

LMAP

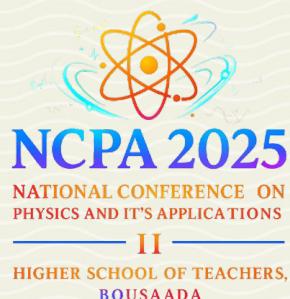
LABORATORY OF
MATHEMATICS AND
APPLIED PHYSICS
المدرسة العليا للأستاذة - بوسنادة
ENS-BOUSAADA

Ministry of Higher Education and Scientific Research
Higher Normal School of Bou Saada
Department of Science Physics and Laboratory
of Mathematics and Applied Physics

ENS

Bou Saada

الجاهد الفريق أحمد قايد صالح


CERTIFICATE OF PARTICIPATION

The Organizing Committee of the Second National Conference on Physics and its Applications
(20 Novembre 2025) is pleased to award this certificate to :

Abdelhak BEDJAOUI

in recognition of his active participation in the conference with an Poster presentation
entitled: "Investigation of Structural, elastic and thermodynamic Properties of trigonal XCd_2Sb_2 ($X = Ca, Ba$) Zintl phases under hydrostatic pressure for Advanced Materials and Thermoelectric Applications "

Co-author: Djamel ALLALI, Fares ZERARGA

THE 2nd NATIONAL CONFERENCE ON PHYSICS AND IT'S APPLICATIONS

BOUSAADA, 20th November 2025

Structural, elastic and thermodynamic characteristics of trigonal-type Zintl phases XCd_2Sb_2 (X = Ca or Sr) under hydrostatic pressure: Prospects for Advanced Materials in High-Pressure and Thermoelectric Devices

Abdelhak BEDJAoui^{1✉}, Djamel ALLALI^{2,3}, Fares ZERARGA⁴

¹*A. R. Mira University, Technology Department, 6000, Bejaia*

²*Laboratory of Materials and Renewable Energy, Faculty of Sciences, University Pole, Road Bordj Bou Arreridj, 28000 M'sila, Algeria,*

³*Department of Technology, Faculty of Technology, University Pole, Road Bordj Bou Arreridj, 28000 M'sila, Algeria,*

⁴ *A. R. Mira University, Technology Department, 6000, Bejaia.*

Abstract

We analyzed the structural, elastic, and thermodynamic attributes of the trigonal-type Zintl phases $CaCd_2Sb_2$ and $SrCd_2Sb_2$ under hydrostatic pressure through using ab initio calculations within the density functional theory framework. The predicted structural parameters agree excellently with the available experimental values, which strongly validate our method. For both of the chemicals investigated, the [001] crystal orientation exhibits a higher compressibility than the [100] direction. Both compounds predicted monocrystalline elastic constants meet the mechanical stability requirements over a pressure range of up to 20 GPa. The polycrystalline mechanical characteristics were also examined at pressures up to 20 GPa. Indicators such as Pugh's coefficient, Poisson's ratio and Cauchy pressure confirm the brittleness of the studied compounds. At constant pressures of 0, 5, 10, 15, and 20 GPa, the temperature dependence of important macroscopic physical parameters was studied using the quasiharmonic Debye approximation. These parameters include the lattice parameter, bulk modulus, volumetric thermal expansion coefficient, Debye temperature, and isobaric and isochoric heat capacities. The results are deemed trustworthy because the data acquired from the elastic constants correspond most closely to those calculated from the Debye quasiharmonic approximation.

Keywords: 122 Zintl compounds; First-principles calculations, Elastic moduli; Thermodynamic properties; Pressure and temperature effects.

[✉]Corresponding Author Email : abdelhak.bedjaoui@univ-bejaia.dz