

University of Science and Technology of Oran - Mohamed Boudiaf (USTO-MB)
Faculty of Chemistry

Laboratory of Inorganic Materials Chemistry and Applications (LCMIA)
1st International Conference on Materials Engineering and Industrial Applications
(ICMEIA 2025)

Oran, Algeria – November 02 to 04, 2025

Certificate of Participation

The Scientific Committee of ICMEIA 2025 certifies that :

Dr. ZIANE Mohamed Issam

from Higher School of Electrical and Energetic Engineering of Oran (ESGEO) has actively participated by presenting a Poster communication at ICMEIA 2025

Title: Tailoring Crystal Structures of $Cu_2ZnGe_xSn_{1-x}S_4$ for Advanced Photovoltaic Applications

Co-author(s): Hadjab Moufdi and Bennacer Hamza

Chairmen of the Conference

Dr. Mohamed Karmaoui

Tailoring Crystal Structures of $\text{Cu}_2\text{ZnGe}_x\text{Sn}_{1-x}\text{S}_4$ for Advanced Photovoltaic Applications

Mohamed Issam ZIANE ¹, Moufdi HADJAB ², Hamza BENNACER ²

¹Laboratory of Electrical and Materials Engineering (LGEM), Higher School of Electrical and Energetic Engineering of Oran (ESGEEO), Oran, Algeria

²Department of Electronics, Faculty of Technology, University of M'sila, University Pole, M'sila, Algeria

*Corresponding author e-mail
ziane_issam@esgee-oran.dz

Abstract

Quaternary chalcogenides are promising absorber materials for thin-film photovoltaic devices due to their earth-abundant composition, tunable band gaps, and favorable optoelectronic properties. In this work, we investigate the structural and thermodynamic evolution of $\text{Cu}_2\text{ZnGe}_x\text{Sn}_{1-x}\text{S}_4$ ($0 \leq x \leq 1$) using first-principles density functional theory (DFT) within the full-potential linearized augmented plane-wave method. Our calculations demonstrate a composition-driven phase transition: the tetragonal stannite phase is stable for Sn-rich alloys, while increasing Ge concentration stabilizes the orthorhombic wurtzite-stannite phase beyond $\sim 80\%$ Ge substitution. This behavior is confirmed by enthalpy of formation and Gibbs free energy analyses, which show that the transition is governed by cation size effects and is largely independent of temperature and pressure. Furthermore, lattice parameters decrease with Ge incorporation, following Vegard's law, accompanied by a reduction in unit cell volume. These results provide fundamental insights into phase stability in $\text{Cu}_2\text{ZnGe}_x\text{Sn}_{1-x}\text{S}_4$ alloys and underline the role of cation substitution in tuning crystal structures. Such knowledge is crucial for guiding the design of next-generation photovoltaic absorbers with enhanced stability and efficiency.

Keywords: $\text{Cu}_2\text{ZnGe}_x\text{Sn}_{1-x}\text{S}_4$ (CZGTS), Density Functional Theory (DFT), Phase transition, Quaternary chalcogenides, Photovoltaic absorbers

ICMEIA 25

1st International Conference on
Materials Engineering & Industrial
Applications

Abstract Book

2nd, 3rd and 4th November 2025

Oran , Algeria

