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1 Introduction
One of the basic postulates in conventional communication theory is that the wireless 
environment is naturally random and unmodifiable. This means that we lack control 
over it, particularly with regards to the reflection and refraction phenomena of the radio 
waves. As a result when designing a wireless communication system, we must adapt to 
it through the design of sophisticated transceivers. However, the concept of smart radio 
environments (SREs) or "Wireless 2.0" [1] provides a contrasting perspective by allowing 
to manipulate the behavior of the radio waves after scattering from objects. The aim is 
to maximize the power of reflection toward the desired user(s) while minimizing it in 
unwanted directions. Reconfigurable intelligent surfaces (RISs) [2–7] have appeared as 
a technology enabler to realize the concept of SREs. RISs are thus used as an energy/
spectral efficient and low-cost solution to astutely adapt the propagation environment 
aiming to improve the reception’s reliability [2, 3, 8, 9]. A RIS consists of a 2D planar 
surface composed of a large number of reconfigurable inexpensive passive elements on 
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3  System and channel models
We examine an uplink RIS-aided NOMA/OMA network where two single-antenna 
UEs (denoted by F1 and F2) establish communications with a single-antenna BS 
via the RIS, as shown in Fig. 1. Direct links between the UEs and the BS are assumed 
absent, primarily attributed to obstructive objects causing blockage. More specifically, 
both F1 and F2 need help from the RIS to communicate with the BS. The RIS has K 
reflecting elements, and its reflection-coefficients and phase-shifts matrix is denoted 
by � = diag

�

β1e
jθ1 ,β2e

jθ2 , · · · ,βK e
jθK

�

 , where βk ∈ [0, 1] is the amplitude-reflec-
tion coefficient and θk ∈ [0, 2π) is the phase-shift variable of the kth element that can 
be adjusted by the RIS (k = 1, 2, · · · ,K ) . We assume, without loss of generality, that 
βk = β , ∀k ∈ {1, 2, · · · ,K } [35].
The signal y received at the BS is given by

where g1 ∈ C
K×1 , g2 ∈ C

K×1 , and h ∈ C
1×K  are the small-scale fading vectors 

of the F1→RIS, F2→RIS, and RIS→ BS links, respectively1. Particularly, they are 
g1 = [g1,1, g1,2, ..., g1,K ]

T , g2 = [g2,1, g2,2, ..., g2,K ]
T , and h = [h1, h2, ..., hK ] , respectively. 

(1)y = d
−

α3
2

3

√

P

2
�

i=1

d
−

αi
2

i (h�gi)si + n, i ∈ {1, 2},

Fig. 1 A schematic diagram illustrating the uplink scenario studied in the manuscript. Two single‑antenna 
user equipments (F1 and F2) are assisted by a single reconfigurable intelligent surface (RIS) composed of 
K reflecting elements and communicate with a single‑antenna base station (BS). Direct UE–BS links are 
assumed blocked

1 The Nakagami-m model plays a central role in Lemma 1    because it offers analytically manageable expressions for 
the product of random variables. The parameter ξ a, determined by mY and mZ ,  provides direct control over the non-
centrality parameter of the chi-square approximation, enabling accurate modeling under a wide range of propagation 
conditions.
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1  Lemma 1

[15] Let {Yk}Kk=1 be a sequence of i.i.d RVs for which |Yk | ∼ Nakagami(mY , 1) and {Zk}
K
k=1 

be a sequence of i.i.d RVs for which |Zk | ∼ Nakagami(mZ , 1) . Let 

ξ =
1

mYmZ

�

Ŵ

�

mY +
1
2

�

Ŵ(mY )

�2�
Ŵ

�

mZ+
1
2

�

Ŵ(mZ )

�2

 . When K is large (i.e, K >> 0 ), the RV

has a tendency to follow a non-central chi-square distribution as S ∼ χ ′2
1

�

K ξ
1−ξ

�

.

4.1  Key results

1  Lemma 2

Let {Yk}Kk=1 be a sequence of i.i.d RVs for which |Yk | ∼ Nakagami(mY ,�Y ) and {Zk}
K
k=1 be 

a sequence of i.i.d RVs for which |Zk | ∼ Nakagami(mZ ,�Z) . Let φk be a uniformly distrib-
uted RV over the interval [0, 2π) . When K is large (i.e, K >> 0 ), the RV

tends to follow an exponential distribution as S ∼ Exp
�

1
K

�

.

1  Proof
Resorting to [16], the summation S1 =

�K
k=1 e

jφk YkZk in (6) can be approximated, 
according to the central limit theorem (CLT), to match a complex Gaussian distribution 
S1 ∼ CN (0,K ) . Then, the RV S2 = |S1| ∼ Rayleigh

�

�

K
2

�

 . Finally, S = S22 is a one-to-

one transformation with an inverse S2 = g−1(S) =

√

S and a Jacobian dS2dS
=

1
2
√

S
 . There-

fore, by the transformation technique, it is clear that the RV S is exponentially distributed 
with a mean K. When going through different steps in this proof, one can easily see that 
the result in Lemma 2 relies on three key basic conditions: the phase shifts φk are i.i.d and 
uniformly distributed over [0, 2π) ; the channel amplitudes |Yk | and |Zk | are independent 
of φk ; and the value of K  is sufficiently large to justify the use of the CLT.

  �

(5)S =

�

�K
k=1 YkZk

�2

K (1 − ξ)
,

(6)S =

�

�

�

�

�

K
�

k=1

ejφk YkZk

�

�

�

�

�

2

,
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1  Theorem 1
Let and X ∼ Exp(�) be two independent RVs. Let a, b, c > 0 . Then, the CDF FZ(z) of 
t Y ∼ χ

′2
1 (ζ ) he RV Z =

aY
bX+c is given by

1  Proof
A detailed proof is provided in Appendix A.

  �

1  Theorem 2
Let Y ∼ χ

′2
1 (ζ ) and X ∼ Exp(�) be two independent RVs. Let a, b, c, γ1, γ2 > 0 . Then, the 

probability P = Pr
�

aY
bX+c

≥ γ1,
b
c X ≥ γ2

�

 is given by

1  Proof
A detailed proof is provided in Appendix B.

  �

1  Theorem 3
(The expected value of Z = log2

�

1 +
aY

bX+c

�

 )

Let Y ∼ χ
′2
1 (�Y ) and X ∼ Exp(�X ) be two independent RVs. Let a, b, c > 0 . Then, the 

expected value of the RV Z = log2

�

1 +
aY

bX+c

�

 , E(Z) is given by

(7)FZ(z) =

e
�

b
−

ζ
2

�

2a�
bz

+∞
�

i=0

+∞
�

j=0

ζ i(−1)jŴ(i + j + 3
2 ,

�c
b

)

i!2ij!(i + j + 1
2 )Ŵ(i + 1

2 )(
2a�
bz

)(i+j)
.

(8)

P =e

�

−ζ
2 +

�

b

�

×

�

e
−

�

�cγ2
b

+
�c
ba

�

+∞
�

i=0

ζ i

i!2i

+

1
�

2a�
bγ1

+∞
�

i=0

+∞
�

j=0

ζ i(−1)jŴ
�

i + j + 3
2 ,

�c
2 (γ2 + 1)

�

i!j!2i
�

i + j + 1
2

�

Ŵ

�

i + 1
2

��

2a�
bγ1

�(i+j)






.

(9)

E(Z) ≈ −

�X

ln 2
e

�

ac�X
b

−
�Y
2

�

×

+∞
�

i=0

u3
�

l=1

�
i
Y y

�

i+ 1
2

�

3,l e

�

ac�X
b

+
1
2

�

y3,l Ei
�

−�X (
ay3,l
b

+
ac
b

)
�

i!22i+
1
2 Ŵ

�

i + 1
2

�

(u3 + 1)2
�

Lu3+1

�

y3,l
��2

,
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where u3 is the number of nodes utilized in the Gauss-Laguerre quadrature technique, 
and y3,l is the lth root of Laguerre polynomial Lu3(y).

1  Proof
The detailed proof is provided in Appendix C.

  �

1  Remark 1
The infinite series in Theorems 1–3 converge absolutely because the factorial terms in the 
denominators (i!, j!) guarantee fast decay of successive terms. For practical computation, 
truncating the series at i, j ≤ 20 is sufficient, yielding a relative error below 10−6 for Theo-
rems 1–2 and below 10−4 for Theorem 3). In Theorem 3, the Gauss–Laguerre quadrature 
achieves stable convergence with u3 ≥ 10 nodes. All series remain numerically stable for 
positive parameter values, ensuring reliable implementation.

1  Theorem 4
(The expected value of Z = log2 (1 + aX) with X ∼ Exp(�X ) , and a > 0)

Let X ∼ Exp(�X ) , and a > 0 . Then, the expected value of the RV Z = log2 (1 + aX) , E(Z) 
is given by

where u4 is the number of nodes for the Gauss-Laguerre quadrature, and x4,l is the lth 
root of Laguerre polynomial Lu4 (x).

1  Proof
First, E(Z) is given by

which can be expressed as

The integral in (12) can be approximated employing the Gauss-Laguerre quadrature, to 
get the result in (10).   �

(10)E(Z) ≈ �X

u4
�

l=1

x4,le

�

�X−1
�X

�

x4,l log2
�

1 + ax4,l
�

�

u4,l + 1
�2�

Lu4+1

�

x4,l
��2

,

(11)E(Z) = E
�

log2 (1 + aX)
�

,

(12)

E(Z) =

+∞
�

0

log2 (1 + ax)fX (x)dx

= �X

+∞
�

0

e−�Xx log2 (1 + ax)dx.
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1  Theorem 5
(The expected value of Z = log2 (1 + aY ) with Y ∼ χ

′2
1 (�Y ) , and a > 0)

Let Y ∼ χ
′2
1 (�Y ) , and a > 0 . Then, the expected value of Z = log2 (1 + aY ) , E(Z) is given 

by

where u5 represents the number of nodes utilized in the Gauss-Laguerre quadrature tech-
nique, and y5,l is the lth root of Laguerre polynomial Lu5(y).

1  Proof
E(Z) is re-expressed as

The integral in (14) can be approximated using the Gauss-Laguerre quadrature, to get 
the result in (13).   �

1  Remark 2
The exponential approximation in Lemma 2 holds under the conditions specified in its 
proof and becomes exact as K → ∞ by virtue of the CLT. The Gauss–Laguerre quad-
rature approximation used in Theorems 3–5 exhibits exponential convergence for 
smooth integrands. The approximation error decreases rapidly as the number of nodes u 
increases, and choosing u ≥ 10 provides relative errors below 10−4 for typical parameter 
settings, which is adequate for practical use.

(13)
E(Z) ≈

�

1
4
Y e

−
�Y
2

2

×

u5
�

l=1

y
3
4
5,le

y5,l
2 I

−
1
2

��

�Y y5,l
�

log2
�

1 + aρy5,l
�

�

u5,l + 1
�2�

Lu5+1

�

y5,l
��2

,

(14)

E(Z) =

+∞
�

0

log2
�

1 + ay
�

fY (y)dy

=

�

1
4
Y e

−
�Y
2

2

×

�

+∞

0
e−

y
2 y−

1
4 I

−
1
2

�

�

�Y y
�

log(1 + ay)dy.
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5  Results and discussion
In this section, leveraging the distributions and key results developed in Sect.  4, we 
derive closed-form expressions for the outage probabilities and ergodic rates of the con-
sidered uplink RIS-assisted NOMA and OMA systems, and provide their high-SNR 
asymptotic characterizations.

5.1  RIS‑NOMA case

5.1.1  OPs

Considering the SINR in (3) and the SNR in (4) described in Section 3, the OPs of F1 and 
F2, corresponding to thresholds γ̃1 and γ̃2 , are expressed as

and

respectively, where γ̃1 = 2R̃1 − 1 and γ̃2 = 2R̃2 − 1 with R̃1 and R̃2 being the target rates 
of F1 and F2, respectively.

Considering Lemma 1, Lemma 2, Theorem 1, and Theorem 2 from Sect. 4.1, the OPs 
P1(γ̃1) and P2(γ̃1, γ̃2) are expressed as

and

respectively, where

with ξ =
1

m3m1

�

Ŵ

�

m3+
1
2

�

Ŵ(m3)

�2�
Ŵ

�

m1+
1
2

�

Ŵ
�

m
1

�

�2

.

(15)P1(γ̃1) = Pr{�1 ≤ γ̃1},

(16)P2(γ̃1, γ̃2) = 1 − Pr{�1 ≥ γ̃1,�2 ≥ γ̃2},

(17)

P1(γ̃1) =

e

�

1
Kb

−
�

2

�

�

2a
Kbγ̃

1

×

+∞
�

i=0

+∞
�

j=0

�
i(−1)jŴ

�

i + j + 3
2 ,

1
Kbρ′

�

i!j!2i
�

i + j + 1
2

�

Ŵ

�

i + 1
2

��

2a
Kbγ̃

1

�(i+j)
,

(18)

P2(γ̃1, γ̃2) = 1 − e

�

1
Kb

−
�

2

�

�

e
−

�

γ̃2
Kbρ′

+
1

Kbaρ′

�

+∞
�

i=0

�
i

i!2i

+

1
�

2a
Kbγ̃1

×

+∞
�

i=0

+∞
�

j=0

�
i(−1)jŴ

�

i + j + 3
2 ,

γ̃2+1
Kbρ′

�

i!j!2i
�

i + j + 1
2

�

Ŵ

�

i + 1
2

��

2a
Kbγ̃1

�(i+j)






,











a = d
−α1
1 d

−α3
3 β2K (1 − ξ), (19a)

b = d
−α2
2 d

−α3
3 β2, (19b)

� =
K ξ
1−ξ

, (19c)
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5.1.2  ERs

Considering the SINR in (3) and the SNR (4) described in Section 3, the ERs of F1 and F2 
are given by

and

respectively.
Considering Lemma 1, Lemma 2, Theorem 3, and Theorem 4 from Subsection 4.1, R1 

and R2 are expressed as

and

respectively, where the values of a,  b and � are given in (19a), (19b) and (19c), 
respectively.

5.1.3  Asymptotic SNR analysis

Now, we expatiate on the high-SNR regime, to gain some insights on the results in Sects. 
5.1.1 and 5.1.2. For the sake of simplicity, we assume that ρ′ grows large.

1  Corollary 1

Suppose that ρ′ grows large. The asymptotic SINR and SNR satisfy

and

respectively.

(20)R1 = E
�

log2 (1 + �1)
�

,

(21)R2 = E
�

log2 (1 + �2)
�

,

(22)

R1 = −

1

K ln 2
e

�

a
Kbρ′

−
�

2

�

×

+∞
�

i=0

u3
�

l=1

�
i y

�

i+ 1
2

�

3,l e

�

a
Kbρ′

+
1
2

�

y3,l Ei
�

−
1
K (

ay3,l
b

+
a
bρ′

)

�

i!22i+
1
2 Ŵ

�

i + 1
2

�

(u3 + 1)2
�

Lu3+1

�

y3,l
��2

,

(23)R2 =

1

K

u4
�

l=1

x4,le
(1−K )x4,l log2

�

1 + ax4,l
�

�

u4,l + 1
�2�

Lu4+1

�

x4,l
��2

,

(24)lim
ρ′

→+∞

�1 =

d
−α1
F1

�

K
�

k=1

|hk ||g1,k |

�2

d
−α2
F2

�

�

�

�

�

K
�

k=1

ejθk hkg2,k

�

�

�

�

�

2
,

(25)lim
ρ′

→+∞

�2 = +∞,
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1  Proof
We can easily see that �1 and �2 converge to (24) and (25), respectively.   �

1  Corollary 2
Suppose that ρ′ grow large. The asymptotic OPs satisfy

and

respectively.

1  Proof
We have

and

lim
ρ′

→+∞

e
−

�

γ̃2
Kbρ′

+
1

Kbaρ′

�

= 1 . Thus, the limits of both P1(γ̃1) and P2(γ̃1, γ̃2) for ρ′
→ +∞ 

can be obtained as in (26) and (27), respectively.   �

To provide more insight on the studied system’s performance, we will consider shortly, 
the high-SNR slope, which is defined as S = lim

ρ′
→∞

R(ρ′)
log2(ρ

′)
 [40]. The asymptotic expres-

sion for F1’s ER and the ceiling for F2’s ER derived in the following corollary will help to 
obtain it.

1  Corollary 3

Suppose that ρ′ grows large. RF1 approaches a ceiling that is given by

(26)

lim
ρ′

→+∞

P1(γ̃1) =

e

�

1
Kb

−
�

2

�

�

2a
Kbγ̃

1

×

+∞
�

i=0

+∞
�

j=0

�
i(−1)jŴ

�

i + j + 1
2

�

i!j!2iŴ
�

i + 1
2

��

2a
Kbγ̃

1

�(i+j)
,

(27)

lim
ρ′

→+∞

P2(γ̃1, γ̃2) =1 − e

�

1
Kb

−
�

2

�

+∞
�

i=0

�
i

i!2i
−





e

�

1
Kb

−
�

2

�

�

2a
Kbγ̃

1

×

+∞
�

i=0

+∞
�

j=0

�
i(−1)jŴ

�

i + j + 1
2

�

i!j!2iŴ
�

i + 1
2

��

2a
Kbγ̃

1

�(i+j)






,

lim
ρ′

→+∞

Ŵ

�

i + j +
3

2
,

1

Kbρ′

�

= lim
ρ′

→+∞

Ŵ

�

i + j +
3

2
,
γ̃2 + 1

Kbρ′

�

= Ŵ

�

i + j +
3

2

�

,
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and the tight upper bound of RF2 ’s high-SNR approximation is expressed as

1  Proof
For F1, we have lim

ρ′
→+∞

e
a

Kbρ′

= lim
ρ′

→+∞

e
a

Kbρ′
y3,l

= 1 , and

lim
ρ′

→+∞

Ei
�

−
1
K (

ay3,l
b

+
a
bρ′

)

�

= Ei
�

−
a
Kb

y3,l
�

 . Thus, the limit of RF1 for ρ′
→ +∞ can 

be obtained as in (28).

For F2, since log2(1 + bρ′X) with respect to X is concave, so by considering Jensen’s 
inequality [41], we have

RF2 = E
�

log2
�

1 + bρ′X
��

≤ log2
�

1 + bρ′
E(X)

�

= log2
�

1 + bρ′K
�

.

When ρ′
→ +∞ , we obtain (29).   �

1  Corollary 4
In the analyzed uplink RIS-NOMA network, the high-SNR slopes of F1 and F2 are given 
by S1 = 0 and S2 = 1 , respectively.

1  Proof
We have

and

  �

The diversity order analysis shows that F2 attains higher reliability ( d2 = 1 ) than F1 
( d1 = 0 ) in the high-SNR regime. This contrast arises because F1 remains interference-
limited due to residual interference from F2’s signal, while F2 enjoys interference-free 
decoding once SIC is successfully applied. As a result, the OP of F2 decreases more rap-
idly with increasing SNR, whereas F1’s performance eventually saturates. This behavior 

(28)

lim
ρ′

→+∞

RF1 = −

1

K ln 2
e−

�

2

×

+∞
�

i=0

u3
�

l=1

�
i y

�

i+ 1
2

�

3,l e
y3,l
2 Ei

�

−
ay3,l
Kb

�

i!22i+
1
2 Ŵ

�

i + 1
2

�

(u3 + 1)2
�

Lu3+1

�

y3,l
��2

,

(29)R∞

F2 = log2
�

bρ′K
�

.

S1 = lim
ρ′

→+∞

R1(ρ
′)

log2(ρ
′)

= ρ′ ln(2)
d R+∞

1

dρ′
= 0,

S2 = lim
ρ′

→+∞

R2(ρ
′)

log2(ρ
′)

= ρ′ ln(2)
d R+∞

2

dρ′
= 1.
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highlights an inherent design trade-off between rate and reliability in RIS–NOMA 
systems.

1  Corollary 5

The diversity orders for users F1 and F2 in the high-SNR regime are given by:

1  Proof
The diversity order is defined as d = − limρ′

→∞

log Pout(γth)
log ρ′  . For F1, from asymptotic OP 

expression (34), P∞

F1 = C1 (independent of ρ′ ), yielding dF1 = 0 . For F2, from asymptotic 
OP expression (35), P∞

F2 =
γ̃2

Kbρ′
+ O(ρ′−2) , yielding dF2 = 1 .   �

1  Remark 3
The diversity analysis highlights a key trade-off: coherent beamforming (F1) offers array 
gain but yields zero diversity because its performance saturates under interference, 
whereas random phase-shifting (F2) achieves unit diversity through interference-free 
decoding after SIC. This distinction guides practical deployment decisions: ultra-reliable 
low-latency communications (URLLC) should leverage F2’s position for improved relia-
bility, while enhanced mobile broadband (eMBB) services can benefit from F1’s position 
for higher throughput. Dynamic user pairing is therefore advisable in quality of service 
(QoS)-aware systems.

5.2  The RIS‑OMA case

When considering a RIS-OMA network, the received signals from F1 and F2 at the BS 
are given by

and

respectively. At the BS, the signals received from F1 and F2 are decoded separately and 
the corresponding SNRs are given by

and

(30)dF1 = 0 (F1 - Prioritized User)

(31)dF2 = 1 (F2 - Secondary User)

(32)yOMA
1 = (h�g1)d

−
α1
2

1 d
−

α3
2

3

√

Ps1 + n,

(33)yOMA
2 = (h�g2)d

−
α2
2

2 d
−

α3
2

3

√

Ps2 + n,

(34)�OMA
1 = d

−
α1
2

1 d
−

α3
2

3 |h�g1|
2ρ′,
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respectively. The achievable data rates of F1 and F2 under the OMA scheme are given by

1
2 log2



1 + d
−α1
1 d

−α3
3 β2

�

K
�

k=1

|hk ||g1,k |

�2

ρ′





and 12 log2



1 + d
−α2
2 d

−α3
3 β2

�

�

�

�

�

K
�

k=1

ejθk hkg2,k

�

�

�

�

�

2

ρ′



 , respectively. Here, for a fair compari-

son, we presume that every UE utilizes half of the available resource block.

5.2.1  OPs

1  Theorem 6

When F1 and F2 are under the OMA scheme, their OPs are given by

and

respectively, where γ̃ o
1 = 22R̃1 − 1 and γ̃ o

2 = 22R̃2 − 1.

1  Proof
OMA

P1

�

γ̃ 0
1

�

 and OMA
P2

�

γ̃ 0
2

�

 can be easily derived as follows:

and

  �

5.2.2  ERs

Given the SNRs in (34) and (35), the ERs of F1 and F2 under the OMA scheme are given 
by

(35)�OMA
2 = d

−
α2
2

2 d
−

α3
2

3 |h�g2|
2ρ′,

(36)OMA
P1

�

γ̃ 0
1

�

= e−
�

2

+∞
�

i=0

�
iγ

�

i + 1
2 ,

γ̃ 0
1

2aρ′

�

i!2iŴ
�

i + 1
2

� ,

(37)OMA
P2

�

γ̃ 0
2

�

= 1 − e−
1
K

�

γ̃ 0
2

bρ′

�

,

(38)OMA
P1

�

γ̃ 0
1

�

= Pr
�

aρ′Y < Qγ o
1

�

= FY

�

Qγ o
1

aρ′

�

,

(39)OMA
P2

�

γ̃ 0
2

�

= Pr
�

aρ′X < Qγ o
2

�

= FX

�

Qγ o
2

aρ′

�

.
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and

respectively.
Using Theorem 4 and 5, OMAR1 and OMAR2 are expressed as

and

respectively.

5.2.3  Asymptotic SNR analysis

Now, to get further insights on the results in subsections 5.2.1 and 5.2.2, we elaborate on 
the high-SNR regime.

1  Corollary 6

Suppose that ρ′ grow large. The asymptotic OPs in a OMA scheme satisfy

and

respectively.

1  Proof

Considering the fact that γ (s, z) behaves near z = 0 asymptotically like γ (s, z) ≈
zs

s  , (44) 
can be easily obtained.

(40)OMAR1 =

1

2
E

�

log2

�

1 + �OMA
1

��

,

(41)OMAR2 =

1

2
E

�

log2

�

1 + �OMA
2

��

,

(42)

OMAR1 ≈

�
1
4 e−

�

2

4

×

u5
�

l=1

y
3
4
5,le

y5,l
2 I

−
1
2

��

�y5,l
�

log2
�

1 + aρ′y5,l
�

�

u5,l + 1
�2�

Lu5+1

�

y5,l
��2

,

(43)OMAR2 ≈

1

2K

u4
�

l=1

x4,le
(1−K )x4,l log2

�

1 + bρ′x4,l
�

�

u4,l + 1
�2�

Lu4+1

�

x4,l
��2

,

(44)

OMA
P

∞

1 = lim
ρ→+∞

OMA
P1

= e−
�

2

×

+∞
�

i=0

�
i

i!2iŴ
�

i + 3
2

�

�

γ̃ 0
1

2aρ′

�i+ 1
2

,

(45)OMA
P

∞

2 = lim
ρ′

→+∞

OMA
P2 = 1,


