

LMAP

LABORATORY OF
MATHEMATICS AND
APPLIED PHYSICS
المدرسة العليا للأساتذة - بوسادة
ENS-BOUSAADA

Ministry of Higher Education and Scientific Research
Higher Normal School of Bou Saada
Department of Science Physics and Laboratory
of Mathematics and Applied Physics

CERTIFICATE OF PARTICIPATION

**The Organizing Committee of the Second National Conference on Physics and its Applications
(20 Novembre 2025) is pleased to award this certificate to :**

Fares ZERARGA

in recognition of his active participation in the conference with an Poster presentation
entitled: " First principales studies of pressure dependence of structural, elastic
andthermodynamic properties of trigonal-type Zintl phases SrCd_2Sb_2 and BaZn_2Sb_2 "

Co-author: Djamel ALLALI, Abdelhak BEDJAOUI

NCPA 2025

NATIONAL CONFERENCE ON PHYSICS AND IT'S APPLICATIONS

III

HIGHER SCHOOL OF TEACHERS, BOUSAADA

THE 2nd NATIONAL CONFERENCE ON PHYSICS AND IT'S APPLICATIONS

BOUSAADA, 20th November 2025

First principales studies of pressure dependence of structural, elastic and thermodynamic properties of trigonal-type Zintl phases SrCd_2Sb_2 and BaZn_2Sb_2 .

Fares ZERARGA^{1,✉}, Djamel ALLALI^{2,3}, Abdelhak BEDJAOUI⁴

¹ *University Abderrahmane Mira, Department of Physics, Bejaia, 06000, ALGERIA*

²*Laboratory of Materials and Renewable Energy, Faculty of Sciences, University Pole, Road Bordj Bou Arreridj, 28000 M'sila, Algeria,*

³*Department of Technology, Faculty of Technology, University Pole, Road Bordj Bou Arreridj, 28000 M'sila, Algeria.*

⁴*A. R. Mira University, Technology Department, 6000, Bejaia.*

Abstract

We report ab initio density functional theory calculations of the structural, elastic and thermodynamic properties of the trigonal-type Zintl phases SrCd_2Sb_2 and BaZn_2Sb_2 under hydrostatic pressure. The predicted structural parameters are in good agreement with the available experimental values, which strongly validate our method. For both of the compounds investigated, the [001] crystal orientation exhibits a higher compressibility than the [100] direction. Both compounds predicted monocrystalline elastic constants meet the mechanical stability requirements over a pressure range of up to 20 GPa. The polycrystalline mechanical characteristics were also examined at pressures up to 20 GPa. Indicators such as Pugh's coefficient, Poisson's ratio and Cauchy pressure confirm the brittleness of the studied compounds. At constant pressures of 0, 5, 10, 15, and 20 GPa, the temperature dependence of important macroscopic physical parameters was studied using the quasiharmonic Debye approximation. These parameters include 2 lattice parameter, bulk modulus, volumetric thermal expansion coefficient, Debye temperature, and isobaric and isochoric heat capacities. The results are deemed trustworthy because the data acquired from the elastic constants correspond most closely to those calculated from the Debye quasiharmonic approximation.

Keywords: *Zintl compounds; First-principles calculations, Elastic moduli; Thermodynamic properties; Pressure and temperature effects.*

[✉]*Corresponding Author Email* : fares.zerarga@univ-bejaia.dz