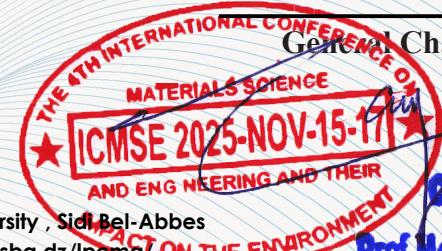


جامعة الجيلالي الياقوت بسيدي بلعباس
DJILLALI LIABES UNIVERSITY , SIDI BEL-ABES
FACULTY OF EXACT SCIENCES
PHYSICS DEPARTMENT
PHYSICO-CHEMISTRY LABORATORY OF ADVANCED MATERIALS
(LPCMA)

THE 4TH INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND ENGINEERING
AND THEIR IMPACT ON THE ENVIRONMENT ICMSE'2025
SIDI BEL ABBES , NOVEMBER 15-17, 2025

CERTIFICATE OF PARTICIPATION


The scientific committee certified that:

Mr Hamza Bennacer

Has presented online Communication, entitled:

« AI-Powered Prediction of Structural and Electronic Properties of Emerging Semiconductor Materials ».

CO-AUTHORS: Hamza Bennacer; Mohammed Assam Ouali ; Inas Bouzateur ;
Mohamed Ladjal ; Zakarya Bouguerra ; Mohamed Issam Ziane ; Moufdi Hadjab.

ICMSE'2025

The fourth edition of the international conference on materials science and engineering and their impact on the environment

AI-Powered Prediction of Structural and Electronic Properties of Emerging Semiconductor Materials

Hamza Bennacer^{a,b}, Mohammed Assam Ouali^a, Inas Bouzateur^c, Mohamed Ladjal^a,
Zakarya Bouguerra^b, Mohamed Issam Ziane^d, Moufdi Hadjeb^a

^a Department of Electronics, Faculty of Technology, University of M'sila, 28000, Algeria.

^b Elaboration and Physical, Mechanical, and Metallurgical Characterization of Material Laboratory, ECP3M, Faculty of Sciences and Technology, University of Mostaganem, 27000, Algeria.

^c Modelling and Simulation of Magnetic Properties of Heterostructures Laboratory, Faculty of Sciences and Technology, Tissemsilt University, Algeria.

^d Laboratory of Electrical and Materials Engineering, LGEM, Higher School of Electrical and Energetic Engineering of Oran, Algeria.

Corresponding Email: hamza.bennacer@univ-msila.dz

Abstract:

The prediction of fundamental physical properties of materials, such as electronic band gap energy and lattice constants, is crucial for accelerating the development of advanced functional materials in energy-related domains like photovoltaics and photocatalysis. Conventional computational methodologies, including density functional theory, often grapple with the trade-offs between computational duration, and predictive accuracy when applied to complex systems such as chalcopyrites and perovskites. To address these issues, this work proposes hybrid artificial intelligence (AI) frameworks that integrate artificial neural networks (ANN), fuzzy logic systems, and advanced metaheuristic optimisation algorithms. For chalcopyrite compounds, we develop an ANN model hybridised with Particle Swarm Optimisation (PSO) to surmount challenges related to local minima entrapment and solution quality, thereby achieving superior convergence and predictive performance for band gap energy of chalcopyrite materials. For simple perovskites ABC_3 , optimised ANN and PSO-fuzzy logic models are employed to predict lattice constants. Benchmark evaluations using root mean square error, mean absolute error, and the coefficient of determination

demonstrate the robustness and effectiveness of the proposed approaches. The results highlight the potential of AI- and ML-driven predictive models in accelerating the discovery and design of advanced materials with tailored electronic and structural properties.

Key words: Lattice constant, band gap, perovskites, chalcopyrites, Machine learning, prediction.

ICMSE

THE INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE
AND ENGINEERING AND THEIR IMPACT ON THE ENVIRONMENT