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B2, B1 Grands axes des cylindres elliptiques externe et interne, [m] 

A2, A1   Petits axes des cylindres elliptiques externe et interne, [m] 

C Concentration, [kg/m3] 

Cp Chaleur spécifique à pression constante, [J/kg.K]  

D Diffusivité massique, [m2/s] 

Dh Longueur caractéristique, [m] 

e1 L'excentricité de la section elliptique intérieure 

e2 L'excentricité de la section elliptique extérieure 

g  Accélération gravitationnelle, [m/s2] 

h Paramètre métrique, [m] 

H Paramètre métrique adimensionnel, [–] 

Nu Nombre de Nusselt, [–] 

Sh        Nombre de Sherwood, [–] 

P Pression interne du fluide, [N/m2] 

Pr Nombre de Prandtl, [–] 

Ra Nombre de Rayleigh, [–] 

N         Proportion des forces de flotabilité, [–] 

T Température du fluide, [K] 

∆T Différence de température, [K] 

∆C Différence de concentration, [kg/m3] 

t Temps, [s] 

𝑈, 𝑉     Les composantes de la vitesse dans les directions x et y, [m/s] 

Vη, Vθ Les composantes de la vitesse dans les directions η et , [m/s] 

x, y Système de référence cartésien, [m] 

 

Lettres grecques 

α Diffusivité thermique, [m2/s] 

 𝛾          Angle d’inclinaison [°] 
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βT Coefficient d’expansion thermique,[K−1] 

βC Coefficient d’expansion solutale, [m3/kg] 

 ГΦ Coefficient de diffusion 

η, , z Système de référence elliptique, [m] 

 Coefficient de Conductivité thermique, [W/m.K] 

 Viscosité cinématique, [m2/s] 

 Masse volumique du fluide, [kg/m3] 

Ψ Fonction de courant, [m2/s] 

ω Vorticité, [s-1] 

τij Tenseur des contraintes visqueuses 

𝜙           Fraction volumique des nanoparticules 

 

Indices 

2 Extérieur 

1 Intérieur 

θ Selon  la coordonnée θ 

η Selon la coordonnée η 

f           fluide 

s           Nanoparticule solide  

nf         Nanofluide 

 

Exposant 

+ Paramètres adimensionnels 
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La convection thermosolutale a fait l’objet d’une recherche intensive en raison de son 

influence notable sur divers procédés techniques et géophysiques. Par exemple, la pollution 

des lacs et des récifs, l’intrusion de solutés dans les sédiments en milieu côtier, les rejets 

nucléaires, le mouvement des éléments polluants au sein des eaux souterraines, les processus 

chimiques et le déplacement d’espèces moléculaires à travers les membranes vivantes sont 

quelques exemples. Dans ce processus, la flottabilité induite par les variations de température 

et de concentration s’aident ou s’opposent, selon le type d’alliage et le procédé de chauffage.  

Dans notre recherche, une analyse numérique a été menée sur le phénomène de convection 

double diffusive et purement thermique  au sein d'un espace annulaire formée par deux 

sections elliptiques cylindriques avec des axes horizontaux. Cet espace contient un 

nanofluide. Dans cette étude, nous avons élaboré un programme de calcul en langage Fortran 

développé selon le principe des volumes finis pour analyser l'impact de divers paramètres sur 

les distributions concentriques et thermiques , la structure de l'écoulement , ainsi que sur les 

taux d’échange massique et thermique illustrés respectivement par les nombres 

moyens et locaux de Sherwood et de Nusselt. 

Ce travail s’articule autour de quatre chapitres principaux. Le chapitre initial présente des 

notions générales sur la convection, suivi d'une  analyse approfondie des recherches 

précédentes qui ont abordé la convection naturelle à partir des nanofluides dans des espaces 

annulaires, et ont abouti à des études traitant de la convection naturelle thermosolutale dans 

une variété de géométries pour les fluides et les milieux poreux saturés. 

Le deuxième chapitre traite de la modélisation physique du problème. Il y est présenté les 

hypothèses de simplification adoptées, les équations gouvernantes exprimées en coordonnées 

cartésiennes accompagnées de leurs conditions aux limites, ainsi que leur reformulation en 

coordonnées elliptiques suivie de leur mise sous forme adimensionnelle. 

Le troisième chapitre est dédié à la définition de l’approche des volumes finis utilisée pour 

discrétiser les équations des espèces et de la chaleur, de nature parabolique. L’équation du 

mouvement, de type elliptique, a quant à elle été discrétisée à l’aide d’un schéma à différences 

centrées.  Les quatre équations obtenues ont ensuite été résolu à l’aide d’une méthode 

numérique intégrant une procédure de sous-relaxation successive. 

Le quatrième chapitre s’ouvre sur une étude de sensibilité au maillage, suivi d’une phase de 

validation du code numérique développé par comparaison avec des résultats disponibles dans 

la littérature. Ce chapitre est ensuite consacré à la présentation et à l’analyse des résultats 

obtenus, structurées en deux volets : le premier traite de la convection naturelle purement 

thermique, tandis que le second porte sur la convection naturelle à double diffusion. L’effet de 

différents paramètres, tels que l’angle d’inclinaison, la fraction volumique des nanoparticules, 

le nombre de Rayleigh ainsi que l’excentricité, sur les transferts de chaleur et de masse, y est 

également examinée. 

Nous finalisons ce travail par une conclusion générale qui synthétise les principaux résultats 

obtenus.
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1.1 Notions sur la convection 

1.1.1.  Définition   

La convection constitue un mécanisme de transfert d’énergie entre un fluide et une surface 

solide en mouvement (gaz ou liquide), résultant de l’action conjointe de la conduction 

thermique et du déplacement du fluide. L’augmentation de la vitesse des particules fluide est 

influé sur la convection thermique par contre l’absence de mouvement global du fluide 

diminué la transmission de chaleur par convection. Toutefois, lorsque le fluide est animé d’un 

mouvement global, le transfert thermique est renforcé, bien que l’estimation précise des taux 

de transfert s’en trouve complexifiée. 

Prenons l’exemple du refroidissement d’un bloc chaud soumis à un écoulement d’air frais sur 

sa face supérieure (voir Fig. 1.1). Dans un premier temps, la chaleur se propage par 

conduction vers la couche d’air située au contact direct du bloc. Par la suite, ce flux thermique 

est évacué par convection, mécanisme qui combine la conduction interne dans l’air, laquelle 

est liée à l’agitation thermique des molécules, et le transport global du fluide, qui entraîne l’air 

réchauffé à s’éloigner de la surface tout en le remplaçant par de l’air plus frais. 

1.1.2. Type de convection  

On parle de convection forcée lorsque l’écoulement du fluide au contact d’une surface est 

généré par une action extérieure, comme l’utilisation d’un ventilateur, d’une pompe ou par le 

vent. À l’inverse, on parle de convection libre (ou naturelle) lorsque le déplacement des 

particules du fluide résulte des forces de flottabilité provoquées par des variations de densité, 

elles-mêmes dues aux gradients de température au sein du fluide. Par exemple, en l’absence 

de ventilation, le transfert de chaleur depuis la surface d’un bloc chaud, comme illustré à la 

figure 1.1, relève de la convection naturelle : en raison de la différence de densité, l’air chaud 

monte vers le haut, tandis que l’air froid descend pour occuper l’espace libéré. Toutefois, si le 

gradient de température entre le bloc et l’air environnant est trop faible pour générer un 

mouvement du fluide, la chaleur est transmise uniquement par conduction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Transfert de chaleur d’une surface chaude à l’air par convection. 
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1.1.3.  Convection naturelle dans des enceintes annulaires 

1.1.3.1. Enceinte annulaire incliné 

De nombreuses études traitent des phénomènes de transfert thermique engendrés par la 

convection naturelle à partir des nanofluides dans des géométries simples, telles que des 

enceintes fermées de formes variées (triangulaires, carrées, rectangulaires, etc.) [1-11]. 

Alguboori et al. [12] Ont effectué une analyse numérique du transport thermique par 

convection naturelle dans une enceinte annulaire incliné remplie de nanofluide hybride 

Al2O3/eau. Ils ont eu recours à une approche par volumes finis pour la résolution des 

équations régissant le transport de chaleur et l’écoulement. Les résultats mis en évidence 

indiquent que la répartition angulaire du nombre local de Nusselt sur les cylindres intérieur et 

extérieur est influencée par l’inclinaison de l’enceinte, la valeur de Rayleigh et de la 

concentration en nanoparticules. Différentes études ont utilisés des méthodes 

magnétohydrodynamiques / hydrodynamiques et de transfert thermique pour étudier le 

mouvement du fluide à travers un milieu poreux avec différentes configurations géométriques 

[13-15]. Laidoudi et al. [16] ont examiné numériquement l’échange thermique convectif d’un 

fluide newtonien en régime naturel contenu dans deux surfaces concentriques. Les résultats 

confirment que l’élévation de l’inclinaison de la cavité conduit à une amélioration des 

performances thermiques de la surface intérieure, indépendamment des valeurs du rapport 

d’aspect. Bouzerzour et al. [17] ont réalisé une analyse numérique du transport thermique par 

convection naturelle ainsi que de l’écoulement du fluide dans un anneau bidimensionnel 

délimité par deux ellipses confocales, différemment chauffés, orientés et remplis de 

nanofluide d'argent à base d'eau. Les résultats indiquent que l’introduction de nanoparticules 

d’argent dans le fluide principal entraîne une amélioration significative du transfert thermique 

global, l’impact étant plus sensible à un nombre de Rayleigh plus élevé. Pour tout angle 

d'orientation à un nombre de Rayleigh fixé, l'impact de La concentration de nanoparticules par 

rapport au taux de transport thermique est presque exact. Sheikholeslami et al. [18] ont 

examiné numériquement les impacts de transfert thermique dans une cavité circulaire externe 

froide, qui contient une cavité cylindrique elliptique interne orientée chaude, remplie des 

nanoparticules de cuivre à base d'eau. Les résultats montrent que le nombre de Nusselt croît 

avec l’élévation de la concentration en nanoparticules, des nombres de Rayleigh et de l’angle 

d’inclinaison. On observe également que l’élévation de nombre de Rayleigh entraîne une 

diminution de l’amélioration du transport thermique. Le rapport d’amélioration du transport 

thermique atteint sa valeur minimale dans les régimes caractérisés par un nombre de Rayleigh 

élevé. Mejri et al. [19] ont simulé numériquement le phénomène de la convection naturelle 

au sein d’une enceinte triangulaire, inclinée et contenant de l’eau. L’approche de Lattice 

Boltzmann (LBM) a été utilisée pour la résolution des équations couplées régissant les 

champs de température et de vitesse. Les résultats numériques révèlent que l’intensité du 

transfert thermique s’accroît à mesure que la valeur de Rayleigh augmente. Par ailleurs, On a 

observé que l’angle d’inclinaison de 135° conduit au plus faible échange thermique, tandis 

que la configuration correspondant à 0° d’inclinaison permet d’atteindre le transfert thermique 

maximal. Le taux de transfert thermique est fortement affecté par l’angle d’inclinaison, et ce, 

selon la valeur de Rayleigh. Ghasemi et al. [20] Ont effectué une simulation numérique du 

phénomène de convection naturelle au sein d’une enceinte circulaire extérieure froide 
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contenant un cylindre elliptique intérieur chaud incliné rempli d'air en utilisant l’approche des 

éléments finis basée sur le volume de contrôle. Les résultats montrent que les iso-courants, les 

isothermes et le nombre, la taille et la formation des cellules au sein de l'enceinte dépendent 

fortement de ces paramètres qui augmentent considérablement le taux de transfert thermique. 

Yu-Peng Hu et al. [21] Ont réalisé une analyse numérique du transport thermique par 

convection naturelle de l'eau refroidie à une température voisine de son maximum de densité 

d'un cylindre chauffé à son enceinte elliptique coaxiale refroidie en utilisant la technique des 

volumes finis. L’analyse des résultats permet de constater que les nombres de Rayleigh, 

l'inclinaison de l'enceinte et la taille du cylindre interne affectent les isothermes, les iso-

courants et le nombre de cellules dans la cavité, cela conduit à une amélioration significative 

du rendement thermique. Park et al. [22] ont simulé numériquement la convection naturelle 

entre une enceinte carrée inclinée extérieure froide et un cylindre de section circulaire 

intérieur chaud. Les résultats montrent que l’inclinaison de l’enceinte, les nombres de 

Rayleigh et la taille du cylindre intérieur affectent les lignes de température, les iso-courants 

et le nombre de cellules dans la cavité, ce qui améliore considérablement le rapport de 

transfert thermique. Il y a aussi eu quelques études récentes intéressantes sur le flux des 

nanofluides [23,24]. Sheremet et al. [25] ont mené une simulation numérique de 

l’écoulement par convection naturelle d’un nanofluide eau–alumine au sein d’une cavité de 

forme carrée avec une température temps-sinusoïdale en résolvant les équations 

fondamentales gouvernantes à l’aide d’un algorithme fondé sur les différences finies. Les 

impacts du nombre de Rayleigh, fréquence d'oscillation, inclinaison de la cavité et la 

concentration en nanoparticules sur le transport thermique et l’écoulement du fluide et ont été 

analysés. On a constaté qu’un accroissement de la fréquence d’oscillation de la température 

limite entraîne une élévation de l’amplitude moyenne de l’oscillation du nombre de Nusselt et 

une réduction de la période d’oscillation. En même temps, la fréquence d’oscillation de la 

température limite est un très bon paramètre de contrôle qui permet d’intensifier le flux 

convectif et le transport thermique. Mahfouz et al. [26] ont étudié la problématique du 

transport thermique dans un espace fermée créé entre deux surfaces confocales elliptiques. On 

a constaté que plusieurs paramètres influencent le phénomène de convection au sein de 

l’enceinte, en particulier le nombre de Prandtl et le nombre de Rayleigh, lorsque la paroi 

interne est soumise à un chauffage. Sultan et al [27] Ont réalisé une analyse comparative des 

influences de trois nanofluides différents en Cu, TiO2 et Ag sur le transfert thermique. Il a été 

constaté que l’accroissement de la concentration des trois nanofluides pour toutes les valeurs 

de Rayleigh améliore le transport thermique. Bouras et al. [28-31] Ont analysé le phénomène 

de convection naturelle en étudiant les changements de température et le nombre de Nusselt 

pour diverses valeurs de Rayleigh dans différents espaces annulaires (trapézoïdal, carré, 

elliptique et semi-elliptique). L’approximation de Boussinesq a été utilisée dans le cadre 

d’une approche par volumes finis. 

1.1.3.2 Enceinte annulaire vertical 

Dawood et al. [32,33] ont simulé numériquement la transmission thermique par convection 

mixte avec écoulement laminaire et tridimensionnel dans un anneau elliptique contenant un 

nanofluide. Quatre nanofluides distincts, soit Al2O3, SiO2, CuO et ZnO, ont été utilisés. On 

peut voir que la glycérine-SiO2 est la meilleure pour renforcer les performances thermiques 
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en comparaison avec d'autres fluides de base testés. Zhang et al. [34]  ont simulé la 

convection naturelle instable numériquement au sein d’un anneau concentrique contenant des 

nano-fluides. La considération de la thermophorèse et du mouvement brownien indique que 

l’oscillation de la température à la paroi intérieure a un impact important sur les vitesses de 

transport massique et thermique. Zamily et Amin [35] ont simulé numériquement l'impact de 

la convection naturelle et la génération d'entropie au sein d’une cavité semi-circulaire 

contenant un nano-fluide eau-cuivre. Les résultats révèlent que l’irréversibilité et le taux de 

transfert thermique du système augmentent avec l’élévation du pourcentage des 

nanoparticules. Cadena-de la Pena et al. [36] ont mené des recherches expérimentales sur 

l'efficacité thermique de nano-fluides à base d'huile minérale, mis en œuvre comme fluide de 

refroidissement dans un système fonctionnant par convection naturelle. Le système comprend 

une cavité verticale circulaire fermée contenant deux types différents de nano-fluides, 

présentant différentes concentrations et tailles de nanoparticules. Tayebi et al. [37-39] 

s’intéressent aux espaces annulaires elliptiques remplis de nano-fluides. Ils ont analysé  le 

mécanisme de convection naturelle qui se produit au sein d’un espace délimité par deux 

cylindres confocaux de formes elliptiques utilisant différentes nanoparticules et mélanges 

hybrides avec différentes sources de chauffage. L’étude prend en considération les impacts de 

l’excentricité, de la concentration en nanoparticules solide et du nombre de Rayleigh sur le 

nombre de Nusselt. Bouzerzour et al. [40] ont effectué une analyse numérique du phénomène 

de convection naturelle dans deux cylindres elliptiques contenant du  nano-fluide Cu-eau et 

partiellement chauffée. Il a été observé que la transmission thermique s’accroît à mesure que 

la valeur de Rayleigh croît ou de la concentration des nanoparticules. Ahmad Khan et 

Altamush. [41] ont effectué une analyse numérique sur l’échange thermique convectif en 

régime naturel au sein d’un anneau vertical rempli de nano-fluide (Al2O3-eau) et 

partiellement chauffé. Les résultats montrent que la concentration des nanoparticules améliore 

la performance thermique. Mohammed et al. [42] ont analysé mathématiquement l’échange 

thermique convectif en régime naturel au sein d’une cavité elliptique horizontale contenant un 

cylindre annulaire excentrique avec différents rapports d’aspect. Lakshmi et al. [43] ont 

analysé la convection naturelle à l’intérieur des anneaux poreux cylindriques saturés 

contenant du nanofluide en recourant au modèle modifié de Buongiorno-Darcy (MBDM) et la 

technique de linéarisation d’Oseen. Zhang et al. [44] ont simulé numériquement le transport 

thermique induit par convection naturelle à l’intérieur d’un anneau poreux rempli de 

nanofluide de Cu-eau. Le transfert thermique s’intensifie à mesure que la porosité croît. 

1.1.4. Convection naturelle double diffusive 

 De multiples études théoriques, numériques et expérimentales ont abordé le phénomène du 

transfert couplé thermique et massique dans une variété de géométries pour les milieux 

poreux entièrement saturés et les fluides. Une telle étude est la convection naturelle à double 

diffusion. 

Badruddin et Quadir [45] ont étudié numériquement le transfert thermique et massique dans 

une enceinte poreuse en utilisant l’approche des éléments finis. L’impact du nombre de Lewis 

sur les coefficients de transfert thermique (Nusselt) et massique (Sherwood) le long de la 

hauteur de la cavité a été examiné. Khan et Parvin [46] ont étudié les influences de la 
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thermophorèse et du mouvement brownien sur la convection naturelle à l’intérieur d’une 

cavité avec un obstacle adiabatique rempli de nano-fluide de Cu-eau. On a examiné l’impact 

du nombre de Lewis sur les iso-courants, les isothermes, les iso-concentrations et les nombres 

locaux de Nusselt. Moorthy et Senthilvadivu [47] Ont mené une analyse numérique des 

transports massique et thermique induits par la convection naturelle à proximité d’une paroi 

verticale enfouie dans un milieu poreux entièrement saturé à viscosité variable. L’effet des 

paramètres de nombre de Soret, le nombre de Dufour, le nombre de Lewis sur les profiles de 

la vitesse, la concentration et la température a été examiné. Grosan et al [48] Ont mené une 

analyse numérique sur la convection naturelle stable et la génération de chaleur interne à 

l’intérieur d’une cavité carrée poreuse en deux dimensions remplie d’un nano-fluide. L’effet 

de rapport sans dimension entre le coefficient thermophorétique et brownien sur  la 

température, la vitesse et la concentration en nanoparticules a été examiné. Ahamad et al [49] 

Ont mené une étude portant sur le transport thermique et massique dans une enceinte poreuse 

carrée ayant un réchauffeur en forme de pas placé au bas de la surface gauche. Nazari et al 

[50] Ont effectué une simulation numérique de la convection naturelle thermosolutale au sein 

d’une cavité carrée avec un obstacle carré chaud à l’intérieur en utilisant la méthode 

Boltzmann en treillis (LBM). Rana et  Bhargava  [51] Ont analysé le comportement de 

l’écoulement et les mécanismes de transfert thermique d’un nano-fluide sur une feuille 

d'étirement non linéaire. Le modèle appliqué au nanofluide prend en compte les effets 

conjoints du mouvement brownien et de la thermophorèse. Hajri et al [52] Ont effectué une 

analyse de la convection naturelle à double diffusion à l’intérieur d’une cavité triangulaire en 

utilisant une méthode numérique reposant sur les éléments finis dans le cadre du volume de 

contrôle. Cheng [53] a étudié la couche limite de convection naturelle s'écoule sur un cône 

tronqué intégré à l’intérieur d’un milieu poreux entièrement saturé de nanofluide à 

température de paroi constante et fraction volumique de nanoparticules à paroi constante. Al-

Farhany et Turan [54] ont étudié le transport thermique et massique par convection naturelle 

bidimensionnelle à double diffusion au sein d’un milieu poreux rectangulaire incliné. 

Hasanuzzaman et al [55] ont analysé les impacts du nombre de Lewis sur le transport 

thermique et  massique par convection mixte thermosolutale à l’intérieur d’une cavité 

triangulaire. Rahman et al [56] ont étudié les influences du nombre de Lewis et du ratio de 

flottabilité sur le transport thermique et massique  par convection naturelle à l’intérieur d’une 

cavité triangulaire curviligne avec la paroi inférieure en forme de zig-zag. Izadi et al [57] ont 

étudié la transmission thermique  par convection naturelle de différents nano-fluides au sein 

d’un milieu poreux compris entre deux cylindres horizontaux excentriques. Le modèle 

biphasique développé par Buongiorno a été adopté afin de modéliser l’évolution de la fraction 

des nanoparticules. Hatami et Ganji [58] ont étudié l’équation de distribution de température 

et l’efficacité de réfrigération pour des ailettes poreuses circulaires entièrement humides à 

sections variables par analyse combinée de transmission thermique et  massique. Kefayati 

[59] a simulé la convection naturelle à double diffusion avec effets Soret et Dufour à 

l’intérieur d’une cavité carrée contenant un fluide de loi de puissance non newtonienne  par 

l’approche de Boltzmann sur réseau combinée aux différences finies (FDLBM) tandis que les 

générations d'entropie par frottement fluide, transport theemique et transport massique ont été 

analysées. Kefayati [60,61] a analysé la convection naturelle à double diffusion ainsi que la 

génération d'entropie d’un fluide non newtonien obéissant à la loi de puissance à l’intérieur 
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d’une enceinte poreuse inclinée, en tenant compte des effets de Dufour et de Soret, en utilisant 

l’approche de Lattice Boltzmann aux différences finies. Kefayati et Tang [62] ont simulé la 

convection naturelle à double diffusion avec effets Soret et Dufour et la dissipation visqueuse 

dans une enceinte chauffée avec un cylindre intérieur froid rempli de fluide de Carreau non 

newtonien par FDLBM. Esfahani et Bordbar [63] ont simulé numériquement le flux de 

convection naturelle à double diffusion à l’intérieur d’une enceinte carrée contenant un nano-

fluide à base d'eau et de différentes nanoparticules. 

1.1.5.  Les nombres sans dimension  

Dans le domaine de la convection, les nombres adimensionnels les plus couramment 

employés sont : 

Tableau 1.1 : les nombres adimensionnels. 

nombre 

adimensionnel 

sens physique domaine expression 

 

Gr 

 

Établit une 

comparaison entre 

la force de 

flottabilité et la 

force visqueuse 

Convection 

naturelle 
𝐺𝑟 =

𝑔. 𝛽. Δ𝑇. 𝐿3

𝜈2
 

L : longueur caractéristique 

𝑔 : accélération gravitationnelle 

Δ𝑇 : gradient de température 

𝛽 : coefficient d'expansion 

𝜈 : viscosité cinématique 

 

Nu 

 

 Décrit la 

contribution 

convective au flux 

thermique 

Transport 

thermique 
𝑁𝑢 =

ℎ. 𝐿

𝜆
 

𝜆 : conductivité thermique 

ℎ : Coefficient d’échange 

thermique par convection  

 

 

Pe 

Compare diffusion 

et convection 

Transport 

thermique 
𝑃𝑒 =

𝜌. 𝐶𝑝. 𝐿. 𝑢

𝜆
=
𝐿. 𝑢

𝛼
 

𝑢 : vitesse 

𝜌 : masse volumique 

𝐶𝑝 : capacité calorifique 



Chapitre 1                              Généralité et Recherche Bibliographique  
 

10 
 

𝛼 : diffusivité thermique  

 

Pr 

Établit une 

comparaison entre 

la diffusion 

dynamique et 

thermique 

Convection 
𝑃𝑟 =

𝜇. 𝐶𝑝
𝜆

 

𝜇 : viscosité dynamique 

 

Ra 

Définit la 

convection 

naturelle 

Transport 

thermique 

(convection 

naturelle) 

𝑅𝑎 =
𝜇. 𝐶𝑝. 𝑔. 𝛽. Δ𝑇. 𝐿

3

𝜆. 𝜈2

= 𝑃𝑟. 𝐺𝑟 

 

 

Re 

 

Établit une 

comparaison entre 

la force d’inertie et 

la force visqueuse 

Hydrodynamique, 

mécanique des 

fluides, transferts 

massique et 

thermique, 

agitation 

𝑅𝑒 =
𝐿. 𝑢. 𝜌

𝜇
 

 

Sh 

 Décrit la 

contribution 

convective au flux 

massique 

Transport massique 
𝑆ℎ =

𝐾𝐷 . 𝐿

𝐷
 

𝐾𝐷 : conductance de transfert 

massique 

𝐷 : coefficient de diffusion 

 

1.2. Nano-fluide 

Choi [64] a utilisé pour la première fois le terme « nano-fluide » en 1995 pour caractériser un 

mélange constitué d’un liquide de base (huile, eau) incorporant des particules solides aux 

dimensions nanométriques, ce qui entraîne une conductivité thermique améliorée. L'utilisation 

des nano-fluides dans des applications pratiques consiste à optimiser l’efficacité du transfert 

thermique dans ces équipements tels que les dispositifs de stockage thermique et de 

refroidissement électronique, les échangeurs de chaleur et les collecteurs solaires. Différents 

nano-fluides tels que Al2 O3, Ag, Au, AgO, Cu et CuO ont été utilisés dans les enceintes et les 

cavités pour améliorer le processus de transfert de chaleur. 

1.2.1. Techniques de fabrication 

Selon les recherches sur les nano-fluides, il est possible de les utiliser comme fluide 

caloporteur, la majorité des chercheurs ont rapporté une amélioration notable des 

performances thermiques. Les données les plus fréquemment mentionnées sont 

l'augmentation de transfert de chaleur  ainsi que une augmentation de la viscosité lorsque le 

pourcentage de nano-solide augmente. L’utilisation des nano-liquides requiert des précautions 
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rigoureuses afin de prévenir la sédimentation des nanoparticules, l’élévation des pertes de 

charge et la corrosion des surfaces. En revanche, la plupart d’auteurs avancent que l’utilisation 

des nano-fluides peut, dans certaines conditions, s’avérer moins efficace que celle des liquides 

de base. Globalement, les nano-fluides contribuent à diminuer la taille et la consommation 

énergétique des systèmes de refroidissement industriels en améliorant leur efficacité. Puisque 

les nano-fluides sont des conducteurs thermiques efficaces, ils peuvent également être 

employés pour réchauffer de manière plus efficace. L'un des principaux désavantages des 

nano-liquides réside dans leur coût (environ 100 euros par litre) Mammeri [65]. Il est 

nécessaire de garantir leur rentabilité. Ils seront certainement utilisés pour les nouvelles 

technologies. Les nombreuses divergences qui expliquent l'augmentation des caractéristiques 

thermiques des nano-liquides démontrent clairement que cette nouvelle technologie demeure 

encore au stade de développement. La recherche dans ce domaine est prévue pour 

s'intensifier. 

La fabrication des nanoparticules peut être réalisée à l’aide de multiples procédés, qu’ils 

soient d’ordre physique ou chimique. Ces méthodes variées permettent d’obtenir soit des 

particules encapsulées dans une matrice hôte, soit des nano-solides,  offrant ainsi des 

possibilités de fonctionnalisation adaptées à différentes applications 

1.2.1.1 Techniques physiques 

La technique la plus facile est de diviser un matériau à des dimensions nanométriques. 

Toutefois, cette  technique comporte des limites considérables puisqu’elle ne permet pas de 

contrôler de manière précise les distributions de taille. Pour mieux contrôler la taille et la 

morphologie, d’autres techniques physiques plus avancées peuvent être utilisées, telles que : 

 Le recours à un plasma (par pulvérisation cathodique) ou à un faisceau laser de haute 

intensité (ablation laser) pour pulvériser un matériau cible. Sakuma and Ishii [66] 

 L’évaporation thermique repose sur le principe de porter un matériau à une 

température très élevée, de manière à provoquer la vaporisation de ses constituants 

atomiques. Par la suite, un refroidissement approprié de ces vapeurs favorise la 

formation de nanoparticules. Singh et al [67]. 

Globalement, Les techniques physiques nécessitent des équipements onéreux tout en 

produisant, un rendement en nanoparticules faible. La majorité des situations, les 

nanoparticules obtenues sont déposées ou attachées à un substrat. 

1.2.1.2 Techniques chimiques 

Actuellement, diverses approches de synthèse chimique peuvent être utilisées. Elles ont 

l’avantage d’être, dans l’ensemble, faciles à appliquer, économiques et adaptées à une 

production en quantité. Ces approches permettent de synthétiser des particules caractérisées 

par une distribution granulométrique relativement étroite ainsi qu’une diversité de formes 

morphologiques. À l’instar des méthodes physiques, les nanoparticules issues de procédés 

chimiques peuvent être obtenues sous deux formes principales : soit libres, sous forme de 

poudre facilement dispersable dans un gel hôte ou un liquide, soit encapsulées au sein d’une 

matrice polymérique ou solide. 
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Nous mentionnons ici les techniques chimiques les plus fréquemment employées : 

 

a) Dégradation de précurseurs organométalliques  

Grâce à l'emploi de précurseurs organométalliques, il est possible de créer diverses structures 

de nanoparticules. Le procédé consiste à décomposer, en milieu organique sélectionné avec 

soin,  une substance organométallique, où le métal est habituellement oxydé à faible degré. 

Cette méthode évite l’utilisation de réducteurs chimiques à fort pouvoir réactif, souvent 

responsables de la formation d’impuretés adsorbées sur les particules, difficiles à retirer. On 

procède à la dégradation en éliminant les ligands de coordination. En règle générale, cette 

élimination est réalisée par chauffage. D. K. Lee et al [68]. 

 

b) Procédé par radiolyse 

La synthèse des nano-solides par radiolyse repose sur la réduction des ions métalliques 

présents en solution, sous l’action d’espèces réactives générées, principalement des électrons. 

Dans ces milieux, la concentration des ions métalliques est suffisamment faible pour que les 

rayonnements n’interagissent pas directement avec eux. La synthèse peut ainsi être décrite en 

deux étapes distinctes : d’abord, la radiolyse du solvant qui génère des espèces réactives, puis 

la réduction des ions métalliques par ces espèces, menant à la formation et à l’agglomération 

des atomes en nanoparticules. R. Benoit et al [69]. 

Le rendement des techniques  chimiques est souvent beaucoup plus élevé que celui des 

techniques  physiques. 

En résumé, la production de nanoparticules est un domaine technologique exigeant une 

grande précision, compte tenu des tailles et des formes variées requises par les chercheurs 

pour divers cas d’étude, ainsi que de l’importance des modifications chimiques superficielles 

pour garantir leur stabilité en suspension. 

Il est primordial de considérer plusieurs aspects lors de la préparation des nano-fluides, 

notamment la stabilité et la durabilité de la suspension, la minimisation de l’agglomération 

des nanoparticules ainsi que l'absence d'échange chimique avec le fluide de base. 

1.2.2. Paramètres physiques et thermiques des nano-fluides 

L'incorporation de nano-solides modifie de manière significative les caractéristiques 

physiques et thermiques des solutions, notamment la densité, la capacité calorifique, la 

viscosité dynamique, la dilatation thermique et la conductivité thermique. Les caractéristiques 

thermophysiques du nano-fluide résultant sont fortement influencées par divers paramètres 

liés aux nanoparticules, tels que leur nature, leur taille, leur fraction volumique, ainsi que les 

conductivités respectives du liquide de base et des nano-solides, sans oublier l'effet de la 

température ambiante. 

La masse volumique 
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Pour un nano-fluide considéré comme parfaitement homogène, c’est-à-dire avec une 

dispersion optimale des nano-solides dans le liquide de base, la détermination de sa masse 

volumique correspondant à une température donnée T s’effectue en fonction de la 

concentration en nanoparticules. 

La masse volumique résultante du nano-fluide se définit de la manière suivante : 

𝜌𝑛𝑓 = (
𝑚

𝑉
)
𝑛𝑓
=

𝑚𝑓+𝑚𝑠

𝑉𝑓+𝑉𝑠
=

𝜌𝑓𝑚𝑓+𝜌𝑠𝑚𝑠

𝑉𝑠+𝑉𝑠
                                                                                       1.1 

La fraction volumique des nanoparticules correspond au rapport entre le volume des 

nanoparticules et le volume total du mélange, comprenant à la fois le fluide et le solide. 

𝜑 =
𝑉𝑠

𝑉𝑠+𝑉𝑓
                                                                                                                                 1.2 

La masse volumique résultante du nano-fluide est alors déduite : 

𝜌𝑛𝑓 = 𝜌𝑓(1 − 𝜑) + 𝜑𝜌𝑠                                                                                                          1.3 

Avec : 

𝜌𝑓: La masse volumique du fluide de base 

 𝜌𝑛𝑓: La masse volumique du nano-fluide 

𝜌𝑠: La masse volumique des nanoparticules solides 

La Chaleur spécifique 

La chaleur spécifique désigne la capacité d'une substance homogène à emmagasiner de la 

quantité d’énergie thermique par unité de masse. Elle représente la chaleur 𝑑𝑄 nécessaire 

pour augmenter la température d'une masse 𝑚 donnée de 1 kelvin, soit𝐶𝑝 =
𝑑𝑄

𝑚𝑑𝑇
 . Autrement 

dit, elle représente la quantité d’énergie thermique requise pour élever la température d’un 

kilogramme de matière de 1 K au cours d’un processus donné. 

Le calcul de la chaleur spécifique d’une nano-fluide repose sur l’utilisation de deux 

expressions fondamentales : 

Xuan et Roetzel  [70] ont utilisé : 

(𝜌𝐶𝑝)𝑛𝑓 =
(1 − 𝜑)(𝜌𝐶𝑝)𝑓 + 𝜑

(𝜌𝐶𝑝)𝑠                                                                                  1.4 

Pak et Cho  [71] ont utilisé : 

(𝐶𝑝)𝑛𝑓 =
(1 − 𝜑)(𝐶𝑝)𝑓 +𝜑

(𝐶𝑝)𝑠                                                                                         1.5 

Avec 
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(𝐶𝑝)𝑓: Chaleurs spécifique du fluide de base. 

(𝐶𝑝)𝑛𝑓 : Chaleurs spécifique du nanofluide. 

(𝐶𝑝)𝑠 : Chaleurs spécifique des nanoparticules. 

Coefficient de dilatation thermique 

Le coefficient de dilatation thermique, noté  𝛽𝑇 = −
1

𝜌
(
𝜕𝜌

𝜕𝑇
)
𝑃
 , exprime la sensibilité de la 

masse volumique aux variations de température à pression constante. 

De nombreux auteurs ont utilisé la relation (1.3) pour la détermination de ce coefficient dans 

les nano-fluides, suite aux premiers travaux sur les nano-fluides. 

L'expression suivante est déduite : 

𝛽𝑛𝑓 = 𝛽𝑓(1 − 𝜑) + 𝜑𝛽𝑠                                                                                                           1.6 

Avec 

𝛽𝑓: Coefficient de dilatation du fluide. 

𝛽𝑠 : Coefficient de dilatation des nanoparticules. 

Kim et al [72] ont postulé que le coefficient de dilatation thermique du fluide de base (𝛽𝑓) est 

considérablement supérieur à celui des nanoparticules solides (𝛽𝑠). Il procède à une 

simplification de l’équation (1.6) selon l’expression suivante : 𝛽𝑛𝑓 = 𝛽𝑓(1 − 𝜑) 

𝜌𝑓 = 𝜌0𝑓 (1 − 𝛽𝑓(𝑇 − 𝑇0)) 

𝜌𝑛𝑓 = 𝜌0𝑛𝑓 (1 − 𝛽𝑛𝑓(𝑇 − 𝑇0)) 

𝜌𝑆 = 𝜌0𝑆(1 − 𝛽𝑆(𝑇 − 𝑇0)) 

En substituant 𝜌𝑛𝑓  et 𝜌𝑓  par leur valeur obtenue à partir de la relation (1.3), on obtient : 

𝛽𝑛𝑓𝜌0𝑛𝑓 = 𝛽𝑓𝜌0𝑓(1 − 𝜑)                                                                                                        1.7 

La viscosité dynamique 

La viscosité relative correspond à la proportion de la viscosité du nano-fluide par rapport à 

celle du fluide de base 
𝜇𝑛𝑓

𝜇𝑓
 

Il existe différents modèles permettant d'estimer la viscosité d'un nano-fluide, parmi lesquels 

on peut citer :  

Modèle d’Einstein [73] 
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La relation suivante s’applique aux suspensions diluées composées de particules fines, rigides 

et sphériques : 

𝜇𝑛𝑓 = 𝜇𝑓(1 + 2.5𝜑)                                                                                                                1.8 

Avec 

𝜇𝑓  : La viscosité dynamique du fluide de base. 

𝜇𝑛𝑓  : La viscosité dynamique du nanofluide. 

𝜑 : La fraction volumique des nanoparticules. 

Modèle de Brinkman [74] 

A élargi la relation d'Einstein pour englober une vaste gamme de concentrations volumiques. 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5
                                                                                                                           1.9 

Modèle de Batchelor [75] 

Il a démontré que la viscosité ne dépend pas linéairement de la fraction volumique φ, comme 

le suggère la formule d'Einstein, mais suit plutôt une relation non linéaire avec celle-ci. 

𝜇𝑛𝑓 = 𝜇𝑓(2.6𝜑
2 + 2.5𝜑 + 1)                                                                                               1.10 

D'autres formules ont été suggérées dans les travaux antérieurs, chacune étant généralement 

limitée à des domaines d'application spécifiques, tels que Maiga et al [76], qui ont établi la 

corrélation suivante à partir des résultats expérimentaux : 

𝜇𝑛𝑓 = 𝜇𝑓(123𝜑
2 + 7.3𝜑 + 1)                                                                                              1.11 

Pack et Cho [71] ont suggéré une corrélation spécifique aux nanoparticules d’alumine 

(Al2O3) en suspension dans l’eau, exprimée par la relation suivante : 

𝜇𝑛𝑓 = 𝜇𝑓(533.9𝜑
2 + 39.11𝜑 + 1)                                                                                      1.12 

Par conséquent, pour notre étude, nous avons employé le modèle de Brinkman, couramment 

utilisé dans les recherches scientifiques. 

Conductivité thermique 

Faute de données expérimentales précises et de modèles théoriques bien établis pour évaluer 

la conductivité thermique des nanofluides, les chercheurs ont souvent adopté les formules 

existantes destinées aux suspensions de particules de tailles micrométriques ou millimétriques 

dans des fluides. 

Modèle de Maxwell [77] 



Chapitre 1                              Généralité et Recherche Bibliographique  
 

16 
 

Il a considéré que les particules sont suffisamment espacées pour qu’aucune interaction ni 

contact direct ne se produise entre elles. 

𝐾𝑛𝑓

𝐾𝑓
=

𝐾𝑠+2𝐾𝑓−2𝜑(𝐾𝑓−𝐾𝑠)

𝐾𝑠+2𝐾𝑓+𝜑(𝐾𝑓−𝐾𝑠)
                                                                                                         1.13 

Avec 

𝐾𝑓: La conductivité thermique du fluide de base 

𝐾𝑛𝑓 : La conductivité thermique du nanofluide. 

𝐾𝑠 : La conductivité thermique du particule solide. 

Modèle de Hamilton [78] 

C'est un prolongement du modèle de Maxwell. Il s'applique aux particules de toute forme 

définie comme suit : 

𝐾𝑛𝑓

𝐾𝑓
=

𝐾𝑠+(𝑛−1)𝐾𝑓−(𝑛−1)(𝐾𝑓−𝐾𝑠)𝜑

𝐾𝑠+(𝑛−1)𝐾𝑓+𝜑(𝐾𝑓−𝐾𝑠)
                                                                                             1.14 

Avec 

𝑛 =
3

𝜓
 : Facteur de forme empirique, prend une valeur de 3 pour les particules de forme 

sphériques et de 6 pour les particules de forme cylindrique. 

Modèle de Yu et Choi  [79] 

Ils ont suggéré de représenter les nano-fluides comme un fluide de base contenant des 

particules solides entourées d’une fine couche nanométrique, servant de canal de transport 

thermique entre les nanoparticules et le fluide. 

𝐾𝑛𝑓

𝐾𝑓
=

𝐾𝑠+2𝐾𝑓−2𝜑(𝐾𝑓−𝐾𝑠)(1+𝛽)
3

𝐾𝑠+2𝐾𝑓+𝜑(𝐾𝑓−𝐾𝑠)(1+𝛽)
3                                                                                                 1.15 

Avec 

𝛽 : Rapport entre l'épaisseur de la couche interfaciale nanométrique et le rayon des 

nanoparticules. 

Ainsi, les modèles employés dans notre étude pour chaque caractéristique thermophysique  

sont les suivants : 

La capacité calorifique du nanofluide : (𝜌𝐶𝑝)𝑛𝑓 =
(1 − 𝜑)(𝜌𝐶𝑝)𝑓 + 𝜑

(𝜌𝐶𝑝)𝑠 

La viscosité dynamique du nanofluide : 𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5
 

La masse volumique du nanofluide : 𝜌𝑛𝑓 = 𝜌𝑓(1 − 𝜑) + 𝜑𝜌𝑠  
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Le coefficient d’expansion thermique : 𝛽𝑛𝑓 = 𝛽𝑓(1 − 𝜑) + 𝜑𝛽𝑠  

La conductivité thermique du nanofluide : 
𝐾𝑛𝑓

𝐾𝑓
=

𝐾𝑠+2𝐾𝑓−2𝜑(𝐾𝑓−𝐾𝑠)

𝐾𝑠+2𝐾𝑓+𝜑(𝐾𝑓−𝐾𝑠)
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2.1 Introduction  

On présente dans ce chapitre le modèle physique, en explicitant les hypothèses 

simplificatrices adoptées, ainsi que les équations mathématiques sous-tendant ce problème. 

Cela inclut les équations de la concentration, de l'énergie, de la quantité de mouvement et de 

continuité dans leurs formulations adimensionnelles et dimensionnelles accompagnées des 

conditions aux limites adaptées. 

2.2 Description du problème 

Considérons un domaine annulaire rempli de nanofluide, compris entre deux cylindres 

elliptiques confocaux dont les grands axes sont orientés horizontalement. Les surfaces 

internes et externes de ces ellipses sont supposées isothermes, portées respectivement aux 

concentrations C1 et C2, ainsi qu'aux températures T1 et T2, avec C1> C2 et T1> T2. Le système 

étudié est bidimensionnel. La figure 2.1 illustre le modèle physique considéré. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Coupe transversale du système étudié. 

2.3  Hypothèses de simplification 

 L’écoulement considéré est stationnaire, laminaire et bidimensionnel. 

 Le travail des forces de pression et la dissipation visqueuse sont négligeables dans 

l'équation d’énergie. 

 L’effet du rayonnement thermique est considéré comme négligeable. 

𝑇2 , 𝐶2 

𝐴1 

𝐴2 

𝐵2 

Plan 

Horizontal  𝐵1  

𝛾 

Plan Vertical  

𝑇1 , 𝐶1 

 

Cu+water 𝒈ሬሬԦ 
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 Les effets de Dufour et de Soret, traduisant l’interaction entre les transports 

thermiques et massiques, sont supposés négligeables 

 Aucune réaction chimique ni source de masse et de chaleur. 

 Les propriétés physiques et thermiques du nano-fluide restent constantes et sont 

établies à partir des valeurs de référence de concentration C0 et de température T0. 

Toutefois, conformément à l’approximation de Boussinesq, la densité du fluide dans 

les forces volumiques est supposée varier linéairement avec la température T et la 

concentration C.  

            La relation mathématique suivante permet de représenter cette variation : 

𝜌𝑛𝑓(𝐶, 𝑇) = 𝜌0𝑛𝑓 (1 − 𝛽𝐶𝑛𝑓(𝐶 − 𝐶0) − 𝛽𝑇𝑛𝑓(𝑇 − 𝑇0))                                          (2.1) 

Où : 

𝑇0 : Température de référence 

𝐶0 : concentration de référence  

𝜌0𝑛𝑓  : La densité du nanofluide correspondant aux conditions de référence 𝑇0 et  𝐶0 

𝛽𝑇𝑛𝑓 : coefficient d’expansion thermique égal :  𝛽𝑇𝑛𝑓 = −
1

𝜌0𝑛𝑓
(
𝜕𝜌𝑛𝑓

𝜕𝑇
)
𝑃,𝐶

 

𝛽𝐶𝑛𝑓  : coefficient d’expansion massique égal : 𝛽𝐶𝑛𝑓 = −
1

𝜌0𝑛𝑓
(
𝜕𝜌𝑛𝑓

𝜕𝐶
)
𝑃,𝑇

 

2.4  Formulation mathématique  

2.4.1. Forme vectorielle 

Les équations dimensionnelles qui décrivent le problème posé sont formulées sous forme 

vectorielle : 

 Equation de conservation de masse: 

Elle découle du principe fondamental de conservation de la masse et se formule de la manière 

suivante : 

div𝑉ሬԦ = 0                                                                                                       (2.2) 

 Equation de Navier stocks: 

Elle découle du principe de conservation de la quantité de mouvement et se formule de la 

manière suivante : 

𝜕𝑉ሬሬԦ

𝜕𝑡
+ (𝑉ሬԦ. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬԦ)𝑉ሬԦ =

∇𝑃

𝜌0𝑛𝑓
+

𝜌𝑛𝑓

𝜌0𝑛𝑓
𝑔Ԧ                                                                                        (2.3) 
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 Equation de l’énergie :  

Elle découle du premier principe fondamental de la thermodynamique et se formule de la 

manière suivante : 

(𝑉ሬԦ. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬԦ)𝑇 +
𝜕𝑇

𝜕𝑡
= 𝛼𝑇𝑛𝑓∇

2𝑇                                                                                                (2.4) 

 Equation de la masse : 

 

(𝑉ሬԦ. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬԦ)𝐶 +
𝜕𝐶

𝜕𝑡
= 𝛼𝑐𝑛𝑓∇

2𝐶                                                                                                (2.5) 

Avec : 

𝑔Ԧ : vecteur de l’accélération gravitationnelle. 

𝑃 : tenseur des forces de pression. 

𝑉ሬԦ : vecteur vitesse. 

𝐶 : concentration. 

𝑇 : température. 

𝛼𝑐𝑛𝑓 : diffusivité massique du nanofluide. 

𝛼𝑇𝑛𝑓 : diffusivité thermique du nanofluide. 

t : temps. 

2.4.2. Forme indicielle 

 

 Equation de continuité: 

𝜕

𝜕𝑥𝑗
(𝑉𝑗) = 0                                                                                                                           (2.6) 

 Equation du mouvement: 

𝜕

𝜕𝑥𝑗
(𝜌0𝑛𝑓𝑉𝑖𝑉𝑗) +

𝜕

𝜕𝑡
(𝜌0𝑛𝑓𝑉𝑖) =

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
−

𝜕𝑃

𝜕𝑥𝑖
+ 𝜌0𝑛𝑓[1 − 𝛽𝑐𝑛𝑓(𝐶 − 𝐶0)−𝛽𝑇𝑛𝑓(𝑇 − 𝑇0)]𝑔     (2.7) 

 Equation de l’énergie : 

𝜕

𝜕𝑥𝑗
(𝑇𝑉𝑗) +

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥𝑗
(𝛼𝑇𝑛𝑓

𝜕𝑇

𝜕𝑥𝑗
)                                                                                            (2.8) 

 Equation de la masse: 

𝜕

𝜕𝑥𝑗
(𝐶𝑉𝑗) +

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥𝑗
(𝛼𝐶𝑛𝑓

𝜕𝐶

𝜕𝑥𝑗
)                                                                                            (2.9) 
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Avec :  

P : pression du nanofluide. 

𝜏𝑖𝑗  : Tenseur des contraintes visqueuses du nanofluide. 

𝜏𝑖𝑗 =
2

3
𝜇𝑛𝑓𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
− 𝜇𝑛𝑓 [

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
]                                                                                    (2.10) 

Où : 

𝜇𝑛𝑓  : Viscosité dynamique du nanofluide 

𝛿𝑖𝑗 : Fonction indicielle de Kronecker 

2.4.3. Expression des équations dans le système de coordonnées cartésiennes 

Puisque l’écoulement considéré est bidimensionnel et stationnaire, les équations de la 

concentration, de continuité, de l’énergie thermique et de la quantité de mouvement, et 

prennent les formes suivantes : 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                          (2.11) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔. sin (𝛼)[𝛽𝑇𝑛𝑓∆𝑇 − 𝛽𝐶𝑛𝑓∆𝐶] −

1

𝜌0𝑛𝑓

𝜕𝑃

𝜕𝑥
+ 𝜈𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                     (2.12.a) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑔. cos (𝛼)[𝛽𝑇𝑛𝑓∆𝑇 − 𝛽𝐶𝑛𝑓∆𝐶] −

1

𝜌0𝑛𝑓

𝜕𝑃

𝜕𝑦
+ 𝜈𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                     (2.12.b) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥
= 𝛼𝑇𝑛𝑓 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
)                                                                                          (2.13) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑥
= 𝛼𝐶𝑛𝑓 (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
)                                                                                          (2.14) 

 

2.4.3.1 Suppression du terme de pression dans l’expression de l’équation de la quantité 

de mouvement 

En procédant à la dérivation de l’équation (2.12.b) par rapport à la variable 𝑥 et de l’équation 

(2.12.a) par rapport à 𝑦, on obtient les relations suivantes :  

𝜕

𝜕𝑥
(𝑢

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝑣

𝜕𝑣

𝜕𝑦
) =

𝜕

𝜕𝑥
(𝑔. cos(𝛼) [𝛽𝑇𝑛𝑓∆𝑇 − 𝛽𝐶𝑛𝑓∆𝐶]) −

𝜕

𝜕𝑥
(

1

𝜌0𝑛𝑓

𝜕𝑃

𝜕𝑦
) + 𝜈𝑛𝑓

𝜕

𝜕𝑥
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                                                                                                                                   (2.15.a)             

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑣

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝑦
(𝑔. sin (𝛼)[𝛽𝑇𝑛𝑓∆𝑇 − 𝛽𝐶𝑛𝑓∆𝐶]) −

𝜕

𝜕𝑦
(

1

𝜌0𝑛𝑓

𝜕𝑃

𝜕𝑥
) + 𝜈𝑛𝑓

𝜕

𝜕𝑦
(
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                                                                                                                                   (2.15.b)                    
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En effectuant la soustraction de l’équation (2.15.b) à partir de l’équation (2.15.a), puis en 

appliquant l’équation de continuité ainsi que la définition de la vorticité 𝜔, on parvient à 

l’expression suivante : 

𝑢
𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦
= 𝑔𝛽𝑇𝑛𝑓 (

𝜕𝑇

𝜕𝑥
cos(𝛼) −

𝜕𝑇

𝜕𝑦
sin(𝛼)) + 𝑔𝛽𝐶𝑛𝑓 (

𝜕𝐶

𝜕𝑦
sin(𝛼) −

𝜕𝐶

𝜕𝑥
cos(𝛼)) +

𝜈𝑛𝑓 (
𝜕2𝜔

𝜕𝑥2
+

𝜕2𝜔

𝜕𝑦2
)                                                                                            (2.16)   

Avec : 

𝜔 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
                                                                                                                        (2.17)    

𝜕𝜔

𝜕𝑥
=  

𝜕2𝑣

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦
                                                                                                               (2.17.a)    

 
𝜕2𝜔

𝜕𝑥2
= 

𝜕

𝜕𝑥
(
𝜕2𝑣

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦
)                                                                                                    (2.17.aa)      

 
𝜕𝜔

𝜕𝑦
=  

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑢

𝜕𝑦2
                                                                                                              (2.17.b)   

 
𝜕2𝜔

𝜕𝑦2
= 

𝜕

𝜕𝑦
(
𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑢

𝜕𝑦2
 )                                                                                                  (2.17.bb)    

2.4.4. Expression des équations dans le système de coordonnées elliptiques 

Pour notre étude, le choix du système de coordonnées elliptiques (η, θ) permet de représenter 

les frontières physiques du domaine par des valeurs constantes de ces coordonnées, ce qui 

facilite la modélisation géométrique du problème. La surface du cylindre elliptique interne est 

définie par 𝜂 = 𝜂1, une valeur constante, tandis que celle du cylindre elliptique externe est 

donnée par 𝜂 = 𝜂2, également constante. L’axe des abscisses (x) correspond à la coordonnée 

η nulle. 

Dans le repère elliptique (η, θ, z), les surfaces correspondant à une valeur constante de η 

représentent des cylindres elliptiques. Celles pour lesquelles θ est constant correspondent à 

des cylindres hyperboliques, tandis que les plans z = constante sont parallèles entre eux. Ces 

différentes surfaces sont illustrées dans la figure 2.2. 
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Figure 2.2 Diagramme des coordonnées elliptiques. 

Le passage du repère cartésien au repère elliptique à travers les formules suivantes :  

𝑥 = 𝑎𝑐ℎ(𝜂) cos (𝜃)                                                                                                              (2.18)                           

𝑦 = 𝑎𝑠ℎ(𝜂) sin (𝜃)  

Les équations  de masse, de mouvement, d’énergie, et de continuité s'écrivent respectivement 

comme suit : 

𝑉𝜃
𝜕(𝐻𝑉𝜃)

𝜕𝜃
+ 𝑉𝜂

𝜕(𝐻𝑉𝜂)

𝜕𝜂
= 0                                                                                                    (2.19) 

𝑉𝜃

ℎ

𝜕𝜔

𝜕𝜃
+

𝑉𝜂

ℎ

𝜕𝜔

𝜕𝜂
=

𝑔𝛽𝑇𝑛𝑓

ℎ
(
𝜕𝑇

𝜕𝜃
[𝐹(𝜂, 𝜃) sin(𝛼) − 𝐺(𝜂, 𝜃) cos(𝛼)] +

𝜕𝑇

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) +

𝐺(𝜂, 𝜃) sin(𝛼)]) +
𝑔𝛽𝐶𝑛𝑓

ℎ
(
𝜕𝐶

𝜕𝜃
[𝐺(𝜂, 𝜃) cos(𝛼) − 𝐹(𝜂, 𝜃) sin(𝛼)] +

𝜕𝐶

𝜕𝜂
[−𝐺(𝜂, 𝜃) sin(𝛼) −

𝐹(𝜂, 𝜃) cos(𝛼)]) +
𝜈𝑛𝑓

ℎ2
(
𝜕2𝜔

𝜕𝜃2
+

𝜕2𝜔

𝜕𝜂2
)                                                                                   (2.20)        

𝑉𝜃
𝜕𝑇

𝜕𝜃
+ 𝑉𝜂

𝜕𝑇

𝜕𝜂
=

𝛼𝑇𝑛𝑓

ℎ
(
𝜕2𝑇

𝜕𝜃2
+

𝜕2𝑇

𝜕𝜂2
)                                                                                                  (2.21)      

 𝑉𝜃
𝜕𝐶

𝜕𝜃
+ 𝑉𝜂

𝜕𝐶

𝜕𝜂
=

𝛼𝐶𝑛𝑓

ℎ
(
𝜕2𝐶

𝜕𝜃2
+

𝜕2𝐶

𝜕𝜂2
)                                                                                        (2.22)  
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Avec :                     𝐹(𝜂, 𝜃) =
𝑐𝑜𝑠(𝜃)𝑠ℎ(𝜂)

√𝑠𝑖𝑛2(𝜃)+𝑠ℎ2(𝜂)
                                                                     (2.23)    

                               𝐺(𝜂, 𝜃) =
𝑠𝑖𝑛(𝜃)𝑐ℎ(𝜂)

√𝑠𝑖𝑛2(𝜃)+𝑠ℎ2(𝜂)
 

Les composantes de la vitesse selon les directions 𝜃 et 𝜂 sont respectivement désignées par 

𝑉𝜃  et 𝑉𝜂  . 

En introduisant la fonction de courant ψ de manière à ce qu'elle vérifie l'équation de 

continuité de manière identique, nous obtenons : 

𝑉𝜃 = −
1

ℎ

𝜕ψ

𝜕𝜂
                                                                                                                         (2.24)                        

𝑉𝜂 =
1

ℎ

𝜕ψ

𝜕𝜃
  

𝜔 = −
1

ℎ2
(
𝜕2ψ

𝜕𝜃2
+

𝜕2ψ

𝜕𝜂2
)                                                                                                         (2.25)   

2.4.5. Les conditions aux limites  

Dans la première partie (le cas de la convection naturelle purement thermique), les conditions 

aux limites sont définies comme suit : 

 L’ellipse interne chaude : 

𝑈 = 𝑉 = 0 

𝑇 = 𝑇1 

 L’ellipse externe froide :  

𝑈 = 𝑉 = 0 

𝑇 = 𝑇2 

Dans la deuxième partie (le cas de la convection naturelle thermosolutale), les conditions aux 

limites sont définies comme suit : 

 L’ellipse interne chaude : 

𝑉𝜃 = 𝑉𝜂 =
𝜕ψ

𝜕𝜃
=
𝜕ψ

𝜕𝜂
= 0 

𝑇 = 𝑇1 , 𝐶 = 𝐶1 

 

 L’ellipse externe froide : 
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𝑉𝜃 = 𝑉𝜂 =
𝜕ψ

𝜕𝜃
=
𝜕ψ

𝜕𝜂
= 0 

𝑇 = 𝑇2 , 𝐶 = 𝐶2 

2.4.6.  Transformation des équations gouvernantes en forme adimensionnée 

Pour passer à une formulation adimensionnelle du problème, on utilise les grandeurs 

physiques suivantes: 

Dh = c (La longueur caractéristique, sélectionnée arbitrairement, est représentée par la 

distance focale propre au système de coordonnées elliptiques). 

 

𝐻 =
ℎ

𝐷ℎ
 , 𝑉𝜂

+ = 𝑉𝜂
𝐷ℎ

𝛼𝑓
 , 𝑉𝜃

+ = 𝑉𝜃
𝐷ℎ

𝛼𝑓
 , 𝜔+ = 𝜔

𝐷ℎ
2

𝛼𝑓
 , ψ+ =

ψ

𝛼𝑓
 , 𝑇+ =

𝑇−𝑇2

𝑇1−𝑇2
  et 𝐶+ =

𝐶−𝐶2

𝐶1−𝐶2
   

Avec ℎ = 𝑐(𝑠𝑖𝑛2𝜃 + 𝑠ℎ2𝜂)
1

2 

 

Les équations (2.19), (2.20), (2.21), et (2.22) deviennent :   

 

𝑉𝜃
𝜕(𝐻𝑉𝜃

+)

𝜕𝜃
+ 𝑉𝜂

𝜕(𝐻𝑉𝜂
+)

𝜕𝜂
= 0                                                                                                   (2.26)  

𝐻𝑉𝜃
+ 𝜕𝜔+

𝜕𝜃
+𝐻𝑉𝜂

+ 𝜕𝜔+

𝜕𝜂
= 𝐻.𝑅𝑎. 𝑃𝑟 (

1
(1−𝜙)𝜌𝑓

𝜙𝜌𝑠
+1

𝛽𝑠

𝛽𝑓
+

1
𝜙𝜌𝑠

(1−𝜙)𝜌𝑓
+1
) × ({

𝜕𝑇+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) −

𝐺(𝜂, 𝜃) cos(𝛼)] +
𝜕𝑇+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]} + 𝑁 {

𝜕𝐶+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) −

𝐺(𝜂, 𝜃) cos(𝛼)] +
𝜕𝐶+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]}) +

𝑃𝑟

(1−𝜙)2.5((1−𝜙)+𝜙
𝜌𝑠
𝜌𝑓
)

(
𝜕2𝜔+

𝜕𝜃2
+

𝜕2𝜔+

𝜕𝜂2
)                                                                                                                                    (2.27)  

 

𝐻𝑉𝜃
+ 𝜕𝑇+

𝜕𝜃
+𝐻𝑉𝜂

+ 𝜕𝑇+

𝜕𝜂
= (

𝐾𝑛𝑓

𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

)(
𝜕2𝑇+

𝜕𝜃2
+

𝜕2𝑇+

𝜕𝜂2
)                                                    (2.28) 

 

𝐻𝑉𝜃
+ 𝜕𝐶+

𝜕𝜃
+ 𝐻𝑉𝜂

+ 𝜕𝐶+

𝜕𝜂
=

1

𝐿𝑒
(

𝐾𝑛𝑓

𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

) (
𝜕2𝐶+

𝜕𝜃2
+

𝜕2𝐶+

𝜕𝜂2
)                                                (2.29) 

Avec :  𝜔+ = −
1

𝐻2
(
𝜕2ψ+

𝜕𝜃2
+

𝜕2ψ+

𝜕𝜂2
)                                                                                      (2.30) 

La mise sous forme adimensionnelle des équations de conservation fait apparaître des 

grandeurs sans dimension, représentatives des caractéristiques physiques du problème étudié. 

Le nombre de Lewis: 𝐿𝑒 =
𝛼𝑇

𝛼𝐶
 

Le nombre de Prandtl: 𝑃𝑟 =
𝜈

𝛼
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Le nombre de Rayleigh: 𝑅𝑎 =
𝑔𝛽𝑇Δ𝑇𝐷ℎ

3

𝛼𝜈
 

Le rapport entre la poussée solutale et la poussée thermique: 𝑁 =
𝛽𝐶Δ𝐶

𝛽𝑇Δ𝑇
 

Où les composantes 𝑉𝜂
+, 𝑉𝜃

+de la vitesse adimensionnelles sont définies par: 

𝑉𝜂
+ =

1

𝐻

𝜕ψ+

𝜕𝜃
                                                                                                                       (2.31.a) 

 

𝑉𝜃
+ = −

1

𝐻

𝜕ψ+

𝜕𝜂
                                                                                                                   (2.31.b) 

2.4.7. Expression sans dimension des conditions aux limites 

Dans la première partie (le cas de la convection naturelle purement thermique), les conditions 

aux limites adimensionnelles sont les suivantes : 

 La paroi interne chaude : 

𝑈+ = 𝑉+ = 0                                                                                                        (2.32.a) 

𝑇1
+ = 1                                                                                                                  (2.32.b) 

 La paroi externe froide : 

𝑈+ = 𝑉+ = 0                                                                                                        (2.33.a) 

𝑇2
+ = 0                                                                                                                  (2.33.b)    

Dans la deuxième partie (le cas de la convection naturelle thermosolutale), les conditions aux 

limites adimensionnelles sont les suivantes : 

 La paroi interne chaude (𝜂 = 𝜂𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡): 

𝑉𝜃
+ = 𝑉𝜂

+ =
𝜕ψ+

𝜕𝜃
=

𝜕ψ+

𝜕𝜂
= 0                                                                                 (2.34.a) 

𝜓+ = −
1

𝐻2
(
𝜕2ψ+

𝜕𝜃2
+

𝜕2ψ+

𝜕𝜂2
)                                                                                    (2.34.b) 

𝑇1
+ = 1 et 𝐶1

+ = 1                                                                                                 (2.34.c) 

 La paroi externe froide  (𝜂 = 𝜂𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡): 

           𝑉𝜃
+ = 𝑉𝜂

+ =
𝜕ψ+

𝜕𝜃
=

𝜕ψ+

𝜕𝜂
= 0                                                                                  (2.35.a) 

            𝜓+ = −
1

𝐻2
(
𝜕2ψ+

𝜕𝜃2
+

𝜕2ψ+

𝜕𝜂2
)                                                                                    (2.35.b)    

            𝑇2
+ = 0 et 𝐶2

+ = 0                                                                                                 (2.35.c)                                                                                

2.4.8. Paramètres caractéristiques du transfert thermique et massique 

Cette étude vise à évaluer les échanges de masse et de chaleur dans le fluide, en les 

quantifiant à l’aide des nombres sans dimension de Sherwood et de Nusselt. 

            2.4.8.1 Les nombres de Sherwood et de Nusselt locaux 

Les nombres de Sherwood et de Nusselt locaux sont donnés respectivement par: 

𝑆ℎ = −
1

𝐻

𝜕𝐶+

𝜕𝜂
|
𝜂=𝑐𝑠𝑡

                                                                                 (2.36) 

𝑁𝑢 = −
1

𝐻

𝜕𝑇+

𝜕𝜂
|
𝜂=𝑐𝑠𝑡

                                                                                (2.37) 
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            2.4.8.2 Les nombres de Sherwood et de Nusselt moyens 

Les nombres de Sherwood et de Nusselt moyens sont donnés respectivement par: 

                         𝑆ℎ̅̅ ̅ =
1

𝜃𝑁𝑁−𝜃1
∫ 𝑆ℎ 𝑑𝜃
𝜃𝑁𝑁

𝜃1
                                                                            (2.38)         

                         𝑁𝑢̅̅ ̅̅ =
1

𝜃𝑁𝑁−𝜃1
∫ 𝑁𝑢 𝑑𝜃
𝜃𝑁𝑁

𝜃1
                                                                          (2.39)        

 

2.5  Conclusion: 

Une fois les équations

 

de masse et de chaleur, de conservation de la masse, de quantité de 

movement établies, accompagnées de leurs conditions aux limites respectives, une 

modélisation numérique du problème est envisagée. Le chapitre suivant est ainsi consacré à la 

présentation de la méthode de résolution numérique appliquée à notre modèle mathématique.
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3.1. Introduction       

  Le chapitre précédent a été consacré à l’établissement des équations principales 

décrivant les mécanismes d’écoulement ainsi que les transferts de masse et de chaleur dans les 

fluides. Ces équations constituent un système de dérivées partielles complexes, à la fois 

hautement couplées et non linéaires Résoudre analytiquement un tel système est extrêmement 

complexe. On procède donc à leur résolution de manière numérique. 

Il existe une multitude de méthodes documentées dans la littérature. On peut mentionner par 

exemple : 

- L’approche des éléments finis. 

- L’approche des volumes finis. 

- L’approche des différences finies. 

3.2.  La méthode des volumes finis : 

De nombreux chercheurs ont employé cette méthode avec succès, décrite initialement par 

Patankar et Spalding en 1971, puis publiée  par Patankar [80] en 1980. 

Le principe de cette méthode est de subdiviser l’espace de calcul en plusieurs sous-domaines 

finis, qu'on désigne sous le nom de volumes de contrôle. Les équations aux dérivées partielles 

paraboliques sont intégrées dans chaque volume de contrôle selon la méthode des volumes 

finis, exposées précédemment, sur chacun des volumes de contrôle. Un nœud est associé à 

chaque volume de contrôle appelé "nœud principal". 

Le domaine physique ainsi que le domaine de calcul associé sont présentés dans la figure 3.1. 

Afin de discrétiser le domaine, nous avons opté pour des pas uniformes Δθ et Δη :  

Δ𝜃 =
𝜃𝑁𝑁−𝜃1

𝑁𝑁−1
     et  Δ𝜂 =

𝜂1−𝜂𝑁𝐼

𝑁𝐼−1
        

Avec:     

NI   :   Le nombre de nœuds dans la direction η.                   

NN :   Le nombre de nœuds dans la direction θ. 
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Domain Physique grille de Calcul 

Figure 3.1 Schéma du domaine physique et de la grille de calcul. 

3.2.1. Volume de contrôle élémentaire 

La division de l'espace annulaire en fonction des directions des coordonnées elliptiques θ et η 

en un certain nombre de volumes identiques nous procure des volumes de contrôle. 

L'espace annulaire est discrétisé suivant les directions θ et η  en une série de volumes 

élémentaires, appelés "volumes de contrôle", dont le volume est donné par «𝐻2. ∆𝜂. ∆𝜃. 1». 

Le problème étant bidimensionnel, une épaisseur unitaire est considérée dans la direction Z. 

Chaque volume de contrôle typique est centré en un point P et possède des faces latérales 

désignées respectivement par w «ouest», e «est», s «sud», et n «nord». Un volume fini 

intérieur est bordé par quatre volumes voisins, dont les centres sont situés en W, E, S et N. 

Les grandeurs scalaires telles que la vorticité, la température et la concentration sont 

localisées aux centres des volumes de contrôle. Par conséquent, les équations de transport 

associées à ces variables sont intégrées sur un volume fini représentatif. 

 Les nœuds N et E sont situés respectivement dans les directions positives des coordonnées η 

et θ , tandis que les nœuds W et S se trouvent dans les directions opposées. 
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Figure 3.2 Schéma représentant le volume de contrôle 

 La figure 3.2 illustre un volume fini type ainsi que son voisinage direct au sein du 

domaine de calcul. Dans cette représentation, le volume de contrôle centré au nœud P  est 

délimité par les faces latérales notées w, n, e et s. 

3.2.2. Formulation discrète de l'équation de conservation générale pour une variable 𝝋 

dans un volume de contrôle 

Dans le but de démontrer l'application de la discrétisation des équations de transfert par 

l’approche des volumes finis, nous adoptons une formulation générale de l'équation 

considérée. 

Pour mieux appréhender cette approche, nous commençons par examiner l’équation de 

la quantité mouvement (2.27), l’équation de l’énergie thermique  (2.28) ainsi que de celle 

régissant la concentration (2.29), elles s’écrivent respectivement comme suit : 

𝜕

𝜕𝜃
(𝐻𝑉𝜃

+𝜔+ − Γ𝜔+
𝜕𝜔+

𝜕𝜃
) +

𝜕

𝜕𝜂
(𝐻𝑉𝜂

+𝜔+ − Γ𝜔+
𝜕𝜔+

𝜕𝜂
) = 𝑆𝜔+                                        (3.1) 

𝜕

𝜕𝜃
(𝐻𝑉𝜃

+𝑇+ − Γ𝑇+
𝜕𝑇+

𝜕𝜃
) +

𝜕

𝜕𝜂
(𝐻𝑉𝜂

+𝑇+ − Γ𝑇+
𝜕𝑇+

𝜕𝜂
) = 𝑆𝑇+      

                                    

(3.2) 

 

𝜕

𝜕𝜃
(𝐻𝑉𝜃

+𝐶+ − Γ𝐶+
𝜕𝐶+

𝜕𝜃
) +

𝜕

𝜕𝜂
(𝐻𝑉𝜂

+𝐶+ − Γ𝐶+
𝜕𝐶+

𝜕𝜂
) = 𝑆𝐶+                                   (3.3)

               

      

Les trois équations peuvent être exprimées sous une forme générale commune, décrite 

comme suit : 

𝜕

𝜕𝜃
(𝐻𝑉𝜃

+𝜑 − Γ𝜑
𝜕𝜑

𝜕𝜃
) +

𝜕

𝜕𝜂
(𝐻𝑉𝜂

+𝜑 − Γ𝜑
𝜕𝜑

𝜕𝜂
) = 𝑆𝜑                                                               (3.4)                                                                                   

 

Avec: 

Γ𝜑   :     Coefficient adimensionnel. 

 𝜑    :     Fonction générale. 

 𝑆𝜑  :     Terme source. 

 L’équation discrétisée d’une variable φ est dérivée à partir de l’intégration de son 

équation de conservation sur un volume de contrôle représentatif. Ce qui suit présente un 

exemple de discrétisation appliqué à l’équation de transfert de φ. 
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     

















 

e

w

n

s

e

w

n

s

φ

e

w

n

s

φηφθ ddS  ) 
η

φ
 Γ  φ V (H  

η
d)d 

θ

φ
 Γ    φ V (H  

θ
 dd  

ou bien : 

   

    
3

e

w

n

s

φ

2

e

w

n

s

φφ

1

e

w

n

s

ηθ ddS  dd 
η

φ
 Γ 

η
 

θ

φ
 Γ 

θ
  dd

η

φ V H

θ

φ V H
     





























































  

 Les trois termes représentent les intégrales doubles sur le volume de contrôle, 

délimitée par les faces w-e et s-n. Ils traduisent, dans l’ordre, les effets de la diffusion, de la 

convection et du terme source de la variable φ. On adopte le schéma de la loi de puissance 

(Power-Law) pour effectuer la discrétisation spatiale, qui permet d’estimer les gradients de φ 

entre les nœuds du maillage. Ce schéma est particulièrement apprécié pour sa stabilité 

inconditionnelle. 

Posons:   













































            
η

φ
 Γ    HV φ  J

θ

φ
 Γ     HV φ  J

 

φηη

φθθ

 

 Jθ et Jη représentent les flux totaux, résultant de la combinaison des effets de convection et de 

diffusion. 

En substituant Jθ et Jη dans l’équation (3.4), nous obtenons:  

 φ

ηθ S   
η

J
 

θ

J
  









                (3.5) 

En procédant à l’intégration de l’équation (3.5) sur le volume de contrôle, on aboutit à 

l’expression suivante : 

 ΔV .S  J  JJ  J  φsnwe                 

(3.6) 

Jw ,Jn, , Je, et Js représentent les flux totaux (convection + diffusion) évalués aux interfaces 

nord, sud, est et ouest du volume de contrôle. 
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Dans le volume de contrôle considéré 𝑆𝜑̅ représente la valeur moyenne du terme source S. En 

général, ce terme peut être linéarisé par rapport à la variable 𝜑𝑝  (au centre du volume) et 

exprimé sous la forme suivante : 

                                                     S  .Sφ     S 0ppφ                                                             (3.7) 

                                       Avec             0  Sp   

En conséquence, l’équation (3.6) peut être reformulée de la manière suivante :                                       

ΔV . )Sφ . S (    J   JJ   J 0PPsnwe                                                                             (3.8) 

       En procédant à l’intégration de l’équation de continuité (2.25) sur un volume de contrôle 

typique, on obtient l’expression suivante :  

                                                 0   F   F F   F snwe                                                         (3.9) 

Où sF , nF , wF et eF  correspondent respectivement aux débits massiques traversant les faces sud, 

nord, ouest et est du volume de contrôle. 

                                                   





























     

 ) V H ( Δη   F

 ) V H ( Δη  F

 ) V H ( Δθ  F

 ) V H ( Δθ   F

wθw

eθe

sηs

nηn

                                                  (3.10)  

       En procédant à la multiplication de l’équation (3.9) par la variable𝜑𝑃, puis en soustrayant 

cette expression de l’équation (3.8), on déduit :                               

            

) Sφ . S ( ΔV  ) φ . F   J (  

) φ . F   (J) φ . F  J (  ) φ . F   J (

0pppss

pnnPWWpeE





                             (3.11)          

                                            





















        

a ) φ   φ (    .Fφ   J 

a ) φ   φ (   .Fφ   J

a ) φ   φ (   .Fφ   J

a ) φ   φ (   .Fφ   J

WPWwpw

EEPepe

SPSsps

NNPnpn

                                   (3.12) 

       Leur substitution dans l’équation (3.11) permet d’obtenir : 

                                      
            ) Sφ . S ( ΔV    ) φ   φ ( a   

 ) φ   φ ( a) φ   φ ( a  ) φ   φ ( a  

0PPPSS

NPNPWWEPE




                 (3.13) 
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       On obtient donc finalement  l'équation de discrétisation : 

                              b  a φ  a φa φ  a φ  a φ SSNNWWEEPP                                        (3.14) 

Avec: 

                                            pNSEWP S ΔV- a  aa  a  a                                                (3.15)                                                    

                                        0S V Δ    b                                                                     (3.16) 

       Selon PATANKAR [80], la fonction     P   A  est décrite comme suit : 

                          P  0.1  1 0,      P  A 
5

                            

       Le symbole B,A  désigne la sélection de la valeur maximale entre A et B. 

                                       

 
 

 
 
























   

    

   

       ,0F    P A  D   a

  ,0F    P A  D   a

   ,0F     P A  D   a

   ,0F     P A  D   a

wwww

sssS

eeeE

nnnN

                                          

(3.17) 

       Les grandeurs Dn, Ds, De et Dw, sont définies par: 

                                                      

 
 
 

 
 

 
 

  

























   

δθ

 Γ Δη
   D

δθ

 Γ Δη
   D

δη

 Γ Δθ
   D

δη

 Γ Δθ
   D

w

wφ

w

e

eφ

e

s

sφ

s

n

nφ

n

                                                      (3.18) 

Les nombres de Péclet Pn, Ps, Pe et Pw sont définis comme suit: 
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




















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D

1
F  P

D

1
F  P

D

1
F  P

D

1
F  P

 

w

ww

e

ee

s

ss

n

nn

                                                 (3.19) 

 Les intervalles d’intégration (δθ)e, (δθ)w, (δη)net (δη)s peuvent, en principe, différer 

des pas de discrétisation Δθ et Δη. Néanmoins, dans le cadre de cette étude, ils sont 

considérés comme constants et égaux aux pas de calcul susmentionnés, à savoir Δθ et Δη. Par 

ailleurs, les interfaces désignées par n, s, e et w sont supposées être localisées au milieu des 

segments reliant respectivement les nœuds (P, N), (P, S), (P, E) et (P, W). 

            Les grandeurs précédemment définies s’expriment comme suit : 

                                               

 

 

 

  























           

Γ
Δθ

 Δη
   D 

Γ
Δθ

  Δη
   D

Γ
Δη

  Δθ
   D

Γ
Δη

  Δθ
   D

wφw

eφe

sφs

nφn

                                                   (3.20)  

  Pour maintenir les conditions de convergence et de stabilité de la méthode employée, 

certaines conditions doivent être impérativement respectées. En particulier, dans l’équation 

(3.14), tous les coefficients associés aux nœuds voisins doivent être strictement positifs, le 

terme source linéarisé SP doit être négatif. De plus, le coefficient central ap doit être défini 

comme le total des coefficients des nœuds adjacents, à laquelle s’ajoute le terme SP∆V. 

La procédure de discrétisation évoquée ci-dessus est applicable aux équations aux 

dérivées partielles régissant l’ensemble des variables dépendantes du problème. La fonction 𝜑 

 désigne l’une de ces grandeurs adimensionnelles, à savoir𝑇+, 𝜔+  et 𝐶+ . Les coefficients 

diffusifs Γ𝜑 ainsi que les termes sources 𝑆𝜑 correspondants sont récapitulés dans le tableau 

3.1. 

Tableau 3.1 : Termes sources et coefficients diffusifs  associés à la variable φ 
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Equation 𝜑 Γ𝜑 𝑆𝜑 

3.1 𝜔+
 

𝑃𝑟

(1 − 𝜙)2.5 ((1 − 𝜙) + 𝜙
𝜌𝑠
𝜌𝑓
)

 

𝐻.𝑅𝑎. 𝑃𝑟 (
1

(1 − 𝜙)𝜌𝑓
𝜙𝜌𝑠

+ 1

𝛽𝑠
𝛽𝑓
+

1

𝜙𝜌𝑠
(1 − 𝜙)𝜌𝑓

+ 1
)

× ({
𝜕𝑇+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼)

− 𝐺(𝜂, 𝜃) cos(𝛼)]

+
𝜕𝑇+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼)

− 𝐺(𝜂, 𝜃) sin(𝛼)]}

+ 𝑁 {
𝜕𝐶+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼)

− 𝐺(𝜂, 𝜃) cos(𝛼)]

+
𝜕𝐶+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼)

− 𝐺(𝜂, 𝜃) sin(𝛼)]})
 

3.2 𝑇+ 

(

  
 

𝐾𝑛𝑓
𝐾𝑓

(1 − 𝜙) + 𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

  
 

 0 

3.3 𝐶+ 

 

1

𝐿𝑒

(

  
 

𝐾𝑛𝑓
𝐾𝑓

(1− 𝜙) + 𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

  
 

 
0 

3.3.  Formulation discrète de l'équation de l'énergie 

L’équation de conservation de l’énergie est formulée sur un volume de contrôle élémentaire, 

de dimensionsH2. (Δθ)p .(Δη)p. En appliquant la procédure de discrétisation selon l’approche 

des volumes finis, on parvient à l’expression algébrique suivante :

bTaTaTaTaTa SSppwWEEpp                                                                             (3.21) 
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Dans le cas de l’équation (3.2), l’absence du terme source ST  entraîne la nullité du coefficient 

b. Par conséquent, le coefficient aP de l'équation (3.15) s’exprime comme suit : 

                                                 SNWEP a  a a  a   a                                                      (3.22) 

      Les expressions des coefficients aN, aS, aE et aW sont identiques à celles présentées 

dans le système (3.17). 

       L’introduction de la grandeur adimensionnelle ψ⁺ (fonction de courant) apparaissant dans 

le système (3.10) conduit à l’expression suivante :  
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                                     (3.23) 

            Dans la suite, nous supposons que : 

                                                  

    

    

    

    
      

     j , i ψ1  j , i  ψ 
2

 1
  ψ

       j , i ψ j , 1i ψ  
2

 1
  ψ   

     j , i ψ1j , i ψ  
2

 1
  ψ

 j 1, i ψj , i ψ  
2

1
  ψ

e

s

w

n









 

 





                                 (3.24) 

Le calcul du gradient de la fonction de courant au niveau de l’interface “e” est effectué 

conformément à la méthodologie proposée par NOGOTOV [81], comme illustré à la figure 

3.3. 
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Figure 3.3  Schéma représentatif de la disposition des points P, S, W et E considérés dans le 

maillage. 
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       En conséquence, la fonction Fe se présente sous la forme suivante: 

          j , 1  i  ψ -  1  j , 1  i  ψ -  j , 1  i  ψ 1  j , 1  i  ψ  
4

1
  Fe 

 
                           (3.25.a) 

       De manière similaire, Le gradient au niveau de l’interface « w » s’exprime comme suit : 

 

    
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     La fonction Fw se présente sous la forme suivante:   

          j , 1  i  ψ -  1 - j , 1  i  ψ -  1 - j , 1  i  ψ  j , 1  i  ψ   
4

1
  Fw 


                           (3.25.b) 
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De manière similaire, Le gradient au niveau de l’interface « n » s’exprime comme suit : 
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 j , i  ψ j , 1i  ψ 
  

2

 1j , 1i  ψ 1j , i  ψ 
  

2Δ

1
 

 
2

 j , i  ψ j , 1i  ψ 
  

2

  1j , i  ψ 1j , 1i  ψ
  

2Δ

1
 

θ

ψ

n








 

















 

























 





         1j , i  ψ - 1j , 1i  ψ  1j , 1i  ψ - 1j , i  ψ
4Δ

 1
  

θ

ψ

n


















 



 

On obtient alors : 

          1j , i  ψ -  1 - j , 1  i  ψ -  1j , i  ψ  1  j , 1  i  ψ  
4

1
  Fn 


                            (3.25.c) 

       Le gradient au niveau de l’interface « s » peut s’exprimer comme suit: 

         1j , i  ψ-  1j , 1i  ψ 1j , 1i  ψ-  1j , i  ψ
4Δ

 1
  

θ

ψ

s

















 



 

       L’expression de Fs devient : 

          1j , i  ψ -  1 - j , 1 - i  ψ -   1j , i  ψ 1  j , 1 - i  ψ  
4

1
 Fs 


                             (3.25.d) 

Le coefficient Γ𝜑  est donné, selon le tableau 3.1, par :   Γ𝜑 = (

𝐾𝑛𝑓
𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

)  

            En substituant cette expression dans le système (3.20), les coefficients Dw, De, Ds et 

Dn s’expriment comme suit : 

{
 
 
 

 
 
 
𝐷𝑠=𝐷𝑛=

𝛥𝜃

𝛥𝜂

(

 
 

𝐾𝑛𝑓
𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

 
 

𝐷𝑤=𝐷𝑒=
𝛥𝜂

𝛥𝜃

(

 
 

𝐾𝑛𝑓
𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

 
 

                                                                                                   (3.26) 
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            Par conséquent, les nombres de Péclet associés au système d'équations (3.19) prennent 

la forme suivante : 

{
  
 

  
 
𝑃𝑛 = 𝐹𝑛

Δ𝜂

Δ𝜃
(
(1−𝜙)+𝜙

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

𝑃𝑠 = 𝐹𝑠
Δ𝜂

Δ𝜃
(
(1−𝜙)+𝜙

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

           ;           

{
  
 

  
 
𝑃𝑒 = 𝐹𝑒

Δ𝜃

Δ𝜂
(
(1−𝜙)+𝜙

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

𝑃𝑤 = 𝐹𝑤
Δ𝜃

Δ𝜂
(
(1−𝜙)+𝜙

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

                     (3.27)  

Afin d’uniformiser les notations dans l’équation (3.21), les points P, W, S , N et E sont 

désignés respectivement par (i,j), (i,j-1), (i+1,j), (i,j+1) et (i-1,j).  

       Les coefficients aW, aE, aS et aN sont évalués au nœud de coordonnées (i, j). 

       Par conséquent, l’équation (3.21) peut être exprimée sous la forme suivante : 

          j , 1i  Ta  1j , i  Ta   1j , i  Ta j , 1i  Ta    j , i  Ta SWENP                (3.28) 

3.3.1.  Formulation discrète des conditions aux limites 

Afin de respecter les conditions prescrites sur la température des parois, il est nécessaire que : 

 Au niveau de la paroi extérieure elliptique (I=NI). 

aP = 1 

aW = aE = aS = aN = 0 et ST = 0 

 Au niveau de la paroi intérieure elliptique (I=1). 

 aP = 1 

                       aW = aE = aS = aN = 0 et ST = 1 

3.4.  Formulation discrète de l'équation d’espèces: 

L'équation sous forme discrète (3.14) peut être exprimée de la manière suivante : 

                             bCaCaCaCaCa EEwWppSSpp                                               (3.29) 

L'égalité entre le coefficient aP et celui spécifié dans l'équation (3.15) permet d'obtenir:             

                                       a  a  a  a  a EWNSP                                                           (3.30) 
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Les coefficients aN, aS, aW et aE sont exprimés conformément aux relations définies dans le 

système (3.17). 

 Le coefficient Γ𝜑 = 
1

𝐿𝑒
(

𝐾𝑛𝑓

𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

) , selon le tableau 3.1, au niveau des interfaces w, e, s et 

n; les coefficients  Dw, De, Ds et Dn sont déterminés à partir des expressions suivantes: 

{
 
 
 

 
 
 
𝐷𝑠=𝐷𝑛=

𝛥𝜃

𝛥𝜂

1

𝐿𝑒

(

 
 

𝐾𝑛𝑓
𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

 
 

𝐷𝑤=𝐷𝑒=
𝛥𝜂

𝛥𝜃

1

𝐿𝑒

(

 
 

𝐾𝑛𝑓
𝐾𝑓

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓)

 
 

                                                                                                 (3.31) 

Les nombres de Péclet associés au système d'équations (3.19) prennent alors les formes 

suivantes: 

{
  
 

  
 
𝑃𝑛 =

Δ𝜂

Δ𝜃
𝐹𝑛𝐿𝑒(

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

𝑃𝑠 =
Δ𝜂

Δ𝜃
𝐹𝑠𝐿𝑒(

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

           ;           

{
  
 

  
 
𝑃𝑒 =

Δ𝜃

Δ𝜂
𝐹𝑒𝐿𝑒 (

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

𝑃𝑤 =
Δ𝜃

Δ𝜂
𝐹𝑤𝐿𝑒 (

(1−𝜙)+𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐾𝑛𝑓

𝐾𝑓

)

             (3.32) 

                                                                                                       

Afin d’uniformiser les notations dans l'équation (3.29), les points P, E, W, S et N sont 

respectivement notés (i,j), (i,j-1), (i-1,j) , (i+1,j) et (i,j+1). 

       Les coefficients aW, aE, aS et aN sont évalués  au nœud de coordonnées (i, j). 

       Par conséquent, l’équation (3.29) s’exprime de la manière suivante :

          j , 1i  Ca j , 1i  Ca  1j , i  Ca  1j , i  Ca  j , i  Ca NSEWP               (3.33)           

3.4.1.  Formulation discrète des Conditions aux limites        

  Pour respecter les conditions applicables à la concentration à proximité des parois, il est 

nécessaire que: 

 Au niveau de la paroi extérieure elliptique (I=NI). 

aP = 1 
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aW = aE = aS = aN = 0 et ST = 0 

 Au niveau de la paroi intérieure elliptique (I=1). 

 aP = 1 

                       aW = aE = aS = aN = 0 et ST = 1 

3.5.  Formulation discrète de l'équation de mouvement   

L'équation sous forme discrète (3.14) peut être exprimée de la manière suivante : 

                    b+ a + a + a + a = a ωωωωω +
EE

+
WW

+
NN

+
SS

+
PP                                (3.34) 

L'égalité entre le coefficient aP et celui spécifié dans l'équation (3.15) conduit à l’expression 

suivante: 

                     a  a  a  a  a EWNSP                                                                                 (3.35) 

Avec:                                                ∆V. SP = 0 

Les coefficients aN, aS, aW et aE sont définis selon les expressions fournies dans le 

système (3.17). 

 Le coefficient Γ𝜑 =
𝑃𝑟

(1−𝜙)2.5((1−𝜙)+𝜙
𝜌𝑠
𝜌𝑓
)

 , selon le tableau 3.1, au niveau des  interfaces w, e, s et 

n; les coefficients Dw, De, Ds et Dn sont obtenus à partir des expressions suivantes: 

{
  
 

  
 
𝐷𝑠=𝐷𝑛=

𝛥𝜃

𝛥𝜂

(

 
 𝑃𝑟

(1−𝜙)2.5((1−𝜙)+𝜙
𝜌𝑠
𝜌𝑓
)

)

 
 

𝐷𝑤=𝐷𝑒=
𝛥𝜂

𝛥𝜃

(

 
 𝑃𝑟

(1−𝜙)2.5((1−𝜙)+𝜙
𝜌𝑠
𝜌𝑓
)

)

 
 

                                                                                     (3.36)                                                                                                

Les nombres de Péclet associés au système d'équations (3.19) s’écrivent alors sous les 

formes suivantes: 

{
 
 

 
 𝑃𝑛 =

Δ𝜂

Δ𝜃

𝐹𝑛

𝑃𝑟
(1 − 𝜙)2.5 ((1 − 𝜙) + 𝜙

𝜌𝑠

𝜌𝑓
)

𝑃𝑠 =
Δ𝜂

Δ𝜃

𝐹𝑠

𝑃𝑟
(1 − 𝜙)2.5 ((1 − 𝜙) + 𝜙

𝜌𝑠

𝜌𝑓
)

      ;     

{
 
 

 
 𝑃𝑒 =

Δ𝜃

Δ𝜂

𝐹𝑒

𝑃𝑟
(1 − 𝜙)2.5 ((1 − 𝜙) + 𝜙

𝜌𝑠

𝜌𝑓
)

𝑃𝑤 =
Δ𝜃

Δ𝜂

𝐹𝑤

𝑃𝑟
(1 − 𝜙)2.5 ((1 − 𝜙) + 𝜙

𝜌𝑠

𝜌𝑓
)

    (3.37) 

 Les expressions des coefficients eF ,
wF , 

nF  et sF  sont identiques à celles définies dans les 

équations (3.25.a), (3.25.b), (3.25.c) et (3.25.d). 
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 Le tableau 3.1 indique que le terme constant (S0) associé au terme de source est 

exprimé par la relation suivante :  

𝑆0 = 𝑅𝑎.𝑃𝑟 (
1

(1−𝜙)𝜌𝑓

𝜙𝜌𝑠
+1

𝛽𝑠

𝛽𝑓
+

1
𝜙𝜌𝑠

(1−𝜙)𝜌𝑓
+1
) × ({

𝜕𝑇+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) − 𝐺(𝜂, 𝜃) cos(𝛼)] +

𝜕𝑇+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]} + 𝑁 {

𝜕𝐶+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) − 𝐺(𝜂, 𝜃) cos(𝛼)] +

𝜕𝐶+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]})                                                                                           (3.38) 

En conséquence, le coefficient b s’écrit comme suit: 

                                                                     SΔV  b 0   

Avec: 

                                                             Δη.1 Δθ. .H  ΔV 2   

Le coefficient 𝑏 s’exprime alors comme suit : 

𝑏 = 𝐻2 . 𝑅𝑎. 𝑃𝑟 (
1

(1−𝜙)𝜌𝑓

𝜙𝜌𝑠
+1

𝛽𝑠

𝛽𝑓
+

1
𝜙𝜌𝑠

(1−𝜙)𝜌𝑓
+1
) × ({

𝜕𝑇+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) − 𝐺(𝜂, 𝜃) cos(𝛼)] +

𝜕𝑇+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]} + 𝑁 {

𝜕𝐶+

𝜕𝜃
[−𝐹(𝜂, 𝜃) sin(𝛼) − 𝐺(𝜂, 𝜃) cos(𝛼)] +

𝜕𝐶+

𝜕𝜂
[𝐹(𝜂, 𝜃) cos(𝛼) − 𝐺(𝜂, 𝜃) sin(𝛼)]})Δ𝜃. Δ𝜂                                                                (3.39)                                      

Avec: 

                                       

     1ji,  T   1ji,  T
Δθ 2

1
  

θ

T  
j i,




 


                                  (3.40) 

                                       

     j1,i  T   j1,i  T
Δη 2

1
  

η

T  
j i,




 


                                 (3.41) 

                                           1ji,  C   1ji,  C
Δθ 2

1
  

θ

C  
j i,




 


                                   (3.42) 

                                            j1,i  C   j1,i  C
Δη 2

1
  

η

C  
j i,




 


                                  (3.43) 
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             Afin d’homogénéiser les notations, et en se référant au paragraphe antérieur, les 

nœuds P, W, E, S et N sont respectivement associés aux positions (i+1,j), (i,j), (i,j-1), , (i-1,j) 

et (i,j+1). 

       Les coefficients aS, aN, aW, aE  ainsi que le terme b  sont évalués au niveau du nœud ( )ji, . 

       L’équation discrétisée du mouvement (3.34) s’exprime finalement sous la forme suivante: 

                  
       

             b  +  1+j , i  ω a  +

 1-j , i  ω a j , 1+i  ω a j , 1-i  ω a  =   j , i  ω a
+
EE

+
WW

+
NN

+
SS

+
PP 

                (3.44) 

3.5.1.  Formulation discrète des Conditions aux limites 

 Pour évaluer la vorticité aux parois, nous adoptons la méthode proposée par Roache 

[82], laquelle consiste à exprimer la vorticité en fonction de la fonction de courant à l’aide 

d’un développement en série de Taylor. 

- Condition appliquée à la paroi interne elliptique (I=1). 

                   

1ηη

2

2

2

2

21  
η

ψ

θ

ψ
   

H

1
      ω























  

Afin de calculer le comportement de la fonction de courant près de la paroi interne, nous 

effectuons un développement en série de Taylor en ce point ( )j1,=i : 

                      
     

.....
η

 j , 1ψ

2!

Δη
 

η

 j , 1ψ

1!

Δη
  j , 1ψ  j , 2ψ

2

22















 

       La vorticité au niveau de cette paroi s’exprime comme suit : 

                   

 
   

    
 

          1j , 1 ψ   j , 1  ψ2  1 j , 1 ψ
Δθ

1
 j , 1  ψ   j , 2  ψ

Δη

 2 
  

1H

1
   j1, ω 222 












            

 Au niveau de la paroi extérieure  elliptique (I=NI). 

                   

2ηη

2

2

2

2

22  
η

ψ
 

θ

ψ
 

H

1
      ω























  

            La vorticité au niveau de cette paroi s’exprime comme suit: 
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 
 

 
    

 
      

 

 1j , NI ψ   j , NI  ψ2  1 j , NI ψ 
Δθ

1

  j , 1-NI  ψ j , NI  ψ 
Δη

 2 
 

 
NIH

1
   jNI, ω

2

2

2




























  

3.6.   Formulation discrète de l'équation associée à la fonction de courant        

              L’équation sous forme adimensionnelle (2.30) peut être reformulée de la manière 

suivante:
 

                     


























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 La correspondance entre cette équation et l’équation (3.4) ne pouvant être établie 

aisément, la discrétisation a été effectuée à l’aide d’un procédé d’approximation utilisant la 

série de Taylor : 
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Il en résulte que : 
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(3.47) 

       On exprime alors la fonction de courant au point P à partir des valeurs aux nœuds voisins 

E, W, S et N, ce qui donne : 
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3.6.1.  Formulation discrète des Conditions aux limites        

 Conformément aux équations (2.31.a) et (2.32.a), les parois sont soumises aux 

conditions aux limites suivantes : 

 Au niveau de la paroi intérieure elliptique (I=1): 

                          0  j1,  3ψ j2,  4ψ j3, ψ 
Δη 2

1
  

η

ψ  
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3

1
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(3.49.a) 

 Au niveau de la paroi extérieure elliptique (I=NI): 

                        j1,-NI  4ψ j2,NI ψ 
3

1
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(3.49.b) 

         Le système linéaire résultant est résolu numériquement en appliquant la méthode des 

sur-relaxations successives. 

3.7.    Formulation discrète des composantes directionnelles de la vitesse 

L’équation (2.33.a) permet de déterminer les composantes adimensionnées +

ηV  et +

θV  

de la vitesse. En appliquant la méthode des différences centrées, telle qu’utilisée par 

ROACHE [82], on obtient les expressions discrétisées suivantes de ces composantes: 
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   (i, j)  i  ≠ 1   ;  i  ≠  NI 

                                 j  ≠ 1  ;  j   ≠ NN 
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3.8.  Méthode de sous relaxation 

Parmi les différentes approches utilisées pour résoudre les systèmes d'équations, les méthodes 

itératives occupent une place importante. Elles sont généralement préférées dans les cas 

suivants : 

 La résolution des systèmes de grande dimension. 

 La résolution des systèmes composés d’équations algébriques non linéaires et 

fortement couplées. 

        Parmi ces approches, la méthode de relaxation est employée afin de  contrôler la 

convergence du processus itératif, en permettant soit de ralentir, soit d’accélérer la 

convergence vers la solution recherchée. 

3.9.  Algorithme de calcul 

          La résolution du système constitué des équations (3.28), (3.33), (3.44) et (3.48) repose 

sur l’approche proposée par E.F. NOGOTOV [81]. 

          Il est possible de reformuler ces équations de manière à les rendre compatibles avec une 

méthode itérative intégrant des coefficients de sous-relaxation, selon l’expression suivante :
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n : ordre de l'itération. 
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      Nous procédons à la résolution du système constitué par les équations (3.51), (3.52), 

(3.53) et (3.54) selon la démarche suivante : 

1. Mise en place des valeurs initiales de la concentration, de la température, de la 

fonction de courant et de la vorticité sur l’ensemble du maillage. 

2. Évaluation de la répartition de la concentration dans l’ensemble du domaine. 

3. Détermination de la répartition de la température dans tout le domaine du maillage. 

4. Évaluation de la répartition de la fonction de courant dans l’ensemble du domaine. 

5. Détermination de la distribution de la vorticité dans le domaine de calcul. 

6. Détermination des composantes de la vitesse selon les directions du maillage. 

7.  L’itération se poursuit tant que la valeur de ψ présente des variations significatives, et 

s’arrête dès que celles-ci deviennent négligeables, conformément au critère de 

convergence suivant : 

10
ψmax 

ψmax   ψmax
8

1n

n1n










           

8. Le même critère de convergence est appliqué à la température. 

9. Le même critère de convergence est appliqué à la concentration. 

10. Enregistrement des valeurs calculées de C, T, ψ, ω à la fin du processus de 

convergence. 

3.10. L’organigramme 
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4.1 Introduction 

Ce chapitre présente les résultats obtenus ainsi que leur discussion. Afin d'illustrer ces 

résultats de manière optimale, ces derniers ont été segmentés en deux sections. La première se 

concentre sur le phénomène de convection induit exclusivement par la température, 

correspondant au cas où N=0, au cours de laquelle nous représentons la distribution de la 

température à l’aide de courbes isothermes, tandis que la circulation du nano-fluide est 

représentée par l’iso-courant. Le taux du transfert thermique à la surface des parois de 

l'anneau sera représenté par les nombres locaux et moyens de Nusselt. 

La seconde partie porte sur la convection naturelle thermosolutale (N≠0). La structure de 

l’écoulement y est représentée à l’aide de lignes de courant, celle de la concentration à l’aide  

des lignes  d’iso-concentrations et la répartition de la température à l’aide  des lignes 

d’isothermes. Les taux  de transport de masse et de chaleur aux parois de l'anneau sont 

illustrés par les nombres locaux et moyens de Sherwood et de Nusselt. 

Les principaux paramètres influents pris en compte dans cette étude sont : 

Paramètres d’écoulement : 

 Le nombre de Lewis (Le=2), exprimant le rapport entre la diffusivité thermique et la 

diffusivité massique. 

 La proportion entre les forces de flottabilité (N=1), qui représente la relation entre les 

gradients de concentration et de température. 

 le nombre de Rayleigh thermique (103≤ Ra ≤5×105), qui représente la variation 

thermique. 

Paramètres géométriques : 

 L’angle d’inclinaison de l’anneau « 𝛾 » 

 Les excentricités respectives des cylindres elliptiques interne (e₁) et externe (e₂). 

4.2 Etude de maillage 

 

Une procédure approfondie de test de maillage a été réalisée pour s’assurer que la 

solution finale ne dépend pas du maillage. Il y a une augmentation de la taille du 

maillage de 11×21 à 71×141. Le tableau 4.1 illustre les valeurs maximales de la 

fonction de courant, ainsi que les valeurs moyennes des nombres de Nusselt et de 

Sherwood sur la paroi interne, obtenues pour divers maillages avec Ra = 10
³
, l'angle 

d'inclinaison 𝛾 =0°, les excentricités e1=0.8 et e2=0.6, et différentes concentrations 

volumiques de nanoparticules𝜙 = (0, 0.03,0.06) . Par conséquent, il est décidé de 

sélectionner 61×121. 
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Tableau 4.1: Les valeurs maximales de la fonction de courant et aussi les valeurs moyennes 

des nombres de Sherwood et de Nusselt sur la paroi interne, obtenues pour différents 

maillages 

 Maillage  11×21 21×41 31×61 41×81 51×101 61×121 71×141 

  𝑁𝑢𝑖̅̅ ̅̅ ̅ 2.39 2.45 2.47 2.48 2.48 2.49 2.49 

 𝜙 = 0 𝑠ℎ𝑖̅̅ ̅̅  2.40 2.53 2.53 2.53 2.52 2.52 2.52 

  𝜓𝑚𝑎𝑥 0.65 0.66 0.67 0.67 0.67 0.66 0.66 

Ra=103  

𝜙 = 0.03 
𝑁𝑢𝑖̅̅ ̅̅ ̅ 2.61 2.67 2.69 2.70 2.71 2.72 2.72 

  𝑠ℎ𝑖̅̅ ̅̅  2.62 2.76 2.75 2.75 2.75 2.75 2.75 

  𝜓𝑚𝑎𝑥 0.59 0.60 0.60 0.60 0.60 0.60 0.60 

 
𝜙 = 0.06 𝑁𝑢𝑖̅̅ ̅̅ ̅ 2.84 2.91 2.93 2.95 2.95 2.96 2.96 

  𝑠ℎ𝑖̅̅ ̅̅  2.85 3.00 3.00 3.00 3.00 2.99 2.99 

  𝜓𝑚𝑎𝑥 0.54 0.55 0.55 0.55 0.55 0.55 0.55 

 

4.3 Validation numérique  

 

Les résultats numériques sont comparés au cas du transport thermique par convection 

naturelle purement thermique au sein de deux cylindres elliptiques concentriques [83] 

et [37] pour la validation du modèle mathématique et numérique. 

Le tableau 4.2 présente la variation du nombre moyen de Nusselt. Dans les deux cas, 

on note que ces valeurs sont en excellent accord. 

 

Tableau 4.2 : Comparaison des nombres de Nusselt moyens aux ellipses externe et interne 

obtenus dans ce travail avec les résultats d'autres auteures. 

e1 Θ Rat Nuo 

(Nos résultats) 

Nuo 

[83] 

Nuo 

[37] 

Nui 

(Nos résultats) 

Nui 

[83] 

Nui 

[37] 

0.90 0 104 1.17 1.19 1.15 3.46 3.53 3.54 

0.86 90 104 1.37 1.35 1.39 3.73 3.68 3.70 

0.86 90 4x104 1.90 1.93 1.87 5.20 5.34 5.27 
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4.4 Première partie (convection naturelle) 

Dans cette partie où on traite uniquement le transfert thermique par convection naturelle dans 

un anneau elliptique remplie de nano-fluide cuivre-eau, on va examiner l’effet de la fraction 

volumique des nanoparticules, l’angle d’inclinaison et le nombre de Rayleigh  sur le taux de 

transfert thermique. Les résultats sont présentés sous forme des isothermes et des lignes de 

courant, ainsi que des nombres de Nusselt locaux et moyens. 

4.4.1 L’impact du nombre de Rayleigh et de la fraction volumique de nanoparticules 

4.4.1.1 Les isothermes et les iso-courants 

La figure 4.1 représente les isothermes et les isocourants pour diverses valeurs de Rayleigh 

lorsque ϕ=0%. On observe qu’à Ra=103, la conduction est dominante, où les contours des  

isothermes sont presque concentriques et parallèles, et  la répartition thermique montrant une 

baisse de température de l’ellipse chaude vers l’ellipse froide. Le flux est structuré en deux 

cellules tournant très lentement en sens opposé, et la fonction de courant présente des valeurs 

très faibles. Pour Ra = 104, il y a des changements significatifs dans les lignes des isothermes 

et la fonction de courant présente une augmentation marquée de ses valeurs, indiquant une 

transition du transfert thermique par conduction au transfert thermique par convection, 

toutefois cette dernière demeure peu prononcée. Pour Ra=105, la convection est 

prédominante, il est évident qu’à mesure que le nombre de Rayleigh croît, l’épaisseur de la 

couche isotherme près de la paroi du cylindre s’élargit progressivement. Ainsi, l’écart de 

température entre les parois elliptiques augmente. Le champ d'écoulement se compose de 

deux cellules symétriques qui tournent lentement dans la direction opposée et la fonction de 

courant présente une augmentation significative de ses valeurs. Il est observé que l’élévation 

du nombre de Rayleigh se traduit par une hausse du transport de chaleur. 

 Les figures 4.2 et 4.3 représentent les lignes isothermes et isocourants pour diverses valeurs 

de Rayleigh à ϕ=4% et ϕ=8% respectivement. On observe qu’à Ra=103, les contours des  

isothermes sont presque concentriques et parallèles. La répartition thermique montrant une 

baisse de température de la paroi de l’ellipse chaude vers la paroi de l’ellipse froide, et la 

conduction est dominante. Le champ d’écoulement est constitué de deux cellules symétriques 

animées de rotations lentes en sens opposés, et la fonction de courant présente des valeurs 

faibles. Pour Ra = 104, Le champ d’écoulement est constitué de deux cellules qui tournent 

rapidement en sens opposé. L’intensité de l’écoulement, représentée par la fonction de 

courant, s’accroît de manière notable, indiquant une transition du transfert thermique par 

conduction vers le transfert thermique par convection, cependant elle reste relativement faible. 

Pour Ra=105, la convection est prédominante. On observe qu'une augmentation du nombre de 

Rayleigh entraîne un épaississement de la couche isotherme proche de la paroi du cylindre. 

Ainsi, le gradient de température entre les parois des ellipses augmente. Dans ces régions, le 

flux est plus rapide. On constate des valeurs élevées de la fonction de courant et de taux de 

transport thermique. 

L’impact de la proportion de nanoparticules de cuivre sur la structure du flux est illustré dans 

les figures 4.2 et 4.3. Il est évident que l’ampleur des fonctions de courant augmente avec 
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l’élévation de la proportion de nanoparticules provoquant ainsi une amélioration du transport 

de chaleur 
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Figure 4.1 Les lignes isothermes et  iso-courants pour diverses valeurs du Rayleigh à 𝜙 =

0% 
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Figure 4.2 Les lignes isothermes et  isocourants pour diverses valeurs du Rayleigh à 𝜙 = 4% 
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Figure 4.3 Les lignes isothermes et  isocourants pour diverses valeurs du Rayleigh à 𝜙 = 8% 

4.4.1.2 Le nombre moyen de Nusselt  

La variation du nombre moyen de Nusselt en fonction du nombre de Rayleigh, selon des 

proportions variées des nanoparticules illustre sur la figure 4.4 (a).  Les observations montrent 

qu’ à concentration volumique de nanoparticules constante, le nombre moyen de Nusselt croît 

de manière significative avec l’élévation du nombre de Rayleigh, et le taux de transfert 

thermique maximal est atteint en incorporant des nanoparticules de cuivre dans le liquide de 
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base.Il est évident qu’à des nombres de Rayleigh élevés, lorsque la convection est 

prédominante, l’effet de la concentration des nanoparticules est plus perceptible. 

La figure 4.4 (b) met en évidence l’impact de la concentration de nanoparticules sur le 

nombre moyen de Nusselt pour diverses valeurs du Rayleigh. Les observations montrent qu’à 

nombre de Rayleigh constant, le nombre de Nusselt croît linéairement en augmentant la 

concentration de nanoparticules, cette élévation devient plus considérable (la pente de la ligne 

est augmentée) pour une forte valeur de Rayleigh (Ra = 105). 

 

 

 

 

 

 

 

 

 

                            (a) (b) 

Figure 4.4 La distribution du nombre moyen de Nusselt en fonction de la concentration des 

nanoparticules et du nombre de Rayleigh 

4.4.1.3 Le nombre de Nusselt local 

Les figures 4.5 et 4.6 montrent la distribution des valeurs locales du nombre de Nusselt au 

niveau des parois interne et externe du cylindre, respectivement. Il est remarque que les 

valeurs locales minimales du nombre de Nusselt le long du paroi intérieur sont obtenues à la 

position 𝜃 = 90°(au milieu du fond le plus froid) ainsi que les valeurs locales les plus faibles 

du nombre de Nusselt le long du paroi extérieur sont obtenues à la position𝜃 = 270°. De plus, 

on observe que l'existence de nanoparticules affecte les valeurs locales maximales du nombre 

de Nusselt (sur les parois intérieurs et extérieurs) lorsque le nombre de Rayleigh est élevé, 

mais pas sur les valeurs les plus faibles. Nous observons également qu’un nombre de 

Rayleigh élevé conduit à des valeurs locales maximales plus importantes du nombre de 

Nusselt. 
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(a)                                                                                                                (b) 

Figure 4.5 Les valeurs locales du nombre de Nusselt le long des parois intérieures du cylindre 

pour diverses concentration des nanoparticules en (a) Ra=103et (b) Ra=105 

 

 

 

 

 

 

 

 

 

 

                                (a)                                                                                                  (b) 

Figure 4.6 Les valeurs locales du nombre de Nusselt le long  des parois extérieures du 

cylindre pour diverses concentration des nanoparticules en (a) Ra=103et (b) Ra=105 
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𝜙 = 0% 

4.4.2 L’impact de l’inclinaison 

4.4.2.1 Les isothermes et les iso-courants 

Les figures 4.7, 4.8 et 4.9 illustrent les isocourants et les isothermes pour diverses valeurs de 

concentration de nanoparticules et d’angle d’inclinaison égale à  𝛾 = 30°, 45°, 𝑒𝑡 60°, dans 

l’ordre, lorsque le nombre de Rayleigh égal à Ra=104. On observe que pour toutes les valeurs 

de l’angle d’inclinaison ainsi que de le pourcentage volumique des nanoparticules, les 

isothermes ont la forme d’un champignon. La chaleur est transférée de la paroi elliptique 

interne jusqu’à la paroi elliptique externe. Dans le cas d’une enceinte inclinée 𝛾 = 30° 

lorsque𝜙 = 0, la structure du flux est formée par deux cellules animées de rotations lentes en 

sens opposés, et la fonction de courant présente des valeurs très petites, avec une valeur 

maximale égale àΨ𝑚𝑎𝑥 = 0.0028 . Pour𝜙 = 0.04 𝑒𝑡𝜙 = 0.08 , la structure du flux est 

formée par deux cellules tournant rapidement dans des directions contraires, et la fonction de 

courant montre une élévation significative de ses valeurs, avec des valeurs maximales  égales 

à Ψ𝑚𝑎𝑥 = 0.0036 et Ψ𝑚𝑎𝑥 = 0.0045 , respectivement. On note que les intensités d’iso-

courants  augmentent avec la hausse de la concentration de nanoparticules. Dans le cas d’une 

enceinte incline 𝛾 = 45°, on observe que pour toutes les valeurs de la concentration des 

nanoparticules 𝜙 = (0,0.04 𝑒𝑡 0.08), la structure de l’écoulement est formée par deux 

cellules animées de rotations rapides en sens opposés. Dans ces conditions, la fonction de 

courant présente des valeurs très élevées, avec des valeurs maximales égales àΨ𝑚𝑎𝑥 =

0.003,Ψ𝑚𝑎𝑥 = 0.004, etΨ𝑚𝑎𝑥 = 0.005, respectivement. Dans le cas de 𝛾 = 60° avec 𝜙 =

(0,0.04 𝑒𝑡 0.08), les valeurs de la fonction de courant sontΨ𝑚𝑎𝑥 = (0.0032,0.004, 

et 0.005), respectivement. Ainsi,on constate que pour tous les angles d’inclinaison, si l’angle 

d’inclinaison augmente, les valeurs de la distribution du flux augmentent. L’effet des fractions 

volumiques de nanoparticules de cuivre et de l’angle d’inclinaison sur la structure du flux est 

montré dans les Figs 4.7-4.9. De ces résultats, on peut conclure que plus la fraction volumique 

des nanoparticules et l’angle d’inclinaison augmentent, plus les valeurs des lignes de courant 

s’accroissent, ce qui entraîne une augmentation du taux de transfert thermique. 
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Figure 4.7 Isothermes et isocourants pour diverses valeurs du concentration des 

nanoparticules à Ra=104 et 𝛾 = 30°. 
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Figure 4.8 Isothermes et isocourants pour diverses valeurs du concentration des 

nanoparticules à Ra=104 et 𝛾 = 45°. 
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Figure 4.9 Isothermes et isocourants pour diverses valeurs du concentration des  

nanoparticules à Ra=104 et 𝛾 = 60°. 

4.4.2.2 Le nombre moyen de Nusselt  

La figure 4.10 analyse l’influence du nombre de Rayleigh sur la valeur moyenne de Nusselt  

pour diverses inclinaisons lorsque (0≤ ϕ≤ 0. 08).   De ces résultats, on observe que quelle que 

soit l’angle d’inclinaison considéré, le nombre moyen de Nusselt croît exponentiellement avec 

l’élévation du nombre de Rayleigh. En effet,on note qu'à faible nombre de Rayleigh, le 

transport thermique s'effectue principalement par conduction au niveau de l’ellipse chauffée. 

On peut également voir que l'impact de l'angle d'inclinaison devient plus marqué à des valeurs 

élevées du nombre de Rayleigh où le mode dominant du transfert thermique est la convection. 

Il est également observé qu’une élévation de la fraction volumique des nanoparticules 

entraîne une amélioration du nombre moyen de Nusselt. 

La figure 4.11 illustre l’évolution du nombre moyen de Nusselt en fonction du nombre de 

Rayleigh pour différents fractions volumiques de nanoparticules et différentes enceintes 

inclinées à 𝛾 = 30°, 45°, 𝑒𝑡 60°. A partir de ces résultats, on observe que pour chaque valeur 

de concentration volumique, le nombre moyen de Nusselt croît avec l'augmentation du 

nombre de Rayleigh.On note également que le nombre moyen de Nusselt croît avec 

l’augmantation de la concentration des nanoparticules. Ainsi, à mesure que la concentration 

volumique et l’angle d’inclinaison augmentent, le taux de transport de chaleur augmente 

également. 
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Figure 4.10 Impact du nombre de Rayleigh sur le nombre moyen de Nusselt à plusieurs 

angles où ϕ= (0.0, 0.04 et 0.08). 
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Figure 4.11 La distribution du nombre moyen de Nusselt en fonction du nombre de Rayleigh 

pour diverses concentrations de nanoparticules quand 𝛾 = 30° , 45° , 𝑎𝑛𝑑 60°. 

4.4.2.3 Nombre de Nusselt local 

Les figures 4.12 et 4.13 présentent les distributions du nombre local de Nusselt sur les 

surfaces externe et interne de l’anneau pour différents angles d’inclinaison lorsque 𝜙 =

(0,0.04, 𝑒𝑡 0.08) à Ra=104. On remarque que le nombre local de Nusselt concernant la 

surface extérieure de l’annulus est très faible quand 180° < 𝜃 ≤ 225°, alors qu’il est très 

élevé quand 0° ≤ 𝜃 < 90°. Le nombre local de Nusselt au niveau de l’ellipse interne de 

l’anneau est très faible lorsque 0° < 𝜃 ≤ 90° alors qu’il est très élevé lorsque180° ≤ 𝜃 <

225°. On note également que l’angle d’inclinaison augmente, ce qui augmente le nombre 

local de Nusselt. En effet, on note que les nombres de Nusselt extérieurs et intérieurs montrent 

une distribution inverse. 
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Figure 4.12 Impact de l’angle d’inclinaison sur la distribution locale du nombre de Nusselt 

lorsque ϕ= (0.0, 0.04 et 0.08) à Ra=104. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Impact de l’angle d’inclinaison sur la distribution locale du nombre de Nusselt 

lorsque ϕ= (0.0, 0.04 et 0.08) à Ra=104. 

  
 

4.5 Deuxième  partie (transfert de masse et de chaleur) 

Dans cette étude, des simulations numériques ont été menées en faisant varier plusieurs 

paramètres de contrôle. Le nombre de Prandtl a été fixé à Pr = 6,2, tandis que le nombre de 

Lewis a été maintenu constant à Le = 2. Différentes fractions volumiques de nanoparticules 

de cuivre dispersées dans l’eau (fluide de base) ont été considérées : ϕ =0, 0.03, 0.06, 0.09 et 

0.12. Par ailleurs, quatre valeurs du nombre de Rayleigh ont été analysées : Ra = 103, 104, 

105et 5 × 105. L’étude s’est concentrée sur l’influence de ces paramètres sur la structure de 
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l’écoulement ainsi que sur les mécanismes de transfert thermique et massique dans l’espace 

annulaire étudié.  

4.5.1 L'impact du nombre de Rayleigh  

4.5.1.1 les isothermes et les iso-courants et les iso-concentrations  

Les figures (4.14- 4.17) illustrent les lignes iso-concentrations, isothermes et iso-courants 

pour diverses valeurs du Rayleigh, lorsque l'angle 𝛾 est égal à 0° et𝜙 = 0. Ces figures 

révèlent que l’écoulement se développe selon un régime monocellulaire. Plus précisément, 

dans la zone gauche de l'anneau, la cellule de convection se déplace dans le sens 

trigonométrique, tandis que sur la partie droite, elle évolue dans la direction opposée. Ce 

comportement est dû à l'impact des forces de flottabilité, qui entraînent les particules du fluide 

vers le haut.  La figure 4.14 illustre qu’à un petit nombre de Rayleigh (Ra = 10³), les lignes 

iso-concentrations et isothermes adoptent une forme quasi parallèle et concentrique, Le 

transfert massique au sein de l’anneau est principalement contrôlé par la diffusion.  Les  iso-

courants se regroupent en deux cellules animées de rotations lentes en sens opposés. 

En revanche, pour Ra = 104, la figure 4.15 révèle que les lignes iso-concentrations et 

isothermes évoluent progressivement pour adopter une forme caractéristique en champignon. 

On remarque également une dissymétrie entre les distributions de concentration et de 

température, cela s’explique par un nombre de Lewis Le= 2.0, signifiant que la diffusivité 

thermique est deux fois supérieure à la diffusivité massique.  

Pour un nombre de Rayleigh plus grand (Ra = 105 et 5×105), les figures 4.16 et 4.17 indiquent 

que les lignes isothermes et iso-concentrations se concentrent davantage à proximité des 

parois. De plus, au centre de l’anneau, les valeurs de ces isolignes restent presque constantes 

dans la moitié supérieure de cet anneau. 
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Figure 4.14 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=103, 

N=1, 𝛾=0°, Pr=6.2, e2=0.6 et e1=0.8 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.15 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=104, 

N=1, 𝛾=0°,Pr=6.2,e2=0.6 et e1=0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.16 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=105, 

N=1, 𝛾=0°, Pr=6.2, e2=0.6 et e1=0.8. 
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Figure 4.17 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=5x105, 

N=1, 𝛾=0°, Pr=6.2, e2=0.6 et e1=0.8. 

4.5.1.2 Les nombres de Nusselt et de Sherwood locaux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (A)                                                                            (B)   

Figure 4.18 Variation du nombre de Nusselt local pour différents valeurs de Rayleigh  à ϕ=0. 
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                                      (A)                                                                            (B)                                                                       

Figure 4.19 Variation du nombre de Sherwood local pour différents valeurs de Rayleigh  à 

ϕ=0. 

 

La figure 4.18(A)  illustre  la distribution du nombre local de Nusselt sur la surface externe de 

l'anneau  pour différentes valeurs de Rayleigh lorsque 𝜙 = 0 et e1 = 0,8. On remarque que 

pour de faibles valeurs de Rayleigh (Ra=103), le nombre de Nusselt externe reste relativement 

faible et quasi uniforme sur tout le domaine angulaire. Cela traduit une dominance du transfert 

thermique par conduction avec une influence négligeable de la convection naturelle. Lorsque 

Rayleigh augmente à 104, une légère augmentation de Nuext apparaît entre de135° ≤ 𝜃 ≤

180° , indiquant le début d'une contribution notable de la convection naturelle dans le transfert 

de chaleur. Pour des valeurs plus élevées de Rayleigh (105 et 5×105), une pointe marquée est 

visible autour de𝜃 = 135°, traduisant un transfert de chaleur localement intensifié par des 

courants de convection plus vigoureux. De manière générale, l'élévation de Rayleigh entraîne 

une augmentation significative de Nuext, soulignant que la convection naturelle devient 

progressivement le mécanisme de transfert thermique prédominant. 

La figure 4.18 (B) montre la variation du nombre de Nusselt interne selon l’angle θ pour 

diverses valeurs de Rayleigh. On observe que lorsque le nombre de Rayleigh est relativement 

bas, telles que Ra=103 et Ra= 104, le profil du nombre de Nusselt  interne  reste relativement 

bas et présente une variation modérée selon l’angle 𝜃. On note la présence d’un minimum 

local dans la plage angulaire comprise entre135°𝑒𝑡180°, ce qui traduit une faible intensité de 

convection naturelle dans cette région. Avec l’élévation du nombre de Rayleigh, notamment 

pour Ra=105 et Ra=5×105, le nombre de Nusselt interne croît globalement sur l’ensemble du 

domaine angulaire. Cette évolution indique une intensification notable du transfert thermique 

par convection naturelle. On observe également une dépression plus marquée autour de 

𝜃 = 135°, suggérant la présence d’une zone de stagnation thermique ou d’un point de 

séparation des lignes de courant, où le transfert de chaleur est localement réduit. En revanche, 
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pour les angles proches de 0° et180° , le nombre de Nusselt  interne atteint ses valeurs 

maximales, témoignant d’un renforcement significatif du flux thermique dans ces régions.  

La figure 4.19(A)  montre  la distribution du nombre de Sherwood local sur la surface externe 

de l'anneau  pour différentes valeurs de Rayleigh lorsque ϕ=0 et e1 = 0.8. On observe que pour 

de faibles valeurs de Rayleigh, notamment Ra=103 et Ra=104, le profil du nombre de 

Sherwood externe Shext reste globalement faible et relativement uniforme sur l’ensemble de 

l’intervalle angulaire. Cela suggère un transport de masse limité et peu influencé par les 

mouvements convectifs naturels. Cependant, à mesure que 𝑅𝑎 augmente, notamment pour 

Ra=105 et Ra=5×105, on observe une nette augmentation du Shext, avec une intensification 

marquée autour de𝜃 = 135°. Ce pic prononcé traduit une forte concentration de transfert de 

masse dans cette zone, en lien direct avec les courants ascendants induits par la convection 

naturelle. 

La figure 4.19 (B) montre la variation du nombre de Sherwood  interne selon l’angle θ, pour 

diverses valeurs de Rayleigh. On observe que dans le cas de faibles nombres de Rayleigh (103 

et 104), le profil reste relativement modéré, avec une légère dépression centrée dans 

l’intervalle 135° ≤ 𝜃 ≤ 180°, traduisant une zone de faible convection naturelle due 

probablement à une stagnation locale du fluide. À mesure que le nombre de Rayleigh croît 

(105 et 5×105), la distribution de nombre de Sherwood devient plus marquée : une chute 

prononcée se manifeste toujours autour de𝜃 = 135°. En revanche, les extrémités angulaires, 

notamment vers𝜃 = 0° et 𝜃 = 180°, affichent des valeurs maximales, ce qui traduit une 

intensification significative du transfert de masse. 

On peut également noter que les nombres de Nusselt et de Sherwood externe et interne 

présentent une distribution opposée. La paroi externe présente un maximum, tandis que la 

paroi interne présente un minimum. Ces deux extrêmes sont atteints pour un angle situé 

approximativement dans l’intervalle135° ≤ 𝜃 ≤ 180°. 

Ainsi, la distribution angulaire  du nombre local de Sherwood suit une tendance similaire à 

celle du nombre local de Nusselt, mettant en évidence une corrélation étroite entre les 

mécanismes de transport thermique et massique en régime de convection naturelle. De plus, 

les valeurs atteintes par le nombre de Sherwood sont supérieures à celles du nombre de 

Nusselt, traduisant un transfert de masse plus intense que le transfert de chaleur dans des 

conditions identiques. 

4.5.2 Les effets de la fraction volumique 

4.5.2.1    les isothermes et les iso-courants et les iso-concentrations 

Les figures (4.20 – 4.23) illustrent les lignes isothermes, iso-courants et iso-concentrations 

pour diverses valeurs de Rayleigh, en fonction des fractions volumiques d'un nano-fluide. Il 

est observé que l ‘élévation du nombre de Rayleigh s’accompagne d’une intensification de la 

recirculation interne, résultant de forces de flottabilité plus importantes. 
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La figure (4.20) montre que les isothermes et les iso-concentrations sont des courbes presque 

parallèles et concentriques ce qui dénote que pour un faible nombre de Rayleigh Ra=103, le 

transport de masse dans l’espace annulaire est essentiellement contrôlé par le processus de 

diffusion. Les lignes de courant de fluide s’organisent en deux cellules qui tournent très 

lentement dans des directions opposées.  

Sur la figure (4. 21) Ra=104  pour Φ= 0.09  l’augmentation du nombre de Rayleigh qui traduit 

une intensification de transfert de chaleur et de masse , a permis l’apparition d’une bifurcation 

donnant naissance à un cellule supplémentaire tournant dans le sens contraire des cellules 

voisines. L’augmentation du nombre de Rayleigh et a fraction volumique, nous a permis donc 

de passer à un autre régime d’écoulement, qui est l’écoulement multicellulaire, avec 

l’apparition de ces bifurcations dans la partie supérieure de notre espace annulaire, 

Les figures (4.22, 4.23) montrent que le transfert de chaleur et de masse augmente avec 

l'augmentation de la fraction volumique solide dans le nanofluide à des grands nombres de 

Rayleigh, les valeurs de la fonction d'écoulement augmentent et les tourbillons se déplacent 

vers le haut. 

1) Ra=103 
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Figure 4.20 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2, 

Ra=103, 𝛾 =0°, Pr=6.2, e1=0.8 et e2=0.6 

2) Ra=104 
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Figure 4.21 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour  Le=2, 

Ra=104,𝛾=0°, Pr=6.2,e1=0.8 et e2=0.6. 

3) Ra=105 
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Figure 4.22 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2, 

Ra=105, 𝛾=0°, Pr=6.2, e1=0.8 et e2=0.6. 

4) Ra=5x105 
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Figure 4.23 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2, 

Ra=5×105, 𝛾=0°, Pr=6.2,e1=0.8 et e2=0.6. 

4.5.2.2  Les nombres moyens de Sherwood et de Nusselt 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.24 La distribution du nombre moyen de Nusselt en fonction de Rayleigh et de la 

concentration en nanoparticules 
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Figure 4.25 La distribution du nombre moyen de Sherwood en fonction de Rayleigh et de la 

concentration en nanoparticules 

 

La figure 4.24 présente la distribution du nombre moyen de Nusselt  en fonction de la 

concentration volumique des nanoparticules et du nombre de Rayleigh. On observe tout 

d’abord que, quel que soit les valeurs de 𝜙, le nombre moyen de Nusselt s’accroît avec la 

hausse du  nombre de Rayleigh, ce qui reflète une intensification du transfert thermique par 

convection naturelle à mesure que l’effet de la flottabilité devient plus important. On note 

également pour chaque valeur fixe de Ra, l’augmentation de ϕ entraîne une élévation du 

Numoy. Ce résultat s’explique par l’incorporation de nanoparticules à haute conductivité 

thermique dans le fluide de base, ce qui améliore globalement la capacité de transfert 

thermique du nano-fluide.  

À faibles valeurs de Ra, les écarts entre les différentes courbes sont relativement importants. 

Cependant, lorsque Ra augmente, la différence devient moins significative. Cela s'explique 

par le fait qu'à faible Ra, l'effet de la concentration volumique ϕ est plus marqué à cause de la 

dominance de la conduction thermique. En revanche, à des valeurs plus élevées de Ra, le 

mécanisme convectif prédomine, et l'effet additionnel des nanoparticules devient moins 

prononcé relativement. La courbe correspondant à ϕ=0,09 atteint les valeurs les plus élevées, 

suggérant que cette concentration offre les meilleures performances thermiques parmi celles 

étudiées. 

La figure 4.25 montre la distribution du nombre moyen de Sherwood Shmoy en fonction de 

Rayleigh  et de la concentration en nanoparticules. On constate tout d'abord que, pour toutes 

les valeurs de ϕ, Shmoy augmente progressivement avec l’accroissement  de Ra, ce qui reflète 

l’intensification du transport massique par convection naturelle, notamment lorsque les forces 

de flottabilité deviennent dominantes par rapport aux forces diffusives. De plus, on observe 

que pour un nombre de Rayleigh constant, l’accroissement  de la concentration volumique ϕ 

entraîne une hausse de Shmoy. Cela s’explique par l’amélioration des caractéristiques de 

transport du fluide due à la présence des nanoparticules. Il est néanmoins important de 

remarquer que l’écart entre les courbes correspondant aux différentes valeurs de ϕ est 

relativement faible pour les petites valeurs de Ra, tandis qu’il devient de plus en plus 

prononcé lorsque Ra augmente. Ainsi, l’effet de la concentration volumique devient plus 

significatif à des valeurs de Rayleigh élevés. 

4.5.3 L’impact de l’excentricité (e1):  

Les figures 4.26 et 4.27 examiné l’impact de l'excentricité (e1) du cylindre intérieur. 

Pour 𝛾 =0°, ϕ=0 et Ra prenant les valeurs 10³, et 105 avec e2 fixé à 0.6, nous avons considéré 

trois valeurs de e1 (0.7, 0.8, et 0.9) afin d'étudier les distributions des isothermes, des iso-

concentrations et des iso-courants. Les résultats illustrés dans ces figures montrent 

qu’indépendamment de l’espace annulaire choisi (c’est-à-dire de la valeur de e1), une 

augmentation du nombre de Rayleigh mène à une élévation du taux de transfert de masse et 

de chaleur, ainsi qu'à un accroissement des valeurs maximales de la fonction de courant. De 

plus,  l’augmentation de l’excentricité 𝑒1 de l’ellipse intérieure entraîne un élargissement de 
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l’anneau, dû à l’accroissement de l’espace séparant les surfaces elliptiques interne et externe, 

ce qui intensifie le mécanisme de convection naturelle à double diffusion. 
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Figure 4.26 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2 

Ra=103, 𝛾 = 0°, N=1 et e2=0.6. 
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Figure 4.27 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2 

Ra=105, 𝛾 =0°, N=1 et e2=0.6. 
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La présente étude porte sur l’analyse du transfert simultané de masse et de chaleur par 

convection naturelle dans un anneau elliptique à axe horizontal, rempli d’un nanofluide de 

Cuivre-eau. L’influence de plusieurs paramètres a été examinée, notamment l’angle 

d’inclinaison de l’anneau elliptique, la concentration volumique des nanoparticules, le nombre 

de Rayleigh ainsi que l’excentricité interne du cylindre à base elliptique, sur les 

caractéristiques de nano-fluide et les performances de transfert thermique et massique. 

Les résultats obtenus indiquent ce qui suit : 

 Pour tous les angles d'inclinaison, une augmentation de la fraction volumique des 

nanoparticules conduit à une intensification de l’écoulement, observable à travers les 

lignes de courant. 

 L'ajout de nanoparticules a considérablement renforcé les performances de transfert 

thermique et massique.  

 Les isothermes et les fonctions de courant ne sont pas réparties symétriquement pour 

tous les angles d'inclinaison, sauf 𝛾 = 0°. 

 Avec l’augmentation du nombre de Rayleigh, l’impact de l’angle d’inclinaison sur le 

transport de chaleur devient plus important, en particulier lorsque la convection 

naturelle prédomine. 

 Le transfert thermique, exprimé par le nombre moyen de Nusselt, s’intensifie avec la 

hausse du nombre de Rayleigh. 

 Une augmentation de l’angle d’inclinaison entraîne une élévation du taux de transfert 

thermique, quelles que soient les valeurs de la concentration des nanoparticules. 

 Dans tous les cas, la répartition des isothermes et des iso-courants est symétrique 

autour de la ligne verticale. 

  Par rapport au fluide basique, les impacts des nanoparticules sur les isothermes et les 

iso-courants sont plus visibles dans le nano-fluide, en particulier pour les nombres de 

Rayleigh élevés. 

 L’accroissement de la concentration volumique des nanoparticules pour différentes 

valeurs de Rayleigh conduit à une amélioration du nombre moyen de Nusselt du nano-

fluide.  

 Lorsque l’excentricité 𝑒1 du cylindre elliptique interne augmente, l’espace annulaire 

s’élargit en raison de la plus grande séparation entre les parois interne et externe, 

favorisant ainsi un renforcement de la convection naturelle doublement diffusive. 

Ces résultats seront utilisés dans des applications industrielles impliquant un transfert 

thermique et massique par convection naturelle sous des formes similaires à celle étudiée. Ces 

effets peuvent également être utilisés pour créer des chauffages de cockpit et des échangeurs 

de chaleur.  
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À l'avenir, il est proposé une étude tridimensionnelle, ainsi que d'utiliser d'autres nanofluides 

pour trouver les meilleurs.
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Résumé: 

 

Dans cette thèse, le transfert de chaleur et de masse par convection naturelle 

dans un cylindre elliptique horizontal rempli d’un nanofluide Cu-eau a été étudié 

numériquement. Les surfaces elliptiques intérieures chaudes et extérieures 

froides de l'enceinte ont été maintenues à des températures et des concentrations 

constantes T1, C1 et T2, C2, respectivement, avec T2 < T1 et C2 < C1. Les 

équations gouvernantes ont été résolues par la méthode du fonction de courant-

vorticité. La méthode de volumes finis a été utilisée pour discrétiser les 

équations de contrôle (mouvement, continuité, énergie et concentration). La 

plage de la fraction volumique des nanoparticules et le nombre de Rayleigh 

étaient les suivants: 0<ϕ<0.12 et 103<Ra<5×105, respectivement. Les angles 

d'inclinaison étaient 𝛾 =0°, 30°, 45° et 60°. Les résultats ont été donnés sous 

forme de contours isothermes, lignes de courant, isoconcentrations, nombres de 

Nusselt moyens et locaux. L'impact des angles d'inclinaison, du nombre de 

Rayleigh, de la fraction volumique des nanoparticules et de l'excentricité du 

cylindre elliptique interne e1 sur le taux de transfert de chaleur et de masse a été 

examiné. 

Mots-clés : cylindre elliptique, nanofluid , le nombre de Rayleigh, convection 

naturelle thermosolutale. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

لوء ممي دراسة عددية لعمليات نقل الحرارة والكتلة داخل فضاء حلقي إهليلجي لمحور أفق

 .بالسوائل النانوية

 

 

 :ملخص

 داخل مل الطبيعي الحواسطة نتقال الحرارة والكتلة بلا عددية تمت دراسة طروحةالأ هفي هذ

 افترضناالنحاس والماء. جزيئات من يتكون مائع نانوي ب مملوءة اهليلجية أفقيةسطوانة أ

1T  زتركيالو حرارةال ةدرج ثابتةلية الساخنة والخارجية الباردة الأسطح الإهليلجية الداخ

، 1C2 وT، 2C1 على التوالي، مع< T2T 1 و<C2C . استخدام برنامج يعتمد على طريقة  تم

وهي لحاكمة المعادلات ا دالة التيار من أجل حل  -الحجوم المنتهية وفي صياغة التدويم

 يةحجم نسبة. كان نطاق معادلة الاستمرارية، كمية الحركة ومعادلة الطاقة ومعادلة التركيز 

0كما يلي:على التوالي رايلي  عددلجسيمات النانوية وا < 𝜙 < 103         و 0.12 <

𝑅𝑎 < 5 × النتائج على شكل  تمثيل. تم 𝛾  =°0 ،°30،°45،°06 ل. وكانت زوايا المي105

، وأرقام نسلت المتوسطة والمحلية. تم فحص ، والتركيزالتيار ،حرارةال ةتساويخطوط م

على   1e مركز الداخلياللاتالجسيمات النانوية، و يةحجم نسبةرايلي،  عددأثير زوايا الميل، ت

 .معدل انتقال الحرارة والكتلة

 

تلي الك-يرايلي، الحمل الحرار عددسطوانة إهليلجية، مائع نانوي، أ الكلمات المفتاحية:

 الطبيعي.

 

 

 

 

 

 

 



 

 

 

 

 

NUMERICAL STUDY OF HEAT AND MASS TRANSFERS WITHIN AN 

ELLIPTIC ANNULAR SPACE OF HORIZONTAL AXIS FILLED WITH 

NANO-FLUID. 

 

 

Abstract:  

    In this thesis, heat and mass transfer with natural convection in a horizontal 

elliptical cylinder filled with a Cu-water nanofluid has been numerically studied. 

The hot interior and cold exterior elliptical surfaces of the enclosure were 

maintained at constant temperatures and concentrations T1, C1 and T2, C2, 

respectively,with T2< T1 and C2<C1.The governing equations have been solved 

by the stream function-vorticity approach.The finite volume approach was 

utilized to discretise the controlling equations (movement, continuity, energy, 

and concentration). The volume fraction range of the nanoparticles and the 

Rayleigh number was as follows: 0 < 𝜙 < 0.12 and 103 < 𝑅𝑎 < 5 × 105, 

respectively.The inclination angles were 𝛾= 0° , 30°, 45°, and 60° .Results were 

given as isotherm contours, streamlines,isoconcentrations, average and local 

Nusselt numbers. The impact of inclination angles, Rayleigh number,  

nanoparticle volume fraction, and the eccentricity of the internal elliptical 

cylinder e1 on the rate for heat and mass transfer was examined. 

Keywords: elliptic cylinder, nanofluid, the Rayleigh number, thermosolutal 

natural convection. 
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