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1 Introduction

Fractional calculus, which extends the classical concepts of differentiation
and integration to non-integer orders, has garnered significant attention
due to its powerful ability to model memory and hereditary properties in
complex systems. It has found widespread applications in various scientific
and engineering domains, including blood flow dynamics, electrical circuits,
biology, chemistry, physics, control theory, wave propagation, and signal and
image processing. For comprehensive insights into its practical applications,
readers are referred to the works of Afshari et al. [1, 2, 3], Agrawal [1], Basti
et al. [5, 6, 7, 8], Benchohra et al. [9, 10, 11, 12, 13], Herrmann [14], Hilfer
[15], and Kilbas et al. [16].

In parallel, the twentieth century witnessed a revolutionary development
in quantum mechanics, which inspired the emergence of quantum calculus, a
framework introduced by Jackson in 1909 ([17]). This branch of calculus, which
avoids the traditional concept of limits, is deeply influential in mathematics,
mechanics, and physics [18, 19, 20]. Recognizing its potential, researchers
such as Al-Salam and Agarwal extended the theory to fractional g-calculus,
a synthesis of fractional and quantum calculus, to better model physical,
biological, and economic systems [21, 22].
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As a result, a significant body of research has emerged focusing on frac-
tional g-differential equations (¢-FDEs), which offer refined modeling capabil-
ities in systems governed by nonlocality and discrete structures. For instance,

Salim et al. [23] analyzed the fractional g-difference problem
(°D5E) (<) = p(s,£(5)); s € ¥ := [0, ],
E(O) = 60 € Fa

where CDg denotes the Caputo fractional g-difference operator of order ¢ €
(0,1] and F is a Banach space. In a related contribution, the existence of
solutions to an implicit g-fractional problem in Banach algebras was proven

in [24]:

{CD (h<<(§<)<>>) ¢(<75(<)’0D§ (Mff;(l)))); ceW:=0,8],
£(0) =& e R.

More recently, the importance of nonlinear fractional g-differential equations
has grown due to their ability to characterize complex systems with greater
fidelity.

In [25], the existence and uniqueness of solutions for the following Cauchy-
type g-fractional problem of the form

D‘S’"+x(t):w(t,x(t)), n—1<d<n,neN, 0<n<1,
lim (Dk j;”“”(l‘")x) ()=cr€R, k=0, 1,..., n—1,
t—at

were studied. Here D 77+ is the Hilfer fractional g-derivative of order §, and
Y a, b]xRxR—)R for 0 < a < b < 0.

This work aims to study the existence, uniqueness, and stability of solutions
for a problem of nonlinear fractional g-differential equations involving Hilfer-
Katugampola g-derivatives of moving orders in the Banach space E}b , ([a, 0], C)
with initial conditions.

The problem under consideration is written as follows:

DI ()~ h(B] = v (La @), DIL () ~h@)]), ()
where t € 2 = [a, b], for some reals b > a > 0, with the following conditions
pD7a+z( a)=w€eC, and ”D'ylﬁ:c( a)=0, fork=2,3,..., n. (2

Here "Da " and quﬂ " are the g-analogue of Hilfer-Katugampola fractional
derlvatlves of order o and (8 respectively, with 0 < n <1, m—-1< g8 <
meN, 0=pF+n(m-p), max{d,n—1} < a < nforn € N— {1}, and
y=a+n(n—a). Also,0 <g<1,p>0,and he L] (2C)is a complex-
valued function given by

w(t” —a?)g

(P17 Tge () ®)
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We mention that the operator ”DCY .+ bresents the Katugampola fractional
g-derivative of order o, while v : >< (C X C — C is a nonlinear complex-valued
function.

We impose the following hypotheses:

(H1) ¢ :QxCxC — Cis anonlinear complex-valued function such that

O (ha (), DI [ () = h()]) € £1,(,C), @he L), (2.0),

and there exist two nonnegative constants ¢; and co such that the function ¢
satisfies

W(t,x,y)—d;(t,i,gjﬂ Scl‘xii’|+62 |y7g|a

for any z,y, 2,9 € C.
(Hz2) There exist three nonnegative functions u; € £;,p (Q,R;4) and
(U;);—9.3 € C (2, R}), such that the function ¢ satisfies

[ (8,2, y)| <y (8) + uz (t) 2] +us (t) |yl
for any z,y € C and each ¢ € (.
We denote

=Tl = suplua (0], 1 = suphis (0], and A, = om0
1 — 1 ﬁ}pp’ 2= teg 2 ) 3 — teg 3 5 a = [p]?l—‘qp (Oé—i—]_)

For simplifying the writing, we substitute A\ with A,, and we use x instead of
Aa—B-
2 Necessary Definitions and Preliminaries

This section provides definitions and lemmas for some g-calculus concepts
that will be used in this paper (see [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 20,

» 28,29, 30)).

Let 0 < ¢ < 1 and a € C, we define the ¢-integer [a]q by
1—q“°
[a]q { 1—q q# 17
a, g=1,
then
pal, = L S LT )
] = = = a ,.
P =1y 1-qr 1—q Plal%e

The definition of g-factorial [n] ! is
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We introduce the g-shifted as follows

n—1
(t—a)go) =1, (t—a)g") = H (t—ag"),forneNand0<a <t
k=0

The g¢-shifted is also introduced for o € C with o ¢ N by

) t qka

(a) _ —

(t a)q 7ta||t_qa+’fa’ 0<a<t
k=0

For a € C\ {—n, n € NU{0}}, the ¢-Gamma function is defined by

(a—1)
1—
(1—q)
Obviously
Ly(1)=1,Tg(n+1)=n]! and Ty(a+1)=la],I(a).
The g-derivative of a function z is defined by
z(t) —x(qt
Dz (t)==x(t), and Dgx(t) = ((1)(1)(;1), t#£0,

and D,z (0) = }iné Dgx (t). Also, the g-derivative of higher order is given by
—

(Dyx) (t) = DDy o (t), meN.

The following formulations with respect to ¢t and a have g-derivatives that
can be expressed as

Dy [t = )] =7 [pal, (2 — an) 7Y, (4)

and
oD (7 = a"))| = a7 [pal, (¢7 = (qa)") 27V (5)

Additionally, reversing the integration’s order is provided by

/a b / i (7) dyrdyt = / ’ /q ix(T) d td,r (6)

When g — 1, the foregoing results are equivalent to those in ordinary.
For p € R, 0 < ¢ < 1, we define the Banach space

L1, @0 ={e:0C, |y, <oo},
with .
lelley, = [ e 0] dyt. -

Now, we give some definitions of g-fractional operators introduced in [28,
, 27], with a little change in the notation.
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Definition 1. Let a >0, 0< g < 1, and p > 0, be such that x € Eé,p (Q,C),
the left-sided fractional q-integral of Katugampola is defined by

11—«

0T (t) = Iﬂp ]f<a> [t - @ e

Lemma 2. The Katugampola fractional g-integral qua’ﬁ is well defined and
bounded in L} , (2, C), with

s

oy <Ay,

forany a >0,0<q<1, and p > 0.

Proof. Let x € L ,(Q2,C). Employing (4) and (6) gives us

b o, "
p 7O p—1 q p—1 (4p py(a—1)
H N /a t T, (a)/a TP (tP — (g7) )q,, x(T)dgT| dgt
[P}l_a b b (a—1)
< q p—1 p—1 1p a—
< ot [ [/t (= @)y dt}dr
< M‘lla/prl |z (7)) /b Dy (7 — (qT)p)(?f) dgt | dgr
N [pa]q qu (Oé) a qT K
S — /bT”_lx(T)l(b”—(QT)p)(f)qu
(g Tae (@ +1) J, !
()
(0" — (qa)"),, /b
< g )| dg7
Ty tarn J, T 1O
< Mol -
The proof is complete. O

Definition 3. Letn—1 < a <n e R, 0<q <1, and p > 0, then the
left-sided fractional q-derivative of Katugampola is defined by

DS x(t) = (t'7FDy)" PTIa (t)
[ ]17n+a

s (B0 [ ) e ) d)

qp(n—Oé

provided that z € L} , (2, C), with (”Dg ot x) (t) = (t).

The following results are given in [26] with consideration that 0 < ¢ <1
and p > 0.
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Lemma 4. Let o, 3 > 0, then the semi-group property for the Katugampola
fractional q-integral is given by

(PTergfa) ()= (PTXPx)(t), VaeL,,(Q,C).
Lemma 5. Forn—1<a<néeN, andz € Eé’p (Q,C), we get
(pDO‘ ° M) )=z (t), Vteq.
Lemma 6. Letn —1 < a <neN, be such that z € L], ,(,C), then

k—a a—k
n (o) eDeka (o) .
p g ppa ) 9,a P gPyla—k)
( gat  Fgat? Zl Ty (@ —k+1) ( @ )q”

Lemma 7. Assume 3> a >0, ifx € E(;p (Q,C), then
(D3 #T00x) (1) = PTP0 (1), Vieq.

Moreover, if "Dggfm (t) exists and o > 8 > 0, then for all t € Q, we obtain

( gat+ "I, a+x> (t) = pD;;fx(t).

Definition 8 (Hilfer-Katugampola fractional g-derivative [27]). Letn —1 <
a<neNad0<n< 1 The g-analogue of left-sided Hilfer-Katugampola
fractional derivative pD i is defined by

D () = (AT (D) gl e ) (1),

Here quo‘a+ presents the Katugampola fractional g-integral given by Definition
1.

The derivative #D< 'y can be expressed in terms of the Katugampola
fractional g-integral pj a .+ and g-derivative pDa .+ as follows

DI = r I (1eD,)" P g ]

q,at
= rgMN) DY
where v = a + 1 (n — «). Consequently, ")DZ";L is well defined in £} , (92, C).

Remark 9. The g-analogue of Hilfer-Katugampola fractional derivative
pD?’:i becomes

1. The g-analogue of Hilfer fractional derivative when p — 1.

2. The q-analogue of Hilfer-Hadamard fractional derivative when p — 0.
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3. The g-analogue of Katugampola fractional derivative (8) for n = 0,
which generalizes

(i) Riemann-Liouville type fractional g-derivative when p — 1.

(ii) Hadamard type fractional q-derivative when p — 07.

4. The g-analogue of Caputo-Katugampola fractional derivative [29] for
n =1, which generalizes

(i) Caputo type fractional q-derivative when p — 1.
(ii) Caputo-Hadamard type fractional q-derivative when p — 07.

The following results are in [26, 27].

Lemma 10. Let § € C be such that Re(d) > —1, then

o (5) o F 4 ((5 + 1) (a+5)
(Tiar =) O = Gy @
q
and
o (4o _ ,p)(0) _ (ppa p_ p\() _[p];qup(5+1) p_ o p\(6—)
(D5t (07 =) (@) = ("Df (0 = a)D) (0 = TEF =y 0 =0,

(9)

hold for every a,p >0 and 0 < g < 1.

Lemma 11. Letn—1<a<neN 0<n<1,0<qg<1,andp >0, be
such that y = a+1n(n—a). Ifx € L] ,(Q,C), then

("Tgae D202 ) (1) = (°T7,0 D) 0z ()
- -3 BT g,
1 '\ +1)
Also, if "Dgy(:fa)x exists, then
pD;gIJr qucfaw _ pjng:i—a) pDZ,(:fa)x. (10)

3 Existence and Uniqueness of Solutions

Throughout the rest of this paper, weput 0 <n <1, m—-1<g8<méeN,
6= B+n(m—B), and

max{0,n —1} <a<neN-{1}.

Alsoy=a+n(n—a),0<g<1,and p > 0.
In this following, we present some lemmas to illustrate our main results.
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Lemma 12. We have

1. The complex-valued function h given by (3) satisfies PD" 1h( t) = w,

at
and can be expressed by o
n ’f Y ppr—k
Z Dy~ "*h (a) (tp_ap)('y k)
— (v—k+1) a’
2. We have
(ij”a ng(ﬁh) (t)=0, VteQ. (11)

Proof. We apply (9) for a« =~ — k and 6 = v — 1, we get

DY) = e Dy - )Y
" Pl T () " !
—k

_ w [y Ty (v —1+1) (17 — a#) 108

Py " T (1) \Tar (7 = 1= (7= k) +1) ”
w k—1)

= — (tp - ap)(p .

[pli ! Tyo (k) !

1. For k = 1, we obtain PDZ;}rh(t) = w, and ”ngfh (a) = 0 for each
k=2,3,...,n. Then

" [ply " "Dy *h (a)

h(t) = (t° —a) 7"
2T, =kt 1) v
2. Similarly, Lemma 6 implies
n k Y pD'y kh( )

P 7Y pD’Y ) (1) = P _ g\ k)
("7, "Dk ) () g o e
h(t)—h(t)

= 0.
The proof is complete. O

Lemma 13. Let z € L] ,(Q,C), then problem (1)-(2) is equivalent to the
q-integral equation

z(t)=h(t)+"Igare@), te (12)

where ¢ € L} ,(Q,C) satisfies

0 (1) = (11 (1) +Ture (1), Tyl (1))
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Proof. Let x € L , (9, C) satisfies problem (1)~(2). Starting applying 7,
on both sides (1), we obtain

P "D (o (8) = h (D] = "T et (2 (1), "D 2 () = h ()] ) -

q,at
(13)
As
P Tgar "Dyl [x(t) = ()] = T4 D] [z (t) —h(t)]

pjga+ quv_,aer (t) — pj;a pD;[ﬁh( )
After using (11) from Lemma 12, and employing Lemma 11, we get

A Py (a)

FqP’Y k+ )

(t7 —a”) .

qoja'*- plDif—%— [‘T (t) - h Z

=1

Substituting in (13) and using conditions (2), we obtain
z(t) =h(t)+"Tgee (),
where ¢ () =1 (t, z (1), p’Df’gﬂ [z (t) — h(t)] ) In addition,

”D'ya+x( )=w+ pDZ(:+_a)_1<p (t), for everyt e (.

As D71z (a) = w, we deduce that
q,a

DI (a) = 0. (14)

g,at

Since 84 n(m — B) = 0 < a, employing Lemma 7 allows us to write

Dyl () —h(®) = PDUL A () + P T e (8) — h(D)
= DI TR (b)

= jn(m ? qu at quaaﬁr(p()
_ pjn(m ﬁ)pjaﬁﬁm B) ()

= qu’a+ @( )7

then we can define ¢ € £}17 , (£2,C) as a nonlinear complex-valued function
that is satisfying the functional equation

s@(t)Zw(t,er”J;faM() ja+‘P())

Otherwise, assume that = € Eép(Q,(C) satisfies equation (12), next, we

prove that @ satisfies problem (1)~(2). We apply the operator #D_"", Hilfer-
Katugampola g-derivative on both sides of equation (12), we obtain

Dy [ () = h(8)] = 7D PTg e (1),

g,at g,at
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from (10), Lemma 6, and (14), we have

Dp P T (D) = PTITY eDIT o (1)
1-n(n—a) n(n—a)—1
— o) - [p]q qu7a+ ¢ (a) (# — ap)(n(n_a)_l)
Lge (n(n —a)) ”
= (1),

then we get equation (1).
Now, we show that conditions (2) hold. Applying ”DZ;f in both sides of
(12), we get
—k k o
Dl Fa(t) = PDYE R () + T e (1)

g,at

= DY En+ g Ve t), VkeTn

g,at

For t = a, we arrive to conditions (2). The proof is complete. O

Theorem 14. Assume the hypotheses (Hi)—(Hz) hold. If we put k €

(O,min (é, ui)) and
3
T )‘ufw* <1 (15)
— Ru3

Then problem (1)~(2) has a least one solution in L} ,(€,C).

Proof. First, we will transform problem (1)—(2) into a fixed point problem,
we define the operator

ol "
Lo (a)

Bu (t) = h(t) + / (1 — (@) g (1) dgr,  (16)

where ¢ = ¢ (t x, Pj ot ga) € E}“) (Q,C). Therefore Bx is an element of
Ly ,(9,C) equipped with the norm

b
| Bz ;1 :/ t*~1 Bz (t)| dyt.

a

s (H1) holds, we notice that if 2 € L] ,(Q,C), then B is a continuous
operator as demonstrated in stepl.
Next, we demonstrate that B satisfies the assumptions of Schauder’s fixed
point theorem, this could be proved through three steps.

a. B is a continuous operator

— il
Let (7,),cy be a real sequence such that nh_}n;Oxn zin L, ,(Q,C).
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B
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After using Lemma 2, we get
HBJJn - B‘r”ﬁ{ll‘p = Hquofaﬂr(pn - pj;,ta*w’ £L11 )
= Hp qo,éaJr ((pn - (P)’ 1
LCI:P
< AMen =l s
where
pa () = (t2n (), T30 (1))
e =0 (Lo, T Lle®).
Hypothesis (H1) implies
”(pn_@Hg}”’ = H@Mﬂ T, j at @n)_w(t z, pj at @)‘
' q,p
S C1 ||xn_xHLéyp+CQHP qu;JrB (Son_so)‘ﬁl I
a,p
then
lon = ellz;, < T llan —al
L |V T—rey '™ L,
Then
)\Cl
_ < _
[Ban = Bally, < 72— llaw 2y,
Since x,, — x, when n — oo, then ||Bz,, — Bz||;; — 0as n — oo.
q,p

Hence
lim ||Bz, — Bz||,, =0,
n—oo a,p

this implies the continuity of B.

is defined from a bounded, closed, and convex subset into itself

Using (15), we define

N v ( 1 - wu )
r
T\ T (v +1)  1—rul ) \1 - kuj — us

and define the subset P, as follows

Po={reLy, 0, Iy, <r}.

It is clear that P, is bounded closed and convex subset of £} o (
Let B: P. — ﬁzlzﬁp (©,C) be the integral operator defined by ( 6

Q,C).
), then
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B(P,) C P,.
Indeed, by employing (H2), we get

_ p qa—p
Ieley, = [vteo 7o,
< pge—B ‘ ,
< il +supluz @) lelley, +supbes (][ 770,
Therefore
Ielles <uitupzlles +ruglels
next
ul +usr
< —
Ioley, < P (1)
Consequently
= p g
sy, = sl
p 7O
< i, 4o,
o __ P (v)
e el
PHVICESY
jw| (b — a”)\) <u+u)
o1y Tor (v +1) 1 — kuj
|WI(b"—a”)gZ) Auy 1—kug
[pIgTqr (v+1) + 1—rKuj 1—rKuj—Auj )\UZT
- ( 1—ruj ) 1 — kuj
1—ruji—Auj
< r

then B(P,) C P,.

c. B(P,) is an equicontinuous subset
Let t1,t2 € 2, be such that ¢; < t3, and = € P,. By using (7) and (17),
we can obtain

[p], (ui + uzr)
<" = 1 :
e 1= " = G = )
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In another hand

|Bx (t2) — Bx (t1)|

[rl,
Lye (@)

to
|- @ e dr
a

IN

|h(t2) — h(t1)| +

t1
- [Tt - @ e dg

a

-1 -1
wl ((#5 =)™ = (@ =) g i

- [p]qul Tgr () T T,
[ (@ e - @ - o) dirs
[ -] (19)

By applying (5), we get

_]- @ @
:mﬂfmﬁﬁfwmﬁwﬁf#md,
then (1) (1)
/t1 (5 = (am))ge = (] = (a7)") 40
T dgT
a T P
(t5 —an) = (1} —ar)) — (15 = 19)
B [pal,
Also )
P71 () — (g7)° (371)d r=—=—_D,(t5 — 7P (op‘)
(2 ( ) )q q [Pa]q q(2 )q
then

(t5 — )

ta
_ a—1
[ = g <
q

ty

Thus, (18) gives us

wl (5 =g ™ = @ = )"
P17~ Tge ()

o (85— )l - (1 - an)ly))
Pl Ty @+ 1)

Bz (t2) — Br (1)) <

+
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The right-hand side of the latter inequality approaches zero as t; tends
to t5. Hence
i, VB, B gy, =0
As a consequence of steps a., b., and c¢., and with the aid of the Ascoli-
Arzela theorem, we deduce the continuity of B, its compactness, and its
satisfaction of the assumption required by Schauder’s fixed point theorem [31].
Consequently, B possesses a fixed point in L’é’ o (2, C) that solves problem
(1)—(2). O

Theorem 15. Assume the hypothesis (H1) holds. If we put k € (0, i) and

Cc2

Ac
ﬁ (20)
then problem (1)-(2) admits a unique solution in L] , (2, C).

Proof. Let x1,25 € L] ,(©2,C), then
1Bxy = Brallps < Aler —allpr

where
pi =1 (tw ”Jq(fgfcpi) €L, ,(9Q,C), Vi=1,2

We have
C1

o —ally < s — 2y -

1-— KCo
Therefore

Ac
[Bxy = Bl < '

11— ke Hxl - x2||‘c<1110 ’

Thus, according to (19), B is considered a contraction operator.
Banach’s contraction principal (see [31]) helps us infer that B has only
one fixed point which is the unique solution of problem (1)—(2). O

4 Ulam-Hyers Stability Results of Solutions

In this section, we use Definitions 16 and 17 to study the stability of
equation (1) in £} , (2, C).

Definition 16. FEquation (1) is Ulam-Hyers stable if there exists a real
number p > 0 such that for each € > 0 and each solution y € £;,p (Q,C) of
the inequality

DIy () = h (0] =6 (Ly (), DL O - h@])| <5 @)
there exists a solution x € L} ,(Q,C) of (1), with

ly — 93”/;}1% < pe.
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Definition 17. Fquation (1) is generalized Ulam-Hyers stable if there exists
f e CRy,Ry), with f(0) = 0, such that for each solution y, which is in
L}, (Q,C) of the inequality (20), there exists a solution x of (1) with

ly—alley <7 ().

Remark 18. Ulam-Hyers stability concept ensures that if a function approz-
imately satisfies a given equation, such as inequality (20), then there exists an
exact solution close to it. This guarantees that small perturbations do not lead
to significant departures from the true solution, thus enhancing the reliability
of approzimate solutions in practical applications.

Before proceeding, we present the following remark introduced in [32],
followed by a lemma aimed to simplify subsequent calculations.

Remark 19. Ify € L} ,(Q,C) is a solution of the inequality (20), then there
exists g € C (2, C), such that

1eD2, (1)~ h (1) =6 (L (0), DI [y (1)~ h (1)) + g 1), for any
t e,
2. lgt)| <e, for allt € Q.

Lemma 20. Ify € L} ,(Q,C) is the solution of the inequality (20), then
there exists € > 0 such that y will be the solution of the inequality:

y(®) = (t) = "Tot (Ly @), DI Iy (6) = h(0)]) | < £,

with
(@) n k—~ —k
/= (bF — aP)qp and v () = Z [P]q Dy "y (a) (t° — ap)('y—k)
« — q* .
Ty (@t 1) ) e

Proof. If y € L} ,(Q,C) is a solution of (20). Then from Remark 19, we have

PPy (1) — b ()] = by () + g (1), tED,
lg ()] <e, £>0,
where v, (t) is a simple notation for (t, y(t), pri’;L [y (t) — h ()] ) Hence
y (@) =v )+ "Tgar [y (1) + 9 (0]
Then, for all ¢ € 2, we get
[y (®) =0 () = P Tty ()
[P Tgar [y () + 9 (O] = 2Tty (8)]| = [P Tar g ®)

11—«

[r],
Lge (@)
le.

t
/ (10— (qr)”)\e 7 (g (7)) dyT

IN
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The proof is complete. O

Theorem 21. Let z,y € Eé,p (Q,C), where y is a solution of the inequality
(20) and x is the unique solution of equation (1) with the conditions

ng;ﬁx (a) = ”D;;fy(a) , foreach k=1, 2,..., n,

such that
, Co
H”Diﬂ (y — x)’

—c
<= ly- x|, for some co > ci.
Co a,p

1
quﬂ

If the assumption (H1) holds and co\ < 1, then equation (1) is Ulam-Hyers
stable and consequently generalized Ulam-Hyers stable.

Proof. Let € > 0, we define y € E}LP (©,C) as a solution of the inequality (20)
and z € L}, (Q,C) as the unique solution of equation (1) with the conditions

'DY Ya(a) = D) Yy(a), fork=1,2,..., n

Thus
z(t)=v(t)+ Tl tbu (1)
And

yO -2 O] < O vl = Tty ()
g 0 = 2T e ).

Using Lemma 20 and (H;) makes us obtain

(b —af)
_ < p o —
||y xH[j}Lp = [p]q e+ H q,at (wy ’(/}J/’) ﬁ};,p
b —aP)
< Yo Ny~ il
[p]q P
(bp — Clp)g ( 3
e+ Ay =z +CQHPD Ty - ‘
7y Iy — 2l v =),
b —af
< U= =zl
[l r
Then
Iy~ 2l < e
where p = %. Definition 16 helps us infer that equation (1) is Ulam-

Hyers stable on ). This completes the proof.

If we select f (¢) = pe, it follows that f (0) = 0. Subsequently, according
to Definition 17, it can be inferred that equation (1) manifests generalized
Ulam-Hyers’ stability. O
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Remark 22. Ulam-Hyers stability demonstrated above guarantees that small
perturbations in the functional or initial conditions do not lead to signifi-
cant deviations from the exact solution. Moreover, the linear dependence
of the stability bound on the perturbation implies generalized Ulam-Hyers
stability, which accommodates more flexible, function-dependent perturbations,
particularly useful in modeling and data-driven scenarios.

5 Illustrative Examples

We will now present two examples to demonstrate the key findings of our
study.

Example 23. Consider the following problem

ahﬂwﬁnmaw@n@+m@»ﬂmfﬁ+mfm@ﬂ)

PO (x — h)(t) = 305
g,at ( ) (®) 20q qu(oHrl)(1+|x(t)|+|f’D§::+ (th)(t)D ’ [2’ 2]
("Pyate) (@ =weC. and ("D te) (@) =0, fork=2,3,.... n.
(22)
We set

(7 — a?)\) Jarctan ()] (2 + |z| + [y])
20q Tgo (+ 1) (1 + |] + |y])

Y (t,x,y) =

9

wherea:%,n:%,q:i,ﬂzéy and p = 1. Theny:%,ﬁ:% and
n=2.

([

The function ¢ is continuous. For any z,y, 2,y € C, and Vt € [%,
get

], we

(b —a?)\ %

- )(Ix—i‘|+|y—z7|)-

O e s o )

(b —a?) 3

Hence, the hypothesis (1) is satisfied with ¢; = ¢co = 0T gD ™
q

0, 33368179.
We also have

(tr — a/’)g‘;‘) larctan ()] (2 + |z| + |y|)

t,x, <
o (¢, 2, )] 20q T (ot 1)

Thus, the hypothesis (Hz) is satisfied with

(7 — a)\%) Jarctan (t)| (7 — a?)'?) Jarctan (t)]

0= T ary 0 2080, ar

(b — ap)((;xﬂ) m T

wr = lu < = )
1 H 1“[)}])0 — 20q [P}quP (Oé+2) 5T (11)

3 \3
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also

4 L W) @)y 0, 33368179
T T 40g Ty (a+1) T

Condition (15) satisfies

*
Aud

— Rug

It follows from Theorem 14 that problem (15) has at least one solution.

Example 24. Consider the following problem
_”2(“%) 1
» ) te 771 ’
(va+1) (1+z(@)+[» D27, (@=h)(®)]) [2:1]
("D;:}rz) (a) =w e C, and (pD;;Ex> (a) =0, fork=2, 3,..., n.
(23)

PDL (= ) (1) =

We set
e_ﬂz(t_%)
Va+1) (1+ ]z +Jy])

4
37

w(t’x)y):( )f0r$7y€(c7

whereaz%,q:n:%,,é’: and p=1. Thenvz%,@zg, and n = 3.

The function v is continuous and for any x,y, 2,y € C, and t € [%, 1}, we
have

() )
- ’(ﬁ+1)(1+lxl+yl)_(ﬁ+1)(1+lil+ﬂl)’
_ 1 6—772(25—%) B e—ﬂQ(t—%)
VAL (e[ +y) A+ + )
1 - -
< \/aH(Iaf—wIJrly—y\)-

Hence, the hypothesis (#1) is satisfied with

c] =cy =~ (), 58578648.

I
VIt i
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and
oo n®
A = ([Hq) (-2, ~0,19842513.
Ly (5+1)
(1) " a-pid
K = =0,5

Now, show that condition (19)

Cl)\
1— kes

~ 0,16438076 < 1.

Is satisfied. It follows from Theorem 15 that problem (22) has a unique
solution.

Conclusion and Perspectives

In this work, we have studied the existence, uniqueness, and stability of
solutions for a class of nonlinear fractional g-differential equations involving
Hilfer-Katugampola g-derivatives of moving orders. By employing the Ba-
nach contraction principle and Schauder’s fixed-point theorem, we rigorously
established the existence of solutions within the Banach space L] , ([a,b], C).
Moreover, we demonstrated Ulam-Hyers and generalized Ulam-Hyers stabil-
ity, providing a robust theoretical foundation that ensures the reliability of
approximate solutions even in the presence of small perturbations.

The theoretical results were supported by illustrative examples, confirming
the applicability of the developed framework. These results contribute to the
growing literature on fractional g-calculus and open new avenues for exploring
complex dynamical systems characterized by memory and discrete structures.

Future studies could investigate additional aspects of the qualitative
behavior of solutions, including asymptotic behavior, oscillatory properties,
and long-term dynamics under various structural assumptions. Developing and
analyzing efficient numerical methods for solving these nonlinear fractional ¢-
differential equations is a promising direction. These simulations can validate
theoretical results and explore analytically intractable solution behaviors.
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