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Nomenclature

B2, B1 Grands axes des cylindres elliptiques externe et interne, [m]
Az, A1 Petits axes des cylindres elliptiques externe et interne, [m]
C Concentration, [kg/m®]
Cp Chaleur spécifique a pression constante, [J/kg.K]
D Diffusivité massique, [m?/s]
Dn Longueur caractéristique, [m]
e1 L'excentricité de la section elliptique intérieure
() L'excentricité de la section elliptique extérieure
g Accélération gravitationnelle, [m/s?]
h Parametre metrique, [m]
H Paramétre métrique adimensionnel, [-]
Nu Nombre de Nusselt, [-]
Sh Nombre de Sherwood, [-]
P Pression interne du fluide, [N/m?]
Pr Nombre de Prandtl, [-]
Ra Nombre de Rayleigh, [-]
Proportion des forces de flotabilité, [-]
Température du fluide, [K]
AT  Différence de température, [K]
AC  Différence de concentration, [kg/m®]
t Temps, [s]
U,V  Les composantes de la vitesse dans les directions x et y, [m/s]
V,, Vo Les composantes de la vitesse dans les directions 1 et 6, [m/s]

X,y  Systéme de référence cartésien, [m]

Lettres grecques

a

14

Diffusivité thermique, [m?/s]

Angle d’inclinaison [°]



Br Coefficient d’expansion thermique,[K™!]
Bc  Coefficient d’expansion solutale, [m*/kg]
I'e  Coefficient de diffusion

n, 6,z Systéme de référence elliptique, [m]

A Coefficient de Conductivité thermique, [W/m.K]

v Viscosité cinématique, [m?/s]

P Masse volumique du fluide, [kg/m?]
' Fonction de courant, [m?/s]

w Vorticité, [s?]

Tij Tenseur des contraintes visqueuses
¢ Fraction volumique des nanoparticules
Indices

2 Extérieur

1 Intérieur

0 Selon la coordonnée 6

n Selon la coordonnée

f fluide

S Nanoparticule solide

nf Nanofluide

Exposant

+ Parametres adimensionnels
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Introduction Générale

La convection thermosolutale a fait 1’objet d’une recherche intensive en raison de son
influence notable sur divers procédés techniques et géophysiques. Par exemple, la pollution
des lacs et des récifs, I'intrusion de solutés dans les sédiments en milieu cotier, les rejets
nucléaires, le mouvement des éléments polluants au sein des eaux souterraines, les processus
chimiques et le déplacement d’espéces moléculaires a travers les membranes vivantes sont
quelques exemples. Dans ce processus, la flottabilité induite par les variations de température
et de concentration s’aident ou s’opposent, selon le type d’alliage et le procédé de chauffage.

Dans notre recherche, une analyse numérique a été menée sur le phénomene de convection
double diffusive et purement thermique au sein d'un espace annulaire formée par deux
sections elliptiques cylindriques avec des axes horizontaux. Cet espace contient un
nanofluide. Dans cette étude, nous avons élaboré un programme de calcul en langage Fortran
développé selon le principe des volumes finis pour analyser I'impact de divers paramétres sur
les distributions concentriques et thermiques , la structure de I'écoulement , ainsi que sur les
taux d’échange massique et thermique illustrés respectivement par les nombres
moyens et locaux de Sherwood et de Nusselt.

Ce travail s’articule autour de quatre chapitres principaux. Le chapitre initial présente des
notions générales sur la convection, suivi d'une analyse approfondie des recherches
préceédentes qui ont abordé la convection naturelle a partir des nanofluides dans des espaces
annulaires, et ont abouti & des études traitant de la convection naturelle thermosolutale dans
une variété de géometries pour les fluides et les milieux poreux saturés.

Le deuxiéme chapitre traite de la modélisation physique du probléme. Il y est présenté les
hypothéses de simplification adoptées, les équations gouvernantes exprimées en coordonnées
cartésiennes accompagnées de leurs conditions aux limites, ainsi que leur reformulation en
coordonnées elliptiques suivie de leur mise sous forme adimensionnelle.

Le troisieme chapitre est dédié a la définition de 1’approche des volumes finis utilisée pour
discrétiser les équations des especes et de la chaleur, de nature parabolique. L’équation du
mouvement, de type elliptique, a quant a elle été discrétisée a 1’aide d’un schéma a différences
centrées. Les quatre équations obtenues ont ensuite été résolu a 1’aide d’une méthode
numérique intégrant une procédure de sous-relaxation successive.

Le quatrieme chapitre s’ouvre sur une étude de sensibilité au maillage, suivi d’une phase de
validation du code numérique développé par comparaison avec des résultats disponibles dans
la littérature. Ce chapitre est ensuite consacré a la présentation et a ’analyse des résultats
obtenus, structurées en deux volets : le premier traite de la convection naturelle purement
thermique, tandis que le second porte sur la convection naturelle a double diffusion. L’effet de
différents paramétres, tels que ’angle d’inclinaison, la fraction volumique des nanoparticules,
le nombre de Rayleigh ainsi que I’excentricité, sur les transferts de chaleur et de masse, y est
également examinée.

Nous finalisons ce travail par une conclusion générale qui synthétise les principaux résultats
obtenus.



Introduction Générale

Chapitre 1

Généralité et recherche
bibliographique



Chapitre 1 Généralité et Recherche Bibliographique

1.1 Notions sur la convection

1.1.1. Définition

La convection constitue un mécanisme de transfert d’énergie entre un fluide et une surface
solide en mouvement (gaz ou liquide), résultant de I’action conjointe de la conduction
thermique et du déplacement du fluide. L’augmentation de la vitesse des particules fluide est
influé sur la convection thermique par contre I’absence de mouvement global du fluide
diminué la transmission de chaleur par convection. Toutefois, lorsque le fluide est animé d’un
mouvement global, le transfert thermique est renforcé, bien que I’estimation précise des taux
de transfert s’en trouve complexifiée.

Prenons I’exemple du refroidissement d’un bloc chaud soumis a un écoulement d’air frais sur
sa face supérieure (voir Fig. 1.1). Dans un premier temps, la chaleur se propage par
conduction vers la couche d’air située au contact direct du bloc. Par la suite, ce flux thermique
est évacué par convection, mécanisme qui combine la conduction interne dans I’air, laquelle
est liée a I’agitation thermique des molécules, et le transport global du fluide, qui entraine 1’air
réchauffé a s’¢loigner de la surface tout en le remplagant par de I’air plus frais.

1.1.2. Type de convection

On parle de convection forcée lorsque I’écoulement du fluide au contact d’une surface est
généré par une action extérieure, comme 1’utilisation d’un ventilateur, d’'une pompe ou par le
vent. A D’inverse, on parle de convection libre (ou naturelle) lorsque le déplacement des
particules du fluide résulte des forces de flottabilité provoquées par des variations de densité,
elles-mémes dues aux gradients de température au sein du fluide. Par exemple, en ’absence
de ventilation, le transfert de chaleur depuis la surface d’un bloc chaud, comme illustré a la
figure 1.1, releve de la convection naturelle : en raison de la différence de densité, I’air chaud
monte vers le haut, tandis que I’air froid descend pour occuper ’espace libéré. Toutefois, si le
gradient de température entre le bloc et I’air environnant est trop faible pour générer un
mouvement du fluide, la chaleur est transmise uniquement par conduction.

Variation
de vitesse
d'air T,
>V »T
. Débit Variation de
d'air température
d'air
y A Qcmn'
AN 7,
Bloc chaud

Figure 1.1 Transfert de chaleur d’une surface chaude a I’air par convection.
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1.1.3. Convection naturelle dans des enceintes annulaires

1.1.3.1. Enceinte annulaire incliné

De nombreuses études traitent des phénoménes de transfert thermique engendrés par la
convection naturelle a partir des nanofluides dans des géométries simples, telles que des
enceintes fermées de formes variées (triangulaires, carrées, rectangulaires, etc.) [1-11].
Alguboori et al. [12] Ont effectué une analyse numérique du transport thermique par
convection naturelle dans une enceinte annulaire incliné remplie de nanofluide hybride
Al203/eau. Ils ont eu recours a une approche par volumes finis pour la résolution des
équations régissant le transport de chaleur et ’écoulement. Les résultats mis en évidence
indiquent que la répartition angulaire du nombre local de Nusselt sur les cylindres intérieur et
extérieur est influencée par I’inclinaison de I’enceinte, la valeur de Rayleigh et de la
concentration en nanoparticules. Différentes études ont utilises des méthodes
magnétohydrodynamiques / hydrodynamiques et de transfert thermique pour étudier le
mouvement du fluide a travers un milieu poreux avec différentes configurations geométriques
[13-15]. Laidoudi et al. [16] ont examiné numeriquement I’échange thermique convectif d’un
fluide newtonien en régime naturel contenu dans deux surfaces concentriques. Les résultats
confirment que I’élévation de I’inclinaison de la cavité conduit a une amélioration des
performances thermiques de la surface intérieure, indépendamment des valeurs du rapport
d’aspect. Bouzerzour et al. [17] ont realisé une analyse numérique du transport thermique par
convection naturelle ainsi que de 1’écoulement du fluide dans un anneau bidimensionnel
délimite par deux ellipses confocales, differemment chauffés, orientés et remplis de
nanofluide d'argent a base d'eau. Les résultats indiquent que I’introduction de nanoparticules
d’argent dans le fluide principal entraine une amélioration significative du transfert thermique
global, I’impact étant plus sensible a un nombre de Rayleigh plus éleve. Pour tout angle
d'orientation a un nombre de Rayleigh fixé, I'impact de La concentration de nanoparticules par
rapport au taux de transport thermique est presque exact. Sheikholeslami et al. [18] ont
examiné numériquement les impacts de transfert thermique dans une cavité circulaire externe
froide, qui contient une cavité cylindrique elliptique interne orientée chaude, remplie des
nanoparticules de cuivre a base d'eau. Les résultats montrent que le nombre de Nusselt croit
avec I’¢lévation de la concentration en nanoparticules, des nombres de Rayleigh et de I’angle
d’inclinaison. On observe également que I’élévation de nombre de Rayleigh entraine une
diminution de ’amélioration du transport thermique. Le rapport d’amélioration du transport
thermique atteint sa valeur minimale dans les régimes caractérisés par un nombre de Rayleigh
élevé. Mejri et al. [19] ont simulé numériquement le phénoméne de la convection naturelle
au sein d’une enceinte triangulaire, inclinée et contenant de 1’eau. L’approche de Lattice
Boltzmann (LBM) a été utilisée pour la résolution des équations couplées régissant les
champs de température et de vitesse. Les résultats numériques révélent que I’intensité du
transfert thermique s’accroit a mesure que la valeur de Rayleigh augmente. Par ailleurs, On a
observé que I’angle d’inclinaison de 135° conduit au plus faible échange thermique, tandis
que la configuration correspondant a 0° d’inclinaison permet d’atteindre le transfert thermique
maximal. Le taux de transfert thermique est fortement affecté par 1’angle d’inclinaison, et ce,
selon la valeur de Rayleigh. Ghasemi et al. [20] Ont effectué une simulation numérique du
phénoméne de convection naturelle au sein d’une enceinte circulaire extérieure froide
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contenant un cylindre elliptique intérieur chaud incliné rempli d'air en utilisant I’approche des
éléments finis basée sur le volume de controle. Les résultats montrent que les iso-courants, les
isothermes et le nombre, la taille et la formation des cellules au sein de I'enceinte dépendent
fortement de ces parametres qui augmentent considérablement le taux de transfert thermique.
Yu-Peng Hu et al. [21] Ont réalisé une analyse numérique du transport thermique par
convection naturelle de I'eau refroidie & une température voisine de son maximum de densité
d'un cylindre chauffé a son enceinte elliptique coaxiale refroidie en utilisant la technique des
volumes finis. L’analyse des résultats permet de constater que les nombres de Rayleigh,
I'inclinaison de I'enceinte et la taille du cylindre interne affectent les isothermes, les iso-
courants et le nombre de cellules dans la cavité, cela conduit & une amélioration significative
du rendement thermique. Park et al. [22] ont simulé numériquement la convection naturelle
entre une enceinte carrée inclinée extérieure froide et un cylindre de section circulaire
intérieur chaud. Les résultats montrent que I’inclinaison de I’enceinte, les nombres de
Rayleigh et la taille du cylindre intérieur affectent les lignes de température, les iso-courants
et le nombre de cellules dans la cavité, ce qui améliore considérablement le rapport de
transfert thermique. Il y a aussi eu quelques études récentes intéressantes sur le flux des
nanofluides [23,24]. Sheremet et al. [25] ont mené une simulation numérique de
I’écoulement par convection naturelle d’un nanofluide eau—alumine au sein d’une cavité¢ de
forme carrée avec une tempeérature temps-sinusoidale en résolvant les équations
fondamentales gouvernantes a 1’aide d’un algorithme fondé sur les différences finies. Les
impacts du nombre de Rayleigh, fréquence d'oscillation, inclinaison de la cavité et la
concentration en nanoparticules sur le transport thermique et 1’écoulement du fluide et ont été
analysés. On a constaté qu’un accroissement de la fréquence d’oscillation de la température
limite entraine une élévation de I’amplitude moyenne de I’oscillation du nombre de Nusselt et
une réduction de la période d’oscillation. En méme temps, la fréquence d’oscillation de la
température limite est un trés bon paramétre de controle qui permet d’intensifier le flux
convectif et le transport thermique. Mahfouz et al. [26] ont étudié la problématique du
transport thermique dans un espace fermeée crée entre deux surfaces confocales elliptiques. On
a constaté que plusieurs paramétres influencent le phénomeéne de convection au sein de
I’enceinte, en particulier le nombre de Prandtl et le nombre de Rayleigh, lorsque la paroi
interne est soumise a un chauffage. Sultan et al [27] Ont réalisé une analyse comparative des
influences de trois nanofluides différents en Cu, TiO2 et Ag sur le transfert thermique. Il a été
constaté que I’accroissement de la concentration des trois nanofluides pour toutes les valeurs
de Rayleigh améliore le transport thermique. Bouras et al. [28-31] Ont analysé le phénoméne
de convection naturelle en étudiant les changements de température et le nombre de Nusselt
pour diverses valeurs de Rayleigh dans différents espaces annulaires (trapézoidal, carré,
elliptique et semi-elliptique). L’approximation de Boussinesq a été utilisée dans le cadre
d’une approche par volumes finis.

1.1.3.2 Enceinte annulaire vertical

Dawood et al. [32,33] ont simulé numériquement la transmission thermique par convection
mixte avec écoulement laminaire et tridimensionnel dans un anneau elliptique contenant un
nanofluide. Quatre nanofluides distincts, soit Al203, SiO2, CuO et ZnO, ont été utilisés. On
peut voir que la glycérine-SiO2 est la meilleure pour renforcer les performances thermiques
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en comparaison avec dautres fluides de base testés. Zhang et al. [34] ont simulé la
convection naturelle instable numériquement au sein d’un anneau concentrique contenant des
nano-fluides. La considération de la thermophoréese et du mouvement brownien indique que
I’oscillation de la température a la paroi intérieure a un impact important sur les vitesses de
transport massique et thermique. Zamily et Amin [35] ont simulé numériquement I'impact de
la convection naturelle et la génération d'entropie au sein d’une cavité semi-circulaire
contenant un nano-fluide eau-cuivre. Les résultats révelent que ’irréversibilité et le taux de
transfert thermique du systéeme augmentent avec [1’élévation du pourcentage des
nanoparticules. Cadena-de la Pena et al. [36] ont mené des recherches expérimentales sur
l'efficacité thermique de nano-fluides a base d'huile minérale, mis en ceuvre comme fluide de
refroidissement dans un systéeme fonctionnant par convection naturelle. Le systéme comprend
une cavité verticale circulaire fermée contenant deux types différents de nano-fluides,
présentant différentes concentrations et tailles de nanoparticules. Tayebi et al. [37-39]
s’intéressent aux espaces annulaires elliptiques remplis de nano-fluides. Ils ont analysé le
mécanisme de convection naturelle qui se produit au sein d’un espace délimité par deux
cylindres confocaux de formes elliptiques utilisant différentes nanoparticules et mélanges
hybrides avec différentes sources de chauffage. L’étude prend en considération les impacts de
I’excentricité, de la concentration en nanoparticules solide et du nombre de Rayleigh sur le
nombre de Nusselt. Bouzerzour et al. [40] ont effectué une analyse numérique du phénomene
de convection naturelle dans deux cylindres elliptiques contenant du nano-fluide Cu-eau et
partiellement chauffée. Il a éte observé que la transmission thermique s’accroit a mesure que
la valeur de Rayleigh croit ou de la concentration des nanoparticules. Ahmad Khan et
Altamush. [41] ont effectué une analyse numérique sur I’échange thermique convectif en
régime naturel au sein d’un anneau vertical rempli de nano-fluide (Al203-eau) et
partiellement chauffé. Les résultats montrent que la concentration des nanoparticules améliore
la performance thermique. Mohammed et al. [42] ont analysé mathématiquement 1’échange
thermique convectif en régime naturel au sein d’une caviteé elliptique horizontale contenant un
cylindre annulaire excentrique avec différents rapports d’aspect. Lakshmi et al. [43] ont
analysé la convection naturelle a I’intérieur des anneaux poreux cylindriques saturés
contenant du nanofluide en recourant au modéle modifié de Buongiorno-Darcy (MBDM) et la
technique de linéarisation d’Oseen. Zhang et al. [44] ont simulé numériquement le transport
thermique induit par convection naturelle a Pintériecur d’un anneau poreux rempli de
nanofluide de Cu-eau. Le transfert thermique s’intensifie & mesure que la porosité croit.

1.1.4. Convection naturelle double diffusive

De multiples études théoriques, numériques et expérimentales ont abordé le phénomene du
transfert couplé thermique et massique dans une variété de géométries pour les milieux
poreux entierement saturés et les fluides. Une telle étude est la convection naturelle a double
diffusion.

Badruddin et Quadir [45] ont étudié numériquement le transfert thermique et massique dans
une enceinte poreuse en utilisant 1’approche des éléments finis. L’impact du nombre de Lewis
sur les coefficients de transfert thermique (Nusselt) et massique (Sherwood) le long de la
hauteur de la cavité a été examiné. Khan et Parvin [46] ont étudié les influences de la
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thermophorése et du mouvement brownien sur la convection naturelle a I’intérieur d’une
cavité avec un obstacle adiabatique rempli de nano-fluide de Cu-eau. On a examiné I’impact
du nombre de Lewis sur les iso-courants, les isothermes, les iso-concentrations et les nombres
locaux de Nusselt. Moorthy et Senthilvadivu [47] Ont mené une analyse numeérique des
transports massique et thermique induits par la convection naturelle & proximité d’une paroi
verticale enfouie dans un milieu poreux entierement saturé a viscosité variable. L’effet des
paramétres de nombre de Soret, le nombre de Dufour, le nombre de Lewis sur les profiles de
la vitesse, la concentration et la température a eté examiné. Grosan et al [48] Ont mené une
analyse numérique sur la convection naturelle stable et la génération de chaleur interne a
I’intérieur d’une cavité carrée poreuse en deux dimensions remplie d’un nano-fluide. L’effet
de rapport sans dimension entre le coefficient thermophorétique et brownien sur la
température, la vitesse et la concentration en nanoparticules a été examiné. Ahamad et al [49]
Ont mené une étude portant sur le transport thermique et massique dans une enceinte poreuse
carrée ayant un réchauffeur en forme de pas placé au bas de la surface gauche. Nazari et al
[50] Ont effectue une simulation numerique de la convection naturelle thermosolutale au sein
d’une cavité carrée avec un obstacle carré chaud a l’intérieur en utilisant la méthode
Boltzmann en treillis (LBM). Rana et Bhargava [51] Ont analysé le comportement de
I’écoulement et les mécanismes de transfert thermique d’un nano-fluide sur une feuille
d'étirement non linéaire. Le modele appliqué au nanofluide prend en compte les effets
conjoints du mouvement brownien et de la thermophorese. Hajri et al [52] Ont effectué une
analyse de la convection naturelle a double diffusion a I’intéricur d’une cavité triangulaire en
utilisant une méthode numeérique reposant sur les éléments finis dans le cadre du volume de
contrle. Cheng [53] a étudie la couche limite de convection naturelle s'écoule sur un cone
tronqué intégré a Dintérieur d’un milieu poreux entierement saturé de nanofluide a
température de paroi constante et fraction volumique de nanoparticules a paroi constante. Al-
Farhany et Turan [54] ont étudié le transport thermique et massique par convection naturelle
bidimensionnelle a double diffusion au sein d’un milieu poreux rectangulaire incliné.
Hasanuzzaman et al [55] ont analysé les impacts du nombre de Lewis sur le transport
thermique et massique par convection mixte thermosolutale a I’intéricur d’une cavité
triangulaire. Rahman et al [56] ont étudié les influences du nombre de Lewis et du ratio de
flottabilité sur le transport thermique et massique par convection naturelle a I’intérieur d’une
cavité triangulaire curviligne avec la paroi inférieure en forme de zig-zag. l1zadi et al [57] ont
étudié la transmission thermique par convection naturelle de différents nano-fluides au sein
d’un milieu poreux compris entre deux cylindres horizontaux excentriques. Le modele
biphasique développé par Buongiorno a été adopté afin de modéliser 1’évolution de la fraction
des nanoparticules. Hatami et Ganji [58] ont étudié I’équation de distribution de température
et Iefficacité de réfrigération pour des ailettes poreuses circulaires entiérement humides a
sections variables par analyse combinée de transmission thermique et massique. Kefayati
[59] a simulé la convection naturelle a double diffusion avec effets Soret et Dufour a
I’intérieur d’une cavité carrée contenant un fluide de loi de puissance non newtonienne par
I’approche de Boltzmann sur réseau combinée aux différences finies (FDLBM) tandis que les
générations d'entropie par frottement fluide, transport theemique et transport massique ont été
analysées. Kefayati [60,61] a analysé la convection naturelle a double diffusion ainsi que la
génération d'entropie d’un fluide non newtonien obéissant a la loi de puissance a I’intérieur
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d’une enceinte poreuse inclinée, en tenant compte des effets de Dufour et de Soret, en utilisant
I’approche de Lattice Boltzmann aux différences finies. Kefayati et Tang [62] ont simulé la
convection naturelle & double diffusion avec effets Soret et Dufour et la dissipation visqueuse
dans une enceinte chauffée avec un cylindre intérieur froid rempli de fluide de Carreau non
newtonien par FDLBM. Esfahani et Bordbar [63] ont simulé numériquement le flux de
convection naturelle a double diffusion a I’intérieur d’une enceinte carrée contenant un nano-

fluide & base d'eau et de différentes nanoparticules.

1.1.5. Les nombres sans dimension

Dans le domaine de la convection, les nombres adimensionnels les plus couramment
employés sont :

Généralité et Recherche Bibliographique

Tableau 1.1 : les nombres adimensionnels.

nombre sens physique domaine expression
adimensionnel
Etablit une Convection g.B.AT. L3
comparaison entre | naturelle Gr = V2
Gr la force de Lo téristi
flottabilité et la : longueur caractéristique
force visqueuse g : accélération gravitationnelle
AT : gradient de température
B : coefficient d'expansion
Vv : Viscosité cinématique
Décrit la Transport h.L
o . Nu=—
contribution thermique A
Nu convective au flux _y .
. A : conductivité thermique
thermique
h : Coefticient d’échange
thermique par convection
Compare diffusion | Transport _p-C.Lu Lu
o et convection thermique B A o«
e
u : vitesse

p . masse volumique

C, : capacité calorifique
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a : diffusivité thermique
Etablit une Convection o H-Co
comparaison entre 2
Pr la diffusion o .
. W @ viscosité dynamique
dynamique et
thermique
Définit la Transport u.Cy.g.B.AT. L3
convection thermique Ra = 12
Ra naturelle (convection = Pr.Gr
naturelle)
Etablit une Hydrodynamique, Re — L.u.p
comparaison entre | mécanique des U
Re la force d’inertie et | fluides, transferts
la force visqueuse | massique et
thermique,
agitation
Décrit la Transport massique Kp.L
o Sh =
contribution D
sh convective au flux
. K}, : conductance de transfert
massique .
massique
D : coefficient de diffusion

1.2. Nano-fluide

Choi [64] a utilisé pour la premiére fois le terme « nano-fluide » en 1995 pour caractériser un
mélange constitué d’un liquide de base (huile, eau) incorporant des particules solides aux
dimensions nanométriques, ce qui entraine une conductivité thermique améliorée. L'utilisation
des nano-fluides dans des applications pratiques consiste a optimiser 1’efficacité du transfert
thermique dans ces équipements tels que les dispositifs de stockage thermique et de
refroidissement électronique, les échangeurs de chaleur et les collecteurs solaires. Différents
nano-fluides tels que Al> Oz, Ag, Au, AgO, Cu et CuO ont été utilisés dans les enceintes et les
cavités pour améliorer le processus de transfert de chaleur.

1.2.1. Techniques de fabrication

Selon les recherches sur les nano-fluides, il est possible de les utiliser comme fluide
caloporteur, la majorité des chercheurs ont rapporté une amélioration notable des
performances thermiques. Les données les plus fréqguemment mentionnées sont
l'augmentation de transfert de chaleur ainsi que une augmentation de la viscosité lorsque le
pourcentage de nano-solide augmente. L’utilisation des nano-liquides requiert des précautions
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rigoureuses afin de prévenir la sédimentation des nanoparticules, 1’¢lévation des pertes de
charge et la corrosion des surfaces. En revanche, la plupart d’auteurs avancent que I’utilisation
des nano-fluides peut, dans certaines conditions, s’avérer moins efficace que celle des liquides
de base. Globalement, les nano-fluides contribuent a diminuer la taille et la consommation
énergétique des systemes de refroidissement industriels en améliorant leur efficacité. Puisque
les nano-fluides sont des conducteurs thermiques efficaces, ils peuvent également étre
employés pour réchauffer de maniere plus efficace. L'un des principaux désavantages des
nano-liquides réside dans leur colt (environ 100 euros par litre) Mammeri [65]. Il est
nécessaire de garantir leur rentabilité. lls seront certainement utilisés pour les nouvelles
technologies. Les nombreuses divergences qui expliquent l'augmentation des caractéristiques
thermiques des nano-liquides démontrent clairement que cette nouvelle technologie demeure
encore au stade de développement. La recherche dans ce domaine est prévue pour
s'intensifier.

La fabrication des nanoparticules peut étre réalisée a 1’aide de multiples procédés, qu’ils
soient d’ordre physique ou chimique. Ces méthodes variées permettent d’obtenir soit des
particules encapsulées dans une matrice hote, soit des nano-solides, offrant ainsi des
possibilités de fonctionnalisation adaptées a différentes applications

1.2.1.1 Techniques physiques

La technique la plus facile est de diviser un matériau a des dimensions nanométriques.
Toutefois, cette technique comporte des limites considérables puisqu’elle ne permet pas de
contrler de maniére précise les distributions de taille. Pour mieux contréler la taille et la
morphologie, d’autres techniques physiques plus avancées peuvent étre utilisées, telles que :

e Le recours a un plasma (par pulvérisation cathodique) ou a un faisceau laser de haute
intensité (ablation laser) pour pulvériser un matériau cible. Sakuma and Ishii [66]

e [’évaporation thermique repose sur le principe de porter un matériau a une
température tres élevée, de maniére a provoquer la vaporisation de ses constituants
atomiques. Par la suite, un refroidissement approprié de ces vapeurs favorise la
formation de nanoparticules. Singh et al [67].

Globalement, Les techniques physiques nécessitent des équipements onéreux tout en
produisant, un rendement en nanoparticules faible. La majorité des situations, les
nanoparticules obtenues sont déposées ou attachées a un substrat.

1.2.1.2 Techniques chimiques

Actuellement, diverses approches de synthése chimique peuvent étre utilisées. Elles ont
I’avantage d’étre, dans 1’ensemble, faciles & appliquer, économiques et adaptées a une
production en quantité. Ces approches permettent de synthétiser des particules caractérisees
par une distribution granulométrique relativement étroite ainsi qu’une diversité de formes
morphologiques. A D’instar des méthodes physiques, les nanoparticules issues de procédés
chimiques peuvent étre obtenues sous deux formes principales : soit libres, sous forme de
poudre facilement dispersable dans un gel hote ou un liquide, soit encapsulées au sein d’une
matrice polymérique ou solide.
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Nous mentionnons ici les techniques chimiques les plus fréquemment employées :

a) Dégradation de précurseurs organométalliques

Gréace a I'emploi de précurseurs organométalliques, il est possible de créer diverses structures
de nanoparticules. Le procédé consiste a décomposer, en milieu organique sélectionné avec
soin, une substance organométallique, ou le métal est habituellement oxydé a faible degré.
Cette méthode évite I'utilisation de réducteurs chimiques a fort pouvoir réactif, souvent
responsables de la formation d’impuretés adsorbées sur les particules, difficiles a retirer. On
procéde a la dégradation en éliminant les ligands de coordination. En régle générale, cette
élimination est réalisée par chauffage. D. K. Lee et al [68].

b) Procédé par radiolyse

La synthese des nano-solides par radiolyse repose sur la réduction des ions meétalliques
présents en solution, sous I’action d’espéces réactives générées, principalement des électrons.

Dans ces milieux, la concentration des ions métalliques est suffisamment faible pour que les
rayonnements n’interagissent pas directement avec eux. La synthése peut ainsi étre décrite en
deux étapes distinctes : d’abord, la radiolyse du solvant qui génére des especes réactives, puis
la réduction des ions métalliques par ces especes, menant a la formation et a I’agglomération
des atomes en nanoparticules. R. Benoit et al [69].

Le rendement des techniques chimiques est souvent beaucoup plus élevé que celui des
techniques physiques.

En résumé, la production de nanoparticules est un domaine technologique exigeant une
grande précision, compte tenu des tailles et des formes variées requises par les chercheurs
pour divers cas d’étude, ainsi que de I’importance des modifications chimiques superficielles
pour garantir leur stabilité en suspension.

Il est primordial de considérer plusieurs aspects lors de la préparation des nano-fluides,
notamment la stabilité et la durabilité de la suspension, la minimisation de I’agglomération
des nanoparticules ainsi que I'absence d'échange chimique avec le fluide de base.

1.2.2. Parametres physiques et thermiques des nano-fluides

L'incorporation de nano-solides modifie de maniére significative les caractéristiques
physiques et thermiques des solutions, notamment la densité, la capacité calorifique, la
viscosité dynamique, la dilatation thermique et la conductivité thermique. Les caractéristiques
thermophysiques du nano-fluide résultant sont fortement influencées par divers parametres
liés aux nanoparticules, tels que leur nature, leur taille, leur fraction volumique, ainsi que les
conductivités respectives du liquide de base et des nano-solides, sans oublier I'effet de la
température ambiante.

La masse volumique

12
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Pour un nano-fluide considéré comme parfaitement homogéne, c’est-a-dire avec une
dispersion optimale des nano-solides dans le liquide de base, la détermination de sa masse
volumique correspondant & une température donnée T s’effectue en fonction de la
concentration en nanoparticules.

La masse volumique résultante du nano-fluide se définit de la maniére suivante :

V Vs Vs+Vs

_(m _ me+mg _ prmg+psmsg
pnf - (;)nf 1.1

La fraction volumique des nanoparticules correspond au rapport entre le volume des
nanoparticules et le volume total du mélange, comprenant a la fois le fluide et le solide.

Vs
= Vs+V 1.2

La masse volumique résultante du nano-fluide est alors déduite :

pnr = Pr(1— @) + @ps 13
Avec :

pr: La masse volumique du fluide de base

Pnr. La masse volumique du nano-fluide

ps. La masse volumique des nanoparticules solides

La Chaleur spécifique

La chaleur spécifique désigne la capacité d'une substance homogéne a emmagasiner de la
quantité d’énergie thermique par unité de masse. Elle représente la chaleur dQ nécessaire

, , , . . d
pour augmenter la température d'une masse m donnee de 1 kelvin, soitC, = m—‘fT . Autrement

dit, elle représente la quantité d’énergie thermique requise pour élever la température d’un
kilogramme de matiere de 1 K au cours d’un processus donné.

Le calcul de la chaleur spécifique d’une nano-fluide repose sur [I’utilisation de deux
expressions fondamentales :

Xuan et Roetzel [70] ont utilisé :

(pCp)nf =(1- (p)(pCp)f + (p(pCp)S 14
Pak et Cho [71] ont utilisé :

(Cp)nf =1~ ‘P)(Cp)f + ‘P(Cp)s 1.5

Avec

13
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(Cp)f: Chaleurs spécifique du fluide de base.
(Cp)nf : Chaleurs spécifique du nanofluide.

(Cp), : Chaleurs spécifique des nanoparticules.
Coefficient de dilatation thermique

- . . . p 1/0 . T
Le coefficient de dilatation thermique, noté f; = —;(a—g) , exprime la sensibilité de la
P
masse volumique aux variations de température a pression constante.

De nombreux auteurs ont utilisé la relation (1.3) pour la détermination de ce coefficient dans
les nano-fluides, suite aux premiers travaux sur les nano-fluides.

L'expression suivante est déduite :
Bnr = Br(1 — @) + ¢ps 1.6
Avec

5 Coefficient de dilatation du fluide.

B, : Coefficient de dilatation des nanoparticules.

Kim et al [72] ont postulé que le coefficient de dilatation thermique du fluide de base (B;) est

considérablement supérieur a celui des nanoparticules solides (fB;). Il procede a une
simplification de I’équation (1.6) selon I’expression suivante : B, = (1 — @)

Pr = Pos (1 — B (T — To))
Pns = Ponf (1 - ,an(T - TO))

Ps = Pos(l — Bs(T — To))

En substituant p, r et ps par leur valeur obtenue a partir de la relation (1.3), on obtient :

BrsPons = Brpor (1 — ¢) 1.7
La viscosité dynamique

La viscosité relative correspond a la proportion de la viscosité du nano-fluide par rapport a

celle du fluide de base %
f

Il existe différents modéles permettant d'estimer la viscosité d'un nano-fluide, parmi lesquels
on peut citer :

Modgéle d’Einstein [73]

14
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La relation suivante s’applique aux suspensions diluées composées de particules fines, rigides
et sphériques :

ng = U1+ 2.5¢) 1.8
Avec

1s - La viscosite dynamique du fluide de base.

Hny - La viscosité dynamique du nanofluide.

@ : La fraction volumique des nanoparticules.

Modeéle de Brinkman [74]

A élargi la relation d'Einstein pour englober une vaste gamme de concentrations volumiques.

— Bf
‘unf - (1_(P)2'5 19

Modele de Batchelor [75]

Il a démontré que la viscosité ne dépend pas linéairement de la fraction volumique ¢, comme
le suggere la formule d'Einstein, mais suit plutdt une relation non linéaire avec celle-ci.

s = s (2.60% +2.5¢0 + 1) 1.10

D'autres formules ont été suggérées dans les travaux antérieurs, chacune étant genéralement
limitée a des domaines d'application spécifiques, tels que Maiga et al [76], qui ont établi la
corrélation suivante a partir des résultats expérimentaux :

s = 1r(12390% + 730 + 1) 1.11

Pack et Cho [71] ont suggéré une corrélation spécifique aux nanoparticules d’alumine
(AO3) en suspension dans 1’eau, exprimée par la relation suivante :

tns = 1r(533.99% +39.11¢ + 1) 1.12

Par conséquent, pour notre étude, nous avons employé le modele de Brinkman, couramment
utilisé dans les recherches scientifiques.

Conductivité thermique

Faute de données expérimentales précises et de modeles théoriques bien établis pour évaluer
la conductivité thermique des nanofluides, les chercheurs ont souvent adopté les formules
existantes destinées aux suspensions de particules de tailles micrométriques ou millimétriques
dans des fluides.

Modeéle de Maxwell [77]

15
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Il a considéré que les particules sont suffisamment espacées pour qu’aucune interaction ni
contact direct ne se produise entre elles.

Kny _ Ks+2Kp—2(Kr—Ks)
Ky Ks+2Kp+@(Kf—Ks)

1.13

Avec

K¢ La conductivité thermique du fluide de base
K, s : La conductivité thermique du nanofluide.
K, : La conductivité thermique du particule solide.
Modéle de Hamilton [78]

C'est un prolongement du modele de Maxwell. Il s'applique aux particules de toute forme
définie comme suit :

Knf _ Ks+(n—-1)Ks—(n—-1)(K s —Ks)p
K¢ Ks+(n—-1)Ks+¢ (K —K;)

1.14

Avec

n =% . Facteur de forme empirique, prend une valeur de 3 pour les particules de forme
sphériques et de 6 pour les particules de forme cylindrique.

Modeéle de Yu et Choi [79]

Ils ont suggéré de représenter les nano-fluides comme un fluide de base contenant des
particules solides entourées d’une fine couche nanométrique, servant de canal de transport
thermique entre les nanoparticules et le fluide.

Knp _ Ks+2Kp—2¢(K—Ks)(1+B)3
Kf  Ket2Kpt+o(Kp—Ks)(1+5)3

1.15

Avec

B . Rapport entre I'épaisseur de la couche interfaciale nanométrique et le rayon des
nanoparticules.

Ainsi, les modeéles employés dans notre étude pour chaque caractéristique thermophysique
sont les suivants :

La capacité calorifique du nanofluide : (pCp)nf =(1- (p)(pCp)f + (p(pCp)s

Kr

La viscosité dynamique du nanofluide : u,r = oS

La masse volumique du nanofluide : p,; = ps(1 — @) + @p;

16
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Le coefficient d’expansion thermique : B, = (1 — @) + @f;

. ey . . K K+2Kr—2@0(K¢—K
La conductivité thermique du nanofluide ; —2£ = =~ 0Ky —Ks)
K¢ Ks+2Kp+¢(Kf—Ks)

17
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2.1 Introduction

On présente dans ce chapitre le modéle physique, en explicitant les hypothéses
simplificatrices adoptées, ainsi que les équations mathématiques sous-tendant ce probléme.
Cela inclut les équations de la concentration, de I'énergie, de la quantité de mouvement et de
continuité dans leurs formulations adimensionnelles et dimensionnelles accompagnées des
conditions aux limites adaptées.

2.2 Description du probléme

Considérons un domaine annulaire rempli de nanofluide, compris entre deux cylindres
elliptiques confocaux dont les grands axes sont orientés horizontalement. Les surfaces
internes et externes de ces ellipses sont supposées isothermes, portées respectivement aux
concentrations C1 et Co, ainsi qu'aux températures T1 et To, avec C1> C; et T1> To. Le systéme
étudié est bidimensionnel. La figure 2.1 illustre le modéle physique considéré.

Plan
Horizontal _

Plan Vertical

Figure 2.1 Coupe transversale du systéme étudié.

2.3 Hypotheses de simplification

*

¢ L’écoulement considéré est stationnaire, laminaire et bidimensionnel.

% Le travail des forces de pression et la dissipation visqueuse sont négligeables dans
I'équation d’énergie.

% L’effet du rayonnement thermique est considére comme négligeable.

19



Chapitre 2 Modélisation Mathématique

% Les effets de Dufour et de Soret, traduisant I’interaction entre les transports
thermiques et massiques, sont supposes négligeables

% Aucune réaction chimigue ni source de masse et de chaleur.

% Les propriétés physiques et thermiques du nano-fluide restent constantes et sont
établies a partir des valeurs de référence de concentration Co et de température To.
Toutefois, conformément a ’approximation de Boussinesq, la densité du fluide dans
les forces volumiques est supposée varier linéairement avec la température T et la
concentration C.

La relation mathématique suivante permet de représenter cette variation :

Pur (€. T) = pong (1= Beng (€ = Co) = Prug (T = To) ) (2.1)
Ou:

T, : Température de référence

C, : concentration de référence

Pony - La densité du nanofluide correspondant aux conditions de référence T, et C,

. R . . , 1 (0
Pray : coefficient d’expansion thermique égal . Brnf = — (ﬂ)
Ponf \ OT Jpc
. - . . . , . _ 1 apnf
Bcny - coefficient d’expansion massique égal : fcpr = — —
Ponf \ 9C JpT

2.4 Formulation mathématique

2.4.1. Forme vectorielle

Les équations dimensionnelles qui décrivent le probleme posé sont formulées sous forme
vectorielle :

= Equation de conservation de masse:

Elle découle du principe fondamental de conservation de la masse et se formule de la maniére
suivante :

div/i =0 (2.2)
= Equation de Navier stocks:

Elle découle du principe de conservation de la quantité de mouvement et se formule de la
maniére suivante :

ﬁ —_ ——\ = _ VP M N
Pl (V.grad)V pon? + POnfg (2.3)
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= Equation de I’énergie :

Elle découle du premier principe fondamental de la thermodynamique et se formule de la
maniere suivante :

o ——— . oT
(V.grad)T + - = arn VT (2.4)

= Equation de la masse :

(V.grad)C + 5 = aen V2C (2.5)
Avec .

> vecteur de I’accélération gravitationnelle.

T

: tenseur des forces de pression.

: vecteur vitesse.

<!

C : concentration.
T : température.

acny - diffusivité massique du nanofluide.
ary - diffusivité thermique du nanofluide.
t : temps.

2.4.2. Forme indicielle

= Equation de continuité:
a
(v)=0 (2.6)
= Equation du mouvement:

aTij

d d opP
Fy (PonsViV}) + " (PonsVi) = 5 ot Ponf[1 = Beng (€ = Co)—=Brns(T = To)lg  (2.7)
] Jj i

= Equation de I’énergie :
a aT _ 9 aT
6_JC](TV]) +E = 6_xj<arnf6_xj> (28)
= Equation de la masse:
a ac _ 0 ac
a—x](CV]) +E = a—){j(aCnf 6_x]> (29)
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Avec :
P : pression du nanofluide.
7;; - Tenseur des contraintes visqueuses du nanofluide.

duy du; | Ouj

2
Tij = S Hnfbij 5 o, s (2.10)

ox; 0x;
Ou:
iy - Viscosite dynamique du nanofluide

d;; : Fonction indicielle de Kronecker

2.4.3. Expression des équations dans le systeme de coordonnées cartésiennes

Puisque 1’écoulement considéré est bidimensionnel et stationnaire, les équations de la
concentration, de continuité, de I’énergie thermique et de la quantité de mouvement, et
prennent les formes suivantes :

6_u v

ox tay, =0 (2.12)
u— + v— = g.sin(a) [,BTanT ﬁCanC] " Zi + Vs (% + Zi;;) (2.12.9)
u— + v— =g. cos(a)[,BTanT ﬁCanC] — ﬁg—i + Vnr (g + Zi;) (2.12.b)
ug—z+vg§ = Arpf (ZZT:-I_Z%;) (2.13)
ug—§+vg; = ey (3272+327§) (2.14)

2.4.3.1 Suppression du terme de pression dans I’expression de I’équation de la quantité
de mouvement

En procédant a la dérivation de I’équation (2.12.b) par rapport a la variable x et de I’éguation
(2.12.a) par rapport a y, on obtient les relations suivantes :

2
:—x(uz—Z) + - (v22) = 2= (g.cos(@) [BrarAT — BenrAC]) —a( ! ‘”’) +vnf;—x(%+

oy Ponf 0¥
) (2.15.a)
ai(ua—z) ( a—;) = —(g sm(a)[ﬁTanT ,BCanC]) —£<p 1nf gz) +V"f:_y(gjc_1;+
Z—yﬁ) (2.15.b)
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En effectuant la soustraction de 1’équation (2.15.b) a partir de 1’équation (2.15.a), puis en

appliquant 1’équation de continuité ainsi que la définition de la vorticité w, on parvient a
I’expression suivante :

dw dw aT oT . ac . ac
u—+ vy = 9Brns (E cos(a) — asm(a)) + 9Bcns (5 sin(a) — acos(a)) +
2w  d%w
var (5 +55) (2.16)
Avec :
v ou
w = a - 5 (217)
dw 9%y 0%u
% oz %0y (2173.)
2w d [(0%v 0%u
=525 20y) (2.17.22)
w 9%y 0%u
o= T (2.17.h)
02w d [ 9%v 0%u
W_a(%_a_yz) (2.17.bb)

2.4.4. Expression des equations dans le systeme de coordonnées elliptiques

Pour notre étude, le choix du systéme de coordonnées elliptiques (1, 0) permet de représenter
les frontieres physiques du domaine par des valeurs constantes de ces coordonnées, ce qui
facilite la modélisation géométrique du probleme. La surface du cylindre elliptique interne est
définie par n = n,, une valeur constante, tandis que celle du cylindre elliptique externe est

donnée par n = n,, également constante. L’axe des abscisses (x) correspond a la coordonnée
n nulle.

Dans le repere elliptique (1, 0, z), les surfaces correspondant a une valeur constante de m
représentent des cylindres elliptiques. Celles pour lesquelles 0 est constant correspondent a
des cylindres hyperboliques, tandis que les plans z = constante sont paralléles entre eux. Ces
différentes surfaces sont illustrées dans la figure 2.2.
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O /2 c=const

n=rconst

E=0

d_—“—‘{/#(,;

NS

Figure 2.2 Diagramme des coordonnées elliptiques.
Le passage du repere cartésien au repéere elliptique a travers les formules suivantes :
x = ach(n) cos(H) (2.18)
y = ash(n) sin(0) }

Les équations de masse, de mouvement, d’énergie, et de continuité s'écrivent respectivement
comme suit :

a(HV a(Hv,
Vg o Vyn o 9Btn oT . T
f% f% = Z_f (5 [F(, 6) sin(a) — G(n, 0) cos(a)] + an [F(n,0) cos(a) +
. Bens (@ . ) .
G(n,0) sm(a)]) + 9 ;‘ f (£ [G(n,0) cos(a) — F(n, 8) sin(a)] + % [—G(n,0) sin(a) —
nf (02 92
F(n,0) cos(a)]) + vh—zf (ﬁ + ﬁ) (2.20)
T 4 vy OT _ GTny (9°T | 0°T
Vo a0t Vi an  h (aez 67}2) (2.21)
9C 4y 9C _ Feny (9°C | 9°C
Vo a0 T Vi an  h (aez 67}2) (2.22)
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: __ cos(§)sh(m)
Avec : F(n,6) = N OIEO) (2.23)

__ sin(08)ch(n)
G(n,6) = JsinZ(8)+sh2(n)

Les composantes de la vitesse selon les directions 8 etn sont respectivement désignées par
Vg et V;7 .

En introduisant la fonction de courant § de maniére a ce qu'elle vérifie I'équation de
continuité de maniére identique, nous obtenons :

10
Vo = —;% (2.24)
_ 1oy
M hae
_ _ 1 (2%y 9%y
0=-50m+55) (2.25)

2.4.5. Les conditions aux limites

Dans la premiére partie (le cas de la convection naturelle purement thermique), les conditions
aux limites sont définies comme suit :

e [’ellipse interne chaude :

e [’ellipse externe froide :

Dans la deuxiéme partie (le cas de la convection naturelle thermosolutale), les conditions aux
limites sont définies comme suit :

e L’ellipse interne chaude :

v = _6L|J_6L|J_
o= "™ T 90 " on
T:Tl,C:C:L

e L’ellipse externe froide :
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oy AW
Vezvnzﬁzaz
T=T2,C=C2

2.4.6. Transformation des équations gouvernantes en forme adimensionnée

Pour passer a une formulation adimensionnelle du probleme, on utilise les grandeurs
physiques suivantes:

Dy = ¢ (La longueur caractéristique, sélectionnée arbitrairement, est représentée par la
distance focale propre au systéme de coordonnées elliptiques).

_ " s+ _yDbn y+ _y P4 _  Dp o4 W oy T-Tp + - G
H_Dh1I/n —I/naf,Vg—Vgaf,(U —(Uaf,l.p _af’T _T1 =T, et C1—-C,
1
Avec h = c(sin?8 + sh?n):
Les équations (2.19), (2.20), (2.21), et (2.22) deviennent :
o(uv)  , 20vy)
Vy 5 v, 3 =0 (2.26)

+ 0wt + 0wt 1 Bs 1 Tt _
HVg Zo-+ HV;H %2 = H.Ra. Pr (—(T)p IRy P E’;fpfﬂ) x ({Z=-[=F(n,0) sin(a)
Ps

G(n,0) cos(a)] +

G(n,0) cos(a)] +

[F (1,6) cos(a) — G(n, 8) sin(@)]} + N { aC; [=F (n,6) sin(a) —

[F(n, ) cos(a) — G(n,0) sm(a)]}) (Pr
(1-¢)25( (1-p)+¢22
Pf

L
an
act %w*

)(aez +

a;::) (2.27)
Knf
2 2
Hv aaTe W aaT” N\ ¢>):>Epcp§ (665: aar;TZ+) (2.28)
Knf
204 g2+
HV+ act —+ HV;* aacn i — ¢)-’:;((pcp§ (aagc2 4 aancz ) (2.29)
Avec: ot = —% (a;;lf + 6;;1;*) (2.30)

La mise sous forme adimensionnelle des équations de conservation fait apparaitre des
grandeurs sans dimension, représentatives des caractéristiques physiques du probleme étudié.

Le nombre de Lewis: Le = ?
C

Le nombre de Prandtl: Pr = z
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3
Le nombre de Rayleigh: Ra = Mﬁ%
Le rapport entre la poussée solutale et la poussée thermique: N = /;Ci;
T

Ou les composantes V", V" de la vitesse adimensionnelles sont définies par:

+_ 1oyt
V=27 (2.31.9)

¢ 10wt
Ve =~ o (2.31.b)

2.4.7. Expression sans dimension des conditions aux limites

Dans la premiere partie (le cas de la convection naturelle purement thermique), les conditions
aux limites adimensionnelles sont les suivantes :

e La paroi interne chaude :

Ut=v*=0 (2.32.a)

=1 (2.32.b)
e La paroi externe froide :

Ut=v*t=0 (2.33.3)

TS =0 (2.33.b)

Dans la deuxiéme partie (le cas de la convection naturelle thermosolutale), les conditions aux
limites adimensionnelles sont les suivantes :

e La paroi interne chaude (n = n; = constant):

— _ oyt _ oyt _
V9+ = V77+ = %0 = W =0 (2348.)
1 62¢+ 62¢+
Y= _E( 20z T o2 ) (2.34.0)
T =1etCf=1 (2.34.c)
e La paroi externe froide (n =n, = constant):
pr=yr = (2.35.a)
o n 20— any R
1 62¢+ 62¢+
Y= _ﬁ( 20z T an2 ) (2.35.)
TS =0etCy =0 (2.35.c)

2.4.8. Parameétres caractéristiques du transfert thermique et massique

Cette étude vise a évaluer les échanges de masse et de chaleur dans le fluide, en les
quantifiant a 1’aide des nombres sans dimension de Sherwood et de Nusselt.

2.4.8.1 Les nombres de Sherwood et de Nusselt locaux
Les nombres de Sherwood et de Nusselt locaux sont donnés respectivement par:

19ct

Sh=——— 2.36
H on n=cst ( )
19Tt

Nu=——— 2.37
H on n=cst ( )
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2.4.8.2 Les nombres de Sherwood et de Nusselt moyens

Les nombres de Sherwood et de Nusselt moyens sont donnés respectivement par:

oL _ 1 OnN
Sh= 5 [, Sh do (2.38)
o 1 OnN
Nu = ——- fel Nu d@ (2.39)

2.5 Conclusion:

Une fois les équations de masse et de chaleur, de conservation de la masse, de quantité de
movement établies, accompagnées de leurs conditions aux limites respectives, une
modélisation numérique du probléme est envisagée. Le chapitre suivant est ainsi consacré a la
présentation de la méthode de résolution numérique appliquée a notre modéle mathématique.
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3.1. Introduction

Le chapitre précédent a été consacré a 1’établissement des équations principales
décrivant les mécanismes d’écoulement ainsi que les transferts de masse et de chaleur dans les
fluides. Ces équations constituent un systéeme de dérivées partielles complexes, a la fois
hautement couplées et non linéaires Résoudre analytiquement un tel systéme est extrémement

complexe. On procede donc a leur résolution de maniere numerique.

Il existe une multitude de méthodes documentées dans la littérature. On peut mentionner par

exemple :

- L’approche des éléments finis.
- L’approche des volumes finis.

- L’approche des différences finies.

3.2. La méthode des volumes finis :

De nombreux chercheurs ont employé cette méthode avec succes, décrite initialement par
Patankar et Spalding en 1971, puis publiée par Patankar [80] en 1980.

Le principe de cette méthode est de subdiviser 1’espace de calcul en plusieurs sous-domaines
finis, qu'on désigne sous le nom de volumes de controle. Les équations aux dérivées partielles
paraboliques sont intégrées dans chaque volume de contrdle selon la méthode des volumes
finis, exposees précédemment, sur chacun des volumes de contréle. Un nceud est associé a

chaque volume de contréle appelé "nceud principal".

Le domaine physique ainsi que le domaine de calcul associé sont présentés dans la figure 3.1.

Afin de discrétiser le domaine, nous avons opté pour des pas uniformes A6 et An :

A = Onn—061 et An = N1—7NI
NN-1 NI-1
Avec:
NI : Le nombre de nceuds dans la direction ).

NN : Le nombre de nocuds dans la direction 0.

29



Chapitre 3 Formulation Numérique

Cold

Hoat —F

L4

Domain Physique grille de Calcul
Figure 3.1 Schéma du domaine physique et de la grille de calcul.

3.2.1. Volume de controle élémentaire

La division de I'espace annulaire en fonction des directions des coordonnées elliptiques 0 et 1

en un certain nombre de volumes identiques nous procure des volumes de contrdle.

L'espace annulaire est discrétisé suivant les directions 6 et 1 en une série de volumes
élémentaires, appelés "volumes de contrdle”, dont le volume est donné par «H?. An. A6. 1».
Le probléme étant bidimensionnel, une épaisseur unitaire est considérée dans la direction Z.
Chaqgue volume de contréle typique est centré en un point P et posséde des faces latérales
désignées respectivement par w «ouest», e «est», s «sud», et n «nord». Un volume fini
intérieur est bordé par quatre volumes voisins, dont les centres sont situes en W, E, S et N.
Les grandeurs scalaires telles que la vorticité, la température et la concentration sont
localisées aux centres des volumes de contrble. Par conséquent, les équations de transport

associées a ces variables sont intégrées sur un volume fini représentatif.

Les nceuds N et E sont situés respectivement dans les directions positives des coordonnées n

et 6, tandis que les nceuds W et S se trouvent dans les directions opposées.

i Il
i#1) - -} L
(Bron
s W ‘ (An)
(Bn)s
VO S
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Figure 3.2 Schéma représentant le volume de contréle

La figure 3.2 illustre un volume fini type ainsi que son voisinage direct au sein du
domaine de calcul. Dans cette représentation, le volume de contrble centré au nceud P est

délimité par les faces latérales notées w, n, e et s.

3.2.2. Formulation discrete de I'équation de conservation générale pour une variable ¢
dans un volume de contrdle

Dans le but de démontrer I'application de la discrétisation des équations de transfert par
I’approche des volumes finis, nous adoptons une formulation générale de I'équation

considérée.

Pour mieux appréhender cette approche, nous commencons par examiner I’équation de
la quantité mouvement (2.27), I’équation de I’énergie thermique (2.28) ainsi que de celle

régissant la concentration (2.29), elles s’écrivent respectivement comme suit :

2 (HVgw* =T, 22 ) + a"’_n (HV* — T, a;::) =S4 (3.1)
2 (VT =1y ) ai(HV+T+ m%) = Sy (3.2)
e n ) (e 1) s =

Les trois équations peuvent étre exprimées sous une forme générale commune, décrite

comme suit :

55 (HVe o =T, 58) + - (HV 9 — 1, 52) = 5, (3.4)
Avec:

r, . Coefficient adimensionnel.

¢ . Fonction générale.

S, : Terme source.

L’équation discrétisée d’une variable ¢ est dérivée a partir de I’intégration de son
équation de conservation sur un volume de contrdle représentatif. Ce qui suit présente un

exemple de discrétisation appliqué a I’équation de transfert de ¢.
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en 5 ) 8 2n 9 ) b e
vjv!% HVio — r(pa—(ep)clnol.%ﬂa (an@—rwa“’)dndeijv!swdnde

ou bhien :
tt aHVie) aHV; i Ofp @ 0
R L | e (g | R
- ; 3

Les trois termes représentent les intégrales doubles sur le volume de contréle,
délimitée par les faces w-e et s-n. Ils traduisent, dans ’ordre, les effets de la diffusion, de la
convection et du terme source de la variable @. On adopte le schéma de la loi de puissance
(Power-Law) pour effectuer la discrétisation spatiale, qui permet d’estimer les gradients de ¢
entre les nceuds du maillage. Ce schéma est particuliérement apprécié pour sa stabilité

inconditionnelle.

J :((p HV, - T, a(pj

Posons: a0
J =[<|>Hv+ -r 8“’}

* on

Jo et J, représentent les flux totaux, résultant de la combinaison des effets de convection et de

diffusion.

En substituant Je et J, dans I’équation (3.4), nous obtenons:

Y
Ay P g (3.5)
0 o

En procédant a I'intégration de 1’équation (3.5) sur le volume de contrdle, on aboutit a

I’expression suivante :
J,-J, +J, -, =S .AV
(3.6)

Jw,Jn, , Je, €t Js représentent les flux totaux (convection + diffusion) évalués aux interfaces

nord, sud, est et ouest du volume de contrdle.
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Dans le volume de contréle considéré S, représente la valeur moyenne du terme source S. En
genéral, ce terme peut étre linéarise par rapport a la variable ¢, (au centre du volume) et

exprimé sous la forme suivante :

S, = ¢,.S, +S, (3.7)

p

Avec S, (0

En conséquence, 1’équation (3.6) peut étre reformulée de la maniére suivante :

J,—J, 43, = J, = (S,.0p +S,). AV (3.8)

En procédant a I’intégration de I’équation de continuité (2.25) sur un volume de controle

typique, on obtient I’expression suivante :
F-F,+F,-FK=0 (3.9

Ouk,k, Rvetk correspondent respectivement aux débits massiques traversant les faces sud,

nord, ouest et est du volume de contréle.

F,.= AO(HV;),
F=A0(H V),
Fo=An(HWV{),
Fo = An(HVy),

(3.10)

En procédant a la multiplication de 1’équation (3.9) par la variablegp, puis en soustrayant
cette expression de 1’équation (3.8), on déduit :

(‘]E_ Fe'(pp)_ (‘]W_Fw-(Pp)+(Jn— Fn'(pp)
- (J,-F.9,)=AV(S,.0,+S,) (3.11)

‘]n - (pp'Fn :((pP AN )aN
‘]s - (pp'Fs :((PS_ (PP)aS

(3.12)
‘]e - (pp'Fe :((PP - Qe )aE
‘]W - (pp'Fw = ((PW — 0p )aW
Leur substitution dans 1’équation (3.11) permet d’obtenir :
aE((pP_(pE)_aW((pW_(PP)+aN ((PP_(PN) (313)

— a5 (95— 9p) = AV (S, .9, +S;)
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On obtient donc finalement I'équation de discrétisation :

Ppdp =0 ag +9,, a, +0yay+0sas+Db (3.14)

Avec:
ap =a,, +ag +ag+ay -AVS, (3.15)
b=AVS, (3.16)

Selon PATANKAR [80], la fonction A (| P| ) est décrite comme suit :
A(lP|) =] 0.a-0afP|F|
Le symbole |A,B| désigne la sélection de la valeur maximale entre A et B.

an= D, Aq P, |)+”_Fn’0”

ac= D, AP, [)+[-F.0]
as= Dy A(J P |)+” F.0 ”

aw = DWAQ Py |)+” FW’O”

(3.17)

Les grandeurs Dn, Ds, Deet Dw, sont définies par:

b _ 28 r,),
(3n),

Ao (r,)

% )

oy, e19

© o (s0),

D - An F(p)w
" (s0),

Les nombres de Péclet Py, Ps, Pe et Py sont définis comme suit:
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v
Il
-

0
I
T

n

(3.19)

O

Il

o7
U‘H‘DU‘I—\U)U|H:U‘|_\

=

o
Il
E‘I‘I

Les intervalles d’intégration (66)e, (60)w, (6n)net (8n)s peuvent, en principe, différer
des pas de discrétisation A® et An. Néanmoins, dans le cadre de cette étude, ils sont
considérés comme constants et égaux aux pas de calcul susmentionnés, a savoir A6 et An. Par
ailleurs, les interfaces désignées par n, s, e et w sont supposées étre localisées au milieu des

segments reliant respectivement les neeuds (P, N), (P, S), (P, E) et (P, W).

Les grandeurs précédemment définies s’expriment comme suit :

AO
Dn = A_n(rqn)n
AO
D, = = (r
AAﬂ ) (3.20)
_an
De - ﬁe (rtp)e
_ o8N
Dw - A (F(P)W

Pour maintenir les conditions de convergence et de stabilité de la méthode employée,
certaines conditions doivent étre impérativement respectées. En particulier, dans 1’équation
(3.14), tous les coefficients associés aux nceuds voisins doivent étre strictement positifs, le
terme source linéarisé Sp doit étre negatif. De plus, le coefficient central a, doit étre déefini

comme le total des coefficients des nceuds adjacents, a laquelle s’ajoute le terme SpAV.

La procédure de discrétisation évoquée ci-dessus est applicable aux équations aux
dérivées partielles régissant 1’ensemble des variables dépendantes du probléme. La fonction ¢
désigne I’'une de ces grandeurs adimensionnelles, a savoirT*, w* et C* . Les coefficients
diffusifs T, ainsi que les termes sources S,, correspondants sont récapitulés dans le tableau

3.1.

Tableau 3.1 : Termes sources et coefficients diffusifs associés a la variable @
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Equation ® Ty So
H.Ra.P L B -
.Ra.Pr —
A—py B P05
ootV =, T
oT+
X <{¥ [—F(n, 9) Sin(a)
—G(,0)cos(a)]
oT+ F(r @
+ W[ (1,0) cos(a)
Pr -G(n,6) sin(a)]}
3.1 (l)+ _ 2. _ & +
1-¢)* ((1 $)+¢ ,Df) +N {aa% [—F(n, 6) sin(a)
—G(,0)cos(a)]
+ 371+ [F(n,0) cos(a)
—-G(,0) sin(a)]})
[ e )
32 |7+ i = ) | 0
PJs
\(1 —P+e (Pcp)f/
(e )
3.3 ct| 1 | Ky | 0
Le (pcp)s
\(1 -¢) +¢(Pcp)f/

3.3. Formulation discréte de I'équation de I'énergie

L’équation de conservation de I’énergie est formulée sur un volume de contrdle élémentaire,
de dimensionsH?. (A0), .(An)p. En appliquant la procédure de discrétisation selon 1’approche
des volumes finis, on parvient a Dexpression algébrique suivante

a, T, =a.T¢ +a, T, +a, T +a; Ty +b (3.21)
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Dans le cas de I’équation (3.2), I’absence du terme source St entraine la nullité du coefficient
b. Par conséquent, le coefficient ap de I'équation (3.15) s’exprime comme sulit :
dp = ag +a,, +ta, +ag (3.22)
Les expressions des coefficients an, as, ae et aw sont identiques a celles présentées
dans le systéeme (3.17).

L’introduction de la grandeur adimensionnelle y* (fonction de courant) apparaissant dans

le systéme (3.10) conduit a ’expression suivante :

=(§EJ_A9
4
{G_J 0 (3.23)
:L_gﬁ]_n |
e an .
oy’
F,o=|-——| A
" [ %JW !

Dans la suite, nous supposons que :
ir .. . s .
=L @Dy i)
117 .. . e
LA )]
1 . . i
=§[\|f(l—1,1)+\|f (i)

:%[W+(i,j+1)+\|f+(i7j)]

(3.24)

C‘ 2

Le calcul du gradient de la fonction de courant au niveau de I’interface est effectué
conformément a la méthodologie proposée par NOGOTOV [81], comme illustré a la figure

3.3.
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eny LD Gl N JGrLiD
(i 1/2,4-1/2) p (i 12,7+ 1/2)
! | E
n( - A WP
Q0| ) Gl G+
SRR C vz
| (eh) |
NP e H— I
D G-ijl s LD
8(5-1) 8(i) B(+1)

Figure 3.3 Schéma représentatif de la disposition des points P, S, W et E considérés dans le
maillage.

oy* 7., . " .
=— |y (i+1/2,j+1/2)—y (i-1/2, j+1/2
o) b v ( )

(8\11* 1 {\v*(hj)w*(i,J'+1)+\v*(i+1,J+1)—w*(i+1,j)}

on ). 2an 2
L )y (04D v (-1 4D +y (-1, )
2A77| 2 2

En conséquence, la fonction Fe se présente sous la forme suivante:
1 +( : (s : +( s H +( .
Fe:Z[\V (i-1,j+1)+y (i-1,7)-y"(i+1,j+1)-y (I+1,j)] (3.25.2)

De maniere similaire, Le gradient au niveau de I’interface « w » s’exprime comme suit :

an

=ﬁ-\y*(i—l,j)+\|/+(i+1,1—1)+\|f+(i+1,j) -y (i-1,j-1)]

(a"’] :Ai[qﬁ(nl/z,j—l/z)—W*(i—llz,j—llz )
. A

La fonction Fy se présente sous la forme suivante:

Fu=g [ (=100 v (-1 30)-y (i+1,3-1)-y (i+1,]) ] (3:25.0)
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De maniére similaire, Le gradient au niveau de I’interface « n » s’exprime comme suit :

6@% :Aie[w*(i+1/2,j+1/2)—\,,*(i+1/2,j—1/2)]

oy') 1 [w+(i+1,1+1)+w+(i’i+1)+\|f+(i+1,j)+\v+(i,i)]

0 ) 20 2 2
S () ey (41, -1) (4L )+ y (L)
200 2 2

[aa—“éJ L () (L 1)y (1) v (1,1

On obtient alors :
1r ... . ol R ) il -
Fnzz[\p (i+1,j+1)+y (i, j+1)-y (i+1,j-1)-y (I,J—l)] (3.25.0)

Le gradient au niveau de I’interface « S » peut s’exprimer comme suit:

(68\5] _4A¢9[‘|’ 1)y (141, §-1)+ " (i=1, j+1)-y" (i, j-1))

L’expression de Fs devient :
(I il il oA Y.
FS=Z[\V (i1, §+20) 4y (i, j+1) -y (i-1,3-1)-y" (i, j-1)] (3.25.d)

an

Le coefficient T, est donné, selon le tableau 3.1, par : T, = %
a- ¢)+¢(pc”)

En substituant cette expression dans le systeme (3.20), les coefficients Dw, De, Ds et

Dn s’expriment comme suit :

‘

Knf
be=bu=gl — e
(a- ¢)+¢( )
. i (3.26)
K:lf
An
Dy,=De= 20 o ¢)+¢( p)
\ (pCp)
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Par conséquent, les nombres de Péclet associés au systeme d'équations (3.19) prennent

la forme suivante :

( (pCp) ( (pCp)
AT] (1_¢)+¢(pcp); AO (1_¢)+¢(pcp);
T Fe=Fog\— s
Ky Ky
4 : ! (3.27)
(pCp) ’ (pCp)
AT] (1_¢)+¢(pCp); AO (1_¢)+¢(pCp);
P=Fp\ — " Bo=hig\ ™=
\ K¢ \ Kg

Afin d’uniformiser les notations dans 1’équation (3.21), les points P, W, S, N et E sont

désignés respectivement par (i,j), (i,j-1), (i+1,j), (i,j+1) et (i-1,j).
Les coefficients aw, ag, as et an sont évalués au neeud de coordonnées (i, j).
Par conséquent, 1’équation (3.21) peut étre exprimée sous la forme suivante :
ar T (i,0)=anT (i+1,j)+aeT(i,j+1) +awT (i,j-1)+asT (i-1,]) (3.28)
3.3.1. Formulation discréte des conditions aux limites
Afin de respecter les conditions prescrites sur la tempeérature des parois, il est nécessaire que :
= Au niveau de la paroi extérieure elliptique (I=NI).
ap=1
aw=a=as=an=0etSt=0
= Au niveau de la paroi intérieure elliptique (1=1).
ap=1
aw=ae=as=an=0etSr=1
3.4. Formulation discréte de I'équation d’espéces:
L'équation sous forme discrete (3.14) peut étre exprimée de la maniére suivante :
a,C, =a;C¢+a,C, +a,,C, +a.C +b (3.29)
L'égalité entre le coefficient ap et celui spécifié dans I'équation (3.15) permet d'obtenir:

ap=ag+ay +a,, +ag (3.30)
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Les coefficients an, as, aw et ae sont exprimés conformément aux relations définies dans le

systeme (3.17).

Knf
- . 1 . .
Le coefficient Iy = % , selon le tableau 3.1, au niveau des interfaces w, e, s et
€ (1_¢)+¢( Pls
Pcp)f

n; les coefficients Dw, De, Ds et Dy sont déterminés a partir des expressions suivantes:

‘

Kns
481 Kf
DS_Dn_AnLe (pCp)
(1-¢)+¢ £
(Pcp)f
4 (3.31)
Kng
o _An1 Kr
Dw=De=7574 1) (pCp),
1-¢)+
\ ¢ ¢(pcp)f

Les nombres de Péclet associés au systeme d'équations (3.19) prennent alors les formes

suivantes:
( _ (pCp) ( _ (pCp),
P _ A_T]F Le S ¢)+¢(Pcp)f P _ EF Le @ ¢)+¢(Pcp)f
Y Ens ¢ € Kns
< e ) e (3:32)
AT] (1_¢)+¢(Pcp); AB (1_¢)+¢(pcp);
Ps = EF;LB E PW = EFWLQ T
\ Kg \ Kf

Afin d’uniformiser les notations dans I'équation (3.29), les points P, E, W, S et N sont

respectivement notés (i,j), (i,j-1), (i-1,j) , (i+1,)) et (i,j+1).
Les coefficients aw, ag, as et an sont évalués au nceud de coordonnées (i, j).
Par conséquent, 1’équation (3.29) s’exprime de la maniére suivante :

apC+(i,J')=awC*(i,j—1)+aEC*(i,J'+1)+asC*(i—1,J')+aNC+(i+1,J') (3.33)

3.4.1. Formulation discréte des Conditions aux limites

Pour respecter les conditions applicables a la concentration a proximité des parois, il est

nécessaire que:
= Au niveau de la paroi extérieure elliptique (I=NI).

ar=1
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aw=a=-as=an=0etSr=0
= Au niveau de la paroi intérieure elliptique (I=1).
ar=1

aw=a=as=an=0etSr=1

3.5. Formulation discréte de I'équation de mouvement
L'équation sous forme discréte (3.14) peut étre exprimée de la maniere suivante :

app=asmstayontay owtasme+b (3.34)

L'égalité entre le coefficient ap et celui spécifié dans I'équation (3.15) conduit a I’expression

suivante:
ap=ag+a, +a,, +a; (3.35)
Avec: AV.Sp=0

Les coefficients an, as, aw et as sont définis selon les expressions fournies dans le
systeme (3.17).

Pr

. selon le tableau 3.1, au niveau des interfaces w, e, s et
(1—¢)2-5(<1—¢)+¢,’,’—;>

Le coefficient I, =

n; les coefficients Dw, De, Ds et Dn sont obtenus a partir des expressions suivantes:

(L
Ds—Dn——I

]
\(1 e 5((1 ¢)+¢—> /
|

(3.36)

Dw De Pr

/— |
\ \(1 92 5((1 ¢)+¢—f> }

Les nombres de Péclet associés au systeme d'‘équations (3.19) s’écrivent alors sous les

formes suivantes:

(h=22a- ¢)2'5((1—¢)+¢§—;> [r=fira ¢)2'5<(1_¢)+¢’€_;>

, An Pr (337)
Po= (- ) ((1 — )+ ‘f’ﬁ_ﬁ) Ro=tym (=90 <(1 B ¢’Ij—;>

Les expressions des coefficientsF, ,F,, F, et F sont identiques a celles définies dans les

équations (3.25.a), (3.25.b), (3.25.c) et (3.25.d).
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Le tableau 3.1 indique que le terme constant (So) associé au terme de source est

exprimé par la relation suivante :

_ 1 Bs 1 aT+ .
So = Ra.Pr ST + —55; i ke ({5 [—F(n,0) sin(a) — G(n,0) cos(a)] +
dos LT Gy

% [F(n,0) cos(a) — G(n,0) sin(a)]} +N {% [—F(n,0) sin(a) — G(n, 0) cos(a)] +
act .
%= [F(n,6) cos(@) — G, ) sin(a)]}) (3.38)
En conséquence, le coefficient b s’écrit comme suit:
b = AV SO
Avec:
AV = H2.A0.An.1

Le coefficient b s’exprime alors comme suit :

2 1 Bs 1 aT* .
b=H*Ra.Pr|\ g2+ 45 X ({— [—F(n,0) sin(a) — G(n,0) cos(a)] +
ol br gt %6

% [F(n,6) cos(a) — G(n, 6) sin(a)]} +N {% [—F(n,0) sin(a) — G(n, 0) cos(a)] +

%[F(n, 6) cos(a) — G (y, 6) sin(a)]}) 46. Ay (3.39)
Avec:
a i’j=2—19h+<i,j+1>— T (ij-1)] (340)
% i‘j=ﬁ[T*(i+l,J )- T (i-1,)] (3.41)
e i,fﬁ[‘f(i’ j+1)-c*(ij-1)] (3:42)
< i,fz_;[d(”l’j)_ c(i-1,j)] (3:43)
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Afin d’homogénéiser les notations, et en se référant au paragraphe antérieur, les
nceuds P, W, E, S et N sont respectivement associés aux positions (i+1,)), (i,j), (i,j-1), , (i-1,j)
et (i,j+1).

Les coefficients as, an, aw, ae ainsi que le terme b sont évalués au niveau du noeud (j, ).

L’équation discrétisée du mouvement (3.34) s’exprime finalement sous la forme suivante:

2y 0r(i,]) = as s (i-1,])+ay on(i+1,j)+ay ow(i j-1)

3.44
+a; of(i,j+1)+ b (3.44)

3.5.1. Formulation discrete des Conditions aux limites

Pour évaluer la vorticité aux parois, nous adoptons la méthode proposée par Roache
[82], laquelle consiste a exprimer la vorticité en fonction de la fonction de courant a 1’aide

d’un développement en série de Taylor.

- Condition appliquée a la paroi interne elliptique (1=1).

. 1 82 + a2 +
oo if v oy
H ae 61’] n=ng

Afin de calculer le comportement de la fonction de courant prés de la paroi interne, nous

effectuons un développement en série de Taylor en ce point (i=1,j):

Moy @), () o®y'(Lj),
1 on 20 oy’

vi(2,)=v @)+

La vorticité au niveau de cette paroi s’exprime comme suit :

e Au niveau de la paroi extérieure elliptique (I=NI).

X 1 az + 82 +
SRV
H[ 06" om | .

La vorticité au niveau de cette paroi s’exprime comme suit:
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2 e (Nt 1
o (NI, j)=— 21 W(“V (NLj)+y (NI 1,1))
H*(NI) @(W+(Nl’j+l)_2\|’+(vaj)+\41+(NI,j_1))

3.6. Formulation discréete de I'équation associée a la fonction de courant

L’équation sous forme adimensionnelle (2.30) peut étre reformulée de la maniére

suivante:

e OOV, 0w
H‘”_ae[ 20 }an( %J (349

La correspondance entre cette équation et 1’équation (3.4) ne pouvant étre établie
aisément, la discrétisation a été effectuée a ’aide d’un procédé d’approximation utilisant la

série de Taylor :

- . az\v+ 82W+
~H (i o (]) = T
00> ) om ).
] ]
Avec:
o°f N o°f _ fiaj-2f 5 +1 + fim-2f+F (3.46)
ox* oy’ Ax? Ay® '
Yy

Il en résulte que :
W)= | b bav) v e )

Ly (+10)- 207 ) + w*(i—l,j))}

(An)

(3.47)

On exprime alors la fonction de courant au point P a partir des valeurs aux nceuds voisins
E, W, Set N, ce qui donne :

PO A S U Y B Y P VA
Y03 | [t )

sy Gen e v (-1 )+ G Do G )

1
(Anf
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3.6.1. Formulation discréte des Conditions aux limites

Conformément aux équations (2.31.a) et (2.32.a), les parois sont soumises aux

conditions aux limites suivantes :

e Au niveau de la paroi intérieure elliptique (1=1):

1
2 An

Lj

oy’

- [ v @i)eay (20)-3v (15)]=0

v (L])= %[— v (3J)+ay (2] )]
(3.49.9)

e Au niveau de la paroi extérieure elliptique (I=NI):

v ( Nl,i)=%[— v (NI-2,7)+ ay" (NI-L,])
(3.49.b)
Le systéeme linéaire résultant est résolu numeriqguement en appliquant la méthode des
sur-relaxations successives.
3.7. Formulation discrete des composantes directionnelles de la vitesse

L’équation (2.33.a) permet de déterminer les composantes adimensionnées Vn+ et Vy

de la vitesse. En appliquant la méthode des différences centrées, telle qu’utilisée par

ROACHE [82], on obtient les expressions discrétisées suivantes de ces composantes:

v;(ij)= H (1i’ ) aﬁ\glj = H(li’ j ){ 2ie(w+(i’ j+1)- v (i, j—1))} (3.50.a)

. -1 oy’ -1
Vi (i j)= \"J

H(ij) on ) (\I’+(i+1,i)- \W(i—l,j))} (3.50.b)

v (i, ]) i#1 ;i#NI

J#1:J #NN
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3.8. Méthode de sous relaxation
Parmi les différentes approches utilisées pour résoudre les systéemes d'équations, les méthodes
itératives occupent une place importante. Elles sont généralement préférées dans les cas

suivants :
e Larésolution des systemes de grande dimension.

e La résolution des systéemes composés d’équations algébriques non linéaires et

fortement couplées.

Parmi ces approches, la méthode de relaxation est employée afin de controler la
convergence du processus itératif, en permettant soit de ralentir, soit d’accélérer la

convergence vers la solution recherchée.

3.9. Algorithme de calcul

La résolution du systéme constitué des equations (3.28), (3.33), (3.44) et (3.48) repose
sur I’approche proposée par E.F. NOGOTOV [81].

Il est possible de reformuler ces équations de maniére a les rendre compatibles avec une

méthode itérative intégrant des coefficients de sous-relaxation, selon 1’expression suivante :

(i) = (1—RT)T”(i,j)+(%][aET”(i’i+1) (3.51)

p

aWTn+l(i’j_l)+ an Tn(i-i-l, ] )+ aSTn+l(i—1; J )]

Cn+l( i J) - (1_RT)C”(i,j)+[&j[ ae Cn(iaj‘”-) (3.52)

ap

a C" (i, i-1)+ a,C"(i+1,])+ a.C™(i-1,7)]

W (i) = (1-Ro)w" (i)} )+(&j[ acw(i,j+1) (3.53)

ap

ragw (Li=1)+ 4@ (i+10)+ a0 (i-1,§)+b(i,i)]

v 0) = @R (i )+ B2

zh£¥%§fr

v (L )+ v i1 )) +H* (i, ) o™ (i ) (559

v+ 1)+ -1 |
(a0Y (An)

n : ordre de l'itération.
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Nous procédons a la résolution du systeme constitué par les équations (3.51), (3.52),

(3.53) et (3.54) selon la démarche suivante :

1.

N ogakwd

10.

Mise en place des valeurs initiales de la concentration, de la température, de la
fonction de courant et de la vorticité sur I’ensemble du maillage.

Evaluation de la répartition de la concentration dans I’ensemble du domaine.
Détermination de la répartition de la température dans tout le domaine du maillage.
Evaluation de la répartition de la fonction de courant dans I’ensemble du domaine.
Détermination de la distribution de la vorticiteé dans le domaine de calcul.
Détermination des composantes de la vitesse selon les directions du maillage.

L’itération se poursuit tant que la valeur de y présente des variations significatives, et
s’arréte dés que celles-ci deviennent négligeables, conformément au critére de

convergence suivant :

n+1

max y, —max "

max \Vn+l < 1078

Le méme critére de convergence est appliqué a la température.
Le méme critére de convergence est appliqueé a la concentration.
Enregistrement des valeurs calculées de C, T, y, o a la fin du processus de

convergence.

3.10. L’organigramme

48



Chapitre 3 Formulation Numérique

I

Lecture et écriture des données

l n=0, k=0
Initialisation des T, C, o, ¢

l n=n+1, k=k+1

Détermination de la répartition de T

l

Détermination de la répartition de C

|

Détermination de la Vorticité o

|

Détermination de la fonction de

courant y
)
Détermination de la répartition deT, C sur la paroi interne

Détermination des composantes des vitesses

non
Condition oui
De convergence
T (Tn+l Tn / R non Condition
De converaence
n+1 n non
\ :( + ) 2 .
y W W / CZ(Cn*lJrCn)/z - Condition

De convergence

Stokage des
non

n > nmax Valeursde T.C. v. ®

Calcul du nombre

Pas de de Nusselt local

Converaence
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4.1 Introduction

Ce chapitre présente les résultats obtenus ainsi que leur discussion. Afin d'illustrer ces
résultats de maniére optimale, ces derniers ont été segmentés en deux sections. La premiere se
concentre sur le phénomene de convection induit exclusivement par la température,
correspondant au cas ou N=0, au cours de laquelle nous représentons la distribution de la
température a ’aide de courbes isothermes, tandis que la circulation du nano-fluide est
représentée par I’iso-courant. Le taux du transfert thermique a la surface des parois de
I'anneau sera représenté par les nombres locaux et moyens de Nusselt.

La seconde partie porte sur la convection naturelle thermosolutale (N+#0). La structure de
I’écoulement y est représentée a I’aide de lignes de courant, celle de la concentration a 1’aide
des lignes d’iso-concentrations et la répartition de la température a I’aide des lignes
d’isothermes. Les taux de transport de masse et de chaleur aux parois de l'anneau sont
illustrés par les nombres locaux et moyens de Sherwood et de Nusselt.

Les principaux paramétres influents pris en compte dans cette étude sont :
Paramétres d’écoulement :

e Le nombre de Lewis (Le=2), exprimant le rapport entre la diffusivité thermique et la
diffusivité massique.

e La proportion entre les forces de flottabilité (N=1), qui représente la relation entre les
gradients de concentration et de température.

e le nombre de Rayleigh thermique (10°< Ra <5x10°), qui représente la variation
thermique.

Parametres géométriques :

e [’angle d’inclinaison de I’anneau « y »
e Les excentricités respectives des cylindres elliptiques interne (e1) et externe (e2).

4.2 Etude de maillage

Une procédure approfondie de test de maillage a été réalisée pour s’assurer que la
solution finale ne dépend pas du maillage. Il y a une augmentation de la taille du
maillage de 11x21 a 71x141. Le tableau 4.1 illustre les valeurs maximales de la
fonction de courant, ainsi que les valeurs moyennes des nombres de Nusselt et de

.. . . 3,
Sherwood sur la paroi interne, obtenues pour divers maillages avec Ra = 10, l'angle

d'inclinaison y =0", les excentricités e;=0.8 et e,=0.6, et différentes concentrations
volumiques de nanoparticules¢p = (0,0.03,0.06) . Par conséquent, il est décidé de
sélectionner 61x121.
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Tableau 4.1: Les valeurs maximales de la fonction de courant et aussi les valeurs moyennes
des nombres de Sherwood et de Nusselt sur la paroi interne, obtenues pour différents

maillages

Maillage 11x21 | 21x41 | 31x61 | 41x81 | 51x101 | 61x121 | 71x141
Nu, | 239 |245 |247 248 | 2.48 2.49 2.49
b =0 sh, [240 |253 |253 |253 |252 2.52 2.52
Ymax | 0.65 |0.66 |0.67 |0.67 |0.67 0.66 0.66
Ra=10° Nu, | 261 |267 |2.69 270 | 271 2.72 2.72

¢ =0.03

sh, |2.62 2.76 2.75 2.75 2.75 2.75 2.75
Ymar | 059 [0.60 |0.60 |0.60 |0.60 0.60 0.60
6 =006 | Nt 284 291 |293 [295 |295 2.96 2.96
sh, |285 |3.00 |3.00 |3.00 |3.00 2.99 2.99
Wmax | 094 1055 055 |[055 |0.55 0.55 0.55

4.3 Validation numeérique

Les résultats numériques sont comparées au cas du transport thermique par convection
naturelle purement thermique au sein de deux cylindres elliptiques concentriques [83]

et [37] pour la validation du modéle mathématique et numérique.

Le tableau 4.2 présente la variation du nombre moyen de Nusselt. Dans les deux cas,
on note que ces valeurs sont en excellent accord.

Tableau 4.2 : Comparaison des nombres de Nusselt moyens aux ellipses externe et interne

obtenus dans ce travail avec les résultats d'autres auteures.

€1 o Ray Nuo Nuo Nuo Nui Nui Nui

(Nos résultats) [83] [37] (Nosrésultats)  [83] [37]
0.90 0 104 1.17 1.19 1.15 3.46 3.53 3.54
0.86 90 104 1.37 1.35 1.39 3.73 3.68 3.70
0.86 90 4x10* 1.90 1.93 1.87 5.20 5.34 5.27
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4.4 Premiére partie (convection naturelle)

Dans cette partie ou on traite uniquement le transfert thermique par convection naturelle dans
un anneau elliptique remplie de nano-fluide cuivre-cau, on va examiner I’effet de la fraction
volumique des nanoparticules, I’angle d’inclinaison et le nombre de Rayleigh sur le taux de
transfert thermique. Les résultats sont présentés sous forme des isothermes et des lignes de
courant, ainsi que des nombres de Nusselt locaux et moyens.

4.4.1 L’impact du nombre de Rayleigh et de la fraction volumique de nanoparticules

4.4.1.1 Les isothermes et les iso-courants

La figure 4.1 représente les isothermes et les isocourants pour diverses valeurs de Rayleigh
lorsque $=0%. On observe qu’a Ra=103 la conduction est dominante, ol les contours des
isothermes sont presque concentriques et paralléles, et la répartition thermique montrant une
baisse de température de 1’ellipse chaude vers I’ellipse froide. Le flux est structuré en deux
cellules tournant tres lentement en sens opposé, et la fonction de courant présente des valeurs
trés faibles. Pour Ra = 10%, il y a des changements significatifs dans les lignes des isothermes
et la fonction de courant présente une augmentation marquée de ses valeurs, indiquant une
transition du transfert thermique par conduction au transfert thermique par convection,
toutefois cette derniére demeure peu prononcée. Pour Ra=10° la convection est
prédominante, il est évident qu’a mesure que le nombre de Rayleigh croit, I’épaisseur de la
couche isotherme prés de la paroi du cylindre s’élargit progressivement. Ainsi, I’écart de
température entre les parois elliptiques augmente. Le champ d'écoulement se compose de
deux cellules symétriques qui tournent lentement dans la direction opposee et la fonction de
courant présente une augmentation significative de ses valeurs. 1l est observé que I’élévation
du nombre de Rayleigh se traduit par une hausse du transport de chaleur.

Les figures 4.2 et 4.3 représentent les lignes isothermes et isocourants pour diverses valeurs
de Rayleigh a $=4% et $=8% respectivement. On observe qu’a Ra=10% les contours des
isothermes sont presque concentriques et paralleles. La répartition thermique montrant une
baisse de température de la paroi de I’ellipse chaude vers la paroi de I’ellipse froide, et la
conduction est dominante. Le champ d’écoulement est constitué de deux cellules symétriques
animees de rotations lentes en sens opposes, et la fonction de courant présente des valeurs
faibles. Pour Ra = 10% Le champ d’écoulement est constitué de deux cellules qui tournent
rapidement en sens opposé. L’intensité de 1’écoulement, représentée par la fonction de
courant, s’accroit de maniére notable, indiquant une transition du transfert thermique par
conduction vers le transfert thermique par convection, cependant elle reste relativement faible.
Pour Ra=10°, la convection est prédominante. On observe qu'une augmentation du nombre de
Rayleigh entraine un épaississement de la couche isotherme proche de la paroi du cylindre.
Ainsi, le gradient de température entre les parois des ellipses augmente. Dans ces régions, le
flux est plus rapide. On constate des valeurs élevées de la fonction de courant et de taux de
transport thermique.

L’impact de la proportion de nanoparticules de cuivre sur la structure du flux est illustré dans
les figures 4.2 et 4.3. 1l est évident que 1’ampleur des fonctions de courant augmente avec
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I’élévation de la proportion de nanoparticules provoquant ainsi une amélioration du transport
de chaleur
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Figure 4.1 Les lignes isothermes et iso-courants pour diverses valeurs du Rayleigha ¢ =
0%
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Figure 4.2 Les lignes isothermes et isocourants pour diverses valeurs du Rayleigh a ¢ = 4%
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Figure 4.3 Les lignes isothermes et isocourants pour diverses valeurs du Rayleigh a ¢ = 8%

4.4.1.2 Le nombre moyen de Nusselt

La variation du nombre moyen de Nusselt en fonction du nombre de Rayleigh, selon des
proportions variées des nanoparticules illustre sur la figure 4.4 (a). Les observations montrent
qu’ & concentration volumique de nanoparticules constante, le nombre moyen de Nusselt croit
de maniére significative avec 1’élévation du nombre de Rayleigh, et le taux de transfert
thermique maximal est atteint en incorporant des nanoparticules de cuivre dans le liquide de
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base.ll est évident qu’a des nombres de Rayleigh élevés, lorsque la convection est
prédominante, ’effet de la concentration des nanoparticules est plus perceptible.

La figure 4.4 (b) met en évidence I'impact de la concentration de nanoparticules sur le
nombre moyen de Nusselt pour diverses valeurs du Rayleigh. Les observations montrent qu’a
nombre de Rayleigh constant, le nombre de Nusselt croit linéairement en augmentant la
concentration de nanoparticules, cette élévation devient plus considérable (la pente de la ligne
est augmentée) pour une forte valeur de Rayleigh (Ra = 10°).

50 ;

1 L e
45+ ;

1 wod - — Ra=10°
4,01 ’ | — Ra=10*

] | -10°
3,5 354 o Ra=10

] o ‘
30 5 |

; 2804 e
2,57 254 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2,01
15-
3 4 5
10 10 10 0,00 0,04 0,08
Ra
@ tb)

Figure 4.4 La distribution du nombre moyen de Nusselt en fonction de la concentration des
nanoparticules et du nombre de Rayleigh

4.4.1.3 Le nombre de Nusselt local

Les figures 4.5 et 4.6 montrent la distribution des valeurs locales du nombre de Nusselt au
niveau des parois interne et externe du cylindre, respectivement. Il est remarque que les
valeurs locales minimales du nombre de Nusselt le long du paroi intérieur sont obtenues a la
position & = 90°(au milieu du fond le plus froid) ainsi que les valeurs locales les plus faibles
du nombre de Nusselt le long du paroi extérieur sont obtenues a la position8 = 270°. De plus,
on observe que I'existence de nanoparticules affecte les valeurs locales maximales du nombre
de Nusselt (sur les parois intérieurs et extérieurs) lorsque le nombre de Rayleigh est élevé,
mais pas sur les valeurs les plus faibles. Nous observons également qu’un nombre de
Rayleigh élevé conduit a des valeurs locales maximales plus importantes du nombre de
Nusselt.

57



Chapitre 4 Résultats et Discussions
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Figure 4.5 Les valeurs locales du nombre de Nusselt le long des parois intérieures du cylindre
pour diverses concentration des nanoparticules en (a) Ra=10%t (b) Ra=10°
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Figure 4.6 Les valeurs locales du nombre de Nusselt le long des parois extérieures du
cylindre pour diverses concentration des nanoparticules en (a) Ra=103%t (b) Ra=10°
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4.4.2 L’impact de ’inclinaison

4.4.2.1 Les isothermes et les iso-courants

Les figures 4.7, 4.8 et 4.9 illustrent les isocourants et les isothermes pour diverses valeurs de
concentration de nanoparticules et d’angle d’inclinaison égale a y = 30°,45°, et 60°, dans
I’ordre, lorsque le nombre de Rayleigh égal 8 Ra=10*. On observe que pour toutes les valeurs
de I’angle d’inclinaison ainsi que de le pourcentage volumique des nanoparticules, les
isothermes ont la forme d’un champignon. La chaleur est transférée de la paroi elliptique
interne jusqu’a la paroi elliptique externe. Dans le cas d’une enceinte inclinée y = 30°
lorsque¢ = 0, la structure du flux est formée par deux cellules animées de rotations lentes en
sens opposés, et la fonction de courant présente des valeurs tres petites, avec une valeur
maximale égale a¥,,., = 0.0028 . Pour¢ = 0.04 et¢p = 0.08 , la structure du flux est
formée par deux cellules tournant rapidement dans des directions contraires, et la fonction de
courant montre une €lévation significative de ses valeurs, avec des valeurs maximales égales
a Y =0.0036 et W, ,, = 0.0045 , respectivement. On note que les intensités d’iso-
courants augmentent avec la hausse de la concentration de nanoparticules. Dans le cas d’une
enceinte incline y = 45°, on observe que pour toutes les valeurs de la concentration des
nanoparticules ¢ = (0,0.04 et 0.08), la structure de 1’écoulement est formée par deux
cellules animées de rotations rapides en sens opposés. Dans ces conditions, la fonction de
courant présente des valeurs tres élevées, avec des valeurs maximales égales aW¥,, ., =
0.003,¥,,,.x = 0.004, et¥,,,, = 0.005, respectivement. Dans le cas de y = 60° avec ¢ =
(0,0.04 et 0.08), les valeurs de la fonction de courant sont¥,,,, = (0.0032,0.004,
et 0.005), respectivement. Ainsi,on constate que pour tous les angles d’inclinaison, si I’angle
d’inclinaison augmente, les valeurs de la distribution du flux augmentent. L’effet des fractions
volumiques de nanoparticules de cuivre et de ’angle d’inclinaison sur la structure du flux est
montré dans les Figs 4.7-4.9. De ces résultats, on peut conclure que plus la fraction volumique
des nanoparticules et I’angle d’inclinaison augmentent, plus les valeurs des lignes de courant
s’accroissent, ce qui entraine une augmentation du taux de transfert thermique.
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Figure 4.7 Isothermes et isocourants pour diverses valeurs du concentration des
nanoparticules a Ra=10%et y = 30°.
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Figure 4.8 Isothermes et isocourants pour diverses valeurs du concentration des
nanoparticules &8 Ra=10%et y = 45"
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Figure 4.9 Isothermes et isocourants pour diverses valeurs du concentration des
nanoparticules 8 Ra=10%et y = 60°.

4.4.2.2 Le nombre moyen de Nusselt

La figure 4.10 analyse I’influence du nombre de Rayleigh sur la valeur moyenne de Nusselt
pour diverses inclinaisons lorsque (0< ¢< 0. 08). De ces résultats, on observe que quelle que
soit I’angle d’inclinaison considéré, le nombre moyen de Nusselt croit exponentiellement avec
I’élévation du nombre de Rayleigh. En effet,on note qua faible nombre de Rayleigh, le
transport thermique s'effectue principalement par conduction au niveau de I’ellipse chauffée.

On peut également voir que I'impact de I'angle d'inclinaison devient plus marqué a des valeurs
élevées du nombre de Rayleigh ou le mode dominant du transfert thermique est la convection.
Il est également observé qu’une élévation de la fraction volumique des nanoparticules
entraine une amélioration du nombre moyen de Nusselt.

La figure 4.11 illustre I’évolution du nombre moyen de Nusselt en fonction du nombre de
Rayleigh pour différents fractions volumiques de nanoparticules et différentes enceintes
inclinées a y = 30°,45°, et 60°. A partir de ces resultats, on observe que pour chaque valeur
de concentration volumique, le nombre moyen de Nusselt croit avec l'augmentation du
nombre de Rayleigh.On note également que le nombre moyen de Nusselt croit avec
I’augmantation de la concentration des nanoparticules. Ainsi, & mesure que la concentration
volumique et I’angle d’inclinaison augmentent, le taux de transport de chaleur augmente
également.
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10° 10* 10°

Figure 4.10 Impact du nombre de Rayleigh sur le nombre moyen de Nusselt a plusieurs
angles ou ¢= (0.0, 0.04 et 0.08).
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Figure 4.11 La distribution du nombre moyen de Nusselt en fonction du nombre de Rayleigh
pour diverses concentrations de nanoparticules quand y = 30°,45°, and 60°.

4.4.2.3 Nombre de Nusselt local

Les figures 4.12 et 4.13 présentent les distributions du nombre local de Nusselt sur les
surfaces externe et interne de I’anneau pour différents angles d’inclinaison lorsque ¢ =
(0,0.04,et 0.08) a Ra=10* On remarque que le nombre local de Nusselt concernant la
surface extérieure de ’annulus est trés faible quand 180° < 8 < 225°, alors qu’il est tres
élevé quand 0° < 8 < 90°. Le nombre local de Nusselt au niveau de I’ellipse interne de
I’anneau est trés faible lorsque 0° < 8 < 90° alors qu’il est trés élevé lorsquel180° < 6 <
225°. On note également que I’angle d’inclinaison augmente, ce qui augmente le nombre
local de Nusselt. En effet, on note que les nombres de Nusselt extérieurs et intérieurs montrent
une distribution inverse.

Nuext

NUgy
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Figure 4.12 Impact de I’angle d’inclinaison sur la distribution locale du nombre de Nusselt
lorsque ¢= (0.0, 0.04 et 0.08) a Ra=10".

12 ! ! ! ! ! 12

Nuint
Nuint

0 90 180 270 360
0

Figure 4.13 Impact de I’angle d’inclinaison sur la distribution locale du nombre de Nusselt
lorsque ¢= (0.0, 0.04 et 0.08) a Ra=10*.

4.5 Deuxieme partie (transfert de masse et de chaleur)

Dans cette étude, des simulations numériques ont été menées en faisant varier plusieurs
parametres de contrble. Le nombre de Prandtl a été fixé a Pr = 6,2, tandis que le nombre de
Lewis a été maintenu constant a Le = 2. Différentes fractions volumiques de nanoparticules
de cuivre dispersées dans I’eau (fluide de base) ont été considérées : ¢ =0, 0.03, 0.06, 0.09 et
0.12. Par ailleurs, quatre valeurs du nombre de Rayleigh ont été analysées : Ra = 103, 104
10%t 5 x 10°. L étude s’est concentrée sur I’influence de ces paramétres sur la structure de
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I’écoulement ainsi que sur les mécanismes de transfert thermique et massique dans 1’espace
annulaire étudié.

4.5.1 L'impact du nombre de Rayleigh

45.1.1 les isothermes et les iso-courants et les iso-concentrations

Les figures (4.14- 4.17) illustrent les lignes iso-concentrations, isothermes et iso-courants
pour diverses valeurs du Rayleigh, lorsque l'angle y est égal a 0° et¢p = 0. Ces figures
révelent que 1’écoulement se développe selon un régime monocellulaire. Plus précisément,
dans la zone gauche de l'anneau, la cellule de convection se déplace dans le sens
trigonométrique, tandis que sur la partie droite, elle évolue dans la direction opposée. Ce
comportement est d0 a I'impact des forces de flottabilité, qui entrainent les particules du fluide
vers le haut. La figure 4.14 illustre qu’a un petit nombre de Rayleigh (Ra = 103), les lignes
iso-concentrations et isothermes adoptent une forme quasi paralléle et concentrique, Le
transfert massique au sein de 1’anneau est principalement controlé par la diffusion. Les iso-
courants se regroupent en deux cellules animees de rotations lentes en sens opposés.

En revanche, pour Ra = 10% la figure 4.15 révele que les lignes iso-concentrations et
isothermes évoluent progressivement pour adopter une forme caractéristique en champignon.
On remarque également une dissymétrie entre les distributions de concentration et de
température, cela s’explique par un nombre de Lewis Le= 2.0, signifiant que la diffusivité
thermique est deux fois supérieure a la diffusivité massique.

Pour un nombre de Rayleigh plus grand (Ra = 10° et 5x10°), les figures 4.16 et 4.17 indiquent
que les lignes isothermes et iso-concentrations se concentrent davantage a proximite des
parois. De plus, au centre de I’anneau, les valeurs de ces isolignes restent presque constantes
dans la moitié supérieure de cet anneau.
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Figure 4.14 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=102,
N=1, y=0°, Pr=6.2, e2=0.6 et e,=0.8
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Figure 4.15 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=10%,
N=1, y=0°Pr=6.2,e,=0.6 et 1=0.8.

Figure 4.16 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=10°,
N=1, y=0°, Pr=6.2, ,=0.6 et 1=0.8.
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Figure 4.17 Les lignes isothermes, iso-courants et iso-concentrations pour Le=2, Ra=5x10°,
N=1, y=0°, Pr=6.2, €2=0.6 et e1=0.8.

45.1.2 Les nombres de Nusselt et de Sherwood locaux
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Figure 4.18 Variation du nombre de Nusselt local pour différents valeurs de Rayleigh a ¢=0.
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Figure 4.19 Variation du nombre de Sherwood local pour différents valeurs de Rayleigh a
$=0.

La figure 4.18(A) illustre la distribution du nombre local de Nusselt sur la surface externe de
l'anneau pour différentes valeurs de Rayleigh lorsque ¢ = 0 et e; = 0,8. On remarque que
pour de faibles valeurs de Rayleigh (Ra=10°%), le nombre de Nusselt externe reste relativement
faible et quasi uniforme sur tout le domaine angulaire. Cela traduit une dominance du transfert
thermique par conduction avec une influence négligeable de la convection naturelle. Lorsque
Rayleigh augmente a 10, une légére augmentation de Nuex: apparait entre de135" <6 <
180°, indiquant le début d'une contribution notable de la convection naturelle dans le transfert
de chaleur. Pour des valeurs plus élevées de Rayleigh (10° et 5x10°), une pointe marquée est
visible autour ded = 135°, traduisant un transfert de chaleur localement intensifié par des
courants de convection plus vigoureux. De maniére générale, I'élévation de Rayleigh entraine
une augmentation significative de Nuex, soulignant que la convection naturelle devient
progressivement le mécanisme de transfert thermique prédominant.

La figure 4.18 (B) montre la variation du nombre de Nusselt interne selon 1’angle 6 pour
diverses valeurs de Rayleigh. On observe gque lorsque le nombre de Rayleigh est relativement
bas, telles que Ra=10° et Ra= 10% le profil du nombre de Nusselt interne reste relativement
bas et présente une variation modérée selon 1’angle 8. On note la présence d’un minimum
local dans la plage angulaire comprise entre135°et180°, ce qui traduit une faible intensité de
convection naturelle dans cette région. Avec 1’¢1évation du nombre de Rayleigh, notamment
pour Ra=10° et Ra=5x10°, le nombre de Nusselt interne croit globalement sur I’ensemble du
domaine angulaire. Cette évolution indique une intensification notable du transfert thermique
par convection naturelle. On observe également une dépression plus marquée autour de
6 = 135°, suggérant la présence d’une zone de stagnation thermique ou d’un point de
séparation des lignes de courant, ou le transfert de chaleur est localement réduit. En revanche,
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pour les angles proches de 0° et180°, le nombre de Nusselt interne atteint ses valeurs
maximales, témoignant d’un renforcement significatif du flux thermique dans ces régions.

La figure 4.19(A) montre la distribution du nombre de Sherwood local sur la surface externe
de l'anneau pour différentes valeurs de Rayleigh lorsque ¢$=0 et e; = 0.8. On observe que pour
de faibles valeurs de Rayleigh, notamment Ra=10° et Ra=10% le profil du nombre de
Sherwood externe Shex: reste globalement faible et relativement uniforme sur I’ensemble de
I’intervalle angulaire. Cela suggére un transport de masse limité et peu influencé par les
mouvements convectifs naturels. Cependant, & mesure que Ra augmente, notamment pour
Ra=105 et Ra=5xX1053, on observe une nette augmentation du Shex, avec une intensification
marquée autour ded = 135°. Ce pic prononcé traduit une forte concentration de transfert de
masse dans cette zone, en lien direct avec les courants ascendants induits par la convection
naturelle.

La figure 4.19 (B) montre la variation du nombre de Sherwood interne selon I’angle 0, pour
diverses valeurs de Rayleigh. On observe que dans le cas de faibles nombres de Rayleigh (10°
et 10%), le profil reste relativement modéré, avec une légére dépression centrée dans
'intervalle 135" < @ < 180°, traduisant une zone de faible convection naturelle due
probablement & une stagnation locale du fluide. A mesure que le nombre de Rayleigh croit
(10° et 5x105), la distribution de nombre de Sherwood devient plus marquée : une chute
prononcée se manifeste toujours autour ded = 135°. En revanche, les extrémités angulaires,
notamment versd = 0° et @ = 180°, affichent des valeurs maximales, ce qui traduit une
intensification significative du transfert de masse.

On peut également noter que les nombres de Nusselt et de Sherwood externe et interne
présentent une distribution opposée. La paroi externe présente un maximum, tandis que la
paroi interne présente un minimum. Ces deux extrémes sont atteints pour un angle situé
approximativement dans I’intervalle135° < 6 < 180°".

Ainsi, la distribution angulaire du nombre local de Sherwood suit une tendance similaire a
celle du nombre local de Nusselt, mettant en évidence une corrélation étroite entre les
mécanismes de transport thermique et massique en régime de convection naturelle. De plus,
les valeurs atteintes par le nombre de Sherwood sont supérieures a celles du nombre de
Nusselt, traduisant un transfert de masse plus intense que le transfert de chaleur dans des
conditions identiques.

4.5.2 Les effets de la fraction volumique

4.5.2.1 lesisothermes et les iso-courants et les iso-concentrations
Les figures (4.20 — 4.23) illustrent les lignes isothermes, iso-courants et iso-concentrations

pour diverses valeurs de Rayleigh, en fonction des fractions volumiques d'un nano-fluide. Il
est observé que 1 ‘élévation du nombre de Rayleigh s’accompagne d’une intensification de la

recirculation interne, résultant de forces de flottabilité plus importantes.
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La figure (4.20) montre que les isothermes et les iso-concentrations sont des courbes presque
paralléles et concentriques ce qui dénote que pour un faible nombre de Rayleigh Ra=103, le
transport de masse dans 1’espace annulaire est essenticllement contr6lé par le processus de
diffusion. Les lignes de courant de fluide s’organisent en deux cellules qui tournent trés

lentement dans des directions opposées.

Sur la figure (4. 21) Ra=10* pour ®=0.09 1’augmentation du nombre de Rayleigh qui traduit
une intensification de transfert de chaleur et de masse , a permis 1’apparition d’une bifurcation
donnant naissance a un cellule supplémentaire tournant dans le sens contraire des cellules
voisines. L’augmentation du nombre de Rayleigh et a fraction volumique, nous a permis donc
de passer a un autre régime d’écoulement, qui est 1’écoulement multicellulaire, avec

I’apparition de ces bifurcations dans la partie supérieure de notre espace annulaire,

Les figures (4.22, 4.23) montrent que le transfert de chaleur et de masse augmente avec
l'augmentation de la fraction volumique solide dans le nanofluide a des grands nombres de

Rayleigh, les valeurs de la fonction d'écoulement augmentent et les tourbillons se déplacent

vers le haut.
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®=0.12

Figure 4.20 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2,
Ra=10%, ¥ =0°, Pr=6.2, e:=0.8 et €,=0.6
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Figure 4.21 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2,
Ra=10%y=0°, Pr=6.2,e1=0.8 et £2=0.6.

3) Ra=10°
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Figure 4.22 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2,
Ra=10°, y=0°, Pr=6.2, 1=0.8 et £2=0.6.
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®=0.12

Figure 4.23 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2,
Ra=5x10°, y=0°, Pr=6.2,e1=0.8 et €,=0.6.

4.5.2.2 Les nombres moyens de Sherwood et de Nusselt
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Figure 4.24 La distribution du nombre moyen de Nusselt en fonction de Rayleigh et de la
concentration en nanoparticules

14

{ |—*—Ra=10° ‘ ‘
|——Ra=10° | L —
| |——Ra=5x10° ‘

2 - S S U I 2 : . : : , :
10° 10¢ 105 0,00 0,03 0,06 0,09 0,12
Ra ¢

80



Chapitre 4 Résultats et Discussions

Figure 4.25 La distribution du nombre moyen de Sherwood en fonction de Rayleigh et de la
concentration en nanoparticules

La figure 4.24 présente la distribution du nombre moyen de Nusselt en fonction de la
concentration volumique des nanoparticules et du nombre de Rayleigh. On observe tout
d’abord que, quel que soit les valeurs de ¢, le nombre moyen de Nusselt s’accroit avec la
hausse du nombre de Rayleigh, ce qui reflete une intensification du transfert thermique par
convection naturelle & mesure que I’effet de la flottabilité devient plus important. On note
également pour chaque valeur fixe de Ra, ’augmentation de ¢ entraine une élévation du
Numey. Ce résultat s’explique par I’incorporation de nanoparticules a haute conductivité
thermique dans le fluide de base, ce qui améliore globalement la capacité de transfert
thermique du nano-fluide.

A faibles valeurs de Ra, les écarts entre les différentes courbes sont relativement importants.
Cependant, lorsque Ra augmente, la différence devient moins significative. Cela s'explique
par le fait qu'a faible Ra, l'effet de la concentration volumique ¢ est plus marqué a cause de la
dominance de la conduction thermique. En revanche, a des valeurs plus élevées de Ra, le
mécanisme convectif prédomine, et l'effet additionnel des nanoparticules devient moins
prononceé relativement. La courbe correspondant a $=0,09 atteint les valeurs les plus élevées,
suggerant que cette concentration offre les meilleures performances thermiques parmi celles
étudiées.

La figure 4.25 montre la distribution du nombre moyen de Sherwood Shmey e€n fonction de
Rayleigh et de la concentration en nanoparticules. On constate tout d'abord que, pour toutes
les valeurs de ¢, Shmoy augmente progressivement avec ’accroissement de Ra, ce qui refléte
I’intensification du transport massique par convection naturelle, notamment lorsque les forces
de flottabilité deviennent dominantes par rapport aux forces diffusives. De plus, on observe
que pour un nombre de Rayleigh constant, I’accroissement de la concentration volumique ¢
entraine une hausse de Shmey. Cela s’explique par I’amélioration des caractéristiques de
transport du fluide due a la présence des nanoparticules. 1l est néanmoins important de
remarquer que I’écart entre les courbes correspondant aux différentes valeurs de ¢ est
relativement faible pour les petites valeurs de Ra, tandis qu’il devient de plus en plus
prononcé lorsque Ra augmente. Ainsi, ’effet de la concentration volumique devient plus
significatif a des valeurs de Rayleigh élevés.

4.5.3 L’impact de I’excentricité (e1):

Les figures 4.26 et 4.27 examiné I’impact de I'excentricité (e1) du cylindre intérieur.
Pour y =0°, $=0 et Ra prenant les valeurs 103, et 10° avec e; fixé a 0.6, nous avons considéré
trois valeurs de e; (0.7, 0.8, et 0.9) afin d'eétudier les distributions des isothermes, des iso-
concentrations et des iso-courants. Les résultats illustrés dans ces figures montrent
qu’indépendamment de 1’espace annulaire choisi (c’est-a-dire de la valeur de ei), une
augmentation du nombre de Rayleigh méne a une élévation du taux de transfert de masse et
de chaleur, ainsi qu'a un accroissement des valeurs maximales de la fonction de courant. De
plus, T’augmentation de ’excentricité e de I’ellipse intérieure entraine un élargissement de
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I’anneau, d0 a I’accroissement de 1’espace séparant les surfaces elliptiques interne et externe,

ce qui intensifie le mécanisme de convection natur

elle a double diffusion.
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£1=0.9

Figure 4.26 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2
Ra=10%, y = 0°, N=1 et €,=0.6.
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e:=0.9

Figure 4.27 Les lignes d’isothermes, d’iso-courants et d’iso-concentrations pour Le=2
Ra=10°, y =0°, N=1 et e,=0.6.
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La présente étude porte sur I’analyse du transfert simultané de masse et de chaleur par
convection naturelle dans un anneau elliptique a axe horizontal, rempli d’un nanofluide de
Cuivre-eau. L’influence de plusieurs parameétres a ¢été examinée, notamment [’angle
d’inclinaison de 1’anneau elliptique, la concentration volumique des nanoparticules, le nombre
de Rayleigh ainsi que I’excentricit¢ interne du cylindre a base elliptique, sur les
caracteristiques de nano-fluide et les performances de transfert thermique et massique.

Les résultats obtenus indiquent ce qui suit :

e Pour tous les angles d'inclinaison, une augmentation de la fraction volumique des
nanoparticules conduit a une intensification de I’écoulement, observable a travers les
lignes de courant.

e L'ajout de nanoparticules a considérablement renforcé les performances de transfert
thermique et massique.

e Les isothermes et les fonctions de courant ne sont pas réparties symeétriqguement pour
tous les angles d'inclinaison, saufy = 0°.

e Avec laugmentation du nombre de Rayleigh, I’impact de I’angle d’inclinaison sur le
transport de chaleur devient plus important, en particulier lorsque la convection
naturelle prédomine.

e Le transfert thermique, exprimé par le nombre moyen de Nusselt, s’intensifie avec la
hausse du nombre de Rayleigh.

e Une augmentation de I’angle d’inclinaison entraine une ¢lévation du taux de transfert
thermique, quelles que soient les valeurs de la concentration des nanoparticules.

e Dans tous les cas, la répartition des isothermes et des iso-courants est symétrique
autour de la ligne verticale.

e Par rapport au fluide basique, les impacts des nanoparticules sur les isothermes et les
iso-courants sont plus visibles dans le nano-fluide, en particulier pour les nombres de
Rayleigh élevés.

e [’accroissement de la concentration volumique des nanoparticules pour différentes
valeurs de Rayleigh conduit a une amélioration du nombre moyen de Nusselt du nano-
fluide.

e Lorsque I’excentricité e1 du cylindre elliptique interne augmente, I’espace annulaire
s’¢largit en raison de la plus grande séparation entre les parois interne et externe,
favorisant ainsi un renforcement de la convection naturelle doublement diffusive.

Ces résultats seront utilisés dans des applications industrielles impliquant un transfert
thermique et massique par convection naturelle sous des formes similaires a celle étudiée. Ces
effets peuvent également étre utilisés pour créer des chauffages de cockpit et des échangeurs
de chaleur.
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Conclusion Générale

A l'avenir, il est proposé une étude tridimensionnelle, ainsi que d'utiliser d'autres nanofluides
pour trouver les meilleurs.
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Résumé:

Dans cette thése, le transfert de chaleur et de masse par convection naturelle
dans un cylindre elliptique horizontal rempli d’un nanofluide Cu-eau a été étudie
numeérigquement. Les surfaces elliptiques intérieures chaudes et extérieures
froides de I'enceinte ont été maintenues a des températures et des concentrations
constantes Ti, Cy et T, C», respectivement, avec T, < T; et C, < Cj. Les
équations gouvernantes ont été résolues par la méthode du fonction de courant-
vorticité. La méthode de volumes finis a été utilisée pour discrétiser les
équations de contrdle (mouvement, continuité, énergie et concentration). La
plage de la fraction volumique des nanoparticules et le nombre de Rayleigh
étaient les suivants: 0<$<0.12 et 103<Ra<5x10°, respectivement. Les angles
d'inclinaison étaient y =0°, 30°, 45" et 60°. Les résultats ont été donnés sous
forme de contours isothermes, lignes de courant, isoconcentrations, nombres de
Nusselt moyens et locaux. L'impact des angles d'inclinaison, du nombre de
Rayleigh, de la fraction volumique des nanoparticules et de I'excentricité du
cylindre elliptique interne e; sur le taux de transfert de chaleur et de masse a été
examing.

Mots-clés : cylindre elliptique, nanofluid , le nombre de Rayleigh, convection
naturelle thermosolutale.
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NUMERICAL STUDY OF HEAT AND MASS TRANSFERS WITHIN AN
ELLIPTIC ANNULAR SPACE OF HORIZONTAL AXIS FILLED WITH
NANO-FLUID.

Abstract:

In this thesis, heat and mass transfer with natural convection in a horizontal
elliptical cylinder filled with a Cu-water nanofluid has been numerically studied.
The hot interior and cold exterior elliptical surfaces of the enclosure were
maintained at constant temperatures and concentrations T1, C1and Ta, Co,
respectively,with T,< T; and C,<C1.The governing equations have been solved
by the stream function-vorticity approach.The finite volume approach was
utilized to discretise the controlling equations (movement, continuity, energy,
and concentration). The volume fraction range of the nanoparticles and the
Rayleigh number was as follows: 0 < ¢ < 0.12 and 103 < Ra < 5 x 105,
respectively. The inclination angles were y= 0", 30°, 45°, and 60" .Results were
given as isotherm contours, streamlines,isoconcentrations, average and local
Nusselt numbers. The impact of inclination angles, Rayleigh number,
nanoparticle volume fraction, and the eccentricity of the internal elliptical
cylinder e; on the rate for heat and mass transfer was examined.

Keywords: elliptic cylinder, nanofluid, the Rayleigh number, thermosolutal
natural convection.
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