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1 Introduction

Fractional calculus, which extends the classical concepts of differentiation
and integration to non-integer orders, has garnered significant attention
due to its powerful ability to model memory and hereditary properties in
complex systems. It has found widespread applications in various scientific
and engineering domains, including blood flow dynamics, electrical circuits,
biology, chemistry, physics, control theory, wave propagation, and signal and
image processing. For comprehensive insights into its practical applications,
readers are referred to the works of Afshari et al. [1, 2, 3], Agrawal [4], Basti
et al. [5, 6, 7, 8], Benchohra et al. [9, 10, 11, 12, 13], Herrmann [14], Hilfer
[15], and Kilbas et al. [16].

In parallel, the twentieth century witnessed a revolutionary development
in quantum mechanics, which inspired the emergence of quantum calculus, a
framework introduced by Jackson in 1909 ([17]). This branch of calculus, which
avoids the traditional concept of limits, is deeply influential in mathematics,
mechanics, and physics [18, 19, 20]. Recognizing its potential, researchers
such as Al-Salam and Agarwal extended the theory to fractional q-calculus,
a synthesis of fractional and quantum calculus, to better model physical,
biological, and economic systems [21, 22].
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As a result, a significant body of research has emerged focusing on frac-
tional q-differential equations (q-FDEs), which offer refined modeling capabil-
ities in systems governed by nonlocality and discrete structures. For instance,
Salim et al. [23] analyzed the fractional q-difference problem{

(cDζ
qξ)(ς) = ℘(ς, ξ(ς)); ς ∈ Ψ := [0, β],

ξ(0) = ξ0 ∈ z,

where cDζ
q denotes the Caputo fractional q-difference operator of order ζ ∈

(0, 1] and z is a Banach space. In a related contribution, the existence of
solutions to an implicit q-fractional problem in Banach algebras was proven
in [24]:{

cDζ
q

(
ξ(ς)

h(ς,ξ(ς))

)
= ψ

(
ς, ξ(ς),cDζ

q

(
ξ(ς)

h(ς,ξ(ς))

))
; ς ∈ Ψ := [0, β],

ξ(0) = ξ0 ∈ R.

More recently, the importance of nonlinear fractional q-differential equations
has grown due to their ability to characterize complex systems with greater
fidelity.

In [25], the existence and uniqueness of solutions for the following Cauchy-
type q-fractional problem of the form D

δ,η
q,a+x (t) = ψ (t, x (t)) , n− 1 < δ ≤ n, n ∈ N, 0 ≤ η ≤ 1,

lim
t→a+

(
Dk
q J

(n−δ)(1−η)
q x

)
(t) = ck ∈ R, k = 0, 1, . . . , n− 1,

were studied. Here Dδ,ηq,a+ is the Hilfer fractional q-derivative of order δ, and

ψ : [a, b]× R× R→ R, for 0 < a < b <∞.
This work aims to study the existence, uniqueness, and stability of solutions

for a problem of nonlinear fractional q-differential equations involving Hilfer-
Katugampola q-derivatives of moving orders in the Banach space L1

q,ρ ([a, b] ,C)
with initial conditions.

The problem under consideration is written as follows:

ρDα,ηq,a+ [x (t)− h (t)] = ψ
(
t, x (t) , ρDβ,ηq,a+ [x (t)− h (t)]

)
, (1)

where t ∈ Ω = [a, b], for some reals b > a > 0, with the following conditions

ρDγ−1
q,a+x (a) = ω ∈ C, and ρDγ−kq,a+x (a) = 0, for k = 2, 3, . . . , n. (2)

Here ρDα,ηq,a+ and ρDβ,ηq,a+ are the q-analogue of Hilfer-Katugampola fractional
derivatives of order α and β respectively, with 0 ≤ η ≤ 1, m − 1 < β ≤
m ∈ N, θ = β + η (m− β), max {θ, n− 1} < α ≤ n for n ∈ N − {1}, and
γ = α+ η (n− α). Also, 0 < q < 1, ρ > 0, and h ∈ L1

q,ρ (Ω,C) is a complex-
valued function given by

h (t) =
ω (tρ − aρ)(γ−1)

qρ

[ρ]
γ−1
q Γqρ (γ)

. (3)
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We mention that the operator ρDαq,a+ presents the Katugampola fractional
q-derivative of order α, while ψ : Ω×C×C→ C is a nonlinear complex-valued
function.

We impose the following hypotheses:
(H1) ψ : Ω×C×C→ C is a nonlinear complex-valued function such that

ψ
(
·, x (·) , ρDβ,ηq,a+ [x (·)− h (·)]

)
∈ L1

q,ρ (Ω,C) , x, h ∈ L1
q,ρ (Ω,C) ,

and there exist two nonnegative constants c1 and c2 such that the function ψ
satisfies

|ψ (t, x, y)− ψ (t, x̃, ỹ)| ≤ c1 |x− x̃|+ c2 |y − ỹ| ,

for any x, y, x̃, ỹ ∈ C.
(H2) There exist three nonnegative functions u1 ∈ L1

q,ρ (Ω,R+) and
(ui)i=2,3 ∈ C (Ω,R+), such that the function ψ satisfies

|ψ (t, x, y)| ≤ u1 (t) + u2 (t) |x|+ u3 (t) |y| ,

for any x, y ∈ C and each t ∈ Ω.
We denote

u∗1 = ‖u1‖L1
q,ρ

, u∗2 = sup
t∈Ω
|u2 (t)| , u∗3 = sup

t∈Ω
|u3 (t)| , and λα =

(bρ − (qa)
ρ
)
(α)
qρ

[ρ]
α
q Γqρ (α+ 1)

.

For simplifying the writing, we substitute λ with λα, and we use κ instead of
λα−β .

2 Necessary Definitions and Preliminaries

This section provides definitions and lemmas for some q-calculus concepts
that will be used in this paper (see [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30]).

Let 0 < q < 1 and α ∈ C, we define the q-integer [α]q by

[α]q =

{
1−qα
1−q , q 6= 1,

α, q = 1,

then

[ρα]q =
1− qρα

1− q
=

1− qρα

1− qρ
1− qρ

1− q
= [ρ]q [α]qρ .

The definition of q-factorial [n]q! is

[n]q! =

{
[n]q × [n− 1]q × · · · × [1]q , n ∈ N,
1, n = 0.
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We introduce the q-shifted as follows

(t− a)
(0)
q = 1, (t− a)

(n)
q =

n−1∏
k=0

(
t− aqk

)
, for n ∈ N and 0 ≤ a ≤ t.

The q-shifted is also introduced for α ∈ C with α /∈ N by

(t− a)
(α)
q = tα

∞∏
k=0

t− qka
t− qα+ka

, 0 ≤ a ≤ t.

For α ∈ C \ {−n, n ∈ N ∪ {0}}, the q-Gamma function is defined by

Γq (α) =
(1− q)(α−1)

(1− q)α−1 , 0 < q < 1.

Obviously

Γq (1) = 1, Γq (n+ 1) = [n]q! and Γq (α+ 1) = [α]q Γq (α) .

The q-derivative of a function x is defined by

D0
qx (t) = x (t) , and Dqx (t) =

x (t)− x (qt)

(1− q) t
, t 6= 0,

and Dqx (0) = lim
t→0

Dqx (t). Also, the q-derivative of higher order is given by(
Dm
q x
)

(t) = DqD
m−1
q x (t) , m ∈ N.

The following formulations with respect to t and a have q-derivatives that
can be expressed as

tDq

[
(tρ − aρ)(α)

qρ

]
= tρ−1 [ρα]q (tρ − aρ)(α−1)

qρ , (4)

and

aDq

[
(tρ − aρ)(α)

qρ

]
= −aρ−1 [ρα]q (tρ − (qa)

ρ
)
(α−1)
qρ . (5)

Additionally, reversing the integration’s order is provided by∫ b

a

∫ t

a

x (τ) dqτdqt =

∫ b

a

∫ b

qτ

x (τ) dqtdqτ. (6)

When q → 1, the foregoing results are equivalent to those in ordinary.
For ρ ∈ R, 0 < q < 1, we define the Banach space

L1
q,ρ (Ω,C) =

{
x : Ω→ C, ‖x‖L1

q,ρ
<∞

}
,

with

‖x‖L1
q,ρ

=

∫ b

a

tρ−1 |x (t)| dqt. (7)

Now, we give some definitions of q-fractional operators introduced in [28, 29,
26, 27], with a little change in the notation.
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Definition 1. Let α > 0, 0 < q < 1, and ρ > 0, be such that x ∈ L1
q,ρ (Ω,C),

the left-sided fractional q-integral of Katugampola is defined by

ρJ αq,a+x (t) =
[ρ]

1−α
q

Γqρ (α)

∫ t

a

τρ−1 (tρ − (qτ)
ρ
)
(α−1)
qρ x (τ) dqτ.

Lemma 2. The Katugampola fractional q-integral ρJ αq,a+ is well defined and

bounded in L1
q,ρ (Ω,C), with∥∥∥ρJ αq,a+x∥∥∥L1

q,ρ

≤ λ ‖x‖L1
q,ρ

,

for any α > 0, 0 < q < 1, and ρ > 0.

Proof. Let x ∈ L1
q,ρ (Ω,C). Employing (4) and (6) gives us

∥∥∥ρJ αq,a+x∥∥∥L1
q,ρ

=

∫ b

a

tρ−1

∣∣∣∣∣ [ρ]
1−α
q

Γqρ (α)

∫ t

a

τρ−1 (tρ − (qτ)
ρ
)
(α−1)
qρ x (τ) dqτ

∣∣∣∣∣ dqt
≤

[ρ]
1−α
q

Γqρ (α)

∫ b

a

τρ−1 |x (τ)|

[∫ b

qτ

tρ−1 (tρ − (qτ)
ρ
)
(α−1)
qρ dqt

]
dqτ

≤
[ρ]

1−α
q

[ρα]q Γqρ (α)

∫ b

a

τρ−1 |x (τ)|

[∫ b

qτ
tDq (tρ − (qτ)

ρ
)
(α)
qρ dqt

]
dqτ

≤ 1

[ρ]
α
q Γqρ (α+ 1)

∫ b

a

τρ−1 |x (τ)| (bρ − (qτ)
ρ
)
(α)
qρ dqτ

≤
(bρ − (qa)

ρ
)
(α)
qρ

[ρ]
α
q Γqρ (α+ 1)

∫ b

a

τρ−1 |x (τ)| dqτ

≤ λ ‖x‖L1
q,ρ
.

The proof is complete.

Definition 3. Let n − 1 < α ≤ n ∈ R, 0 < q < 1, and ρ > 0, then the
left-sided fractional q-derivative of Katugampola is defined by

ρDαq,a+x (t) =
(
t1−ρDq

)n ρJ n−αq x (t)

=
[ρ]

1−n+α
q

Γqρ (n− α)

(
t1−ρDq

)n ∫ t

a

τρ−1 (tρ − (qτ)
ρ
)
(n−α−1)
qρ x (τ) dqτ,(8)

provided that x ∈ L1
q,ρ (Ω,C), with

(
ρD0

q,a+x
)

(t) = x (t).

The following results are given in [26] with consideration that 0 < q < 1
and ρ > 0.
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Lemma 4. Let α, β > 0, then the semi-group property for the Katugampola
fractional q-integral is given by(

ρJ αq ρJ βq x
)

(t) =
(
ρJ α+β

q x
)

(t) , ∀x ∈ L1
q,ρ (Ω,C) .

Lemma 5. For n− 1 < α ≤ n ∈ N, and x ∈ L1
q,ρ (Ω,C), we get(

ρDαq,a+
ρJ αq,a+x

)
(t) = x (t) , ∀t ∈ Ω.

Lemma 6. Let n− 1 < α ≤ n ∈ N, be such that x ∈ L1
q,ρ (Ω,C), then

(
ρJ αq,a+

ρDαq,a+x
)

(t) = x (t)−
n∑
k=1

[ρ]
k−α
q

ρDα−kq,a+x (a)

Γqρ (α− k + 1)
(tρ − aρ)(α−k)

qρ .

Lemma 7. Assume β ≥ α ≥ 0, if x ∈ L1
q,ρ (Ω,C), then(

ρDαq,a+
ρJ βq,a+x

)
(t) = ρJ β−αq,a+ x (t) , ∀t ∈ Ω.

Moreover, if ρDα−βq,a+x (t) exists and α ≥ β ≥ 0, then for all t ∈ Ω, we obtain(
ρDαq,a+

ρJ βq,a+x
)

(t) = ρDα−βq,a+x (t) .

Definition 8 (Hilfer-Katugampola fractional q-derivative [27]). Let n− 1 <
α ≤ n ∈ N and 0 ≤ η ≤ 1. The q-analogue of left-sided Hilfer-Katugampola
fractional derivative ρDα,ηq,a± is defined by

ρDα,ηq,a+x (t) =
(
ρJ η(n−α)

q,a+

(
t1−ρDq

)n ρJ (1−η)(n−α)
q,a+ x

)
(t) .

Here ρJ αq,a+ presents the Katugampola fractional q-integral given by Definition
1.

The derivative ρDα,ηq,a+ can be expressed in terms of the Katugampola
fractional q-integral ρJ αq,a+ and q-derivative ρDαq,a+ as follows

ρDα,ηq,a+ = ρJ η(n−α)
q,a+

(
t1−ρDq

)n ρJ n−γq,a+

= ρJ η(n−α)
q,a±

ρDγq,a+

where γ = α+ η (n− α). Consequently, ρDα,ηq,a+ is well defined in L1
q,ρ (Ω,C).

Remark 9. The q-analogue of Hilfer-Katugampola fractional derivative
ρDα,ηq,a± becomes

1. The q-analogue of Hilfer fractional derivative when ρ→ 1.

2. The q-analogue of Hilfer-Hadamard fractional derivative when ρ→ 0+.
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3. The q-analogue of Katugampola fractional derivative (8) for η = 0,
which generalizes

(i) Riemann-Liouville type fractional q-derivative when ρ→ 1.

(ii) Hadamard type fractional q-derivative when ρ→ 0+.

4. The q-analogue of Caputo-Katugampola fractional derivative [29] for
η = 1, which generalizes

(i) Caputo type fractional q-derivative when ρ→ 1.

(ii) Caputo-Hadamard type fractional q-derivative when ρ→ 0+.

The following results are in [26, 27].

Lemma 10. Let δ ∈ C be such that Re(δ) > −1, then(
ρJ αq,a+ (tρ − aρ)(δ)

qρ

)
(t) =

Γqρ (δ + 1)

[ρ]
α
q Γqρ (α+ δ + 1)

(tρ − aρ)(α+δ)
qρ ,

and(
ρDα,ηq,a+ (tρ − aρ)(δ)

qρ

)
(t) =

(
ρDαq,a+ (tρ − aρ)(δ)

qρ

)
(t) =

[ρ]
α
q Γqρ (δ + 1)

Γqρ (δ − α+ 1)
(tρ − aρ)(δ−α)

qρ ,

(9)
hold for every α, ρ > 0 and 0 < q < 1.

Lemma 11. Let n − 1 < α ≤ n ∈ N, 0 ≤ η ≤ 1, 0 < q < 1, and ρ > 0, be
such that γ = α+ η (n− α). If x ∈ L1

q,ρ (Ω,C), then(
ρJ αq,a+

ρDα,ηq,a+x
)

(t) =
(
ρJ γq,a+

ρDγq,a+x
)

(t)

= x (t)−
n∑
k=1

[ρ]
k−γ
q

ρDγ−kq x (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ .

Also, if ρDη(n−α)
q,a+ x exists, then

ρDα,ηq,a+
ρJ αq,a+x = ρJ η(n−α)

q,a+
ρDη(n−α)

q,a+ x. (10)

3 Existence and Uniqueness of Solutions

Throughout the rest of this paper, we put 0 ≤ η ≤ 1, m− 1 < β ≤ m ∈ N,
θ = β + η (m− β), and

max {θ, n− 1} < α ≤ n ∈ N− {1} .

Also γ = α+ η (n− α), 0 < q < 1, and ρ > 0.
In this following, we present some lemmas to illustrate our main results.
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Lemma 12. We have

1. The complex-valued function h given by (3) satisfies ρDγ−1
q,a+h (t) = ω,

and can be expressed by

h (t) =

n∑
k=1

[ρ]
k−γ
q

ρDγ−kq h (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ .

2. We have (
ρJ γq,a+

ρDγq,a+h
)

(t) = 0, ∀t ∈ Ω. (11)

Proof. We apply (9) for α = γ − k and δ = γ − 1, we get

ρDγ−kq,a+h (t) =
ω

[ρ]
γ−1
q Γqρ (γ)

ρDγ−kq,a+ (tρ − aρ)(γ−1)
qρ

=
ω

[ρ]
γ−1
q Γqρ (γ)

(
[ρ]

γ−k
q Γqρ (γ − 1 + 1)

Γqρ (γ − 1− (γ − k) + 1)
(tρ − aρ)(γ−1−(γ−k))

qρ

)
=

ω

[ρ]
k−1
q Γqρ (k)

(tρ − aρ)(k−1)
qρ .

1. For k = 1, we obtain ρDγ−1
q,a+h (t) = ω, and ρDγ−kq,a+h (a) = 0 for each

k = 2, 3, . . . , n. Then

h (t) =

n∑
k=1

[ρ]
k−γ
q

ρDγ−kq h (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ .

2. Similarly, Lemma 6 implies

(
ρJ γq,a+

ρDγq,a+h
)

(t) = h (t)−
n∑
k=1

[ρ]
k−γ
q

ρDγ−kq h (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ

= h (t)− h (t)

= 0.

The proof is complete.

Lemma 13. Let x ∈ L1
q,ρ (Ω,C), then problem (1)–(2) is equivalent to the

q-integral equation

x (t) = h (t) + ρJ αq,a+ϕ (t) , t ∈ Ω, (12)

where ϕ ∈ L1
q,ρ (Ω,C) satisfies

ϕ (t) = ψ
(
t, h (t) + ρJ αq,a+ϕ (t) , ρJ α−βq,a+ ϕ (t)

)
.
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Proof. Let x ∈ L1
q,ρ (Ω,C) satisfies problem (1)–(2). Starting applying ρJ αq,a

on both sides (1), we obtain

ρJ αq,a+
ρDα,ηq,a+ [x (t)− h (t)] = ρJ αq,a+ψ

(
t, x (t) , ρDβ,ηq,a+ [x (t)− h (t)]

)
.

(13)
As

ρJ αq,a+
ρDα,ηq,a+ [x (t)− h (t)] = ρJ γq,a+

ρDγq,a+ [x (t)− h (t)]

= ρJ γq,a+
ρDγq,a+x (t) − ρJ γq,a+

ρDγq,a+h (t) .

After using (11) from Lemma 12, and employing Lemma 11, we get

J αq,a+
ρDα,ηq,a+ [x (t)− h (t)] = x (t)−

n∑
k=1

[ρ]
k−γ
q

ρDγ−kq x (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ .

Substituting in (13) and using conditions (2), we obtain

x (t) = h (t) + ρJ αq,a+ϕ (t) ,

where ϕ (t) = ψ
(
t, x (t) , ρDβ,ηq,a+ [x (t)− h (t)]

)
. In addition,

ρDγ−1
q,a+x (t) = ω + ρDη(n−α)−1

q,a+ ϕ (t) , for every t ∈ Ω.

As ρDγ−1
q,a+x (a) = ω, we deduce that

ρDη(n−α)−1
q,a+ ϕ (a) = 0. (14)

Since β + η (m− β) = θ < α, employing Lemma 7 allows us to write

ρDβ,ηq,a+ [x (t)− h (t)] = ρDβ,ηq,a+
[
h (t) + ρJ αq,a+ϕ (t) − h (t)

]
= ρDβ,ηq,a+

ρJ αq,a+ϕ (t)

= ρJ η(m−β)
q,a+

ρDθq,a+
ρJ αq,a+ϕ (t)

= ρJ η(m−β)
q,a+

ρJ α−β−η(m−β)
q,a+ ϕ (t)

= ρJ α−βq,a+ ϕ (t) ,

then we can define ϕ ∈ L1
q,ρ (Ω,C) as a nonlinear complex-valued function

that is satisfying the functional equation

ϕ (t) = ψ(t, ω + ρJ αq,a+ϕ (t) , ρJ α−βq,a+ ϕ (t) ).

Otherwise, assume that x ∈ L1
q,ρ (Ω,C) satisfies equation (12), next, we

prove that x satisfies problem (1)–(2). We apply the operator ρDα,ηq,a+ Hilfer-

Katugampola q-derivative on both sides of equation (12), we obtain

ρDα,ηq,a+ [x (t)− h (t)] = ρDα,ηq,a+
ρJ αq,a+ϕ (t) ,
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from (10), Lemma 6, and (14), we have

ρDα,ηq,a+
ρJ αq,a+ϕ (t) = ρJ η(n−α)

q,a+
ρDη(n−α)

q,a+ ϕ (t)

= ϕ (t)−
[ρ]

1−η(n−α)
q

ρDη(n−α)−1
q,a+ ϕ (a)

Γqρ (η (n− α))
(tρ − aρ)(η(n−α)−1)

qρ

= ϕ (t) ,

then we get equation (1).

Now, we show that conditions (2) hold. Applying ρDγ−kq,a+ in both sides of

(12), we get

ρDγ−kq,a+x (t) = ρDγ−kq,a+

[
h (t) + ρJ αq,a+ϕ (t)

]
= ρDγ−kq,a+h (t) + ρJ k−η(n−α)

q,a+ ϕ (t) , ∀k ∈ 1, n.

For t = a, we arrive to conditions (2). The proof is complete.

Theorem 14. Assume the hypotheses (H1)–(H2) hold. If we put κ ∈(
0,min

(
1
c2
, 1
u∗
3

))
and

λu∗2
1− κu∗3

< 1. (15)

Then problem (1)–(2) has a least one solution in L1
q,ρ (Ω,C).

Proof. First, we will transform problem (1)–(2) into a fixed point problem,
we define the operator

Bx (t) = h (t) +
[ρ]

1−α
q

Γqρ (α)

∫ t

a

τρ−1 (tρ − (qτ)
ρ
)
(α−1)
qρ ϕ (τ) dqτ, (16)

where ϕ = ψ
(
t, x, ρJ α−βq,a+ ϕ

)
∈ L1

q,ρ (Ω,C). Therefore Bx is an element of

L1
q,ρ (Ω,C) equipped with the norm

‖Bx‖L1
q,ρ

=

∫ b

a

tρ−1 |Bx (t)| dqt.

As (H1) holds, we notice that if x ∈ L1
q,ρ (Ω,C), then B is a continuous

operator as demonstrated in step1.
Next, we demonstrate that B satisfies the assumptions of Schauder’s fixed

point theorem, this could be proved through three steps.

a. B is a continuous operator
Let (xn)n∈N be a real sequence such that lim

n→∞
xn = x in L1

q,ρ (Ω,C).
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After using Lemma 2, we get

‖Bxn − Bx‖L1
q,ρ

=
∥∥∥ρJ αq,a+ϕn − ρJ αq,a+ϕ

∥∥∥
L1
q,ρ

=
∥∥∥ρJ αq,a+ (ϕn − ϕ)

∥∥∥
L1
q,ρ

≤ λ ‖ϕn − ϕ‖L1
q,ρ

,

where  ϕn (t) = ψ
(
t, xn (t) , ρJ α−βq,a+ ϕn (t)

)
,

ϕ (t) = ψ
(
t, x (t) , ρJ α−βq,a+ ϕ (t)

)
.

Hypothesis (H1) implies

‖ϕn − ϕ‖L1
q,ρ

=
∥∥∥ψ(t, xn, ρJ α−βq,a+ ϕn )− ψ(t, x, ρJ α−βq,a+ ϕ )

∥∥∥
L1
q,ρ

≤ c1 ‖xn − x‖L1
q,ρ

+ c2

∥∥∥ρJ α−βq,a+ (ϕn − ϕ)
∥∥∥
L1
q,ρ

,

then

‖ϕn − ϕ‖L1
q,ρ
≤ c1

1− κc2
‖xn − x‖L1

q,ρ
.

Then

‖Bxn − Bx‖L1
q,ρ
≤ λc1

1− κc2
‖xn − x‖L1

q,ρ
.

Since xn → x, when n → ∞, then ‖Bxn − Bx‖L1
q,ρ
→ 0 as n → ∞.

Hence

lim
n→∞

‖Bxn − Bx‖L1
q,ρ

= 0,

this implies the continuity of B.

b. B is defined from a bounded, closed, and convex subset into itself

Using (15), we define

r ≥

(
|ω| (bρ − aρ)(γ)

qρ

[ρ]
γ
q Γqρ (γ + 1)

+
λu∗1

1− κu∗3

)(
1− κu∗3

1− κu∗3 − λu∗2

)
and define the subset Pr as follows

Pr =
{
x ∈ L1

q,ρ (Ω, C) , ‖x‖L1
q,ρ
≤ r
}

.

It is clear that Pr is bounded closed and convex subset of L1
q,ρ (Ω,C).

Let B : Pr → L1
q,ρ (Ω,C) be the integral operator defined by (16), then
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B(Pr) ⊂ Pr.
Indeed, by employing (H2), we get

‖ϕ‖L1
q,ρ

=
∥∥∥ψ(t, x, ρJ α−βq,a+ ϕ )

∥∥∥
L1
q,ρ

≤ ‖u1‖L1
q,ρ

+ sup
t∈Ω
|u2 (t)| ‖x‖L1

q,ρ
+ sup
t∈Ω
|u3 (t)|

∥∥∥ρJ α−βq,a+ ϕ
∥∥∥
L1
q,ρ

.

Therefore

‖ϕ‖L1
q,ρ
≤ u∗1 + u∗2 ‖x‖L1

q,ρ
+ κu∗3 ‖ϕ‖L1

q,ρ
,

next

‖ϕ‖L1
q,ρ
≤ u∗1 + u∗2r

1− κu∗3
. (17)

Consequently

‖Bx‖L1
q,ρ

=
∥∥∥h+ ρJ αq,a+ϕ

∥∥∥
L1
q,ρ

≤ ‖h‖L1
q,ρ

+
∥∥∥ρJ αq,a+ϕ∥∥∥L1

q,ρ

≤
|ω| (bρ − aρ)(γ)

qρ

[ρ]
γ
q Γqρ (γ + 1)

+ λ ‖ϕ‖L1
q,ρ

≤
|ω| (bρ − aρ)(γ)

qρ

[ρ]
γ
q Γqρ (γ + 1)

+ λ

(
u∗1 + u∗2r

1− κu∗3

)

≤

(
|ω|(bρ−aρ)

(γ)

qρ

[ρ]γqΓqρ (γ+1) +
λu∗

1

1−κu∗
3

)(
1−κu∗

3

1−κu∗
3−λu∗

2

)
(

1−κu∗
3

1−κu∗
3−λu∗

2

) +
λu∗2r

1− κu∗3

≤ r

then B(Pr) ⊂ Pr.

c. B(Pr) is an equicontinuous subset
Let t1, t2 ∈ Ω, be such that t1 ≤ t2, and x ∈ Pr. By using (7) and (17),
we can obtain

max
t∈Ω
|ϕ (t)| ≤ ϕ∗ =

[ρ]q (u∗1 + u∗2r)

(bρ − aρ) (1− κu∗3)
.
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In another hand

|Bx (t2)− Bx (t1)| (18)

≤ |h (t2)− h (t1)|+
[ρ]

1−α
q

Γqρ (α)

∣∣∣∣∫ t2

a

τρ−1 (tρ2 − (qτ)
ρ
)
(α−1)
qρ ϕ (τ) dqτ

−
∫ t1

a

τρ−1 (tρ1 − (qτ)
ρ
)
(α−1)
qρ ϕ (τ) dqτ

∣∣∣∣
≤
|ω|
(

(tρ2 − aρ)
(γ−1)
qρ − (tρ1 − aρ)

(γ−1)
qρ

)
[ρ]

γ−1
q Γqρ (γ)

+
ϕ∗ [ρ]

1−α
q

Γqρ (α)
×[∫ t1

a

τρ−1
(

(tρ2 − (qτ)
ρ
)
(α−1)
qρ − (tρ1 − (qτ)

ρ
)
(α−1)
qρ

)
dqτ+∫ t2

t1

τρ−1 (tρ2 − (qτ)
ρ
)
(α−1)
qρ dqτ

]
. (19)

By applying (5), we get

τρ−1
(

(tρ2 − (qτ)
ρ
)
(α−1)
qρ − (tρ1 − (qτ)

ρ
)
(α−1)
qρ

)
=
−1

[ρα]q
τDq

(
(tρ2 − τρ)

(α)
qρ − (tρ1 − τρ)

(α)
qρ

)
,

then ∫ t1

a

(tρ2 − (qτ)
ρ
)
(α−1)
qρ − (tρ1 − (qτ)

ρ
)
(α−1)
qρ

τ1−ρ dqτ

≤
(tρ2 − aρ)

(α)
qρ − (tρ1 − aρ)

(α)
qρ − (tρ2 − t

ρ
1)

(α)
qρ

[ρα]q
.

Also

τρ−1 (tρ2 − (qτ)
ρ
)
(α−1)
qρ dqτ =

−1

[ρα]q
τDq (tρ2 − τρ)

(α)
qρ

then ∫ t2

t1

τρ−1 (tρ2 − (qτ)
ρ
)
(α−1)
qρ dqτ ≤

(tρ2 − t
ρ
1)

(α)
qρ

[ρα]q
.

Thus, (18) gives us

|Bx (t2)− Bx (t1)| ≤
|ω|
(

(tρ2 − aρ)
(γ−1)
qρ − (tρ1 − aρ)

(γ−1)
qρ

)
[ρ]

γ−1
q Γqρ (γ)

+
ϕ∗
(

(tρ2 − aρ)
(α)
qρ − (tρ1 − aρ)

(α)
qρ

)
[ρ]

α
q Γqρ (α+ 1)

.
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The right-hand side of the latter inequality approaches zero as t1 tends
to t2. Hence

lim
t1→t2

‖Bxt2 − Bxt1‖L1
q,ρ

= 0.

As a consequence of steps a., b., and c., and with the aid of the Ascoli-
Arzelà theorem, we deduce the continuity of B, its compactness, and its
satisfaction of the assumption required by Schauder’s fixed point theorem [31].
Consequently, B possesses a fixed point in L1

q,ρ (Ω,C) that solves problem
(1)–(2).

Theorem 15. Assume the hypothesis (H1) holds. If we put κ ∈
(

0, 1
c2

)
and

λc1
1− κc2

< 1, (20)

then problem (1)–(2) admits a unique solution in L1
q,ρ (Ω,C).

Proof. Let x1, x2 ∈ L1
q,ρ (Ω,C), then

‖Bx1 − Bx2‖L1
q,ρ
≤ λ ‖ϕ1 − ϕ2‖L1

q,ρ

where
ϕi = ψ

(
t, xi,

ρJ α−βq,a+ ϕi

)
∈ L1

q,ρ (Ω,C) , ∀i = 1, 2.

We have
‖ϕ1 − ϕ2‖L1

q,ρ
≤ c1

1− κc2
‖x1 − x2‖L1

q,ρ
.

Therefore

‖Bx1 − Bx2‖L1
q,ρ
≤ λc1

1− κc2
‖x1 − x2‖L1

q,ρ
.

Thus, according to (19), B is considered a contraction operator.
Banach’s contraction principal (see [31]) helps us infer that B has only

one fixed point which is the unique solution of problem (1)–(2).

4 Ulam-Hyers Stability Results of Solutions

In this section, we use Definitions 16 and 17 to study the stability of
equation (1) in L1

q,ρ (Ω,C).

Definition 16. Equation (1) is Ulam-Hyers stable if there exists a real
number µ > 0 such that for each ε > 0 and each solution y ∈ L1

q,ρ (Ω,C) of
the inequality∣∣∣ρDα,ηq,a+ [y (t)− h (t)]− ψ

(
t, y (t) , ρDβ,ηq,a+ [y (t)− h (t)]

)∣∣∣ ≤ ε, (21)

there exists a solution x ∈ L1
q,ρ (Ω,C) of (1), with

‖y − x‖L1
q,ρ
≤ µε.
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Definition 17. Equation (1) is generalized Ulam-Hyers stable if there exists
f ∈ C (R+,R+), with f(0) = 0, such that for each solution y, which is in
L1
q,ρ (Ω,C) of the inequality (20), there exists a solution x of (1) with

‖y − x‖L1
q,ρ
≤ f (ε) .

Remark 18. Ulam-Hyers stability concept ensures that if a function approx-
imately satisfies a given equation, such as inequality (20), then there exists an
exact solution close to it. This guarantees that small perturbations do not lead
to significant departures from the true solution, thus enhancing the reliability
of approximate solutions in practical applications.

Before proceeding, we present the following remark introduced in [32],
followed by a lemma aimed to simplify subsequent calculations.

Remark 19. If y ∈ L1
q,ρ (Ω,C) is a solution of the inequality (20), then there

exists g ∈ C (Ω,C), such that

1. ρDα,ηq,a+ [y (t)− h (t)] = ψ
(
t, y (t) , ρDβ,ηq,a+ [y (t)− h (t)]

)
+ g (t) , for any

t ∈ Ω,

2. |g (t)| ≤ ε, for all t ∈ Ω.

Lemma 20. If y ∈ L1
q,ρ (Ω,C) is the solution of the inequality (20), then

there exists ε > 0 such that y will be the solution of the inequality:∣∣∣y (t)− v (t)− ρJ αq,a+ψ
(
t, y (t) , ρDβ,ηq,a+ [y (t)− h (t)]

)∣∣∣ ≤ `ε,
with

` =
(bρ − aρ)(α)

qρ

[ρ]
α
q Γqρ (α+ 1)

and v (t) =

n∑
k=1

[ρ]
k−γ
q

ρDγ−kq y (a)

Γqρ (γ − k + 1)
(tρ − aρ)(γ−k)

qρ .

Proof. If y ∈ L1
q,ρ (Ω,C) is a solution of (20). Then from Remark 19, we have{
ρDα,ηq,a+ [y (t)− h (t)] = ψy (t) + g (t) , t ∈ Ω,

|g (t)| ≤ ε, ε > 0,

where ψy (t) is a simple notation for ψ
(
t, y (t) , ρDβ,ηq,a+ [y (t)− h (t)]

)
. Hence

y (t) = v (t) + ρJ αq,a+ [ψy (t) + g (t)] .

Then, for all t ∈ Ω, we get∣∣∣y (t)− v (t)− ρJ αq,a+ψy (t)
∣∣∣

=
∣∣∣ρJ αq,a+ [ψy (t) + g (t)]− ρJ αq,a+ψy (t)

∣∣∣ =
∣∣∣ρJ αq,a+g (t)

∣∣∣
≤

[ρ]
1−α
q

Γqρ (α)

∫ t

a

τρ−1 (tρ − (qτ)
ρ
)
(α−1)
qρ |g (τ)| dqτ.

≤ `ε.
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The proof is complete.

Theorem 21. Let x, y ∈ L1
q,ρ (Ω,C) , where y is a solution of the inequality

(20) and x is the unique solution of equation (1) with the conditions

ρDγ−kq,a+x (a) = ρDγ−kq,a+y (a) , for each k = 1, 2, . . . , n,

such that∥∥∥ρDβ,ηq,a+ (y − x)
∥∥∥
L1
q,ρ

≤ c0 − c1
c2

‖y − x‖L1
q,ρ
, for some c0 > c1.

If the assumption (H1) holds and c0λ < 1, then equation (1) is Ulam-Hyers
stable and consequently generalized Ulam-Hyers stable.

Proof. Let ε > 0, we define y ∈ L1
q,ρ (Ω,C) as a solution of the inequality (20)

and x ∈ L1
q,ρ (Ω,C) as the unique solution of equation (1) with the conditions

ρDγ−kq,a+x (a) = ρDγ−kq,a+y (a) , for k = 1, 2, . . . , n.

Thus
x (t) = v (t) + ρJ αq,a+ψx (t) .

And

|y (t)− x (t)| ≤
∣∣∣y (t)− v (t)− ρJ αq,a+ψy (t)

∣∣∣
+
∣∣∣ρJ αq,a+ψy (t)− ρJ αq,a+ψx (t)

∣∣∣ .
Using Lemma 20 and (H1) makes us obtain

‖y − x‖L1
q,ρ

≤ (bρ − aρ) `
[ρ]q

ε+
∥∥∥ρJ αq,a+ (ψy − ψx)

∥∥∥
L1
q,ρ

≤ (bρ − aρ) `
[ρ]q

ε+ λ ‖ψy − ψx‖L1
q,ρ

≤ (bρ − aρ) `
[ρ]q

ε+ λ

(
c1 ‖y − x‖L1

q,ρ
+ c2

∥∥∥ρDβ,ηq,a+ (y − x)
∥∥∥
L1
q,ρ

)
≤ (bρ − aρ) `

[ρ]q
ε+ c0λ ‖y − x‖L1

q,ρ
.

Then
‖y − x‖L1

q,ρ
≤ µε.

where µ = (bρ−aρ)`
[ρ]q(1−c0λ) . Definition 16 helps us infer that equation (1) is Ulam-

Hyers stable on Ω. This completes the proof.
If we select f (ε) = µε, it follows that f (0) = 0. Subsequently, according

to Definition 17, it can be inferred that equation (1) manifests generalized
Ulam-Hyers’ stability.
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Remark 22. Ulam-Hyers stability demonstrated above guarantees that small
perturbations in the functional or initial conditions do not lead to signifi-
cant deviations from the exact solution. Moreover, the linear dependence
of the stability bound on the perturbation implies generalized Ulam-Hyers
stability, which accommodates more flexible, function-dependent perturbations,
particularly useful in modeling and data-driven scenarios.

5 Illustrative Examples

We will now present two examples to demonstrate the key findings of our
study.

Example 23. Consider the following problem
ρDα,ηq,a+ (x− h) (t) =

(tρ−aρ)
(α)

qρ
|arctan(t)|

(
2+|x(t)|+

∣∣∣ρDβ,η
q,a+

(x−h)(t)
∣∣∣)

20q Γqρ (α+1)
(

1+|x(t)|+
∣∣∣ρDβ,η

q,a+
(x−h)(t)

∣∣∣) , t ∈
[

1
2 ,

3
2

]
,(

ρDγ−1
q,a+x

)
(a) = ω ∈ C, and

(
ρDγ−kq,a+x

)
(a) = 0, for k = 2, 3, . . . , n.

(22)
We set

ψ (t, x, y) =
(tρ − aρ)(α)

qρ |arctan (t)| (2 + |x|+ |y|)
20q Γqρ (α+ 1) (1 + |x|+ |y|)

,

where α = 5
3 , η = 3

4 , q = 1
4 , β = 1

3 , and ρ = 1. Then γ = 23
12 , θ = 5

6 , and
n = 2.

The function ψ is continuous. For any x, y, x̃, ỹ ∈ C, and ∀t ∈
[

1
2 ,

3
2

]
, we

get

|ψ (t, x, y)− ψ (t, x̃, ỹ)| ≤
(bρ − aρ)(α)

qρ π

40q Γqρ (α+ 1)
(|x− x̃|+ |y − ỹ|) .

Hence, the hypothesis (H1) is satisfied with c1 = c2 =
(bρ−aρ)

(α)

qρ
π

40q Γqρ (α+1) '
0, 33368179.

We also have

|ψ (t, x, y)| ≤
(tρ − aρ)(α)

qρ |arctan (t)| (2 + |x|+ |y|)
20q Γqρ (α+ 1)

.

Thus, the hypothesis (H2) is satisfied with

u1 (t) =
(tρ − aρ)(α)

qρ |arctan (t)|
10q Γqρ (α+ 1)

, u2 (t) = u3 (t) =
(tρ − aρ)(α)

qρ |arctan (t)|
20q Γqρ (α+ 1)

,

and

u∗1 = ‖u1‖L1
q,ρ
≤

(bρ − aρ)(α+1)
qρ π

20q [ρ]q Γqρ (α+ 2)
=

π

5Γ 1
4

(
11
3

) ,
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also

u∗2 = u∗3 =
(bρ − aρ)(α)

qρ π

40q Γqρ (α+ 1)
' 0, 33368179

λ =

(
[1]q

)− 5
3 ( 3

2 −
1
2

)( 5
3 )
q

Γq
(

5
3 + 1

) ' 1, 06214213

κ =

(
[1]q

)− 5
3 + 1

3 ( 3
2 −

1
2

)( 5
3−

1
3 )

q

Γq
(

5
3 −

1
3 + 1

) ' 1, 02830547.

Condition (15) satisfies

λu∗2
(1− κu∗3)

= 0, 53955237 < 1.

It follows from Theorem 14 that problem (15) has at least one solution.

Example 24. Consider the following problem
ρDα,ηq,a+ (x− h) (t) = e

−π2(t− 1
2 )

(
√
q+1)

(
1+|x(t)|+

∣∣∣ρDβ,η
q,a+

(x−h)(t)
∣∣∣) , t ∈

[
1
2 , 1
]

,(
ρDγ−1

q,a+x
)

(a) = ω ∈ C, and
(
ρDγ−kq,a+x

)
(a) = 0, for k = 2, 3, . . . , n.

(23)
We set

ψ (t, x, y) =
e−π

2(t− 1
2 )(√

q + 1
)

(1 + |x|+ |y|)
, for x, y ∈ C,

where α = 7
3 , q = η = 1

2 , β = 4
3 , and ρ = 1. Then γ = 8

3 , θ = 5
3 , and n = 3.

The function ψ is continuous and for any x, y, x̃, ỹ ∈ C, and t ∈
[

1
2 , 1
]
, we

have

|ψ (t, x, y)− ψ (t, x̃, ỹ)|

=

∣∣∣∣∣ e−π
2(t− 1

2 )(√
q + 1

)
(1 + |x|+ |y|)

− e−π
2(t− 1

2 )(√
q + 1

)
(1 + |x̃|+ |ỹ|)

∣∣∣∣∣
=

1
√
q + 1

∣∣∣∣∣ e−π
2(t− 1

2 )

(1 + |x|+ |y|)
− e−π

2(t− 1
2 )

(1 + |x̃|+ |ỹ|)

∣∣∣∣∣
≤ 1
√
q + 1

(|x− x̃|+ |y − ỹ|) .

Hence, the hypothesis (H1) is satisfied with

c1 = c2 =
1

√
q + 1

=
1√

1
2 + 1

' 0, 58578648.
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and

λ =

(
[1]q

)− 7
3 (

1− 1
2

)( 7
3 )
q

Γq
(

7
3 + 1

) ' 0, 19842513.

κ =

(
[1]q

)− 7
3 + 4

3 (
1− 1

2

)( 7
3−

4
3 )

q

Γq
(

7
3 −

4
3 + 1

) = 0, 5.

Now, show that condition (19)

c1λ

1− κc2
' 0, 16438076 < 1.

Is satisfied. It follows from Theorem 15 that problem (22) has a unique
solution.

Conclusion and Perspectives

In this work, we have studied the existence, uniqueness, and stability of
solutions for a class of nonlinear fractional q-differential equations involving
Hilfer-Katugampola q-derivatives of moving orders. By employing the Ba-
nach contraction principle and Schauder’s fixed-point theorem, we rigorously
established the existence of solutions within the Banach space L1

q,ρ ([a, b],C).
Moreover, we demonstrated Ulam-Hyers and generalized Ulam-Hyers stabil-
ity, providing a robust theoretical foundation that ensures the reliability of
approximate solutions even in the presence of small perturbations.

The theoretical results were supported by illustrative examples, confirming
the applicability of the developed framework. These results contribute to the
growing literature on fractional q-calculus and open new avenues for exploring
complex dynamical systems characterized by memory and discrete structures.

Future studies could investigate additional aspects of the qualitative
behavior of solutions, including asymptotic behavior, oscillatory properties,
and long-term dynamics under various structural assumptions. Developing and
analyzing efficient numerical methods for solving these nonlinear fractional q-
differential equations is a promising direction. These simulations can validate
theoretical results and explore analytically intractable solution behaviors.
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q-derivative, Jñānābha, 52(1) (2022), 101–112.

[27] I. A. Mallah, L. Chanachani, and S. Alha, q-analogue of Hilfer-Katugampola fractional
derivative and applications, South East Asian J. Math. Math. Sci., 19(2) (2023), p77.

[28] M. Momenzadeh and N. Mahmodov, Study of new class of q-fractional integral
operator, Filomat 33(17) (2019), 5713–5721.

[29] M. Momenzadeh and S. Norozpour, Study of new class of q-fractional derivative
operator and its properties, Int. J. Adv. Sci. Techno., 29(8) (2020), 2871–2878.

[30] M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, (Vol. 2056),
Springer, 2012.

[31] A. Granas and J. Dugundji, Fixed point theory, (Vol. 14), New York: Springer, 2003.
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