u, v and w, or in index notation for Vi with i=1,2,3.

Y P = j pVdv + j PV(V,q.M)ds (11.20)

YF.= j pV.dv + j pV. (V. fi)ds (11.22)
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Where Vi are the u, v and w components
Fiare Fx, Fy, Fz
V, =V

rel

If the control volume does not deform,

Y=gl

Ve

and if the flow is permanent, we have:

pVdv -+ [pV(V,,.fi)ds (11.22)
Sc

If, in addition, the inputs and outputs have uniform speeds, the integral over the Sc is
replaced by the balance of the incoming and outgoing flows:

é[p\7(\7 A)ds = \73_‘;p\7.ﬁds then > Fc = > amV, - > qmV, (11.23)

qm outlets inlets

Note: The summations over i and j correspond to the number of inlets/outlets
In the case of a single input and output we have:

Z IEVC = qm(voutlet _\7inlet ) (I |24)

We can use the current tube as an example.

Zr:vc = (szzAz)vz - (P1V1A1)\71 (1.25)

D R =P+Fp, +Fp, + Fpp+ Frp (11.26)

Fy, M3, u;

ﬁpp\ — ki
e
1-"” | —
P
F.4

Figure 8 Momentum of current tube

11.9 Conservation of energy
11.9.1 Application of RTT for Energy

For the energy equation, it expresses the conservation of energy for a control volume,

relating it to the fluxes across its boundaries and sources within the volume.
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For any extensive property B, the RTT states:

dB

- j phdv + j AV, fi)ds

dt

system
b is the intensive property : b = %, B=e then b=e/m=E

The extensive quantity b is then the total energy of the system, only mechanical and
thermal energy exchanges are taken into account.

For the energy equation, the conserved extensive property is the total energy (E),
which includes internal energy (U), kinetic energy (KE), and potential energy (PE):

2
E=U+KE+PE=J‘p(u+V7+gz)dv (1.27)
\e
Applying RTT,
de jpedv+ jpe(v fi)ds (11.28)
dt system dt

V 2
Where ~ U+—-+082 s the specific total energy (per unit mass).

This equation represents the rate of change of total energy in the system.

Including Heat Transfer and Work

The energy equation must also account for heat transfer (Q ) and work done (W),

such as shaft work or boundary work:

d - L
o Vj pedv + Sj pe(V A)ds=Q-W,, (11.29)

Here:
Q is the heat added to the system.
w,_, Isthe work done by the system.
Expanded Energy Equation in Terms of Fluxes

%jpedw [ pe(V i)ds = [adv— [7Vds (11.30)
Ve Sc vC

SC
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where:

o g represents volumetric heat generation,

» T s the stress tensor accounting for work contributions.

The RTT for the energy equation bridges the system and control volume perspectives,
allowing energy conservation to be expressed in terms of temporal changes within a
control volume, fluxes across boundaries, and external energy sources or sinks. It is

fundamental in solving engineering problems involving heat transfer and fluid flow.
11.10 Applications
Exercisel:

a continuous flow of water in a tank containing several inlets and outlets (figl).
1/ Specify the control volume.

2/ Determine the velocity in section3.

We give A1=0.05m?, A,=0.01m?, A3=0.06m?
V, =4i(m/s)

V, =-8j(m/s)
V, =?
Exercise2:

Under normal conditions, air enters a compressor at a flow rate of 0.3m3/s (fig2) and
exits the tank through a section with a diameter of 3cm and a density of 0.0511kg/m?.
Determine the rate of change with respect to time of the density in the tank.

- e m - .

P =9

P

Compressgu{ Réservoir 0.566 m’ \\'\3
0 [3em
0.3m'/r—’:T " Lle
'-;-ﬁ-:——_. —a—=e ,_._’:—_}-. 213m/s

Exercise3:

Estimate the filling time (in minutes) of the cone-shaped tank
(fig3) with a height of 5m, a top diameter of 5m and a flow rate ; -
of Qv=2.67m3/min. i

control volume
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Exercise4:

A channel of width 3m is provided with an inlet of uniform velocity V and an outlet
whose velocity distribution is given by

u=4y-2y fig(4). Determine the velocity V at the inlet.
) (2)

-_— e =

e P I

[ [
Ry %?ﬁjn 4 ]|1n| wm dy = 2y
/,.-- —|_-_.-..____..ﬂ___.|_ﬂ ]

fig(4)

Exerciseb:

The water flows through a 20° elbow with a flow rate of 0.025m3/s (fig5). The effects
of viscosity and gravity are assumed to be negligible and the pressures in sections (1)
and (2) are P1=150KPa and P2=14.5KPa respectively. Determine the components of the
force required to hold the elbow in place.

(figd)
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Chapter 111

Dimensional analysis and similarities

I11.1 Introduction

Dimensional analysis is a practical method for checking the homogeneity of a physical
formula through its dimensional equations, i.e. the decomposition of the physical
quantities it involves into a product of basic quantities: length, duration, mass, electrical
intensity, etc., all of which are irreducible.

Dimensional analysis is used to:

- Determine the unit of a quantity

- Check the homogeneity of a formula

- Predict the form of a physical law in order to find the solution to certain problems
without having to solve an equation: for many of the physical phenomena studied, we
can express a characteristic quantity of the phenomenon and deduce an order of
magnitude.

Dimensional analysis can be applied in almost all areas of engineering. It is also a very
useful additional tool in modern fluid mechanics. It is based on the principle of
dimensional homogeneity and uses the dimensions of the relevant variables affecting
the phenomenon in question.

I11.2 Dimensions

The various physical quantities used in fluid mechanics can be expressed in terms of
fundamental or primary quantities.

In the International System, the primary or fundamental physical quantities are mass,
length, time and sometimes temperature (compressible flows) and are designated
respectively by the letters M,L,T,0. Quantities that are expressed as a function of the
fundamental quantities are called secondary or derived quantities (speed, area,
acceleration....). The expression of a derived quantity as a function of the fundamental
quantity is called the Dimension of the physical quantity.

A gquantity can be expressed dimensionally as M,L,T or F,L,T.

Example:
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3
Flow = velocity x area:%.L2 = L? =T

T _contrainte force/aire

Kinematic viscosity v=p/p we havet = “3—; and u=

W™ LT T T
dy T L T
MxL
massexacceleration _ T? _ ML :M= MLT
airexi sz1 L2T2x1 LT
T T T
_ _mass _ Ms _ ML
volume L
-17-1
Then the kinematic viscosity, v = B_ % = ML?T?
P

11.3. Principle of dimensional homogeneity

An equation is considered to be dimensionally homogeneous if the form of the
equation does not depend on the units of measurement, or if the two terms of the
equation have the same dimensions.

I11.4 Dimensional analysis method

The use of dimensions enables us to determine whether a literal expression is
homogeneous or not. This makes it possible to identify any errors. But dimensional
analysis can also be used to find or guess physical laws when the theoretical solution is
too complex.

When the system under study is too complex to allow a complete resolution of the
fundamental equations, or when its behaviour is chaotic, dimensional analysis provides
simple access to relationships between the various quantities characterising the system.

By grouping these different quantities into dimensionless numbers, it is also
possible to establish similarities between the behaviour of similar but different systems
(prototype/model).

The application of dimensional analysis to a practical problem is based on the
assumption that certain variables affecting the phenomenon are independent. The
number of variables characterising the problem is equal to the number of independent

variables plus one. One is the number of dependent variables.
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Dimensional analysis is used to obtain a functional relationship between the
dependent variables and the independent variables.

The first step in dimensional analysis is to determine the variables involved in the
problem. Naming these variables requires a good understanding of the phenomenon.
The second step is to form the adimensional groups of these variables.

The Vachy-Buckingham -m method (m Buckingham theorem) is the most
commonly used method in dimensional analysis.

Let's take the example of determining the regular head losses in a cylindrical pipe:

Les différentes grandeurs qui interviennent sont :

ALP‘ La perte de charge par unité de longueur,

D Le diametre de la conduite,

¢ La rugosité de la conduite,

v La vitesse moyenne de 1’écoulement (ou le débit),

u La viscosité du fluide,

p La masse volumique du fluide.

Par conséquent, il existe une relation entre ces différentes grandeurs :

AP,
Tt: f(D.ev,u,p)

The function f can be difficult to find, so dimensional analysis will enable us to
establish a simpler relationship between a smaller number of dimensionless quantities.
A systematic method will enable us to find 3 dimensionless numbers:

A D VD
T, = P =X n2=p—=Re 7T3=£=8r
L pV 1) D

This will enable us to establish =, = ®(n,,n;)

p D

A A 2
_ A, D2 (D[pVD g]:ﬁ pV
L pV

= =——O(Re,
=P oRes)

The dimensional analysis shows that the regular head loss depends solely on the
The dimensional analysis shows that the regular head loss depends solely on the

Reynolds number and the relative roughness of the pipe.
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111.5. Vachy-Buckingham zt-theorem

The n-Buckingham method expresses the resulting equation in terms of non-
dimensional groups (m-terms). According to this theorem, if a phenomenon drives p
variables: al,a2,a3,.....,.ap such that one variable aldepends on the other independent
variables a2,a3,.....,.an, the general functional relationship between the dependent

variables and the independent variables can be expressed as follows:

al=f(a2,a3,.......cccccoeu.. ap) (1.1)
Expression (111.1) can be written mathematically as:
[1(a2,a3,......... ap)=0 (1n.2)

That is, if an equation with p variables is homogeneous, it can be reduced to a relation
between (p-q) dimensionless independent products, where g is the minimum number of
dimensions required to describe the p variables, and we write:

f(m], M2, M3, np-q)=0 (Nn.3)
In problems where all fundamental dimensions are considered, it is recommended to
select the repeated variables using the following guidelines:
» Select the first variable from those describing the flow geometry.
» Select the second repeated variable representing the fluid properties.
» Select the third variable repeated with those characterising the movement of the

fluid.

To illustrate this statement, let's go back to the previous example:
We had p=6 variables (which require a minimum of g=3 dimensions (M,L,T).

[ATp} =ML?T?, [D]=L, []=L,[V]=LT, [W]=ML"T, [p]=ML?

Consequently, the equation linking the 6 variables can be reduced to an equation linking
p-q = 3 dimensionless products:

VD
L V2=X,n2=p—=Re,n3=%=sr
p i

_ AP D

T, =

Buckingham's t theorem therefore allows the passage:

Ap,
—=f(D,¢,V
L (D.&Vopp) \ﬁ my, = O(m,, 73)
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In order to apply this theorem, we need to use a systematic method:

>
>

>

>

List the variables in the problem =p

Write the equation in dimensions for each of the p variables

Determine q, and therefore =p-q the number of dimensionless products
characterising the problem.

From the p variables, choose a number q that are dimensionally independent =q
primary variables

Form the p-g products t by combining the p-g non-primary variables with the q
primaries so as to obtain dimensionless quantities.

Formulate the relationship between the p-q products zt found.

We will apply the method to the example of flow around a vertical plate to write the

drag force exerted by the flow on this plate in dimensionless form.

The drag force is the force exerted by a flow on an object in the direction parallel to the

flow.

p

We will study the case of a rectangular flat plate.
The variables of the problem are: F,h,L,up =p =6
F: drag force

h: plate height

L: plate width f

v: mean flow velocity

u: fluid viscosity
: fluid density %

1. The variables F,h,L,V,lL,p =p =6
M,L,T =0g=3

2. Equations in dimensions:

[Fl=ML T )
[u]=MLAT
[V]=LT

[h]=L

[L]=L

[p]= ML g
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3. Number of products = dimensionless: (p-q) =6-3=3

4. Choice of g= 3 dimensionally independent primary variables:

(For example h, p and V)

5. Formation of the 3 & products: by combining the primary and non-primary

variables.
n, = Fh¥p™v® m, = L h*p v T, = h*pPy®

6. Formulate the relationship between the 3 products p found:

with: = M=

TI
S|

Either :
F=pv’h? ®(L/h,1/Re)

I

Nature of flow

Form factor

111.5.1 Illustration of the benefits of the method:
If F1 is the drag force measured on a plate of dimensions L1 X h1 when subjected to a
flow of velocity vi, then:

Fl
pvihy

pVih

= ®(L,/h,,1/Re,) Where Re, =

Dimensional analysis using Buckingham's theorem shows that for a plate with
dimensions L2 X hz such that:

L,/h,=L,/h, Similarity of form

If v,= %vl < vh, =v,h, & Re, =Re, Hydrodynamic similarity
2

/

Scale factor
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And then @(L,/h,,J/Re,)=®(L,/h,,}/Re,)

2h2
le2= FzZz:>F2:V§§F1:> F,=R
pvih;  pvzh, vih

111.6 Usual dimensionless coefficients
There are a number of dimensionless quantities which can characterise the nature of a

flow:

pVL0L inertia forces

» The Reynolds number Re= (111.4)
# viscosity forces
General importance for all types of flow
» Tne Froude number Fr= v mert_'a forces (I11.5)
JoL garvity forces
Importance for free surface flows.
» The Euler number Eu = Ap2 pression forces (IIL.6)
pV* inertia forces
Important if there are large pressure differences within the flow
» The Mach number Ma _Y mertl_a _f_orces (I1L.7)
c compressibility forces

Importance for compressible fluid flows, c is the speed of sound

» The Strouhal number St = oL _ locals inertia_forces (II1.8)

\V convective inertia forces

Importance for non-stationary flows
111.7. Similitude in differential equations
To carry out a complete analysis of a flow, it is first necessary to make the appropriate
simplifying assumptions. Evaluating the various dimensionless coefficients relating to
the flow (Reynolds, Froude, etc.) will simplify the equations to be solved.
Consider the conservation of momentum equations (the Navier-Stockes equations) for an

incompressible flow along x, y and z, written in the form:

ou ou ou  éu op o°u o*u %
Pl —+U—+V—+W— [=——+y —+—+— |[-pg (1.9
ot ox oy 0z oX ox- oy oz
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ov o0°v 8%

ov op
p[5+ua—x+v5+w5]=—5+p{a}(2+ay2+622]—pg (111.10)

2 2 2
> P @+u@+v@+wﬂ =—@+u 6v2v+6v2v+6v2v —PY (IIL.11)
ot OX ox® oy oz

Let's consider the (z) equation (III.11) component of these equations and write it in
dimensionless form:

ow ow ow ow op o’'w o’w  o°w
pl —+U—+V—+W— |[=——+y —+—5+—— |—pP9
ot OX oy 0z 0z ox- oy° oz

Let's introduce some dimensionless variables:
u =u/V [x =x/L
VvV =v/V {y' =y/Lp =p/p,and t" =t/t
w=w/V |z =z/L
Where L, V, po, t are characteristic quantities of the system under study.
We have :

o 10 [8* 1 &
ax Lox |oxd L2 ox?
Jo_10 o8 108 o0_10
oy Loy |oy> LPoy”? ot ot
0 _ 10 |o*® 1 ¢
6z Loz |az? L2ar?

By replacing in our equation we obtain:

ow ow ow ow op o’'w d'w  9°w
pl —+U—+V—4+W— [=——+y —+—5+— |—p9
ot OX oy 0z 0z ox® oy° oz

pV aW* sz * aW* * aW* * aW*
— U —5+V —+W —
T ot L oX oy 0z (I1L12)
P, O uV(ow &w  aw '
=T A Tz 2 Y2 t o |TPY
Loz L\ ox oy 0z
pV aW* sz * aW* * aW* * aW*
— U—5+V —+W —
T ot L OX oy 0z
(II1.13)

op. uv(ow  ow  o*w’
=_&L*+u_2 2t v [7PY
Loz L\ ox oy 0z

2

Divide the whole expression by: PV
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Low .ow .ow  .ow

—+Uu
V1 at ox ay 0z

. . . . (IT1.14)
__ P B n o°w +62W +62W gL
pV? oz pVL\ ox* oy? 0z° ) V?
St=(’)—|‘=L Eu= Ap2 =p—°2 Re=& Fr=i
V Vr pV: pV u gL
We can then write:
a\N* * a\N* * aN* * a\N*
St—+U —+V —+W —
ot OX oy 0z
ap* 1 aZW* aZW* aZW* 1 (HIIS)
=Bl S+ | S+ 5t |-
0z Rel ox oy 0z Fr

This can be interpreted as follows:
e |f St is very small: the instantaneous derivative can be neglected and the flow
can be considered stationary.
e If Euis very small: the pressure gradient can be neglected.
e |IfReisvery large: the viscosity of the fluid can be neglected and it can be treated
as a perfect fluid.
e |If Fris very large: the effects of gravity can be neglected.
111.8. Similarity and model tests
To find out about the performance of mechanical or hydraulic structures or machines
(pumps, turbines, ....) before they are built or manufactured, the study is carried out on
a scale model, which is a representation on a different scale of the system or structure
(prototype) that you wish to test.
e The model with small-scale reproducing the actual structure

e The prototype is the structure or machine

L

Virtual model Laboratory model Prototype
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The study of fluid mechanics and hydraulics problems leads to:
e Geometric similarity
o Kinematic similarity
e Dynamic similarity
111.8.1 Geometric similarity
For geometric similarity to exist between a model and a prototype, the length ratios
must be the same and the angles between the dimensions must also be the same.
Lm: the length of the model
Hm: the height of the model
Dm: diameter of the model
Anm: the area of the model
Vm: the volume of the model
And let Lp,Hp ,Dp ,Ap and v, be the corresponding values of the prototype.
For a geometric similarity we have:

L: is called the scaling factor

>

A—m =A,, Aris the ratio of the areas

p

\'% . .
— =v,, Vi is the ratio of the volumes
\'%

p

111.8.2 Kinematic similarity

Kinematic similarity is the similarity of motion.

If, at the points corresponding to the model and the prototype, the velocity and
acceleration ratios are the same, as well as the velocity in the same directions, the two
flows are said to be kinematically similar.

(V1)m: the fluid velocity at point 1 of the model
(V2)m: the fluid velocity at point 2 of the model
(az)m : the fluid acceleration at point 1 of the model
(a2)m : the fluid acceleration at point 2 of the model
and (V1)p,(V2)p,(a1)p,(a2)p, the corresponding speeds and accelerations at the points in
the prototype fluid.

For kinematic similarity we have :
(Vo _ (V) _y,

M), (V,),

(1L 16)
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V: is the velocities ratio

@)m _ (@2)n _a, (IIL.17)
@), (@),

ar is the accelerations ratio

The direction of the velocity in the model and in the prototype must be the same.
111.8.3 Dynamic similarity

Dynamic similarity is the similarity of forces. The forces in the model and the prototype
are similar.

If at the corresponding points the identical types of force are parallel and give the same
ratio.

(Fi)m: the force of inertia at the model point

(Fv)m: the viscous force at the model point

(Fg)mthe for: the force of gravity at the model point

And (Fi)p, (FV)p, (Fg)p are the forces corresponding to the prototype.

For dynamic similarity we have:

(Fi)m — (Fv)m — (Fg)m =F
(Fi)p (Fv)p (Fg)p '

F: is the forces ratio

(IIL.18)

The directions of the forces in the model and in the prototype must be the same.
To ensure dynamic similarity between the model and the prototype, the dimensionless
numbers of the model and the prototype must be the same.
This condition cannot be satisfied for all dimensionless numbers, so the models are
designated on the basis of the forces that dominate them. This flow situation is called
the law of similarity.

e Reynolds Model Law
In a flow situation where, in addition to inertial forces, viscous forces predominate. The
similarity in the flow of the model and the prototype can be established, if the Reynolds
numbers are the same for both systems.
(Re)modei=(Re)prototype (IT1.19)
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PoVobn _PoVoby _ Pn Vo Ln 1 4
Him Hp Po Vo Lp Hm

Hp

V. L
We have M:l

By
Vv L
And [p, LIV =—p}
pm Vm Lm

Where the different index quantities r represents the scaling ratios.
In the same way:

The time scale T, = %

r

: V,
The acceleration scale a, = T—r

r

The force scale F=(mass X acceleration)= mr.ar= prAVr.ar=prL?V2.

The flow rate scale gr= (pAV)=p:AV,= p:Li?V;
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Dimensional formulae of some derived quantities

Physical quantity Expression Dimensional formulaj
Area length x breadth L
Density mass / volume [MI_‘3]
Acceleration velocity / time LT2]
Momentum mass x velocity MLTY
Force mass x acceleration [MLT'2 ]
Work force x distance [MLQT"2 ]
Power work / time ML?T3 |
Energy work ML2T2 ]
Impulse force x time MLT! ]
Radius of gyration distance L]
Pressure force / area ML-IT2
Surface tension force / length MT2 |
Frequency 1 / time period [T
Tension force MLT2 ]
Moment of force (or torque) | force x distance ML2T2 ]
Angular velocity angular displacement / time| [T}]
Stress force / area ML T2
Heat energy ML2T 2 ]
Heat capacity heat energy/ temperature ML2T2K )
Charge [AT]

current x time
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111.9 Applications
Exercisel:

Determine the coefficients A and B that appear in the homogeneous dimensional

2
d 2X+A%+BX:O
dt dt

equation.

with x a length and t time
Exercise2:
The pressure difference AP in a tube of diameter D and length | depends on the flow
velocity V, the viscosity cinématique v, the density p and the roughness e of the tube
surface. Using Buckingham's theorem to write the expression for AP in dimensionless
form.
Exercise3:
QOil with a density of 920kg/m?® and a kinematic viscosity of v=0.003Ns/m? was
discharged at a rate of 2500 I/s through a 1.2mm diameter tube. The tests were carried
out in a 12cm diameter tube at 20°C. If the viscosity of water at 20°C is 0.01Ns/m?,
find :
1/ the flow velocity
2/ the flow rate in the model
Exercise4:
A geometrically similar model of an air duct is built at 1:25 scale and tested with
water, which is 50 times more viscous and 800 times denser than air. When tested
under conditions of dynamic similarity, the pressure drop in the model is 2 bar. Find
the corresponding pressure drop in the prototype.
Exercise 5:
The equations of motion of a stationary flow on a flat plate are:

The equation of continuity : N Y g
ox oy

The equation of momentum: p(uZ—“w@J =i
X

oy

o%u
o2
If the reference quantities are Uo, po,Lo,Lo. Write these equations in dimensionless form

and determine the characteristic parameters
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