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Abstract:
Constant false alarm rate (CFAR) processors are critical for radar reliable target detection in radar systems.
Traditional CFAR designs often assume Gaussian clutter, which may not reflect real-world conditions. Lévy
distributions, with heavy tails and a location parameter (δ ), provide a more accurate model for non-Gaussian
and non-centered clutter in complex environments. This paper presents a comprehensive performance
analysis of three widely used CFAR processors-cell-averaging (CA), greatest-of (GO), and smallest-of (SO)
in homogeneous Lévy-distributed clutter with an arbitrary δ . We derive integral-form expressions for the
probability of false alarm (PFA) for each processor, explicitly incorporating δ . Furthermore, we provide
analytical formulations for the probability density function (PDF) of key statistics involving Lévy random
variables, such as sums, minima, and maxima. Monte Carlo simulations validate the theoretical results,
showing that the PFA performance improves with increasing δ , highlighting the critical impact of clutter
location on CFAR detector performance. These findings offer valuable insights for designing robust CFAR
detectors in non-Gaussian, non-centered clutter environments.
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1. Introduction

In radar target detection, clutter refers to unwanted reflec-
tions from objects that can interfere with the detection of
real targets. Under these conditions, Constant False Alarm
Rate (CFAR) techniques are applied to maintain a fixed false
alarm rate in homogeneous clutter environments. CFAR
processors adaptively set detection thresholds by estimat-
ing the clutter level from reference cells surrounding the
cell under investigation (CUI). Several CFAR variants have
been developed to address different clutter scenarios [1–4].
Traditional Cell-Averaging CFAR (CA-CFAR) detectors
estimate clutter level using the mean of surrounding cells
[5], but their performance degrades in non-homogeneous
clutter. To address these limitations, the Greatest Of CFAR
(GO-CFAR), initially proposed by Hansen and Sawyers [6],
employs the maximum of the sums from the leading and
lagging reference windows for clutter level estimation, im-
proving robustness in clutter transition regions. Weiss in [7]
further analyzed GO-CFAR’s performance in multi-target
scenarios. In parallel, the SO-CFAR (Smallest Of CFAR)

method, developed by Trunk [8] in the context of target
resolution, mitigated the effects of target masking. Rickard
and Dillard in [9] provided an early, comprehensive analy-
sis of adaptive detectors, including SO-CFAR, laying the
theoretical and practical foundations for their use in diverse
environments. These foundational works paved the way
for advanced applications of GO-CFAR and SO-CFAR in
modern radar systems [10–14].
Modern high-resolution radars face challenges in statistical
clutter modeling due to increased complexity. The radar’s re-
search community has proposed various non-Gaussian mod-
els to better represent high-resolution radar clutter, includ-
ing Positive Alpha-Stable, Weibull, Log-Normal, Pareto,
and K-distributions [15–19]. However, adopting these non-
Gaussian models in CFAR schemes can make deriving
closed-form expressions for key performance metrics, such
as probability of detection and false alarm rate, challenging
or even impossible. This complicates the evaluation and
optimization of CFAR detectors in complex clutter environ-
ments.
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3.2 Key results
Lemma 1 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). The PDF and CDF of RV Z = ∑

2N
i=1 Xi are

given, respectively, as follows:
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)
z ≥ 2Nδ ,γ > 0 (6)

Proof: The characteristic function ϕZ(w) of Z is defined as:

ϕZ(w) = E[e jwZ ] = E[e jw∑
2N
i=1 Xi ] = (E[e jwX1 ])2N (7)
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After evaluating the integral I, equation (8) can be inverted
using the Fourier transform to yield the result in (5). The
CDF in (6) can be easily derived by integrating the PDF
obtained in (5). This completes the proof.
Lemma 2 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). Define Z1 = ∑

N
i=1 Xi and Z2 = ∑

2N
i=N+1 Xi.

The PDF of RV Z = max(Z1,Z2) is given by:
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(9)
Proof: The PDF of Z = max(Z1,Z2) can be expressed as:

fz(z) = 2 fZi(z)FZi(z), i ∈ {1,2} (10)

From Lemma 1, the PDF and CDF of Zi (for i ∈ {1,2}) are
given, respectively, as follows:

fZi(z) =

√
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π
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3
2
,z ≥ Nδ ,γ > 0 (11)
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)
,z ≥ Nδ ,γ > 0 (12)

Substituting (11) and (12) into (14) yields the result in (9).
Lemma 3 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). Define Z1 = ∑

N
i=1 Xi and Z2 = ∑

2N
i=N+1 Xi.

The PDF of RV Z = min(Z1,Z2) is given by:

fz(z)= 2
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(13)
Proof: The PDF of Z = min(Z1,Z2) can be expressed as:

fz(z) = 2 fZi(z)(1−FZi(z)), i ∈ {1,2} (14)

Substituting (11) and (12) into (??) yields the result in (13).

4. Application to the PFA’s evaluation of
CFAR processors

Given the decision rule in (2) and the clutter level estimates
defined in (1), the PFA can be expressed as:

PFA(T ) = EZ [Pr(X0 > T Z | H0)] (15)

Since X0 ∼ Lévy(δ ,γ), Pr(X0 > T Z | H0) can be written as:

Pr(X0 > T Z | H0) = 1−FX0(T Z) = erf
(√

γ

2(T Z −δ )

)
.

(16)
Substituting (15) into (16) gives:

PFA(T ) =
∫ +∞

−∞

erf
(√

γ

2(T Z −δ )

)
fz(z)dz. (17)

Now, substituting (5), (9), and (13) into (17) yields the PFA
expressions for the CA, GO, and SO-CFAR processors,
given in (18), (19), and (20), respectively. Here, TCA =
T/2N, and TGO = TSO = T/N. The PFA for the CA-CFAR
processor is:
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PFA,SO(TSO) = 2
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Remark 3 Although the integrals presented in (18), (19),
(20), defy straightforward analytical evaluation since they
cannot be expressed in a simple closed form, they are ready
to be evaluated numerically. Thereby, we can unravel the
underlying mathematical intricacies and extract meaningful
results.

5. Numerical results
This section presents the numerical evaluation of the CA-,
GO-, and SO-CFAR processors’ performance under ho-
mogeneous non-centered Lévy-distributed clutter. Unless
otherwise specified, for all simulations, we set γ = 1/

√
2,

and the size of the reference window is fixed at N = 8.
The results are derived using the analytical expressions in
equations (18), (19), and (20) and validated through Monte
Carlo simulations.
Figs. 1 (a), 1 (b), and 1 (c) illustrate the PFA performance
as a function of the scaling factor T for the CA-, GO-,
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