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ABSTRACT

Monitoring environmental data to ensure the safety and reliability of public resources has
become a crucial task in data-driven systems. One key aspect of this monitoring is the
detection of anomalies—data points or behaviors that significantly diverge from the norm.
This study explores the use of a density-based clustering method, DBSCAN, to identify such
anomalies within datasets collected from drinking water treatment facilities. DBSCAN's
capability to recognize dense regions and isolate noise makes it well suited for flagging
irregularities in complex, real-world data. By applying this method to extensive datasets with
diverse attributes, the research aims to enhance the consistency and safety of drinking water
production processes, contributing to improved public health outcomes and operational
resilience in water management systems.

Keywords: Anomaly detection; DBSCAN; water treatment; clustering algorithms;
environmental data analysis.
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1. INTRODUCTION

Anomaly detection refers to the process of identifying data patterns that deviate significantly
from established or expected behavior [1]. This process becomes particularly critical when
such irregularities provide valuable insights into the underlying system. Anomalies may stem
from diverse sources including cyber-attacks, sensor malfunctions, environmental shifts (e.g.,
climatic variations), or human oversight [1]. Its applicability spans numerous domains,
including but not limited to intrusion detection, military reconnaissance, fraudulent
transaction identification, healthcare diagnostics, insurance risk analysis, and preemptive fault
detection in safety-critical infrastructure [2][3]. A primary advantage of anomaly detection
lies in its capacity to transform atypical patterns into actionable intelligence. For instance,
unauthorized data exfiltration from a compromised computer could manifest as unusual
network traffic, prompting early intervention [2][4]. Similarly, detecting irregularities in MRI
scans can assist in diagnosing malignant tumors [2][5], and anomalous telemetry from
spacecraft systems may signal component degradation. Likewise, inconsistencies in financial
transactions can serve as early indicators of credit card or identity fraud [2][6].

In the context of water treatment and production systems, continuous monitoring of water
quality is vital. One of the most technically demanding aspects of this process involves
determining the appropriate coagulant dosage, a factor essential for achieving optimal water
purification [7][8]. Accurate dosing relies heavily on precise and dependable sensor readings
of raw water parameters. Consequently, high-level processes, such as optimizing coagulation
tests, must be resilient to sensor anomalies, including transient faults or inaccurate inputs
[7]1[9]. Effective anomaly detection in these sensing systems is thus indispensable for
maintaining operational integrity and ensuring high-quality water output. The timely
identification of sensor faults, data outliers, and systemic failures has drawn increasing
attention due to its implications for minimizing system downtime, enhancing productivity, and
upholding safety and reliability standards [7][10][11]. This study aims to detect and validate
potential sensor misreadings, data corruption, or anomalous raw water values to enable the
reconstruction of trustworthy input for automatic coagulation control systems. By doing so, it
ensures the integrity and reliability of data gathered from various water quality sensors [7][9].
However, one of the major challenges in applying supervised machine learning techniques to
this problem is the scarcity of labeled anomalous instances [7][9][10]. As a result,
unsupervised learning approaches present a more viable alternative in such scenarios [7].
Principal component analysis (PCA) has been widely applied in data mining to study data
structure. In PCA, new orthogonal variables (latent variables or principal components) are
obtained by maximizing the variance of the data. The number of latent variables (factors) is
much smaller than the number of original variables, so the data can be visualized in a
low-dimensional PC space. Although PCA significantly reduces the dimensionality of the
space, it does not reduce the number of original variables, as it uses all the original variables
to generate the new latent variables (principal components). For interpretation or future



investigations, reducing the number of variables would often be very useful. Feature (variable)
selection can be achieved either by choosing informative variables or by eliminating
redundant variables. [12]

In this research, the DBSCAN algorithm (Density-Based Spatial Clustering of Applications
with Noise) is employed to perform anomaly detection in the water treatment context.
DBSCAN is a well-established density-based clustering technique known for its ability to
identify clusters of arbitrary shape while effectively isolating noise [13][14]. The algorithm
relies on two principal parameters—Epsilon (Eps) and Minimum Points (MinPts)—to define
neighborhood density. Performance metrics include the number of identified clusters,
unassigned data points, classification errors, and the time-to-noise ratio [13].

The structure of this paper is as follows: Section 2 outlines the dataset and describes the
DBSCAN algorithm alongside the feature selection methodology. Section 3 presents and
discusses the experimental results, while Section 4 offers concluding remarks.

2. MATERIALS AND METHODS

2.1. Study Area and dataset

The Cheliff dam is geographically located about 30 km northeast of the city of Mostaganem
and 363 km northwest of Algiers (Fig. 1). It is located between the following coordinates: 35°
59" 00" N, 0° 24" 47" E. Mostaganem has a cold semi-arid climate and an average
precipitation of about 347 mm/year. The average yearly temperature is 17.9 °C.

In this research, we seek to apply our approach for surface water quality monitoring using
several physicochemical parameters. These parameters were collected from the Sidi Lahdjel
production station over two years. Our knowledge of the treatment process is limited to data
recorded at this station. More quality parameters of the surface water are measured daily by
sensors, in addition to laboratory tests, which are carried out every week at all treatment
process. The above physicochemical parameters were used to analyze the relationship among
these descriptors and to verify the water quality monitoring model. Descriptive statistics of
water parameters are given in Table 1 [15].

Fig.1. Map showing the region under study: Cheliff dam — Mostaganem — Algeria [Google
Maps].



Table 1. Descriptive statistics of water parameters.

Variables Min  Max Mean  Standard deviation
Turbidity (NTU) 0.66 217 6.5 4.2521
pH 6.25  8.37 7.97 0.2692
Temperature (°C) 11.3 29 19.58 4,9852
Conductivity (ps/cm) 1144 3600 2125.6 408.1714
TDS (mg/L) 689 1728 1208.2 206.1315
OM (mg/L) 2.47 6.7 2.47 0.9347
Chlorine (mg/L) 192 724 425.29 99.3793
Bicarbonate (mg/L) 83 299 160.02 35.6523
Calcium (mg/L) 59 163.5 127.2 22.0475
Magnesium (mg/L) 44 110 74.1 11.1634
Total Hardness (°F) 45 77 62.33 7.4717
Color 11 169 58.1 36.1473
Coagulant (mg/L) 1.2 12 3.81 2.4355

2.2. Principal component analysis (PCA)
The PCA technique (also known as the eigenvector regression filter or the Karhunen-Loeve
transform [16][17]) is used for dimensionality reduction, which involves zeroing out one or
more of the weakest principal components, resulting in a lower-dimensional projection of the
raw feature data that preserves the maximal data variance. The dimensionality reduction
process is achieved through an orthogonal, linear projection operation. Without loss of
generality, the PCA operation can be defined as

Y =XC (1)
With Ye RSP is the projected data matrix that contains P principal components of X with P <
N. So the key is to find the projection matrix C ¢ RN®, which is equivalent to find the
eigenvectors of the covariance matrix of X, or alternatively solve a singular value
decomposition (SVD) problem for X [17][18]

X=UZVT )
Where U € R®® and V € RNN are the orthogonal matrices for the column and row spaces of X,

and = is a diagonal matrix containing the singular values,™ for n = 0..., N-1,

non-increasingly lying along the diagonal. It can be shown [18,19] that the projection matrix
C can be obtained from the first P columns of V with
V=[Vl,...,VN] (3)
And
c=[Cl,....CP] 4
Where vi € RN is the n' right singular vector of X, and cn = V.
In fact, the singular values contained in X in (2) are the standard deviations of X along the

principal directions in the space spanned by the columns of C [17][18]. Therefore, =



becomes the variance of X projection along the n' principal component direction. It is
believed that variance can be explained as a measurement of how much information a
component contributes to the data representation. One way to examine this is to look at the
cumulative explained variance ratio of the principal components, given as

P
a2

=r=1

L — Tk (5)

Moreover, illustrated in Fig. 2. It indicates that keeping only a few principal components
could retain over 90% of the full variance or information of X. As a comparative study, a
varying number of principal components has been used and examined in the following
evaluation section. [17]
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Fig. 2. Cumulative explained variance ratio over components.

2.3. DBSCAN algorithm
Density-based spatial clustering of application with noise, DBSCAN is a data-clustering
algorithm that forms clusters with a maximal set of density-connected points. Clusters in the
data space are typically high-density regions separated by lower object density regions.
DBSCAN defines the density in terms of the following:

1. &-Neighborhood: Objects within a radius of € (eps) from an object and can be

represented by the relation,

N.(q):{qld (p.q) < « (6)

Where p, q are data points in the space and d(p, q) represents the separation between the data
points.

2. High density: e-Neighborhood of an object containing at least minpts of data points. [2]
The algorithm requires two parameters: the neighbourhood distance € (eps) and the minimum
number of the points needed to form a high-density region minpts. The parameters categorize
the data points as core points, border points, and outlier points. A core point has more than
minpts number of points within the € (eps) distance and lies at the cluster's interior. A border
point is in the neighbourhood of a core point but has fewer than minpts number of points
within eps. Outlier points are the anomalous points that are neither a core point nor a border



point and do not fit any cluster.

The DBSCAN algorithm works as follows. An arbitrary point that has not been visited yet is
selected, and its e-neighborhood is retrieved. If the number of neighborhood points is greater
than the minpts, a cluster is started; else, the point is marked as noise. If the point being noise
is later found to lie in the &- neighborhood of some other point with apt size, it would be made
part of that cluster. If a point lies in a cluster's high-density zone, then its e-neighbourhood is
also a part of that cluster. All points found within the &- neighbourhood are added to the
cluster, as is their own e-neighborhood if they are dense until it is found that the
density-connected cluster is complete. Again, an unvisited point is retrieved and processed as
stated above, leading to the determination of a further cluster or noise. [2]

3. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the aforementioned proposed framework was applied to water quality data
from Cheliff dam station in Mostaganem (Algeria). For testing the applicability of the
suggested methodology, our monitoring system consists of two steps: features selection and
sensors anomalies detection in the different measurements for water quality assessment. The
feature selection technique is based on PCA, and sensors anomalies detection technique are
based on DBSCAN. All proposed methods were implemented and assessed using
MATLAB2019b environment software.

3.1. Features selection using PCA method

The PCA method is used with a variation of 80 to 90% of the eigenvalues, without any
transformation of the resulting components that are not correlated. A total of 142 samples of
twelve physicochemical parameters of water quality are used in this phase. Parameters such as
color, pH, temperature (T°), electrical conductivity (EC) and turbidity (TU) are collected by
sensors installed in all treatment processes of the plant. Every week, in the laboratory, some
chemical parameters are examined such as: TDS, OM, Chlorine, bicarbonate (B), Calcium,
Magnesium (Mg) and Total Hardness (TH). The aforementioned collected data will be applied
to verify the water quality assessment model.

First, a PCA analysis is performed to determine the descriptor parameters or input variables
most representative of water quality. This involves extracting relevant information such as:
correlation matrix, histogram of eigenvalues and correlation circle. It should be noted,
however, that all 12 input variables of this database are retained due to the importance of its
parameters for water quality and the continuity of their measurements over time. The PCA
analysis applied to all the database data provides Table Il and the histogram in Figure 3.



Fig. 3. The PCA analysis

9 10 11 12

TABLE 2. Variables of eigenvectors obtained by applying PCA.

Variables
TU 0.09 0.58 0.15 027 0.08 0.08 -020 031 -0.62 0.06 -0.00 -0.01
PH 0.06 0.40 0.18 -042 -036 026 064 0.03 003 -0.03 0.00 0.00
T® -0.07 -0.12 0.60 -0.16 051 -0.00 0.08 0.27 0.16 0.16 0.07 -0.41
EC 036 -0.11 036 -0.10 032 -0.01 003 -0.14 -0.10 -0.32 -0.14 0.66
TDS 045 -005 000 -0.06 -0.01 -0.01 -0.04 -039 -0.22 -046 0.17 -0.57
oM 0.01 -0.13 037 057 -034 -050 036 -0.01 -0.01 -0.01 -0.00 -0.01
Ch 045 -005 004 -001 -001 003 0.00 -0.38 -0.08 0.79 -0.02 0.01
B -0.02 0.22 -045 014 059 -024 054 -0.11 -0.03 0.01 0.02 -0.01
Cal 0.36 0.06 -0.16 -0.31 -0.08 -0.50 -0.09 0.38 0.09 0.00 -0.53 -0.12
Mg 028 -024 -012 042 003 058 019 024 011 -0.06 -0.42 -0.13
TH 043 -0.11 -0.17 0.02 -0.04 -0.02 004 049 014 0.02 0.68 0.15
Co 0.17 0.56 011 025 004 000 -0.23 -0.18 0.68 -0.08 0.01 -0.00
PC PC1 PC2 PC3 PC4 PC5 PC6 PC7Y PC8 PC9 PC10 PCl1l1 PC12
Eigenvalues
464 221 1.77 1.07 0.89 072 048 0.1 0.06 0.03 0.01 0.01
Total variance proportion (%o)
38.68 18.39 1476 895 742 6.02 4.02 0.82 054 0.25 0.05 0.02
Cumulative variance proportion (%o)
38.68 57.08 7184 80.8 88.23 9426 98.28 99.1 99.66 99.91 99.97 100

A variance-covariance matrix is formed using PCA on the input variables. According to Table

I, the PCA results and statistical parameters such as eigenvalues, cumulative variance

proportion, and variance proportion are shown. The four PCs represent 80.80% of the total
variance proportion of the input samples and eliminate the remaining components, as shown

in Table Il. These PCs mainly calculate the initial variance of the data. In addition, 1CP



applications are used to obtain eigenvectors to evaluate the coefficients for PC training. The
correlations between each variable and the learned principal components are shown in Table
I1. In this table, the most effective parameters in PC training are shown in red bold. The total
variance in the dataset represents 80.80% of the first four principal components combined.
The first component (PC1) is 38.68%, 18.39% being the second component (PC2), 14.76%
being the third component (PC3) and 8.95% of the total variance being the fourth component
(PC4).

In Table II, the rapid decrease of the eigenvalues is apparent. For the evaluation of the
predominant physicochemical processes, the eigenvalues of the first four principal
components (PC1-PC4) can be used. The EC and B concentrations are very positive (0.59 —
0.66), while the Mg concentration is weakly positive for the first component (0.58). T° and
TH have high positive loadings in PC2 (0.60 - 0.68), and the other concentrations show weak
positive loadings (0.38-0.45). The TU concentrations in PC3 have high positive loadings
(0.58). The pH concentrations for PC4 show high positive loadings (0.64), while Mg displays
moderate positive loadings (0.58), and TU and TH show positive loadings (0.58 - 0.68).
According to Table II, the first four PCs are the input characteristics of the evaluated
classifiers. The variables selected are: pH, Temperature (T°), Electrical Conductivity (EC) and
Turbidity (TU). Consequently, monitoring must take place at the treatment plant and
continuously using selected parameters that are the most representative used due to the strong
correlations existing between all parameters, as well as the most fundamental and easily
measurable by physical sensors in the water quality monitoring system.

3.2. Anomaly detection using DBSCAN method

This segment of the study focuses on identifying anomalies within the sensor-generated data
corresponding to selected physicochemical parameters relevant to water quality evaluation. To
this end, the DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
algorithm is employed as an unsupervised technique for outlier detection. The dataset under
analysis comprises four key variables—Temperature (T°), pH, Electrical Conductivity (EC),
and Turbidity (TU)—which were previously selected through the Relief-based feature
selection process. These refined inputs serve as the basis for the anomaly detection framework
illustrated in Figure 4.
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Fig. 4. Evolution of the water quality variables.
In the anomaly detection process, the DBSCAN algorithm parameters were set with minPts =
4 and € = 2. It is important to note that the number of anomalies detected is sensitive to
variations in these parameter values. During the experimental validation phase, intentional
faults were introduced into the turbidity and temperature sensors to observe their impact on
the data visualization. The algorithm was applied to a dataset comprising 142 samples, with
the results illustrated in Figure 5.
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Fig. 5. Results obtained with the DBSCAN algorithm.
To evaluate whether a sensor is producing faulty readings, hypotheses were tested through the
generation of test statistics, which are essential tools in process monitoring for anomaly
detection. Simulated sensor faults were introduced on day 60, and their effects were analyzed
through graphical representations (Figure 6). The presence of outlier points—highlighted in
red—confirmed the successful detection of anomalies in both the turbidity and temperature
Sensors.
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Fig. 6. Fault detection with the DBSCAN algorithm.
Further, a dual-fault scenario was simulated, wherein simultaneous disturbances were injected
into the turbidity and temperature sensors on days 100 and 101. As evidenced in Figure 7, the
observed deviations in sensor behavior confirmed the malfunction of both units.
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Fig. 7. Simulation of two faults by the DBSCAN algorithm.

4. CONCLUSION

This study presents a comprehensive framework for water quality assessment, integrating two
key methodologies: the ReliefF algorithm for feature selection and the DBSCAN clustering
technique for sensor anomaly detection. The first contribution lies in dimensionality reduction
through Relief, enabling the selection of the most informative physicochemical variables. The
second focuses on the application of DBSCAN to identify sensor anomalies in real-time.
Accurate anomaly detection in drinking water treatment systems is a critical component of
quality assurance. The findings demonstrate that DBSCAN is capable of reliably detecting
sensor faults, with performance comparable to other established techniques referenced in [7].
Real-world experimental data from the treatment plant further validate the robustness and
efficacy of this approach. Importantly, this methodology also contributes to cost-efficiency in
system monitoring by enhancing fault detection capabilities with minimal added complexity.
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