@ axioms

Article

One-Dimensional BSDEs with Jumps and Logarithmic Growth

El Mountasar Billah Bouhadjar !, Nabil Khelfallah *

check for
updates

Citation: Bouhadjar, EM.B.;
Khelfallah, N.; Eddahbi, M.
One-Dimensional BSDEs with Jumps
and Logarithmic Growth. Axioms
2024, 13, 354. https://doi.org/
10.3390/axioms13060354

Academic Editors: Chao Liu
and Qun Liu

Received: 11 April 2024
Revised: 12 May 2024

Accepted: 21 May 2024
Published: 24 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Mhamed Eddahbi 2

1 Laboratory of Applied Mathematics, University of Biskra, P.O. Box 145, Biskra 07000, Algeria;
elmountasarbillah.bouhadjar@univ-biskra.dz

Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; meddahbi@ksu.edu.sa

*  Correspondence: n.khelfallah@univ-biskra.dz

Abstract: In this study, we explore backward stochastic differential equations driven by a Poisson
process and an independent Brownian motion, denoted for short as BSDEJs. The generator exhibits
logarithmic growth in both the state variable and the Brownian component while maintaining
Lipschitz continuity with respect to the jump component. Our study rigorously establishes the
existence and uniqueness of solutions within suitable functional spaces. Additionally, we relax the
Lipschitz condition on the Poisson component, permitting the generator to exhibit logarithmic growth
with respect to all variables. Taking a step further, we employ an exponential transformation to
establish an equivalence between a solution of a BSDE]J exhibiting quadratic growth in the z-variable
and a BSDE] showing a logarithmic growth with respect to y and z.

Keywords: backward stochastic differential equations; logarithmic growth; Poisson random measure;

Brownian motion
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1. Introduction and Notations

Pardoux and Peng [1] initially introduced the concept of backward stochastic differential
equations without the jump component, denoted briefly as BSDEs. They established the
existence and uniqueness of BSDEs, assuming the Lipschitz continuity condition on the BSDE'’s
generator with respect to both (y,z). Additionally, they assumed that the terminal value is
square integrable. This result gained widespread recognition across various fields, including
mathematical finance [2], finance and insurance [3], insurance reserve [4], and optimal control
theory [5], as well as stochastic differential games and stochastic control [6-8]. These findings
are strongly connected to partial differential equations (PDEs) [9-11]. In contrast, the latter
contributions were the first to demonstrate BSDEs with random terminal time.

Given the diverse applications of BSDEs, researchers have actively worked to relax
assumptions on the generator f and/or the final condition. Notably, scholars have estab-
lished limited results for high-dimensional BSDEs with local Lipschitz assumptions on the
driver, as demonstrated in [12-16]. While real-valued BSDEs have undergone extensive
study, researchers have predominantly relied on a comparison theorem, focusing on cases
where the generator grows at most linearly with respect to y and grows either linearly or
quadratically in z. This has enabled the establishment of solutions under conditions of
square integrability (or even integrability) for the terminal datum, as illustrated in [17-19].

In situations where the generator exhibits a quadratic growth in z (referred to as
QBSDE), the existence of solutions hinges upon either boundedness or, minimally, expo-
nential integrability of the terminal value. Various works, such as [20-22], demonstrate this
requirement. Recent advancements, highlighted in [23-25], have identified a substantial
class of QBSDEs for which solutions exist solely under the condition of a square-integrable
terminal datum.
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Let (OO, F,F,P) be a filtered probability space, where F = (Ft),c[o,1) represents the
o-algebra generated by two fundamental processes: a real-valued Wiener process W;
and a real-valued Poisson random measure N(ds, de) defined on [0, T] x I, with ' = R*.
Furthermore, we introduce N (ds, de) as the compensated Poisson random measure, defined
by N(ds,de) = N(ds,de) — v(de)ds, where v is a o-finite measure on T, equipped with its
Borel field B(T'). It is noteworthy that N serves as a martingale with a zero mean, referred
to as the compensated Poisson random measure.

We now direct our attention to the central focus of this research endeavour. Specifically,
we investigate solutions denoted as (Y, Z, U) := (Y, Z, Ut (e))o<t<T ecr for a BSDEJ(C, f).
The following dynamics govern the evolution of these solutions:

T T T p ~
Ye=(+ /t £(s,Ys, Zs, Us)ds — /t ZodW; — /t /r Uy (¢)Ni(ds, de) (1)

The investigation initiated by Tang and Li [26] marked a pioneering achievement in
the study of BSDE] of type (1). This work demonstrated the existence and uniqueness of
solutions for such equations subject to Lipschitz conditions. In a closely related context, [27]
studied a class of real-valued BSDEs featuring Poisson jumps and random time horizons.
They proved the existence of at least one solution for BSDEs characterized by a driver
exhibiting linear growth.

In subsequent work, ref. [28] extended these discoveries by proving the existence
but not the uniqueness of solutions for BSDEs with jumps. They considered continuous
coefficients that satisfy an extended linear growth condition in this extension. This result
was generalized to situations where the generators are either left- or right-continuous.

Recent advancements in research by [29,30] strengthen the connections between spe-
cific classes of quadratic BSDEs and conventional BSDEs driven by continuous functions.
Notably, ref. [31] made an important contribution by proving the well-posedness of so-
lutions under local Lipschitz conditions, with special emphasis on the Brownian motion
component. They also demonstrated the existence of one and only one solution for a class
of nonlinear variants of the backward Kolmogorov equation.

Previous studies formulated all of the above results for one-dimensional BSDEs.
Ref. [32] studied a multidimensional Markovian BSDE] and demonstrated that a given Pois-
son process and deterministic functions can express the adapted solution. They established
the existence of solutions for these equations under the assumption that their generators
are either continuous with respect to y and z and Lipschitz in u or continuous in all their
variables and adhere to standard linear growth assumptions. Bahlali and EI Asri [33] in-
vestigated situations where the generator of the BSDEs is bounded by (|z|/|In|z||). They
also considered the terminal value, assuming it to be merely LP-integrable, with p > 2.
However, the extension of this condition was recently explored by [34], who supposed
that the drift is dominated by (|y||In |y|| + |z|\/|In|z||). Additionally, refs. [31,35] studied
BSDEs associated with jump Markov processes, with the latter work presenting a proof
under assumptions different from those considered in the present study.

Logarithmic growth generators in BSDEs play a crucial role in financial risk manage-
ment, capturing the common assumption of asset growth proportional to their current
value. Studying BSDEs with such generators is essential for optimizing investment portfo-
lios, pricing, hedging derivatives, modeling energy prices, and guiding optimal investment
strategies in wealth accumulation problems (see [33,36]). Moreover, their connection to
partial differential equations (PDEs) with logarithmic coefficients (as explored in [34])
highlights their relevance in physics. Notably, the logarithmic growth condition’s weaker
nature compared to quadratic and super-linear ones further emphasizes its versatility. Con-
sequently, understanding and solving one-dimensional BSDEs with logarithmic growth
generators are fundamental for tackling complex problems across finance, engineering,
physics, and even biology.

In this work, we proceed according to the following methodology. We establish the
existence and uniqueness of the solution for BSDE]s whose generators show a growth
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described by a logarithmic function of the type (|y||In|y|| + |z|+/| In |z||) but keeping the
linear growth condition in u. Initially, we present a priori estimates for solutions of BSDEs,
followed by the presentation of the main result; this comprises the content of Section 2.
Section 3 extends the logarithmic growth condition for BSDE]Js, specifically by relaxing the
Lipschitz condition on the jump coefficient. In Section 4, we demonstrate the equivalence
of previously obtained solutions through an exponential transformation. Finally, Section 5
provides the conclusion of our work. Some detailed proofs of crucial lemmas are gathered
in Appendix A.

Below, we list some notations that will be used in this paper.

For a specified T > 0, the following notation is employed:

e P:represents the predictable o-field on [0, T] x Q.

e (:isdefined as [0,T] x Q x T.

e &:=pB(D).

e P :=P®E& denotes the predictable r-algebra on Q.

In the subsequent sections of this work, we shall introduce useful functional spaces:
Form > 1:

e S™([s,t];R): the space of R-valued adapted cadlag processes Y such that

Y[§ =E[ sup |V;|"] < oo.

s<r<t
e S%([s, t];R): the space of R-valued adapted cadlag processes Y such that

|Y|se = esssup|Y;| < oo.
s<r<t

e H™([s, t];R): the space of R-valued predictable processes satisfying
t
/ E[|Z|"]dr < oo.
S

e LXT,Ev; R): the space of Borelian functions ¢ : I' — R such that

lel, = ( [1ee)Pride)) ™ < e

e LL™([s,t],v;R): the set of the processes U : ) — R is P -measurable and

t
[ Ew]dr < .
S

2. Existence and Uniqueness of Solutions

In this section, we establish the foundational assumption that forms the basis of our
analysis, providing a framework for subsequent developments. This assumption is pivotal
for exploring solutions to the BSDE] Equation (1). We then introduce preliminary estimates
of the solution and delineate key lemmas crucial for establishing both the existence and
uniqueness of solutions.

Assumption 1.

(A.1) Assume that E[|{|FTT1] is finite, where u; := e for all t € [0, T] and 0 is a sufficiently
large positive constant.
(A.2) (i) f is continuous in (y,z) and Lipschitz with respect to u (t, w)-a.e.
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(ii) There exist constants cg, ¢y, ¢p, C Lips and a positive process ¢ such that

T
/E[ﬁg‘sﬂ}ds < +oo.
0

Additionally, for every t,w,y, z, u, uy, uy:

| f(tbwy,zu) | < O+ 816, (Y) + 82,60 (2) + calle]u,

and
‘f(tlwlylzlul) _f(tlw/ylzlu2)| S CLlp||ul - quV/

where g1, (y) = calyl|Iny|| and ga,¢,(z) = colz[+/|In{z][.
(A.3) There exists a sequence of real numbers (An)n=1 along with constants My € Ry, r > 0,

satisfying:

(i) For every integer N > 1, we have 1 < Ay < N”.

(ii)  lmy_e0 AN = 0.

(iii)  For any natural number N € N, and every y1, Yo, z1, 2, u such that:
lvil, lval, 1z1], |z2], |ullv < N, the following holds:

(yl _yZ) (f(t’w/ylrzllu) _f(t,(U,yz,Z2,u))
In(A
= M ( |1 =2 [PIn(An)+ [y1 = va | |71 = 2]/ In(An) +1(4NN) )

Definition 1. A solution to the BSDE](C, f) is a triplet
(Y, Z,U) € S*TH([0, T|;R) x H2([0, T|;R) x L2([0, T], v; R)
that satisfies Equation (1).

2.1. Technical Lemmas

This subsection introduces four technical lemmas needed in the sequel. More precisely,
the first three are crucial in proving the results of the next subsection. Their proofs are
provided in Appendix A.

Lemma 1. Let y, z € R such that |y| > e. For any positive constant Cy, there exists another
positive constant Cy such that the following inequality holds:

2
z
Cilyllzy/ Izl < B+ Calylinyl. @

Lemma 2. For p € (0,00) and x,y € R, the following inequality holds:
1
/ (1—a)|x + ay|Pda > 3~ (1P |x|P.
0

Lemma 3. Let (Y, Z,U) be a solution to the BSDE] (1). Under ( A.1) and (A.2), there exists a
positive constant C such that

T
E[[Yl 4 [ s + DIV Z6f2 + |1 Us ) s

T
< C(1+ B 4 (ur + 1) [ B0l ds).

0
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Lemma 4. Let (A.1), (A.2)-(ii) be satisfied. Then, there exists a positive constant C(T, , c, c1,¢2)
such that

T ~
[ Bl vz w)lies < K,

where 1 < o < 2, and
> T 2 1 2 2
Ky :=C(T,a,co,c1,c2) <1 —0—/0 E[62 + Y| + | Zs)" + |LIS||V]ds>.

2.2. A Priori Estimates

This subsection aims to give some prior estimates for the solutions of BSDE] (1). These
estimates establish bounds on the solutions, ensuring that if the solutions exist, they will
belong to some appropriate spaces.

Lemma 5. Consider a solution (Y,Z,U) to the BSDE] (1). Additionally, assume that the pair
(T, f) satisfies conditions (A.1) and (A.2). In this context, we establish the existence of a universal
constant C(T, cy, ¢1,¢2), as follows:

() E[supepon Vil *!] < Ko
(i) fy B[IZ2+ | Us]2]ds < Ks,
where
Ry = C(T,co,e1,02) (1+ B[] + [ B[ol*]ds),

K3 := C(T,co, c1,¢c2) (1 +TKy + E[|C]?] + foTEwsz} ds)'

The first lemma that follows allows for a localization procedure introduced to establish
solutions’ existence and uniqueness. The second one provides a prior estimate for the
approximating solutions and guarantees that these solutions do not diverge. The proofs for
these lemmas can be performed and adapted to our setting similarly as outlined in [34].

Lemma 6. There exists (fy), a sequence of functions, satisfying:

(i)  For every n, the functions f, are bounded and exhibit global Lipschitz continuity with respect
to (y,z,u) fora.e. t and P -a.s.

(ii) sup, |fult,w,y,2,u)| <0t + 816, (Y) + 82,0 (2) + crl[uf]u-
(iti) Foreach N, pN(fn — f) — 0as n — oo, where

on(f) = B[ sup Ity zulas)

[yl |z] [y <N

Lemma 7. Consider f and { as defined in Lemma 5. Let (f,) denote the sequence of functions
associated with f by Lemma 6. Let (Y",Z",U") represent the solution to the BSDE]J(C, fu).
Consequently, we have :

(@) sup, E[fy [U|3ds] < Ky.

(b)  sup, E[supy;.7 [yl < K.

(c) supnIE[fOT |Z1'2ds] < K.

(@ sup, B[y |fuls Y¥, 22, Up)| ] < Ky

where Ky, Ky, K3, and Ky are constants independent of n.

2.3. Some Convergence Results

This subsection establishes estimates between two potential solutions. This analysis is
essential for demonstrating the existence of solutions and understanding the properties
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of these solutions in the context of the study on one-dimensional BSDEs with logarithmic
growth. Moving forward, we use the notation /5" to represent the difference between h!
and hf' for any given quantities.

Proposition 1. Forevery R € N, € (1,3 — ), 0 <6 < —bh—L min(},

I, ) and € > 0, there
exists Ng > R such that for all N > Noand S < T:

‘m‘*

Lip

. onm 2 {2
limsupE{ sup |y, ( . - ZJZ)ds}
nm—+oo L (S_§)+<i<S (=0 (]Y™2 + Ag) 2

¢ CNO 13 v,
< e—}—ﬁe N lim sup E[| V™ (F].

n,m——4o00

Here , Ag = sup{(Ay)~,N > R}, Cy := lji(ZM2 + C2%, )In(Ay), and { is a positive

constant. The definition of x can be found below.

Lip

We rely on Lemma Al to substantiate the preceding proposition.

Proof. We define the constant C in Lemma Al as Cy := Cy;1 + Cn2, where Cy 1 =
2 C
2L In(Ay) and Cyp 1= ;P’g In(Ay). Additionally, let 7 := 6Cy(In(Ay))~1. We will
examine the following quantity:
S S B_H .
—CN/ ¢ s ds+ﬁu/t ecsq)sz 2| !
N (B—1) [° B_1 .
B[P eegt Mzpmas P [ ook i s
+]3,t +]4,t-

The control of the expression involving the process (Z¢"") has been postponed to Lemma A2,
where Young’s inequality plays a crucial role, leading us to the following:

5 5 )
—CN,1/ € Sl ds+,8( ﬁ)/ ecs 2 v |2ds
.S B_
—gt ecsq)sz 2ds+]3,t

(B—1) [° B_q 4
< —p B [ecoqi zrmpas

We direct our attention to the expression encompassing the norm || U” o Ilv-

By applying Young’s inequality and setting Cy 2 = /3“1 In(Ay) for sufficiently large
An (i.e., AN > e), we obtain the following result:

A~

B_
_CN,Z/ e¢ 905 ds+BCL1p/ ecs(Psz
-1 S B_1 .
e R L
-1 /S B4
S 7,B‘BT/t equ)sz

Based on Lemma 3 and employing Burkholder-Davis—Gundy’s inequality and Holder’s

2ds. 3)

inequality, while taking into account the relationship ? + 5+ 5 = 1as well as the
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inequalities (A7) and (3), we obtain a positive universal constant ¢ such that, for all 6 > 0,
the following inequality universally holds:

B S B
E Cnt 2 E / Cns 21 Zn,mZ an,m 2 d
{(S;)ggKS [N B[ [ e (2 4+ 0 s
s fmiob s £ e Mo 2 [T o]
< ﬁ—le N {IE[goS] +W[E/o gosds] [E/O ® (s)ds]

L3
2

T 2
<[B [ 1o Y2 Z2,U2) = fuls, Y2, 220, U2 | s

B— T
+ﬁ[4N2 +A1}TlE{/ sup |fu(s,y,z,u) — f(s,y,z,u)|ds
O Jyllzlllullv<N

T

+ sup  |fu(s,y,z,u) —f(s,y,z,u)|ds} }
O JyLlz] [lully <N

Utilizing Lemmas 6 and 7, for any N > R:

E[ sup ‘?n,mﬁ_}_E/S (Izg’m2+\|fl§"” |§)ds
! . 25
(§—0)T<t<S (5—o)*+ (|st,m 2+AR) 2
o onomy ¢ Al
< gl 4t A
ol BT (an)t
4€ 3 B-1 . A’y
_ .E
2¢ Cn©é 2 1
g0 PN+ AT N (fo = )+ on(fn = )]
Given § < ﬁ min(%, %) , we can derive
ip

Y v
lim< ANWL ANK> = 0.
N—oo (An)? (AN)T

To complete the proof of Proposition 1, we commence by taking the limits as 7, m approach
their respective limits 400, +co followed by a subsequent limit as N tends to infinity, in
accordance with assertion (iii) of Lemma 6. [

2.4. The Main Result

The primary focus of this work is to investigate the existence and the uniqueness
results of solutions for BSDE]J (1) under Assumption 1.

Theorem 1. Under Assumption 1, Equation (1) admits one and only one solution (Y,Z,U) in
StrHl(]o, T];R) x H2([0, T];R) x L2([0, T], v; R).

Proof of existence. By applying Proposition 1 successively with S = T, S = (T —§)™,
S = (T —25)" ... and utilizing the Lebesgue dominated convergence theorem, we can
show that for any B € (1,3 — a), the following holds:

|22+ 1T [19)
(1727 + Ag) 7"

. T
limsupIE[ sup \Ytn’m|ﬁ—0—/0 (

n,m—+00 0<t<T

ds} =0.
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Through the application of the Cauchy-Schwarz inequality, we derive

T . N T (|7nm|2 A, (|2 1
B [ gz pwmioas) < v2(e] ((T;g’rlz++|’f;)zi|;)ds})2
dsD .

<(=[ [ (12 + )

28
)

Nl=

It is evident from Lemma 7 that
1
2

<E[/OT <|Ys’1'm2+AR)2;ﬁds]> < oo,

Consequently,

lim E[ sup Y™

n,m——+oo 0<t<T

T A A
P [ 2o+ e

Thus, there exists (Y, Z, U) that satisfies

|1,)ds} = 0.

T
E[ sup Ylf+ [ (1Z:]+[[Usll)ds] < oo,

0<t<T

and

T
lim E[ sup |y;1—yt|ﬁ+/0 (122 = 7| + Uz — Uilly)ds] = o.

n— o0 0<t<T
Specifically, a sub-sequence denoted as (Y”, Z", U") exists, such that

nlirfm(|Yf — Y|+ |Z} — Ze| + || U — Ut]]y) = 0 aee. (tw). 4)
We still need to establish the convergence in probability of the following term:
T
| Gl 2 22U = (s, s, 2o, L)
as n approaches oo. The initial step is applying the triangular inequality, which yields
T
B[ [ 1l Y2, 20 U2) = (5, Y, Zs, Us)lds)
T
< B[ [ Ifals Y2, Z2,U2) - (s, Y2, 22, s
0
T
+E| /0 £(5, Y2, Z2,U2) = £ (5, Ye, Z, Us)|ds).

Utilizing Holder’s inequality and the following inequality,

1 < O+ 128+ lugl)*
(I +ize e ue =Ny S N2 ‘

we obtain



Axioms 2024, 13, 354

9 of 32

IN

IN

B[ [ 1~ s 12, 22 un)las]

T
E [ 10 = N6 Y2 Z2UD] Lz <y ds]

(Ye] +12¢] + fuz )y~

T
+E[/O |(fn = F)(s, VS, ZE, U] NZ-a Ly iz uz >Ny S

4K} (TKy + Ky + K3)1~3

pN(fn_f)+ N2—«

The last inequality is obtained from Lemmas 6 and 7. Taking the limit successively first
with respect to n and then to N in the preceding inequality, we arrive at

T
WmE[ [ (s, Y2 28, U2) — £ls, Y2, 25 U ds] = o,
n 0

Considering the limit (4) and the continuity of the function f with respect to (y,z, u) for all
t € [0, T], we obtain

li)gn [f(s, Y, Z0,Ul) — f(s,Ys, Zs, Us)| = 0. ae. (tw).

Furthermore, Lemma 4 and the conditions (a—c) outlined in Lemma 7 affirm the uniform
integrability of the sequence

|f(5, YSn,Zg, usn) 7f(S/YSrZSI US)|

As a result:

T

nlgn E|f(s, Y, Z2,Ul) — f(s,Ys, Zs,Us)|ds = 0.
©Jo

Consequently, the BSDE (1) has a solution in S#([0, T]; R) x H'([0, T|;R) x L([0, T],v; R).

Taking account of Lemma 5, we conclude that it belongs to S*71([0, T]; R) x H2(]0, T|; R) x

LL2([0, T], v; R). This achieves the proof of the existence part. [

Proof of uniqueness. Consider two solutions (Y, Z,U) and (Y, Z’,U’) to the BSDE]J (1).
Drawing from the proof of Proposition 1, it can be demonstrated that for every R > 2,

g—1 . (1 x

,36(1,370&), 0 < ————min|(-,— ) and >0,
2M5 + Cy, (2 r,B)

there is an Ny > R, for all subsequent N > Ny and each S < T

E[Y - Y/ |F] +E[/(§§)+(|zs = Z P+ us = w)?) (1 —Yél2+AR)ﬁ22

{ CnO / ‘B
< RN N —

.

We successively set S = T, followed by updating S as S = (T —6)", and so on. Thus, the
BSDEJ (1) has a unique solution (Y, Z, U) € S*T+1([0, T|; R) x H2([0, T|; R) x L2([0, T],»; R). O

Example 1. Let g(t,w,y,z) := O + c2|y|| In|y|| + colz| /| In(|z|)| + ||u]]y. Clearly, g satisfies
(A.2), so we will now verify that (A.3) holds true:
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Indeed, letting g1.c,(y) := c2ly||In|y||; 82,6,(2) := colz|v/|In|z||, we have

g(t,wyr,zr,u) — gt w,yo,z0,u) = g1.6,(Y1) — 1,6, (V2)
+g2,€o (Zl) — 82,09 (ZZ)-

We shall examine the function g1, under the following conditions:

1 1
0<lyillyol = 5 and 55 < Iyl [yl < N.

Additionally, we will analyze g ¢, across various cases:

1 1

N |21, |22
1

{ 0 < Jz1l, |z] < <
< z1, |z2| < N,

<
1-& < |z [z2] <

where € € (0,1) is small enough, and N is sufficiently large.
Clearly, in the first case (|y|, |z| < &), the two functions satisfy (A.3),

81,0, (Y1) — 81,6, (Y2) + 82,00 (21) — &2,60(22)] < 1816, (1) + (81,6, (Y2) | + 182,00 (21) ] + (82,0 (22)]
< max(co, cz)% In(N).

The mean value theorem, applied in the second term, implies the following:

181,6,(1) — 81,6, (¥2) + 82,60(21) = 82,c0(22)| < 81,6, (W1) — §1,00 (W2) | + (82,64 (21) — 82,60 (22)]
< max(co, &) (ly1 = y2l In(N) + |21 = 2]y /In(N)).

Applying the mean value theorem again, we can prove the remaining cases for the function g .
Therefore, (A.3) holds for Ay = N.

Further examples can be found in [37].

3. Generalized Logarithmic Growth Condition for BSDEs with Jumps

Now, we examine a distinct BSDE with jumps from the one in (1), introducing different
assumptions for the generator of the next BSDE]J:

§+/ £(5,Ye, Ze, [oUs(e)v(de)) ds—/ ZdW, — / /us N(ds,de).  (5)

Assumption 2.

(A.1)! Assume that E[|{|FTT1] is finite, where u; := €% for all t € [0, T] and 0 is a sufficiently
large positive constant.

(A.2) (i)  Foralmost all (t,w), the function f is continuous with respect to (y,z, u).
(ii)  There exists a positive process O such that

T
/ E[ﬁfﬁl}ds < Hoo.
0
Additionally, for every t, y, z, and u,
’f(t Y,z fr de )‘ < % +g1,€2(y) +32,C0(Z) +83,c1 (u),

where g3.c, (1) = c1||lullv+/|1In|[uf|y], co, c1 and cy are positive constants.
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(A.3)" There exists a real-valued sequence (AN ) N1 and constants Mp € Ry, r > 0 such that

(i) For every integer N > 1, we have 1 < Ay < N'.

(ii) limp_e Any = 00.

(iii) ~ Forevery N € N, and every y1, ya, z1, z2, U1, up such that
vl [v2l, |21l |22, lluallv, [[uz2llv < N, we have

(y1 —v2) (f(t, w,y1, 21, [rua(e)v(de)) — f(t, w, ya, 22, [ruz(e)v(de)))

< M ( |yi =2 PIn(AN)+ [ y1 —v2 | \/In(AN) (| 21 — 22 | +llu1 — u2llv)
In(An) )
AN ’

By following the steps outlined in the previous proofs, we can obtain a unique solution
for BSDE] (5) in which the transaction with u becomes proportionally identical to the
transaction with z.

The previous lemmas maintain their validity while adhering to (5) and Assumption 2.
Therefore, we will provide concise proofs, building upon the earlier derivations.

The proof of Lemma 5 under Assumption 2 is provided in Appendix A.

In what follows, we state a lemma concerning the stability result for the solution of
BSDE] (5). The proof follows the same steps as Lemma 3.5 in [34].

Lemma 8. There exists a sequence of functions ( f,,) with the following properties:

(i)  Foreachn, fy is bounded and globally Lipschitz in (y,z,u) a.e. t and P-a.s.w.
(i)  Moreover, for all n, we have P-a.s., a.e. t € [0, T|:

sup |fu(t,w,y,2, [rule)v(de))| < Or+ 81,6e,(Y) + 82,00 (2) + 83,6, (1)

(iii) Additionally, for every N, as n tends to infinity, the quantity pn(f, — f) converges to 0,
where

T
on(f) = B[ sup  [fulswwz frulevide))|ds].

[yl |z] [y <N

Proposition 2. Proposition 1, which establishes the estimate between two solutions, maintains
its validity within this section despite variations in the values of 6 and C, as presented in the
subsequent lemma.

2
Lemma 9. Assuming that C := Cy := 3ﬁ% In(Ayn) and 6 < % min(}, %),for any S < T
2

we have

2ds

B S B ~ B S B_q 4
ethof +C/t ecsfpszderMt < ecsgos2 —g/t ecs(ps2 l\Z;””
-1) S B_1 A
_ﬁ (:3 5 ) / eCs(psz 1||Usn,m
t

2 — S P o N
_I_ﬁ( zﬁ)/t equ)Sz |st,m‘2|zg,m|2ds

|%ds

M+ Jit+ Jor + ot
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where

. 1 S B
it = ﬁecsﬁft @5 D" (s)

fﬂ (S/ st/ Z;l/ fru;'l (e)l/(de))
—Fn (s, ym, zm, frusm (e)v(de)) ’ds,
B = Jais Tori= Joa+ BV in(an) [ e gf 1T 02,
and ®(s) = [Y¢| + [V + |Zs| + |28 + UL, + [ Us" ],
Proof of Proposition 2. The proof closely aligns with the methodology employed in estab-

2 2
lishing Lemma Al. Let C := Cy := 35% In(Ay) and 7y := 35/3%
As presented in Lemma 9, it is obvious that

C S B 2 S B_o .
_=N eCS(P52d3+,B( 218)/15 eCs(pSz 2| sr

3 Jt
5 B_q1 4 S B_1 . A
N / eCopZ 1|2 245 1 M, /t S Y| | 2 in( Ay )ds

B M2 71 N A~
B et (- ppminta) - Pz w2z ) s

IN

and
S B -1 S B_1 .
Sy ecsq’szds_ﬁ<’8 )/ eCS(Ps2 1“ s’
3 Jt 2 t
S B_1 4 N

+.3M2/ e Y| T[4/ In( A )ds

1 M3 -1),,~
< b ot (- Fpamiay) - E D e

+Ma /s |02 |y In(An) ) ds.

Using Young’s inequality, it follows that

NG n(an)e — LoD pp My anyfinay) < 2N

therefore,

2
2ds

S E_o &
7C / e (Ps d5+lB( :B)/ eCS(P52 2| Sr
B_q . —-1) /S B_q, ~
_g/t equ)Sz |Z?’m|2ds—’3(ﬁ2 )/t eCs(PSz 1”Ug'm||5d5+]3,t

(B

—1 S B_q . N
S e A Ve v
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Based on the preceding lemmas, for any N > R we have

Zi’l,m2+ an,m 2
(27 + 1O o

R s
IE[ sup \Yt"’m|ﬁ—0—IE/
ST (172 4 Ag)

(S—8)+<t<S

I\)‘\
o

< 76CN5E|:|?;£,m|ﬁ} +L A’Y
o - — B
Pl P=1(ay)"
4 g1 K AK]
+ﬁ—5K2(4TKz+TAR) ) (8TK2+16K1+161<3)2(A E
N r

2 _
+ 20 onigaN? + Ay

- o U = 1)+ o (fn = 1))

Since § < % min( %, rﬁ) we proceed by taking limits for n and m, followed by a limit as

N approaches infinity, in accordance with the statement (iii) of Lemma 8, and we obtain the
desired result. [J

Theorem 2. Under Assumption 2 Equation (5) has a unique solution (Y,Z,U) in
SHTEL([0, T];R) x HA([0, T|;R) x L*([0, T], v; R).

To prove the above theorem, we utilize Proposition 2 and follow similar steps in the
proof of the existence and uniqueness parts of Theorem 1.

4. The Relationship Between BSDE]Js and QBSDE]s

We present a supplementary BSDE], explicitly formulated through the exponential
transformation of the initial problem. This formulation facilitates the establishment of a
connection between the solution of the auxiliary BSDE] and that of the original BSDE]
(C,g)- Subsequently, we will demonstrate an application to quadratic BSDEJs.

Lemma 10 (General exponential transformation). We assume that either ({,g) or (Z, ) satisfies
the first Assumption 1. Let h € LY(R) a measurable function and [u]},(y), J!(y) two operators,
defined as

[u}h(y) = /FT(]/‘F M(E)) —‘Y(]/) _‘P/(y)”(e)v(de)/

¥ (y)
Jily) = /r(‘I"1 (y+ule) =¥ ' (y) — () (v)u(e))v(de),

where ¥ is defined for every x € R as

Y(x) = /O.xexp<2/oyh(t)dt)dy.

The triplet (Y, Z,U) is a solution to the BSDE] ({, g) if and only if the triplet (Y, Z,U) is a solution
to the BSDE] ({, §), where

?t = T(Yt), Z = T(g), ZtI\P/(Yt)Zt, ﬁt<€) = T(Yt7+ut(6))*T(Yt7),
and

¥ Mtyzm = gtY ')A )@Y (7
—ZhE D) @)+ h(y)

Clearly, ¥ is bi-Lipschitz with ¥(0) = 0, guaranteeing the preservation of the same
spaces for primary BSDEJs and their auxiliary counterparts, i.e., (Y, Z,U) and (Y, Z, U) in
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Str+1([0, T); R) x H2([0, T]; R) x L2([0, T], v; R). The proof proceeds through a series of
steps analogous to those outlined in Lemma 11.

Example 2. Consider { satisfying condition (A.1), and let g(t,y,z,u) be a continuous function
with respect to (y,z,u). The function is defined as follows:

$ty20) = s [FIm @ +2¥ )/ /¥ )]

HI¥(y +ule)) —¥(y) Hu} +h(y)lzl* + [ulu(y),

where Y is defined as in the previous Lemma 10. Using its result, it becomes evident that the
BSDE]J ({,g) is equivalent to the BSDE] (¢, 4| In |y|| + Z\/|In [Z]| + ||||v), whose generator
satisfies Assumption 1, and ensures the existence and uniqueness of the solution for both BSDE].
Furthermore, (Y, Z,U), (Y, Z,U) in SFT+1([0, T|; R) x H2([0, T|;R) x L2([0, T], v; R).

Proposition 3. Assuming that Assumption 1 holds and further supposing that { and (0¢)o<i<T
are bounded, then there exists Cy such that

*  Ssup( |Yi| < Cr.
T
*  E[fy (1Z + 1Uslf)ds] < Cr.

Proof. By utilizing It6’s formula and employing the same step as in the proof of Lemma 5,
we obtain

T
Yt < C+|§|“T“+/0 (s + 1) T8 gs 4 M,
where

T T ~
Mo = = [ (n+ DIPsgn(V) ZadWe — [ [ (1% = v ) Nds, de).

We obtain the first result by taking the conditional expectation. Building upon the first
result and condition (ii) in Lemma 5, we attain the desired outcome. [

Let A > 0and t € [0, T|. Consider the following BSDE]J:
T A 9
Y = g"‘/t (8(s, Ys, Zs, Us) + §|Zs| + [Us]p)ds (6)
T T ~
- / ZdW, — / / Us ()N (ds, de),
t t Jr
where
Uy, = %/(62‘”(3) — Au(e) — 1)v(de).
r

Assumption 3.

(A4) (i) The function g is continuous in (y,z) and Lipschitz with respect to u for almost all
(t, w).
(ii) There exist constants ¢y, c1, ¢p, and CLip, as well as a bounded positive process (9¢)>0,
such that for every t, w, y, z, u, Uy, Uuy:

gty zu)| < l9t+62|y|+Co|Z|\/|1n|AZ|+AyI+% r(eA”(E)—l)V(dE),
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and
gt w, y,z,um) — g(t,w,y,z,u2)| < Cripllur — uz|v.

(A.5) There exists a real-valued sequence (An)N>1 and constants My € Ry, v > 0 such that

) VYN>1, 1<Ay<N.

(ii) Imp_yeo AN = 00.

(iii) ~ Forevery N € N, and every y1, Yo, 21, z2, u such that for all |y1|, |y2| < In(N)
|z1], |z2| <1, u < In(2), we have

(eAy1 — eAW)(eAylg(t, w,y1,21,U) — e/\ng(t, w,Y2,22,1))

< My et — e Pin(Ay)

In(A
—i—|e’\y1 — eAy2||zle)”/1 — zze’\y2| In(An) + E‘\NN)>'

In the following lemma, we utilize the exponential transformation while relaxing the
Lipschitz condition through the utilization of ¥(x) = e*.

Lemma 11. If { and (0)o<i<T are bounded and Assumption 3 holds, then, for any A > 0, the
following equivalence holds: there exists a unique solution

(Y, Z,U) € S*([0, T|;R) x H2([0, T];R) x L2([0, T],v;R)
to the BSDE] (6) if and only if the triplet

(Y, Z,U) € S*([0, T|;R) x H2([0, T];R) x L2([0, T],v; R)
is the unique solution to the BSDEJ(Z, §), where

Y, = M, 7 = M, 7 = AMiz, U = M- (M —1),

and
§6520 = Ags(t 3@ 10 (145)):

Proof. By employing Itd’s formula on Y; = ¢!, we derive the following result for all
t € [0, T], P-as.

- T
Vo= O [ AeMglsYe e, Us)ds
T T ~
—/ AeMs ZdW —/ /e/\YS*(e)‘uS(") — 1)N(de, ds).
t t Jr

With the quantities provided above, we can deduce the following:

i = 0+ /t Tg(s,?s,is,ﬁs)ds— /t " Zdw, - /t ! /r Us(e)N(de, ds). )

Since the generator g satisfies Assumption 3, then the generator g fulfills Assumption 1;
therefore, Theorem 1 shows that Equation (7) has a unique solution in S¥*7*1(]0, T]; R) x
H?( [0, T;R) x IL2( [0, T], v; R). Thus, taking account of Proposition 3, the necessary condi-
tion is proved.

Conversely, Itd’s formula applied to In(Y;)/A along with Proposition 3 lead to the
sufficient condition.

It is worth mentioning that the functional spaces are conserved due to Proposition 3. [
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Example 3. Assume { is bounded, and let

c
gtyzu) = clyl+colzly/[In|Az] + Ayl + S lle* — 1,

where ¢, c1, and ¢, are positive constants. Therefore,

gty zu) = clylln[yll+ colzly/[In[Z[| + cr ][]y

Clearly, the generator g satisfies Assumption 1. Consequently, according to the preceding Lemma 11,
the BSDE](C, §) has a unique solution and the BSDE]({, §) has a unique solution.

Remark 1 (Quadratic—exponential BSDE]s). Let g1(t,y) = g(t,y,0,0), where g is defined as in
the previous example. Then, the BSDE] (6) transforms into a quadratic—exponential BSDE], which
has a unique solution.

For a more extensive examination of quadratic BSDE]s, we refer to [30].

Remark 2. The primary BSDE]s discussed in the previous section share the same auxiliary
counterpart, consistent with the discussions in this section regarding the suitable space for the jump.
In other words, the previously established lemmas hold for the generators g(s, v, z, [ru(e)v(de))

and §(s, 7,2, [ii(e)v(de)).

5. Conclusions

Our study addresses fundamental questions concerning the existence and uniqueness
of BSDEs whose driving processes are a compensated Poisson random measure and an
independent Wiener process. Through rigorous proofs under two sets of assumptions,
we first emphasize the significance of a generator by the logarithmic growth in both
(y,z)-variables and the Lipschitz continuity with respect to the third variable u. We also
included a concrete example that strengthens the validity of our first assumption.

Under Assumption 2, we take a step further by relaxing the Lipschitz condition
on u. Here, the generator exhibits logarithmic growth in all variables, adding nuance
to our understanding of the problem. Moreover, the introduction of the exponential
transformation proves to be a key tool that demonstrates the equivalence between the
solutions of the auxiliary BSDEJ and our primary BSDE].
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Appendix A

Proof of Lemma 1. We consider two cases based on the relationship between |y| and |z|.
Case1: |z| < |y
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In this case, we have 1 < [y[In[y[ and In |z| 1,51y < Inly| Ly, /5q), thus:

C
Cilzllyly/—Infz| Lz <y < 712\y|

< & 2In
WM lyl
+

VAN
w\
NI

2
1Z17 2
< 5 \Hmmm
and
z
Gzl el Ty < 25 2GR0z 1y
2
< " L 2C Py,

The inequality (2) becomes

2
z
cilyllzhy/Inlel < B+ colyiny),

where C; =2C7 Ve~ 14 f Therefore, the inequality holds in this case.
Case 2: |z| > |y
Letusseta = % > 1. Since |y| > e, we have |z| = a|y| > e. Using this substitution,

the inequality becomes
Calyl[zly/Inz]| cmmWﬂ Jily)
y|2( +CHnly] + Cuay/in(a) )

the latter inequality was derived from Young’s inequality. Moreover, we have

2|2 2 _ a? 2
S+ ColyPinlyl = (5 + Canlyl )y

IN

IN

We obtain the desired result by showing that

a? a?
T Ciay/In(a) + C¥Inly| < 5+ Caln |yl
Let r = max{z > 1:4C;/In(z) — z = 0}, and let us introduce the function &, defined as
h:teRy — h(t) :=4C1/In(t) — t. We denote by ry = arg max;~o h(t); it follows that
ln(i’o) = 2C1
There are two sub-cases to consider: ,

Sub-Case 1: If C; > #0(), then r is well defined. If a > 7, then Cya/In(a) < T,
n(ro

and if 1 < a < r, then since |y| > e, we have

2
qmm@gQrmm:q%gngmM

Sub-Case 2: If C; < , since 2C1 = rg/In(rp), then rg < ez which implies that

\/ ( 0)
Ci < \f 2e2. Therefore,

2 2
Ciay/In(a) < \@e%a\/ln(a) < %—1—11 < %+111n|y|, since |y| > e.
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M(T, YT)

Therefore, the inequality holds in all cases, which completes the proof. [

%|x\” . Thus, we consider the scenario where y # 0 and define 4y :=
[0, a0] U [2a9, o), it holds that

Proof of Lemma 2. Let y = 0. In this case, the integral simplifies to f (1—a)|x|Pda =
|‘ For any a €

2|x
3yl

1
sl < x| —alyll < [x+ayl.

We proceed by analyzing three distinct cases:

(1) Case1:1 < agp. In this case, we have

/01(1 — a)|x + ay|Pda > (%|x|)”/01(1 ~ a)da = %(%m)p.

(2) Case2: % < agp < 1. Here, we observe

1

/02(1—a)|x+11y\”d112 (;|x|)p/0;(1—a)da
3/1 p
= 5(zh1)"

(3) Case3:ay < % In this scenario, we have

(%|x|)p(/0u0(l —a)da + 2:0(1 - a)da)

v

1
/ (1— a)|x + ay|Pda
0

Vv

1
/ (1—a)|x+ay|Pda
0

O

Proof of Lemma 3 under Assumption 1. Set u(t,
gm0y, then ue(t,x) = OppIn [x||x[M1, ue(t, x)

) =[x/ and sgn(x) = ~ Loyt
pe(pe + 1)|x|#~1. By utilizing 1to’s formula to u(t, Yr)

(ue +1)|x|Ftsgn(x) and ux(t, x) =

T T T
— u(t,Yt)—o—/ us(s,Ys)ds+/ ux(s,Ys,)dYs—l-/ Uxx(s, Ys—)d(Y),
t

+ ) (uls, Ys) —uls, Yoo ) — ux(s, Ys— ) AYs)
t<s<T

T T T
= u(t,Yt)+/t us(s,Ys)ds—ﬁ—/t ux(s,Ys_)dYs—l—/t Ux (s, Ys)|Zs|?ds

T
—i—/t /r(u(s, Ys— + Us(e)) — u(s, Yo—) — ux(s, Ys—)Us(e))N(ds, de)

T T
= u(t,Yt)+/t us(s,Ys)ds+/t U (s, Ys)| Zs|>ds

— /tT ux(s, Ys—)f(s,Ys, Zs, Us)ds
n /t D (5, Y) ZedWs + /t ' /r (u(s, Yoo + Us(e)) — u(s, Yo ))N(ds, de)

+ /tT /r(u(s, Ys— + Us(e)) —ul(s, Yo—) — ux(s, Ys—)Us(e))v(de)ds. (A1)
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Setting

[
I

t t -
/0 (5, o) ZodWs + /0 /r (u(s, You + Us(e)) — u(s, Yo ))N(ds, de)
t
- /0 (ps +1)[Ys[Fosgn(Ys) ZsdWs
t
pus+1 _ us+1\ N7
[ (e U = ) s, de)

For n > 0, define the stopping time T, as follows:

ot 2

5 = nf{0<t<T: / (s +1)Yefez ) ds v
0

‘ 2
[ (vt aerts = )

Taking t = t AT, and T = T A 13 in the equality (A1), we obtain

1 1 TAT 1 ” "TATy .
et 2 [ it Ol el 2o [ ol I e
tAT, JEAT,

TAT,
= Yipng [Pt 4 /M (s + 1) | Yl £ (s, Ys, Zs, Us)ds
Tn

ThT ps+1 1
— [ (e Ul = e T = (e 1) Yo sgn(Yen ) Us(e) vide)ds
Tn
+Eirt, — ETar, (A2)

By Assumption (A.2)-(ii)
TAT,
/t (]/ls+1)|Ys|ysf(5/Y5rZs/us)d5 <h+hL+L+1,
ATy

where

TAT,
I : :/ (s + 1)86| Y |Pods,
AT,

TATy, 1
Li = af (DN,
Tn

TAT,
b = Co/t/\r,, (ps + D[Ys["[Zs[y/ | In [ Zs]|ds,

TAT,
o= e [ e )P s
Tn

Estimation of I;: Young's inequality yields (|ab| < %\a|p + %|b|‘4, for p := ps+1 and

q:= %) leads to

(s + 1) 06| Va1 < (g + D)Mol 4 Hsjy st
ps +1
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Hence,

TATy, 41 ATy
L < / (ps +1)H0f " ds + 5y, |t s
t

ATy N Ms + s +1

IN

TATy, TAT,
[ el s [ v petas
t

AT ATy
T ouet T +1 r+1
< (VT+1)MT/O Bs ds+/() Y5 | I X5 | Ty ey ds + TelT

T T
< (#T‘i‘l)HT/ 19?5+1d5+/ ‘Yslstrl 11’1|Y5| ﬂ{‘ys‘>1}dS+TEHT+1.
0 0

Estimation of I: Due to the presence of | In |y||, we split the integral of I, into two parts:

TAt,
L < Cz/m (s + 1) [Ys P (=] Ys] I [¥e]) Tgpy, <1yds
Tn

TAT,
+c /m (is + 1) Y5 [ In [ Y; | Ly, >1yds
Tn
. T TAT, 1
< e /0 (Vs+1)d5+c2/m (ns + DIYs [T In Y| T ypy, oy ds.

Tn

Estimation of I3: Using Lemma 1, there exists a constant c3 > 0 such that

1
colyllzl/ I [z]] Lgpy ey < 1|Z!2 Ty pser + CalylPIn [y Ty s

We have
2lylinfell < etz A (A3)
Thus,
colyllzl/[In 2] Ty <oy < 0065% + otz ey Tjy1<)
< %\ZF Ljy|<ey + oo
where the last inequality is obtained by Young’s inequality (for p = and q = 4) and

¢ = coeé \1[ +33 (COE) . Therefore,

. 1 TAt 0y 1 TAT, .
L < c1+1/ (s + 1) Zs |2 Ys P ds+03/m (s + DY Ty oy s

Tn

TAT,
< Gt g [ e DIZPI s e [ G D I By

Tn

Yerr 1,

where C; = (L !
Estimation of 15: We observe that we can derive for any small ¢ € (0, 3,%]

N

1
cilylllule < el + ul

A

1 1
< G e P ity gy + gl

therefore,
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. c% TAT, 1 0 TAT, 1 5
I < C2+—/ (s + 1) Ys|sn | Yy ]1{\ys|>e}ds+*/ (s + 1) Ys|s 71| Us || 2ds
0 Jirnt, 4 Jint,

IA

R C% "TATy . 0 TAT, 1 )
C2+*/ (s + 1) |Ys [ In |Ys| n{\Ys|>l}ds+’/ (s + D[Ys ||| Us|[ds,
0 Jthty, 4 tAT,
A 2 p—
where C; = %(VTTl + T)et1+1, Tt remains to estimate

TAT Hs+1 +1 s
o= [ (1 U@ = T G+ DI Psgn(3) Ui o)) v(de)ds.

ATy

By Taylor’s formula and Lemma 2, we have

v+ "t — |y — (us + 1) |y|Psgn(y)u

1
= ps(ps + 1)“2/0 (1= a)|y +aul’'da > ps(ps + 1)uP37Fs |y,

Therefore,
TAT,
I < — ys(ys—i—l)B”‘s\YsW’l/]LIS(e)|2v(de)ds
AT, T
TAT,
IR N ps (ps + 1)37H | Yo P71 U | [3ds.
Tn

Since 37#s > 37#T and ps > 1, then % < us37Hs, which implies that

R C% TAT, 1
I4+15 < C2+ E/t/\ (}15 +1)|YS|HS+ 11’1|Y5| ﬂ{\Ys\>1}d5
Tn

1 rTATa B 1 5
2 ps(ps + 1)37F [Ys |72 [Us | [3ds.
Tn
and
1 TATy

1 (s + 1) (1 — ps) | Ys |71 Zs|?ds < 0.
ATy

2 2
Moreover, for 6 > 2(%1 + ¢ +c3)+1, wehave 1+ (s + l)(%1 +¢2 + ¢33 — Ops) < 0, which
yields to

TAT, + TAT, C% +

0 [ sl tinvilas+ [ (TG 1) (D eatea) ) Y In Y Wy
tATh ATy Q
TAT,

2

c

- N (1 + (us + 1)(51 +cp+c3— st)) \Ys|ﬂs+1 In | Ys] ]1{\1/5\>1}ds
Tn

TAT, 1
16 /m oY P (= In Yo ]) Ty, <) s
Tn

TAT, T
<6 sup a(—ln(a))/ Usds = 96_1/ Usds.
t 0

0<a<l AT
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By Equation (A2) and the preceding result, and noting that for any 0 <s < T, 37HT < 37#s,

it becomes evident that

1 TAT, B
|Yt/\rn|mm”+1+1/m ps(ps + 1) |Ys|Fe 1|Zs‘2dS
Tn
3=Hr [TAT

2 AT

n

s (s + D) Ys [P 7| |Us| [5ds

T A
S |YT/\Tn |HTM"—"_1 + (VT + 1)MT /O 19?S+lds — ET/\Tn + Et/\‘[‘n + C + Cl.

where C; = 27 (ur — 1) + cTe~t and € = C; + &, + Tetr+1. Thus, we obtain

TATy,
B[ Ying ot 4 [ s+ DYl OZ2 + (UGB

1 T us+1
< CE[1+|YTATn|"TAT"+ +(;4T+1)%‘T/ ol ds]
0

(A4)

By Fatou’s lemma, we can pass to the limit as n — oo. Consequently, the desired result

follows. O

Proof of Lemma 4 under (A.1) and (A.2). Letting « € (1,2), we have

yllinlyll < e+ lylIn|y Ty, ey

1
-1 -1
e+ g lylnfy "™ gy

IN

1
-1 o
e+ Iyl Lypypsny,

N—

-
|z[y/[Infz[| < %+‘Z|\/‘ln|z||n{|z\>l}
1
e 2 1
= -4 - In |z|2(e=1) 1
7 2(04—1)'2'\/ n |z| (121>1}
1

1

2
< @ q
< 5t 2(&—1)|Z| (121>1},

e

and
O +crljully < 141+ 0F + c1|ull5.

Therefore, by (A.2)-(ii),

[f(s,wy,zu)| < Os+calyllInfyl[ +colzly/In |z]] + cqfJully
< ST+ 88+ [yl + 121"+ (ludly),

where ¢ is a positive constant depending on ¢, c1, ¢z, and a. For any p > 1, n € N with

n > 2and (b;);en € Ry, we have

n

n
(Y b)P <nP~ 1Y 0l
i=1

i=1 i

Thus,
F(s,0,y,z,u)[5 < G (1485 + [y|* + |2[* + [|u) )"
< @5 (14 82+ [y + |27+ [|u])?).
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Since |y|? < 1+ |y|**!, we can derive a positive constant C(T, &, co, 1, ¢2), such that

T
/0 E[|f(s,YS,ZS,US)|%}ds < C(T,rx,co,cl,cz)<1+/ ]E[193+|y5|ﬂs+1+|zs2+||US|]12/]ds>.

T
0

Proof of Lemma 5 under Assumption 1. We begin by proving assertion (i), which relies
on Lemma 3.
For n > 0, define the stopping time T, as follows:

Ty = 1inf{s >0 : |Ys|sT > nl.
By taking the same steps as in the previous proof of Lemma 3, we obtain the inequality
(A4) for T,
-1, 1 TN ~1{7 |2
|Yt/\%n|}4t/\m +Z/ - HS(VS+1)|Y5|VS |ZS‘ dS
tAT,
3_}17" 'T/\'Fn

2 Jing

n

s (s + DY || U [Fds
1 L
< g, [0 (pr + )M /O 0 ds — Brpz, + Eipg, +C,
where C is a generic positive constant that may vary. Thus, we have
T
E[ sup 1] < C(1+E[[¥rnm M+ Gur+ 1m0k as])
0

0<t<TAT,
TAT,
/ dE,
AT,

Consider the following inequality, which holds for any non-negativea, b > 0and p > 1,

-HE[ sup
0<t<TAT,

} . (A5)

|aP —bP| < p(aV b)P|a—b|.
Therefore,
Yo+ U@ = Yo 1] < (uo (Y + Us(e)] v [Ye ) [U(0)],
clearly, supyy<rpz, [Yi— [T < supgocpz [V and since Ys = Y- + Us(e), then,
[1Ysm + Us(e) [Pt — Yo it ?

(s + 1*(|Ys— + Us(e)| v |st|)zys|US(€)‘2

<
< (s +1)7 sup  [VTH(Yeo + Us(o)] VY )T U ()
0<t<TAT,

Moreover, we have (ps + 1) < 3us(ps + 1). Applying Burkholder-Davis-Gundy inequal-

. TATy 7m .
ity to [, nz, dEs, we obtain
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IN

IN

IN

TAT,
E[ sup /~ dES}
0<t<TAT, ' /AT

CE[( /O-T/\?n (,‘l/ls i 1)2|Y5|2”5|Zs|2d5)

N|—

)

+CE|( /om J (1% + sttt - Yo i) N (s de) %}
Hetl
]
a3

TAT,
CE[ sup I ([ G+ 12 )
0
+1 T/\%n 2 }4*1 2
+CE[ sup Yl ([T [ 1Y Us(e) |V Y ) |Us e) PN (s de))

NI—

0<t<TAT,
0<t<TAT,

NI—=
[ S

1 T
B[y sup M C [ G DR 2]
2 0<t<Tr%, 0

+CE{/OT /r(]is +1)2(]Ys— + Us(e)| v |Ys—|)”571|U5(e)|2N(ds,de)}

The last inequality is derived from Young’s inequality (ab < %az + %bz), and the terms can
be controlled as follows:

T
= B[y sup PP [ G R 2 s
2 0<t<Th%, 0

+CE[/OT/F(;45 +1)2|YS|P‘s*1‘Us(e)|21/(de)ds}

1 T
= E[; sup C [ 22 s
2 0<t<TA%, 0

T
+CE] [ (ne+ 2] U k]

IN

1 T
B3 sup W30 [ (s + I[N 24P
2 0<t<TA%, 0

T
+3CE[/O ys(ys+1)\Ys|”s*1llus||3d5]

1 +1 +1 T ps+1
< SB[ sup Y]+ CE[L4+ g+ (ur + 10 [ 0l as],
0<t<TAT, 0

the last inequality is derived from Lemma 3. Observing that for any n > 0 we have
Ty < Tyy1, then supy o ppz Ve[l < SUP)<j<TA%, |Y¢|#+1. Consequently, by (A5) and
by using the monotone convergence theorem, we obtain

T
E[sup Y1) < C(1+E[GI™ ]+ (ur+ )7 [ [0 ]as).
0

0<t<T

This ends the proof of assertion (7).
We now advance to establish assertion (ii). The application of Itd’s formula reveals that

T T
Yol + [ (ZP+ UlR)ds +Br = (2 +2 [ Yef(s, Yo, Zo, Us)ds

IN

T
642 [ Yl (0 g1,y (X0)) s

T
42 [ %l (8200(Z5) + cr| U] ) s,
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where & = 2f0t Ys ZsdWs + fot Jr (2Ys—Us(e) + |Us(e) |*) N (ds, de)
For any given ¢ > 0, we have

IN

—[y[In fy| gy eny + [y gy sy
671 + |y|2+e/

[y Iny|]

IN

and
PP < P s + L

Furthermore, by Lemma 1 and employing Young's inequality, we can derive a positive
constant ¢, such that

2
zZ
2ealylely/TInlal Ty < (B +aWE) 1m0,

On the other hand, according to (A3)

A\

11 3
2C0|yHZ|\/ |1I1|Z|| ]I{MSE} < 2C0€2% +2C0€|Z|2 ﬂ{\zbl} ]I{MSC}

1 ~
< Sl Ayyze +

where &y = cov/2e? + 4(coe)* (%)3 By Young's inequality, we have

alylllully Lyysny < (5 + 2611yl (yl>1}

[k

2eq [yl Jully Ty <1y < N By <ny +2¢3.

and
20y8 < & + [yl Ngpyny + 1.

Therefore,

T . T T
/OE[|ZS|2+||US||5]ds < C(T,co,cl,cz)(c+1a[|g|2+/o ﬁgds+/0 v.[>eds) )

~ A

T
< C(T,CO/C1,62)<C+]E[|§|2+/O ®ds+ T sup |Yt‘2+€D'
0<t<T

By selecting ¢ as y; — 1, setting t = 0, and defining C(T, cp, ¢1,¢2) = é(T, co,c1,¢2)(CV 1),
we obtain the desired result. [
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Proof of Lemma 5 under Assumption 2. Consider a solution (Y, Z, U) to (5), and assume
that conditions (A.1)" and (A.2)’ are satisfied. We define the sign function sgn(x) as follows:
sgn(x) = —1for x < 0and sgn(x) = +1 for x > 0. We can apply Itd’s formula to obtain

) ) TAZ,
|1/M;n|”fw+1 < }YTmy“W"“nL/ (s D)9 s + Gy
= o Y g
+/ |Y PN | Y| Ty, s
T/\rn 1
+/ _ (ps H )]V (*gl,cz(Ys) Lyy, 1) +g2,co(Zs))dS
+/ (s +1)|Ys|" (zglcz(Ys) Ty, >1y +gac1(us))d

T
2 (s A Dl Z P [ Y5 [ ds
AT,

AT - -1 2 - -
s ps (ps + 1)37H Y [ [Us|[3ds + Epz, — ETaz,-
n

By Lemma 1, we have

2
Z
colyllzly/ I [z]] Lypy ey < % Tjypser +alyPInly| Ty,

and
calylllully /I nf[ufl,| Lgy ey < §||M||3 Ty sep + calyPInfy| Ty sey-

Utilizing Young’s inequality, we obtain

colyllz[y/[In |z[| Ly <oy < —- ﬂ{ly\<e} + Co,
exlyl /1 lully] By <oy < S0l Tgyze) + 31

(Cof)

and

5+ 33 (Cle) . For 6 > 2(cy + ¢34+ c4)+1 we have

, Cl = C1€2

g

where ¢y = coez 7 +33
—0us + (c2 + 3+ cq) (ps —|— 1)+1 <0, thus

TAT,
/t (—0us + (ps + 1) (c2 + c3 4 ca) +1) Ve[ In Vo[ Dy, =135 < 0.

AT

Thus, employing the same steps as outlined above, we can determine a general constant C
such that

TA%,
E[ sup [V o t!] <CE [1 + [Yrug [Pt 4 (ur + 1);@/ k ﬁé‘s+lds:|/
0<t<TA%, AT,

The monotone convergence theorem enables us to obtain the assertion (i).

Since i ||2
u
2ei [yl ullv/ 1l Tgysey < 7575 Tyggyse +alyte,

221l o/ o] By < 2402 11+

where ¢1 = ¢; V2e? + 4(cqe)* (%)3, we easily verify the validity of (ii). O

and
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Lemma A1. Assuming that the conditions of Proposition 1 are met, and defining ¢t as |Y{""|> +
(An)~Y, and k := 3 — a — B, we can establish the following result for any C > 0:

S B - B N
Cgp +C [ Crolas 1y < Sof B [7 gl zmmpds
_ﬁ(ﬁgl)/ Cs HuanZdS
t
_ S
_'_‘3(2218)/ Cs |Ynm| ‘an|2ds
t
+M + Ji+ Jop + T30+ Jats
where
). S B B
M; : / e (92 — @2 )N(ds, de),
t r

S A A
M; = —B /t eCog2 T Iymmznm W,

1 S &1
Ju = ﬁeC57[ ¢s? D(s)|fuls, Ye, 28, US) = fn(s, 5", Zg', UG |ds,

-1 S
]2,1‘ = ﬁecs[llNz—f-Al] 2 / Sup |(fn —f)(s,y,z,u)|d5
B lyllzl llull, <N
S
T sup  |(fm— f)(s,y,z,u)lds|,
Eolyllzlflu)l, <N

S B4 . .
e = e [ ¢S9d ! (gutnlan) + /i) 72227 s
S B_q
Jar = BCup [ gl VI |G uds,
and ®(s) = Y2+ 2|+ 221+ |22+ U], + U2,

Proof of Lemma A1. Let C > 0. For any positive integer N, we define the function u(s,y) as

NI

u(s,y) = 6y))?,

where 0(y) := y* + (Ay)~!; this yields the following partial derivatives:

NI

us(s,y) = Cu(s,y); uy(s,y) = pey(0(y))? ",

B_ B_
uyy(s,y) = Be(6(y)2 " + BB —2)e Y (8(y) 2.
Since 1 < B < 2, we can establish that
B_
uyy(s,y) = B(B—1)eS(B(y))2 "
Consequently, for all s € [0, T], we obtain, by Taylor expansion, that
u(s, Y&™) — u(s, YI) — UE™ (e)uy (s, YI™)

— | e))? /O (1= @)y (s, all" (¢) + V") da

> BB - DR [ (1 @)@ (e) + 7m) e
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Since 0 < g <1, we have
0(alll™(e) + Yoo) = [all™(e) + Y2 + (An) !
= [a(Y" + 0" (e)) + (1 - a) V"2 + (An) !
< (Vv )+ (An) T
Given that ﬁ — 1is negative, hence
8 \>1,1m b1 1,1 % 2 -1 g_l
(6(attz™(e) + Y1) = = (W2 V722 4 (An) )
Therefore,
u(s, YE") — us, V) = UE™ (e)uy (s, V") (A6)

B_q
2 “da

IV

BB~ 1)6CS|U§""(€)|2/0 (1—a)(B(ally™ (e) +Y))

N

-1

> plB Lo o) (72 v 19272 4 (An) )

Applying Itd’s formula to u(t, Y;) reveals that

ethptZJrC/ ¢ (ps
= gl p [ ST o, Y ZE L) — s VI 22 UL s
B_1 S B_o N
ﬁ/ sz Z}’lm|2ds+ﬁ( ﬁ)/t eCs(Psz 2|Y§""|2|Z§"m|2ds
—,B/ Cs 2 1Yn,mZ;1,deS
_ Cs On,m n,m 2 -1
[ (s + (an))

S B_q1 . . ~
—!3/ a / g2 VLU (€)N (ds, de).
t T

N

—pf Bl YI I () ) N(ds, de)

By (A6), we can reformulate the jump components as follows:
—ﬁ/ /e qos Y”mll"’"( YN (ds, de)
/ / CS qu %_ - ﬁqu_ e e ))N(ds,de)
= / / CS 57 (pk —ﬁgosf Y”mll”m( ))v(de)ds

B B
- / / (97 — ¢ )N(ds, de)
t T

-1 S . R R _
B [T eeam (i v 7+ an) )

s Cs % g NT
—/t /re (ps — @5 )N(ds,de)

IN

- S B_1 . S £ B~
P [Peegi s — [ [ ok - of )Ni(ds,do)
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Therefore,

2ds

B
eCt¢f+C/ e (Psds+Mt < el - 5/ e€ (ps Y znm

-1 B 1.4
D [ g s

2 — S B_ o .
+.B< 2.6)/ eCS(P52 |5,
t
My + frp+ fop + far + Jar + J5r,

2ds

where

Wi S Cs g g NT
M;: = /t /re (92 — @2 )N(ds, de),
and
_ _5/ o T Iymm g gy

are [F-martingales, and

Jie:

S B_ 1.
ﬁ/t € Y (fuls, YL ZE UY) — fu(s, Y, ZE, UY)) Lia(s)>nyds,
Pt = B[ pE Il 22U — £ Y 7)) oy
, S B_ 14
B = ﬁ/t eCope VI (F(s, Y2, 22, UL) — F(s, Y2, Z2 U2)) L)<y s,
, 5 B 1.
fors = B [ eSgE YA Y 2 UL ~ s, VI 22 UD) W<y
fS,t: = ﬁ/ e€ Qos
with the shorthand 1d>(s) = Y&+ Y&+ |Z2| + | Z0| + |[|[Ul]|v + || U]y By using the
fact that |Y""| < @2 and ®(s) > N, a simple computation shows that f;; < J;; and

fz,t + f4,t < J»¢. Finally, the inequalities ]’3,,5 < J3+ and ]'5,t < J4t can be directly derived
from Assumption (A.3)-(iii) and the Lipschitz condition with respect to u. [

(5,Y5", 28, Ug) — f(s, YS", 25", U |ds,

Lemma A2. Under Assumption of Proposition 1, we have

S By
_CNl/ 6 (Ps ds+ﬁ( :B)/t equ)sz 2| .
ﬁ/ e (Ps an

-1 S B A
< _ﬁ :84 )/t CSQ’S |Z;1,m|2ds'

2 4% |2ds

Proof. The expression involving the process (Z}"") in Proposition 1

C S B 2— 5 b2, 7
_% t eCS(pszds-l-ﬁM/ ECS(PSZ 2|stlm|2’Z?’m

B_1 . .
BT e gtz pas gy [ o8 22 fin(An s
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We have |V > < ¢ := [YI"|> + (An) 1, since ‘8(2;7/5) > 0, therefore

S B_5 A
_C;f,l t € @s ( ﬁ)/ eCs(Psz 2‘Y511,M|2|an,m|2ds
:B n,m s 2*1 \/
/e ¢s Z /e ps Y In(Ay)ds
B_
< Cg” e 2 (psds—é/ e© (ps Z”m|2ds
t
2 — s B 1 4
S i
S B
+pMy [ gl NI 227\ fin(An)ds
s B4, C ~1) . .
= /eCSq)g (- g]’ltpsfﬁ(ﬁz ) 22y /In(Aw) ) ds.
t

2
If we choose Cy 1 := B% In(Ay), then

Cni [S o B 2-B) (S
_Cna eCS%deﬁﬂ/ €5
2 t 2 t
:3 5n,m 2d S Cs g_l 11| | T, In(Ax)d
e q)s |Zs | S+:3M2 ; e Qs |Ys HZS | 1’1( N) s

B_ M3 (B—1),, R
Cs 51 2 n,m|2 n,m n,m
< ,B/t e ¢ (— ﬁ_lqosln(AN)—iz |Z5 = + Mo | Y™ || Z] M/ln(AN)>ds

S o B_ M3 -1), 5 R
< B ot (- gty - Bz e 2 fin(an)) s

2ds

The final inequality is derived from the fact that [Y{""| < ,/@s. We utilize Young’s inequality
(ab < g% + #) by selectinga = Aly|, b = z,and ¢ = %

(:B — 1) |Z|2 < —E|Z|2.

1
A - A%y2—
Izl = g A%~ < B2

For A := My+/In(Ay), y := /@5 and z := | Z]"|,

C S B 2 _ S
o N,1 eCS(PSZ ds + ‘B( :B) / ECS (A7)
2 Jt 2 t
ﬁ Zn,m Zd M 5 Cs g_l ?n,m Zn,m In(Ax)d
e¢S|s|S+ﬁ2teq)s|s||s|n(N)S
—1 S B_1 .
< —BL ) [ oz s,
4 t
O
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