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Abstract

In this paper, we have investigated the outage probabilities (OPs) and the ergodic
rates (ERs) of uplink reconfigurable intelligent surface (RIS)-assisted non-orthogonal
and orthogonal multiple-access (NOMA and OMA) networks. Particularly, we have
tackled a challenging scenario in which both user equipments (UEs) need assistance
from the same RIS unit to communicate with the base station (BS). We have mod-
eled all the UEs—RIS and RIS—BS links as Nakagami-m variates. To assess the perfor-
mance of these networks, we have derived the necessary statistics for the effective
channel gain of the reflected (UE—RIS—BS) link for the randomly phase-shifted UE,
while adopting its already-existing counterpart statistics for the coherently phase-
shifted one. On the basis of that, we have derived closed-form expressions for the OPs
and the ERs for both RIS-assisted NOMA and OMA schemes. Finally, to get further
insights on these results, we have elaborated on the high signal-to-noise ratio (SNR)
regime.

Keywords: Reconfigurable intelligent surface (RIS), Orthogonal/non-orthogonal
multiple-access (OMA/NOMA), User equipment (UE), Smart radio environments (SREs),
Outage probability, Ergodic rate

1 Introduction

One of the basic postulates in conventional communication theory is that the wireless
environment is naturally random and unmodifiable. This means that we lack control
over it, particularly with regards to the reflection and refraction phenomena of the radio
waves. As a result when designing a wireless communication system, we must adapt to
it through the design of sophisticated transceivers. However, the concept of smart radio
environments (SREs) or "Wireless 2.0" [1] provides a contrasting perspective by allowing
to manipulate the behavior of the radio waves after scattering from objects. The aim is
to maximize the power of reflection toward the desired user(s) while minimizing it in
unwanted directions. Reconfigurable intelligent surfaces (RISs) [2-7] have appeared as
a technology enabler to realize the concept of SREs. RISs are thus used as an energy/
spectral efficient and low-cost solution to astutely adapt the propagation environment
aiming to improve the reception’s reliability [2, 3, 8, 9]. A RIS consists of a 2D planar
surface composed of a large number of reconfigurable inexpensive passive elements on
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Fig. 1 A schematic diagram illustrating the uplink scenario studied in the manuscript. Two single-antenna
user equipments (F1 and F2) are assisted by a single reconfigurable intelligent surface (RIS) composed of
K reflecting elements and communicate with a single-antenna base station (BS). Direct UE-BS links are
assumed blocked

3 System and channel models

We examine an uplink RIS-aided NOMA/OMA network where two single-antenna
UEs (denoted by F1 and F2) establish communications with a single-antenna BS
via the RIS, as shown in Fig. 1. Direct links between the UEs and the BS are assumed
absent, primarily attributed to obstructive objects causing blockage. More specifically,
both F1 and F2 need help from the RIS to communicate with the BS. The RIS has K
reflecting elements, and its reflection-coefficients and phase-shifts matrix is denoted
by © = diag (ﬁlefel,ﬁzefez, e ,,BKeng), where Bi €[0,1] is the amplitude-reflec-
tion coefficient and 6y € [0, 27) is the phase-shift variable of the k™ element that can
be adjusted by the RIS (k = 1,2,---,K). We assume, without loss of generality, that
Br =B, Yk € {1,2,--- ,K}[35].

The signal y received at the BS is given by

2
_a _y
y=dy NP> d; * (hOg)si+ n, i € {1,2}, 1)
i=1
where g; € CK*1, g, € CK*1 and h € CP*K are the small-scale fading vectors
of the F1—RIS, F2—RIS, and RIS—BS links, respectively!. Particularly, they are
g1 =lg11,812 axl’, & =I[821,82 -gkl’, and h=[hy, hy, .., hx], respectively.

! The Nakagami-m model plays a central role in Lemma 1 because it offers analytically manageable expressions for
the product of random variables. The parameter & a, determined by my and mz, provides direct control over the non-
centrality parameter of the chi-square approximation, enabling accurate modeling under a wide range of propagation
conditions.
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1 Lemmal

[15] Let {Yk}i(:1 be a sequence of i.i.d RVs for which |Yy| ~ Nakagami(my, 1) and {Zk}le
be a sequence of iid RVs for which |Z;| ~ Nakagami(myz,1). Let

F(my+%) 2 F(mz+%> >
£=_—1 . When K is large (i.e, K >> 0), the RV

mymg I'(my) F'(mz)

2
_(Zhina) 5)
- Ka-§

has a tendency to follow a non-central chi-square distribution as S ~ x' % (%)

4.1 Key results

1 Lemma 2

Let { Yk}f:1 be a sequence of i.i.d RVs for which |Yy| ~ Nakagami(my, Qy) and {Zk}Ik(:1 be
a sequence of i.i.d RVs for which|Zy| ~ Nakagami(mz, Qz). Let ¢y be a uniformly distrib-
uted RV over the interval [0, 2r). When K is large (i.e, K >> 0), the RV

2

K
S=|> %z

k=1

tends to follow an exponential distribution as S ~ Exp ( %)

1 Proof
Resorting to [16], the summation S; = Zle &Y Zy in (6) can be approximated,
according to the central limit theorem (CLT), to match a complex Gaussian distribution

S1 ~ CN(0,K). Then, the RV Sy = |S1| ~ Rayleigh <\/§) Finally, S = Sg is a one-to-

one transformation with an inverse Sy = g_l(S) = /S and a Jacobian % = ﬁ There-

fore, by the transformation technique, it is clear that the RV S is exponentially distributed

with a mean K. When going through different steps in this proof, one can easily see that
the result in Lemma 2 relies on three key basic conditions: the phase shifts ¢y are i.i.d and
uniformly distributed over [0, 21 ); the channel amplitudes |Yy| and |Zy| are independent
of ¢ ; and the value of K is sufficiently large to justify the use of the CLT.
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1 Theorem 1
Let and X ~ Exp(A) be two independent RVs. Let a,b,c > 0. Then, the CDF Fz(z) of
tY ~ x2(¢) he RV Z = 2 is given by

m\n

A_
eb

”f ST+ + 5. %)

2@ = NN (L ; 7
V2 S 2N+ DG ) G ?7)
1 Proof
A detailed proof'is provided in Appendix A.
O

1 Theorem 2
LetY ~ X{Z(g) and X ~ Exp(A) be two independent RVs. Let a, b, c, y1, y» > 0. Then, the

probability P = Pr{ e = Vb CX > )/2} is given by

P :e(%“ré) X (e_(;vc’fhré‘c’) io C—l

12
i=0
Hoo 400 Fi(_1V 3 Jc 8)
1 (=1 (i+j+ 35,50 +1)
+ 2a. ZZ .1 2 (@i+))
\/ By =0 j=0 l'/'ZL(l—I-]—{— )F(l+§) (ﬁ)
1 Proof
A detailed proof is provided in Appendix B.
O

1 Theorem 3
(The expected value of Z = log, (1 + 3% +C))

Let Y ~ Xiz(iy) and X ~ Exp(ix) be two independent RVs. Let a,b,c > 0. Then, the
expected value of the RV Z = log, (1 + px+e ), E(2) is given by

ol X ()
B2y~ =15°
+00 U3 /’]l y:gl;_%)e(%_’_%)y&l Ei (_/’LX(%_’_%)) (9)

D3~

i=0 I=1 i1%tar (i + %) (us + 1)2(Lu3+1(y3,1))2
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where u3 is the number of nodes utilized in the Gauss-Laguerre quadrature technique,
and ys; is the Ith root of Laguerre polynomial L, (y).

1 Proof
The detailed proof is provided in Appendix C.

1 Remark 1

The infinite series in Theorems 1-3 converge absolutely because the factorial terms in the
denominators (i!, j!) guarantee fast decay of successive terms. For practical computation,
truncating the series at i,j < 20 is sufficient, yielding a relative error below 10~° for Theo-
rems 1-2 and below 10~ for Theorem 3). In Theorem 3, the Gauss—Laguerre quadrature
achieves stable convergence with uz > 10 nodes. All series remain numerically stable for
positive parameter values, ensuring reliable implementation.

1 Theorem 4
(The expected value of Z = log, (1 + aX) with X ~ Exp(Lx), and a > 0)

Let X ~ Exp(Jx), and a > 0. Then, the expected value of the RV Z = log, (1 + aX), E(Z)
is given by

Uusg (Z){;l)x&l
E(Z) ~ iy Z xyse\ X log, (1 + axy;)

= (wag+ 1)2(Lu4+1 (x4,1))2

) (10

where u4 is the number of nodes for the Gauss-Laguerre quadrature, and x4 is the lth
root of Laguerre polynomial L, (x).

1 Proof
First, E(Z) is given by

E(Z) = E(log, (1 + aX)), (11)

which can be expressed as
+o0

EZ) = / log, (1 + ax)fx (x)dx
0
+o00

= x / e xx log, (1 + ax)dx.
0

The integral in (12) can be approximated employing the Gauss-Laguerre quadrature, to
get the result in (10). O
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1 Theorem 5
(The expected value of Z = log, (1 + aY) withY ~ )(P(/ly), and a > 0)

LetY ~ xiz(/ly), and a > 0. Then, the expected value of Z = log, (1 + aY), E(Z) is given

us 1 05 (13)
5, y2,6 2 1_1(\/2yysg) log, (1 +apys;)
<Y —

Pt (50 + 1) (Lus 1 (951))

where us represents the number of nodes utilized in the Gauss-Laguerre quadrature tech-
nique, and s is the Ith root of Laguerre polynomial L, (y).

1 Proof
E(Z) is re-expressed as

E(Z) = / logy (1 + ay)fy ())dy
0

+00
x/ e iy il 4 (\/iy )log(l—l-ay)dy.
0

The integral in (14) can be approximated using the Gauss-Laguerre quadrature, to get
the result in (13). O

1 Remark 2

The exponential approximation in Lemma 2 holds under the conditions specified in its
proof and becomes exact as K — oo by virtue of the CLT. The Gauss—Laguerre quad-
rature approximation used in Theorems 3-5 exhibits exponential convergence for
smooth integrands. The approximation error decreases rapidly as the number of nodes u
increases, and choosing u > 10 provides relative errors below 10~ for typical parameter

settings, which is adequate for practical use.
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5 Results and discussion

In this section, leveraging the distributions and key results developed in Sect. 4, we
derive closed-form expressions for the outage probabilities and ergodic rates of the con-
sidered uplink RIS-assisted NOMA and OMA systems, and provide their high-SNR

asymptotic characterizations.

5.1 RIS-NOMA case
5.1.1 OPs
Considering the SINR in (3) and the SNR in (4) described in Section 3, the OPs of F1 and

F2, corresponding to thresholds 7; and 75, are expressed as

P1(y1) = Pr{A1 < 1}, (15)
and

Py(y1,72) =1 = Pr{A1 > y1, A2 > 10}, (16)

respectively, where y; = ok _q and 7, = 2R _q with R; and R, being the target rates
of F1 and F2, respectively.
Considering Lemma 1, Lemma 2, Theorem 1, and Theorem 2 from Sect. 4.1, the OPs

P1(71) and P2 (31, 72) are expressed as

(-4)
e Kb

[N

]P)l();l) = 72“
Kby,
+o0 +00 i 1)/F('+ i3 1 (17)
AEDTEH T m)
XZZ o
o e ) )
and
A +0o0 ‘i
Py(y1,72) =1 — e(%ff) < (Kz%l)/+1(bap ) Z o
i=0
1
2
pore T (i4)+ 3 )
X Z Z " ; ] 1 2 @ |’
55 (e (e 1) )
respectively, where
a = dl_()ll d;a3ﬂ21<(1 _ é_.)’ (lga)
b=dy™d; ™ B, (19b)
r= KSE’ (19¢)

AN 2 ] 2
with§ = 2o (r(rr?:n:)z)> <r(r(mt)2)> '
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5.1.2 ERs
Considering the SINR in (3) and the SNR (4) described in Section 3, the ERs of F1 and F2
are given by

Ri = E(log, (1 + A1), (20)
and

Ry =E(log, (1 + Az)), (21)
respectively.

Considering Lemma 1, Lemma 2, Theorem 3, and Theorem 4 from Subsection 4.1, Ry
and R; are expressed as

P S (P
KIn2
ol DD e ) &

x> D

i=0 =1 1'22L+2F<l+ )(M3+1)2<Lu3+1(y3,1))2

’

and

1 Z xg1e17 %0 Jog, (1 + axy)

K ’ 23
=1 ”4,1 + 1) (Lu4+1 (x4,1))2 (23)

K
respectively, where the values of 4, b and A are given in (19a), (19b) and (19c),

respectively.

5.1.3 Asymptotic SNR analysis

Now, we expatiate on the high-SNR regime, to gain some insights on the results in Sects.
5.1.1 and 5.1.2. For the sake of simplicity, we assume that p’ grows large.

1 Corollary 1

Suppose that p’ grows large. The asymptotic SINR and SNR satisfy

o [ K 2
dpp | 20 Ihllgukd
lim A1 k=1

- - (24)

p'——+00 K
2 &% higai
k=1
and
i A2 = +oo, (25)

respectively.
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1 Proof
We can easily see that A1 and Ay converge to (24) and (25), respectively. O

1 Corollary 2
Suppose that p’ grow large. The asymptotic OPs satisfy

. e(ﬁ_%)

lim Pi(y1) = ———
p'—+o0 2a
\/ Koy,

- (26)
+0o 400 JI(—1)T <i it %)
, i+’
=0 j=0 iy (i + ) (8% )
1
and
1) T yL e(%_é>
. AT ¢ ) N
i Pa71,72) =1—e > =
i=0 Kby,
S (27)
+0o 400 JI(Z1)T (i it %)
X
. i+ |’
=0 j=0 1yt (i + ) ()
1
respectively.
1 Proof
We have
3 1 3 n+1
im r(itito, — lim rfivi+>
ptoo <l+’ *3 Kbp’) pmpoo (“L] T Koo )
rlid)+>
= 1 -1,
775
and
_(1772/+%) . .
lim e \Kb' " Kbar') — 1, Thus, the limits of both P; (71) and Py (71, 72) for p’ — 400
p'——400
can be obtained as in (26) and (27), respectively. O

To provide more insight on the studied system’s performance, we will consider shortly,
the high-SNR slope, which is defined as S = lim Rip) [40]. The asymptotic expres-
p'—00

log, (0)
sion for F1’s ER and the ceiling for F2’s ER derived in the following corollary will help to
obtain it.

1 Corollary 3

Suppose that p' grows large. Rp1 approaches a ceiling that is given by
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1 J
lim Rp = — e 2
p'—+00 KlIn2
1
+ (3 ays, (28)
ot Ky e Ei(-Tg)

DD

i=0 =1 {122+ s (i + %)(% + 1) (Luyy11 ()’3,1))2,

and the tight upper bound of Rry’s high-SNR approximation is expressed as

R = log, (bp'K). (29)
1 Proof
For F1, we have lim eX/ = lim e®/”* =1, and
p'——400 p'——400

lim Ei (—%(% + bip,)) =Fi (—%yg,l). Thus, the limit of Rr; for o’ — 400 can

p/——+00

be obtained as in (28).

For F2, since log, (1 + bp’X) with respect to X is concave, so by considering Jensen’s
inequality [41], we have

Rpy = E(log, (1+ bp'X)) <log, (14 bp'E(X)) = log, (1 + bp'K).
When p’ — +00, we obtain (29). O
1 Corollary 4

In the analyzed uplink RIS-NOMA network, the high-SNR slopes of F1 and F2 are given
by S1 = 0 and Sy = 1, respectively.

1 Proof
We have
Ri(p) . dR{™
S = = p'In(2 =0,
! p/—lgrloologz(p’) p'In2) dp’
and
R / dR+OO
Sy = 20 _ @ g,

o'—+oo log, (') o

O

The diversity order analysis shows that F2 attains higher reliability (d2 = 1) than F1
(d1 = 0) in the high-SNR regime. This contrast arises because F1 remains interference-
limited due to residual interference from F2’s signal, while F2 enjoys interference-free
decoding once SIC is successfully applied. As a result, the OP of F2 decreases more rap-

idly with increasing SNR, whereas F1’s performance eventually saturates. This behavior

Page 14 of 25
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highlights an inherent design trade-off between rate and reliability in RIS-NOMA

systems.

1 Corollary 5

The diversity orders for users F1 and F2 in the high-SNR regime are given by:

dp1 =0 (F1 - Prioritized User) (30)
drp =1 (F2 - Secondary User) (31)
1 Proof
The diversity order is defined as d = —lim_, o, %‘ For F1, from asymptotic OP
expression (34), Pg = C\ (independent of p’), yielding dr1 = 0. For F2, from asymptotic
OP expression (35), PR = #2/)/ + O(p'72), yielding dpy = 1. O

1 Remark 3

The diversity analysis highlights a key trade-off: coherent beamforming (F1) offers array
gain but yields zero diversity because its performance saturates under interference,
whereas random phase-shifting (F2) achieves unit diversity through interference-free
decoding after SIC. This distinction guides practical deployment decisions: ultra-reliable
low-latency communications (URLLC) should leverage F2’s position for improved relia-
bility, while enhanced mobile broadband (eMBB) services can benefit from F1’s position
for higher throughput. Dynamic user pairing is therefore advisable in quality of service
(QoS)-aware systems.

5.2 The RIS-OMA case
When considering a RIS-OMA network, the received signals from F1 and F2 at the BS

are given by

yOMA — (hog))d, %d; ? Psy + n, (32)
and

YOMA = (hOgy)d; 7 dy ? /By + m, (33)

respectively. At the BS, the signals received from F1 and F2 are decoded separately and
the corresponding SNRs are given by

S B
APMA =4 7 dy ? |heg*p, (34)

and
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*2
2

_3
AMA =dy 7 dy ” heg ), (35)
respectively. The achievable data rates of F1 and F2 under the OMA scheme are given by

2
K
5 log, 1+d1a1d;a3ﬂ2(2 |hk||g1,k|> o'
k=1

2

Ko
> &% hgy i
k=1

and % log, | 1+d;, ™ dy %382 o’ |, respectively. Here, for a fair compari-

son, we presume that every UE utilizes half of the available resource block.
5.2.1 OPs

1 Theorem 6

When F1 and F2 are under the OMA scheme, their OPs are given by

. ~0
ety (i 4 L)

OMAp, (7;10) — i ) (36)
S T (i + %)
and
OMA ~0 -1 1720
Pg()/Z) =1—-eK bT)’ , (37)

respectively, where y = 22K _ 1 and Vs = 22k _q,

1 Proof
OMAP, (7710 ) and OMAP, ()720 ) can be easily derived as follows:
ap’

OMAp, ();10) = Pr(ap’¥ <) = Fy <%), (38)

and

5.2.2 ERs
Given the SNRs in (34) and (35), the ERs of F1 and F2 under the OMA scheme are given
by
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OMAR, — %]E(logz (14+a944)), (40)
and

OMAR, — %]E(logz (1+a944)), (1)
respectively.

Using Theorem 4 and 5, OMAR, and OMAR, are expressed as

4
o yé,zey%]f_%(\/@) log, (1+ap'ys,) 42)
T it b))
and
ovag, 1 & xR 21og2 (1—|—bp’x;u), )
29 (uag + 1) (Lugr (a1))
respectively.

5.2.3 Asymptotic SNR analysis
Now, to get further insights on the results in subsections 5.2.1 and 5.2.2, we elaborate on
the high-SNR regime.

1 Corollary 6

Suppose that p' grow large. The asymptotic OPs in a OMA scheme satisfy

OMAP(;O — hm OMAIPl
p—>+00
= e_%
+00 i ~0 \ ‘T2 (44)
X . Vi
i=0 1'2’1“(1 + 3) 2ap'
and
OMA oo . OMA
P¥ = lim Py =1,
= m AR, (45)
respectively.
1 Proof

Counsidering the fact that y (s, z) behaves near z = 0 asymptotically like y (s,z) ~ ZS:, (44)
can be easily obtained.



