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Abstract— This paper proposes a control method for a 

photovoltaic generation system based on a three-level boost 

converter and paralleled three-level T-type inverters (3LT2Is). 

First, the analytical model of each conversion stage is developed. 

Then, an appropriate control structure is proposed, which 

includes active and reactive power control, circulating current 

suppression, and capacitor voltage balancing. The effectiveness 

of the proposed control strategy is demonstrated under different 

operating conditions, including different filter parameters 

among the parallel inverters, unequal load sharing, and 

variations in both load and solar irradiation.  The obtained 

results confirm the effectiveness of the proposed control 

approach on both the DC and AC sides of the system, 

demonstrating its high capability to suppress circulating 

currents and ensure capacitor voltage balancing. 

Keywords—Pralled multilevel inverters, three-level boost 

converter, three-level t-type inverter, circulating current 

suppression, capacitor voltage balancing. 

I. INTRODUCTION  

Given the growing global demand for energy, renewable-
based renewable energy systems are becoming increasingly 
attractive, both economically and technologically. However, 
due to its intermittent nature and distinct output 
characteristics, power electronic inverters/converters 
topologies play an essential role in integrating renewable 
energy sources into distribution grids and in meeting grid 
connection requirements [1].  

Several power inverter topologies have been investigated 
for the implementation of PV systems based on centralized 
inverter [1]–[3]. However, these topologies are constrained by 
limited power ratings, mainly due to the voltage and current 
capabilities of switching devices.  

One approach to overcome the current limitation of 
switching devices is to connect inverters in parallel.Various 
works have addressed the parallel operation of two-level 
inverters/converters and proposed different control strategies 
to mitigate the circulating current issue associated with with 
such configurations [4]–[8]. 

On the other hand, parallel multilevel inverters can 
overcome both the voltage and current limitations of 

switching devices. Moreover, compared to two-level 
inverters, multilevel topologies generate voltage and current 
waveforms with lower distortion and reduced electromagnetic 
interference [9]. However, in this topology, the issue of 
capacitor voltage imbalance is added to the circulating current 
problem, which further  complicates the control strategy. 

Recently, various control methods have been proposed in 
the literature to address both the circulating current and 
capacitor voltage imbalance issues in the parallel operation of 
multilevel inverters [10]–[14]. 

However, the majority of these approaches concentrate 
mainly on modifying inverter modulation techniques (e.g., 
PWM, SVPWM) to mitigate the two issues, which makes 
these strategies ineffective under all operating conditions e.g., 
varying power factors and modulation indices. 

This paper focuses on the overall control of a grid-
connected PV system consisting of a DC-DC converter and a 
parallel multilevel inverter, as shown in Fig. 1 and addresses 
both circulating current and capacitor voltage imbalance 
issues. 

II. SYSTEM MODELING  

A. Modeling of three-level boost converter  

Based on Fig.1, the averaged model that describe the 
dynamic behavior of the input capacitor voltage, the inductor 
current, and the input neutral-point current is given by:  
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where, 
1cv , 

2cv  are the voltages capacitors; 
1D , 

2D
 
are the 

converter duty cycles. 

A. Parallel three-level T-type Inverters 

By applying Kirchhoff's law to the circuit of the paralleled 
3LT2Is shown in Fig. 1, the model of each 3LT2I module in 
the abc reference frame is obtained as follows:
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Fig. 1. Diagram of photovoltaic generator (PVG) system made by N parallel three-level t-type inverters sharing the same DC bus with 3LBC. 
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where, , ,a b cv v v   are voltages at the point of common 

coupling (PCC); , ,can cbn ccnv v v and , ,an bn cni i i  are the nth 

inverter voltages and currents; N is the number of the 

paralleled inverters; ,fn fnL R  represent the inductance and its 

interne  resistance, respectively. 

The circulating current in each inverter is defined by: 

0 ,  1, 2, ..., n an bn cni i i i n N= + + =  (3) 

By using Park transformation, the average model of the 
parallel system in the synchronous frame dq0 can be obtained 
from (4) as follows: 
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where, 0 0, , , , ,d q cdn cqn c nv v v v v v and ,dn qni i  are the 

components in the dq0 synchronously rotating frame of the 
PCC voltage, output voltage and current of inverter n , 
respectively. 

Equation (4) can be rewritten as: 
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where, 0nd  is the zero-sequence duty-cycle of inverter n  

III. SYSTEM CONTROL 

A. Circulating current control  

To control the circulating current among paralleled three-
level inverters, the method proposed in [11] is adopted. This 
method is based on the dynamic adjustment of the application 
times of the redundant vectors of the space vector modulation  
shown in Fig. 2. In this paper, this method is applied to the n 
3LT2Is connected to the grid. 
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Fig. 2. Switching state vectors of 3LT2I. 

 Fig. 3 shows the ajustement strategy of the redondnant 
vectors of region 2 of sector 1. The implementation diagram 
of the circulating current control including the modified space 
vector modulation associated with PI controller is illustrated 
in Fig. 5. 
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Fig. 3. Adjustment of application time of redundant vectors proposed in 
[11] (region 2 of sector 1).  

B. Three-level boost control  

The suggested control for the level boost converter, 
addressing both the DC-link voltage imbalance issue and 
maximum PV power tracking is shown in Fig. 4. 
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Fig. 4. Proposed three level boost control control addressing both PV 
power traking and capacitor voltage balancing issues. 

 Two control loops, based on a PI controller and an MPPT 
algorithm, are used to determine the duty cycle of the first 

switch of the converter 1s , as follows: 
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To control the capacitor voltage imbalance, the voltage 
difference 1 2c c cv v v∆ = −  is fed to a PI controller, which 

generates an additional duty cycle as follows:  

* (0 ) /c lpvD PI v i∆ = − ∆  (8) 

The additional duty cycle *D∆  is added to the duty ratio 

first 1D ∗  to determine the duty cycle of the second switch 
*

2 1D D D∗ ∗= + ∆ . The PWM gating signals are then generated 

using two carrier signals that are phase-shifted by π  from 
each other. 

C. DC-link voltage control  

The DC-link voltage plays a crucial role in transferring PV 
power to the grid. As shown in Fig. 5, the error between the 
squared DC-link voltage and its reference is fed a PI controller 

to determine the total active power *

invP  to be injected into the 

grid, as follow: 

*  2 2
3LBC ( )inv dc dcP P PI v v∗= − −  (9) 

where 3LBCP  is the output power of the three-level boost 

converter.  

D. Control of grid-side of paralled inverter 

The grid-side inverters is controlled by independently 
controlling the dq-axes currents. The d-axis current of the 
grid-side inverters are used to control the active power flow 
within the system, while the q-axis current are responsible for 
controlling the reactive power exchange among the paralleled 
inverter, the connected loads, and the grid.  

The control block diagram of the d-axes and q-axes current 
loops in the synchronous reference frame is in Fig. 5. The 

reference currents of each inverter 
* *,  d qi i  can be calculated as 

function of PCC voltages ,d qv v  , reference of active  and 

reactive  powers 
*
invP , Q∗

 as follows: 
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Finally, the control law is given by the following equation: 
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From (11), the currents ,dn qni i
 
can be controlled 

independently by by using PI controllers acting upon dnu ′  and 

qnu′ , respectively. 

IV. SIMULATION RESULTS 

A. Performance of the overall system under irradiation 
change  

In this task, the performance of the system in injecting PV 
power into the grid and compensating the reactive power 
demand is evaluated under the solar irradiation changes from 
1000 W/m2 to 600 W/m2. 

Fig. 6 shows the waveforms of grid voltage and current, 
DC link voltage, DC-capacitors voltages, circulating current 
and active and reactive powers exchanged among grid, load 
and paralleled inverters. 
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Fig. 5. Control block diagram of the proposed topology with three-level boost converter and N parallel three-level inverters. 

Fig. 6(a) shows that, before and after the solar irradiation 
changes, the paralleled inverter successfully inject the power 
produced by the PV generator into the grid; since this power 
is less than the power required to supply the connected load, 
the remaining active power is therefore absorbed from the 
grid. 

As can be seen in Fig. 6(b), the grid current is in phase 
with its corresponding voltage, which means that paralleled 
multilevel inverter successfully compensate the total load 
reactive power. This can be also noticeable from Fig. 16(c) 
where there is no reactive power absorbed from the grid. 

 Fig. 6(d) shows that the DC-link voltage is well regulated 
even with sudden irradiation changes.  

As can be seen in Fig. 6(e), the capacitor voltages are 
balanced before, during and after irradiation change, which 
proves the effectiveness of the proposed voltage-balancing 
control . 

Fig. 6(f) shows that even when the paralleled multilevel 
inverter operate with large differences in the filter parameter 
values and unequal load sharing, the circulating is almost 
eliminated.  

B. Performance of the overall system under load variation  

In this task, the capability of the paralleled inverter in 
injecting/ compensating the active/reactive power is verified 

under load variation. The performances of the system are 
shown in Fig. 7. 

As can be seen in Fig. 7(a), at t = 1 s, an additional load is  
connected, which leads to an increase in the active power 
absorbed from the grid. This explains the increase in the grid 
current magnitude shown in Fig. 7(b). 

Fig. 7(c) shows that DC-link voltage is well controlled and 
maintained at its reference value (700 V) even with load 
variation. 

According to Fig. 7(e) the capacitor voltages are balanced 
before and after load variation which proves the effectiveness 
of the proposed capacitor voltage-balancing control. 

As shown in Fig. 7(f), the circulating currents are 
successfully eliminated under these challenging conditions, 
with the parallel inverters operating with differences in filter 
parameter values, unequal load sharing, and load variations. 

V. CONCLUSION  

In this paper, a comprehensive control strategy for a 
photovoltaic system composed by a three-level boost 
converter and paralleled three-level T-type inverters has been 
presented. The proposed control strategy includes active 
power injection, reactive power compensation, circulating 
current suppression, and capacitor voltage balancing.  



 

 

 

 

 

  

Fig. 6. System Performances under irradiation change: (a) PVG, grid, and 
load active powers, (b) Grid current and it corresponding voltage (c) Grid, 

load and 3LT2Is reactive powers , (d) DC-link voltage,(e) DC capacitor 
voltages, (f) circulating currents. 

The obtained results confirm the capability of the proposed 
strategy to balance the capacitor voltages, eliminate the 
circulating currents among the paralleled inverters, and ensure 
a unity power factor. This makes the proposed method a 
promising solution for reliable and efficient grid-connected 
PV systems employing parallel multilevel inverters. 

Through analytical modeling and detailed simulations, the 
effectiveness of the proposed control method has been verified 
under various challenging operating conditions, including 
mismatched filter parameters, unequal load sharing, and 
variations in both load and solar irradiation. 
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