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Mathematical Exploration of Malaria Transmission
Dynamics: Insights from Fractional Models and Numerical
Simulation

Souad Bounouiga, Bilal Basti,* and Noureddine Benhamidouche

This study presents an innovative mathematical model denoted as the
fractional SIP(H)–SI(M) model, which aims to analyze and understand the
dynamics of malaria transmission and spread. This model is distinguished by
incorporating memory effects through fractional differential equations,
allowing for a more accurate and realistic analysis of disease spread
compared to traditional models. The proposed model is applied to Algeria by
estimating its parameters using recent health data (from 2000). The results
revealed that the disease-free equilibrium is stable only when the basic
reproduction number is less than one, indicating that controlling the spread
of malaria and possibly eradicating it can be achieved by implementing
appropriate preventive measures. Simulations also demonstrated a direct
correlation between the rate of infection transmission and an increase in the
number of infected individuals, highlighting the need for swift action when
signs of an outbreak emerge. Based on these findings, a set of preventive
measures is recommended, including insecticide spraying programs,
widespread distribution of insecticide-treated bed nets, and implementation
of effective treatment protocols for infected individuals. This study also
emphasizes the importance of continuous monitoring of health data and
updating model parameters to ensure the effectiveness and sustainability of
preventive measures.

1. Introduction

The transmission of diseases through mosquito bites highlights
the important role of small pests in the spread of diseases.
Malaria, which results from blood parasites of the genus Plas-
modium and is transmitted through Anopheles mosquito bites,
poses a major challenge to human health. This disease is notori-
ous for its prevalence in tropical and subtropical regions, where
the environment is conducive to mosquito breeding and trans-
mission of blood parasites between humans. Global Health Or-
ganizations estimate that the number of malaria cases annually
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ranges from hundreds of thousands to mil-
lions, with developing countries being par-
ticularly affected.
Suitable environmental conditions such

as stagnant water pools and high temper-
atures contribute to the spread of malaria,
increase its severity, and exacerbate its com-
plications. Those afflicted with malaria suf-
fer from serious health effects, including
organ failure such as kidney and liver fail-
ure, changes in blood composition, and
central nervous system disorders. Individ-
uals infected with malaria may experi-
ence symptoms such as high fever, severe
headache, muscle pain, and confusion. In
severe cases, death may occur if immedi-
ate and adequate treatment are not adminis-
tered. Therefore, combating mosquitoes is
of paramount importance for reducing the
transmission of this disease and preserving
public health.
With advances in technology and math-

ematics, mathematical modeling has be-
come a powerful tool for understand-
ing and analyzing the dynamics of dis-
ease spread.[1–7] Recent studies have in-
creasingly highlighted the importance of

incorporatingmemory and hereditary characteristics into disease
models through fractional calculus. Traditional models rely on
integer-order derivatives, which may be insufficient for repre-
senting complex dynamic phenomena involvingmemory effects.
In contrast, fractional derivatives allow for a more accurate rep-
resentation of these processes by considering not only the cur-
rent state of the system but also the entire history of previous
states. This approach provides amore comprehensive framework
for analyzing disease dynamics, enabling the modeling of time-
dependent factors such as acquired immunity, recurrent infec-
tions, and environmental changes that influence disease trans-
mission.
The superiority of fractional models over traditional integer-

order models lies in their ability to represent memory effects
and long-term dependencies, which are crucial for understand-
ing and controlling the spread of infectious diseases such as
malaria. For example, recent research has shown that fractional
differential equations can more accurately model disease spread
in populations with varying susceptibility and exposure, lead-
ing to better predictions and more effective intervention strate-
gies refs. [8–17]. In addition, fractional models allow for a more
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precise representation of time-dependent processes such as sea-
sonal variations or the impact of health interventions, whichmay
have long-lasting effects. This precision in representation makes
fractional models an essential tool for designing disease-control
strategies that account for the real complexities of ecological and
health systems.
In addition to their application in disease modeling, fractional

differential equations have been used in various fields, including
optimization problems, medical diagnosis, and artificial intelli-
gence, offering a more comprehensive framework for analyzing
complex systems.[18–24] As this field continues to evolve, the inte-
gration of these advanced mathematical tools is expected to play
a crucial role in shaping future public health policies and inter-
ventions, not only in combating malaria but also in addressing
numerous other global health challenges.
This study contributes to the development of a fractionalmath-

ematical model aimed at enhancing our understanding of the
malaria transmission dynamics. The effectiveness of the model
in accurately representing disease dynamics is ensured by ana-
lyzing the equilibrium points and studying the solution stability.
Additionally, calculating the basic reproduction number provides
crucial insights into the disease spread rate and influencing fac-
tors, which aids in better guiding health policies and preventive
measures. Moreover, the model is used to validate the data and
identify the factors contributing to disease transmission. Based
on the results of the model, recommendations and strategies are
offered to improve malaria control efforts and reduce their im-
pact on public health.
In our study concerning the dynamics of the epidemic, we cate-

gorize the entire human population, represented asH, into three
distinct classes: Susceptible (SH), Infected (IH), and Partially Im-
mune (PH) individuals.
Moreover, the mosquito population surrounding the human

population, denoted as M, is partitioned into two distinct cate-
gories: Susceptible (SM) and Infected (IM) mosquitoes.
The parameters of the SIP(H)–SI(M) model are defined as fol-

lows:

1) Λ indicates the rate of increase in the susceptible individuals.
2) 𝜆 represents the rate of increase in the susceptible

mosquitoes.
3) 𝜇 < Λ is the rate of natural death for humans.
4) 𝜐 < 𝜆 represents the rate of natural death of mosquitoes.
5) 𝛽 is the probability rate of disease transmission from IM to

SH.
6) 𝛾 is the probability rate of disease transmission from IH to SM.
7) 𝜅 expresses the immunity acquisition rate for humans.
8) 𝛿 represents the immunity loss rate for humans.

Fractional calculus has become increasingly essential and is con-
sidered a possible alternative to integer-order models. This al-
lows for the description and processing of a wide range of struc-
tural properties within the studied system. Caputo’s definitions
allow the initial conditions to be expressed significantly as tradi-
tional derivatives, making them the preferred fractional deriva-
tives for many mathematical modeling applications. Interested
readers can delve deeper into this topic by referring to refs. [18,
23, 25–34].

Motivated by the above-mentioned work, for 0 ≤ t ≤ 𝓁 <∞,
and 0 < 𝛼 ≤ 1, we have:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C𝛼
0+SH(t) = ΛH(t) + 𝛿PH(t) −

(
𝛽IM(t)

M(t)
+ 𝜇
)
SH(t)

C𝛼
0+IH(t) =

𝛽IM(t)

M(t)
SH(t) − (𝜅 + 𝜇)IH(t)

C𝛼
0+PH(t) = 𝜅IH(t) − (𝛿 + 𝜇)PH(t)

C𝛼
0+SM(t) = 𝜆M(t) −

(
𝛾IH(t)

H(t)
+ 𝜐
)
SM(t)

C𝛼
0+IM(t) =

𝛾IH(t)

H(t)
SM(t) − 𝜐IM(t)

(1)

where the first three equations in system (1) represent human
equations, while the last two equations express mosquito equa-
tions.
The changes in the transmission of infectious diseases be-

tween humans and mosquitoes in SIP(H)–SI(M) model (1) can
be interpreted as follows:
In Figure 1, it is assumed that susceptible individuals SH are

recruited at a rate ΛH and die naturally at a rate μ. They be-
come infected with malaria as a result of being bitten by infected
mosquitoes andmoving to infected class IH at a transmission rate
𝛽.
For infected individuals, IH is assumed to die naturally at a rate

μ or acquire partial temporary immunity andmove to the partially
immune class PH at a rate 𝜅. Furthermore, partially immune in-
dividuals’ PH may lose immunity and return to the susceptible
class SH at a rate 𝛿 or die naturally at a rate μ.
As for mosquitoes SM, they are recruited into the susceptible

category at a rate 𝜆M and die naturally at a rate 𝜐. Susceptible
mosquitoes SM become infected with malaria at a rate 𝛾 after
feeding on the blood of infected humans and move to the in-
fected humans and move to the infected category IM. Infected
mosquitoes IM also die naturally at a rate 𝜐.
The paper is structured to gain a thorough understanding of

malaria transmission dynamics and the factors that influence
them. We begin with exploring the feasibility region for the frac-
tional SIP(H)–SI(M) mathematical model using the Caputo frac-
tional derivative. This allows us define the boundaries in which
we can effectively analyze the system’s behavior and disease
spread. This analysis helps in assessing the model’s applicabil-
ity and identifying the optimal conditions for its study.
Following this, attention is focused on studying the existence,

uniqueness, and stability of solutions using Schauder’s and Ba-
nach’s fixed-point theorems, along with Ulam–Hyers’ stability
criteria. This analysis ensures that the model provides sustain-
able and applicable solutions, enhancing its credibility and ability
to accurately represent real-world dynamics.
The basic reproduction number, ℜ0, is a critical indicator for

assessing malaria transmission. Determining ℜ0 provides in-
sights into disease spread rates and helps to identify points where
control measures can be applied. In addition, we investigate the
equilibrium points within the fractional SIP(H)–SI(M) model,
analyze their stability to guide disease control strategies, and pre-
dict future trends. Mosquitoes play a crucial role in the transi-
tion between susceptible and infected states. Their recruitment,
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Figure 1. Flowchart of SIP(H)–SI(M).

natural mortality, and infection dynamics are integral compo-
nents of our model.
We validate the accuracy of our model using real data from the

Algerian region. This allows us to identify the specific local fac-
tors contributing to the spread of malaria. The validation process
enhances the precision of the model and assists in developing
targeted disease-control strategies. Furthermore, we investigate
the memory effect, which has enriched our understanding of the
influence of temporal and historical dynamics on disease trans-
mission.

2. Necessary Definitions and Preliminaries

This section aims to clarify some fundamental definitions that re-
sult from the fractional calculus theory. The space under consid-
eration is the Banach space of continuous functions C ([0,𝓁] ,ℂ),
with the norm

‖𝜑‖∞ = sup
t∈[0,𝓁]

|𝜑(t)| (2)

Definition 1 (Ref. [22]). The left-sided (arbitrary) fractional integral
of order 𝛼 > 0 of a continuous function 𝜑 : [0,𝓁] → ℝ is given by

 𝛼
0+𝜑(t) =

1
Γ(𝛼) ∫

t

0
(t − 𝜏)𝛼−1𝜑(𝜏)d𝜏, t ∈ [0,𝓁] (3)

where Γ (𝛼) = ∫ ∞
0 𝜏𝛼−1 exp (−𝜏) d𝜏 is the Euler gamma function.

Definition 2 (Caputo’s fractional derivative [22]). The left-sided Ca-
puto’s fractional derivative of order 𝛼 > 0 of a function 𝜑 : [0,𝓁] → ℝ
is given by

C𝛼
0+𝜑(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dm𝜑(t)
dtm

, for 𝛼 = m ∈ ℕ0,

 m−𝛼
0+

dm𝜑(t)
dtm

= ∫
t

0

(t − 𝜏)m−𝛼−1

Γ(m − 𝛼)
dm𝜑(𝜏)
d𝜏m

d𝜏,

for m − 1 < 𝛼 < m ∈ ℕ

(4)

Lemma 3 (Ref. [22]). Assume that C𝛼
0+𝜑 ∈ C ([0,𝓁] ,ℝ), then we

get for all 𝛼 > 0

 𝛼
0+

C𝛼
0+𝜑(t) = 𝜑(t) −

n−1∑
k=0

𝜑(k)(0)
k!

tk, n − 1 < 𝛼 ≤ n ∈ ℕ (5)

Lemma 4 (Gronwall [19]). Let 𝜑 (t) and 𝜔 (t) be nonnegative, contin-
uous functions on 0 ≤ t ≤ 𝓁, for which the inequality:

𝜑(t) ≤ 𝜑(0) + ∫
t

0
𝜔(𝜏)𝜑(𝜏)d𝜏, t ∈ [0,𝓁] (6)

where 𝜑 (0) is a nonnegative constant. Then

𝜑(𝜏) ≤ 𝜑(0) exp
(
∫

t

0
𝜔(𝜏)d𝜏

)
, t ∈ [0,𝓁] (7)

3. Dynamic Analysis of the Feasible Region

3.1. Positivity and Boundedness of the Model

The SIP(H)–SI(M) model (1) is investigated within a biologically
feasible region in ℝ5

+, as defined in the subsequent lemma.

Lemma 5. Assume that M0 repersents the initial total mosquito pop-
ulation, let H0 be the initial total human population at t = 0, where
0 ≤ t ≤ 𝓁 ≤ ∞. Consequently, the solution to the considered model is
confined to the feasible region, given by

Ω =

{(
SH, IH, PH, SM, IM

)
∈ ℝ5

+ : 0 ≤ H(t) ≤ H0 exp
(

Λ𝓁𝛼
Γ(𝛼 + 1)

)
,

0 ≤ M(t) ≤ M0 exp
(

𝜆𝓁𝛼

Γ(𝛼 + 1)

)}
. (8)

with

H(t) = SH(t) + IH(t) + PH(t), M(t) = SM(t) + IM(t) (9)

Proof. Let

H(t) = SH(t) + IH(t) + PH(t) (10)
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then

C𝛼
0+H(t) =

C𝛼
0+SH(t) +

C𝛼
0+IH(t) +

C𝛼
0+PH(t) (11)

Now, summing all the human equations of (1), we get

C𝛼
0+H(t) = (Λ − 𝜇)H(t)

≤ ΛH(t) (12)

After using Lemma 3, we get

H(t) ≤ H0 + Λ 𝛼
0+H(t) (13)

Applying Gronwall Lemma 4, we obtain

H(t) ≤ H0 exp
(

Λ𝓁𝛼
Γ(𝛼 + 1)

)
(14)

whereH0 is the total human population at t = 0.
In another way, let

M(t) = SM(t) + IM(t) (15)

then

C𝛼
0+M(t) = C𝛼

0+SM(t) +
C𝛼

0+IM(t) (16)

Now, summing all the mosquito equations of (1), we obtain

C𝛼
0+M(t) = (𝜆 − 𝜐)M(t)

≤ 𝜆M(t) (17)

Applying Lemma 3, gives us

M(t) ≤ M0 + 𝜆 𝛼
0+M(t) (18)

After using Gronwall Lemma 4, we get

M(t) ≤ M0 exp
(

𝜆𝓁𝛼

Γ(𝛼 + 1)

)
(19)

whereM0 is the total mosquito population at t = 0.

In subsequent sections of this paper, we assume the existence
of two positive constants:

 ≤ H0 exp
(

Λ𝓁𝛼

Γ(𝛼+1)

)
,  ≤ M0 exp

(
𝜆𝓁𝛼

Γ(𝛼+1)

)
(20)

where the total human population H and mosquito population
M remained fixed throughout the study period and can be ex-
pressed asH (t) =  andM (t) = . This assumption was made
to normalize the SIP(H)–SI(M) model (1). Therefore, we put:

S(t) =
SH(t)

 , I(t) =
IH(t)

 , P(t) =
PH(t)


V(t) =

SM(t)

 , F(t) =
IM(t)

 ,

(21)

then we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C𝛼
0+S(t) = Λ + 𝛿P(t) − (𝛽F(t) + 𝜇)S(t)

C𝛼
0+I(t) = 𝛽F(t)S(t) − (𝜅 + 𝜇)I(t)

C𝛼
0+P(t) = 𝜅I(t) − (𝛿 + 𝜇)P(t)

C𝛼
0+V(t) = 𝜆 − (𝛾I(t) + 𝜐)V(t)

C𝛼
0+F(t) = 𝛾I(t)V(t) − 𝜐F(t)

(22)

along with the positive initial conditions

S(0) = 𝜑1, I(0) = 𝜑2, P(0) = 𝜑3, V(0) = 𝜑4, F(0) = 𝜑5 (23)

3.2. Existence Results of Solutions for the Normalized Model

In this section, we explore the existence and uniqueness of solu-
tions to problem in Equations (26)–(27) through the field of fixed-
point theory. Our investigation employs Banach’s and Schauder’s
fixed-point theorems, as outlined in refs. [19, 35–39].
Let 𝜑 = (S, I, P, V, F) ∈ Ω, where Ω = [C ([0,𝓁] , [0, 1])]5 is a Ba-

nach space with

‖𝜑‖Ω = max {‖S‖∞, ‖I‖∞, ‖P‖∞, ‖V‖∞, ‖F‖∞} (24)

and let 𝜓 =
(
𝜓1,𝜓2,𝜓3,𝜓4,𝜓5

)
, be such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜓1(t,𝜑(t)) = Λ − (𝛽F(t) + 𝜇)S(t) + 𝛿P(t)

𝜓2(t,𝜑(t)) = 𝛽F(t)S(t) − (𝜅 + 𝜇)I(t)

𝜓3(t,𝜑(t)) = 𝜅I(t) − (𝛿 + 𝜇)P(t)

𝜓4(t,𝜑(t)) = 𝜆 − (𝛾I(t) + 𝜐)V(t)

𝜓5(t,𝜑(t)) = 𝛾I(t)V(t) − 𝜐F(t)

(25)

It is clear that 𝜓 is a continuous function.
By applying  𝛼

0+ to both sides of the system

C𝛼
0+𝜑(t) = 𝜓(t,𝜑(t)) (26)

taking into account the conditions

𝜑(0) = 𝜑0 =
(
𝜑1,𝜑2,𝜑3,𝜑4,𝜑5

)
(27)

and employing Lemma 3, we obtain the following system of frac-
tional integral equations

𝜑(t) = 𝜑0 +
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1f (𝜏,𝜑(𝜏))d𝜏 (28)

which is equivalent to the original problem in Equations (26)–
(27).

Theorem 6. Let 𝛽, 𝛾 , 𝛿, 𝜅, 𝜐,𝜇, 𝛼,𝓁 ∈ ℝ+, be such that 𝛼 ∈ (0, 1]
and

𝓁 <
(

Γ(𝛼 + 1)
max{𝛽 + 𝜇, 𝜅 + 𝜇, 𝛿 + 𝜇, 𝛾 + 𝜐}

) 1
𝛼

(29)
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Then, there is at least one solution to problem in Equations (26)–(27)
on [0,𝓁].

Proof. The proof begins with transformation of problem in
Equations (26)–(27) into a fixed-point problem  𝜑 (t) = 𝜑 (t),
with

 𝜑(t) = (1𝜑(t), 2𝜑(t), 3𝜑(t), 4𝜑(t), 5𝜑(t)) (30)

and

 𝜑(t) = 𝜑0 +
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓(𝜏,𝜑(𝜏))d𝜏 (31)

Observing that for 𝜑 ∈ Ω, the operators i𝜑 for 1 ≤ i ≤ 5 are con-
tinuous, as demonstrated in Step 1. Consequently,  𝜑 is an ele-
ment of Ω, with

‖ 𝜑‖Ω = max
1≤i≤5

‖‖i𝜑‖‖∞ (32)

The equivalence between problems in Equations (26)–(27) and
(31) implies that  includes fixed points for solving the afore-
mentioned problem.
Step 1.  is a continuous operator. Let

(
𝜑n

)
n∈ℕ0

=(
Sn, In, Pn, Vn, Fn

)
be five nonnegative real sequences, such

that lim
n→∞

𝜑n = 𝜑 in Ω. We obtain for all t ∈ [0,𝓁],

||i𝜑n(t) − i𝜑(t)||
≤ 1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1|||𝜓i

(
𝜏,𝜑n(𝜏)

)
− 𝜓i(𝜏,𝜑(𝜏))

|||d𝜏 (33)

where 𝜓i satisfies in Equation(25) for each 1 ≤ i ≤ 5. We have

|||𝜓1

(
t,𝜑n(t)

)
− 𝜓1(t,𝜑(t))

||| = |||𝛿(Pn(t) − P(t)
)
−
[(
𝛽Fn(t) + 𝜇

)
Sn(t)

− (𝛽F(t) + 𝜇)S(t)]|
≤ 𝛿||Pn(t) − P(t)|| + 𝜇||Sn(t) − S(t)||

+ ||𝛽Fn(t)Sn(t) − 𝛽F(t)S(t)||
≤ 𝛿||Pn(t) − P(t)|| + (𝛽 + 𝜇)||Sn(t) − S(t)||

+ 𝛽||Fn(t) − F(t)||
≤ max {𝛿, 𝛽 + 𝜇}‖‖𝜑n − 𝜑‖‖Ω (34)

Similarly, we obtain

|||𝜓2

(
t,𝜑n(t)

)
− 𝜓2(t,𝜑(t))

||| ≤ max {𝛽, 𝜅 + 𝜇}‖‖𝜑n − 𝜑‖‖Ω|||𝜓3

(
t,𝜑n(t)

)
− 𝜓3(t,𝜑(t))

||| ≤ max {𝜅, 𝛿 + 𝜇}‖‖𝜑n − 𝜑‖‖Ω|||𝜓4

(
t,𝜑n(t)

)
− 𝜓4(t,𝜑(t))

||| ≤ (𝛾 + 𝜐)‖‖𝜑n − 𝜑‖‖Ω|||𝜓5

(
t,𝜑n(t)

)
− 𝜓5(t,𝜑(t))

||| ≤ max {𝛾 , 𝜐}‖‖𝜑n − 𝜑‖‖Ω
(35)

Since 𝜑n → 𝜑 in Ω as n → ∞, we get 𝜓i

(
t,𝜑n (t)

)
→ 𝜓i (t,𝜑 (t))

for any t ∈ [0,𝓁], and each i ∈ 1, 5.

Now, let  > 0, be such that for each t ∈ [0,𝓁], we have

(t − 𝜏)𝛼−1

Γ(𝛼)
|||𝜓i

(
𝜏,𝜑n(𝜏)

)
− 𝜓i(𝜏,𝜑(𝜏))

|||
≤ (t − 𝜏)𝛼−1

Γ(𝛼)

(|||𝜓i

(
𝜏,𝜑n(𝜏)

)||| + ||𝜓i(𝜏,𝜑(𝜏))||)
≤ 2

Γ(𝛼)
(t − 𝜏)𝛼−1 (36)

For each i ∈ 1, 5, the function 𝜏 → 2
Γ(𝛼)

(t − 𝜏)𝛼−1 is integrable on
[0, t], for each t ∈ [0,𝓁]. Thus, the implication of Lebesgue’s dom-
inated convergence theorem gives us

||i𝜑n(t) − i𝜑(t)||→ 0 as n → ∞ (37)

and hence

lim
n→∞
‖‖ 𝜑n −  𝜑‖‖Ω = 0 (38)

This signifies the continuity of  .
Step 2.  is defined from a bounded, closed, and convex subset

into itself. Utilizing Equation (29), we define

r ≥ 𝜑iΓ(𝛼 + 1) + (Λ + 𝜆)𝓁𝛼

Γ(𝛼 + 1) −max{𝛽 + 𝜇, 𝜅 + 𝜇, 𝛿 + 𝜇, 𝛾 + 𝜐}𝓁𝛼
(39)

where 𝜑∗ = max
1≤i≤5𝜑i, and define the subset Ωr as follows:

Ωr = {𝜑 ∈ Ω : ‖𝜑‖Ω ≤ r} (40)

It is clear that Ωr is a subset of Ω, distinguished by its bounded,
closed, and convex subset of Ω.
Consider the integral operator  : Ωr → Ω defined by Equa-

tion (31). It follows that  (Ωr

)
⊂ Ωr .

Indeed, employing Equations (34) and (35) provides us

||𝜓1(t,𝜑(t))|| ≤ Λ +max {𝛽 + 𝜇, 𝛿}‖𝜑‖Ω||𝜓2(t,𝜑(t))|| ≤ max {𝛽, 𝜅 + 𝜇}‖𝜑‖Ω||𝜓3(t,𝜑(t))|| ≤ max {𝜅, 𝛿 + 𝜇}‖𝜑‖Ω||𝜓4(t,𝜑(t))|| ≤ 𝜆 + (𝛾 + 𝜐)‖𝜑‖Ω||𝜓5(t,𝜑(t))|| ≤ max {𝛾 , 𝜐}‖𝜑‖Ω
(41)

Then, in each case, for any 𝜑 ∈ Ω

||𝜓i(t,𝜑(t))|| ≤ 𝜂r, ∀i ∈ 1, 5 (42)

with

𝜂 = Λ + 𝜆
r

+max{𝛽 + 𝜇, 𝜅 + 𝜇, 𝛿 + 𝜇, 𝛾 + 𝜐} (43)

Thus

||i𝜑(t)|| ≤ 𝜑i +
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1||𝜓i(𝜏,𝜑(𝜏))||d𝜏
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≤ 𝜑∗ + 𝜂𝓁𝛼

Γ(𝛼 + 1)
r

≤ 𝜑∗ +
(Λ + 𝜆)𝓁𝛼

Γ(𝛼 + 1)
+
max{𝛽 + 𝜇, 𝜅 + 𝜇, 𝛿 + 𝜇, 𝛾 + 𝜐}𝓁𝛼

Γ(𝛼 + 1)
r

≤ r, ∀i ∈ 1, 5 (44)

or
(‖‖i𝜑‖‖∞)1≤i≤5 ≤ r, then ‖ 𝜑‖Ω ≤ r. Consequently  (Ωr

)
⊂

Ωr .
Step 3.  (Ωr

)
is equicontinuous subset of Ω.

Let t1, t2 ∈ [0,𝓁], t1 < t2 and 𝜑 ∈ Ωr . Then, for every i ∈ 1, 5,
we get

|||i𝜑(t2) − i𝜑(t1)|||
=
||||| 1
Γ(𝛼) ∫

t2

0

(
t2 − 𝜏

)𝛼−1
𝜓i(𝜏,𝜑(𝜏))d𝜏

− 1
Γ(𝛼) ∫

t1

0

(
t1 − 𝜏

)𝛼−1
𝜓i(𝜏,𝜑(𝜏))d𝜏

|||||
≤ 1

Γ(𝛼) ∫
t1

0

||||((t2 − 𝜏)𝛼−1 − (t1 − 𝜏)𝛼−1)𝜓i(𝜏,𝜑(𝜏))
||||d𝜏

+ 1
Γ(𝛼) ∫

t2

t1

(
t2 − 𝜏

)𝛼−1||𝜓i(𝜏,𝜑(𝜏))||d𝜏
≤ 𝜂r

Γ(𝛼)

(
∫

t1

0

|||(t2 − 𝜏)𝛼−1 − (t1 − 𝜏)𝛼−1|||d𝜏
+ ∫

t2

t1

(
t2 − 𝜏

)𝛼−1
d𝜏
)

(45)

We have(
t2 − 𝜏

)𝛼−1 − (t1 − 𝜏)𝛼−1 = − 1
𝛼

d
d𝜏

((
t2 − 𝜏

)𝛼 − (t1 − 𝜏)𝛼) (46)

then

∫
t1

0

|||(t2 − 𝜏)𝛼−1 − (t1 − 𝜏)𝛼−1|||d𝜏 ≤ 1
𝛼

[(
t2 − t1

)𝛼 + (t𝛼2 − t𝛼1
)]
(47)

we also have

∫
t2

t1

(
t2 − 𝜏

)𝛼−1
d𝜏 = − 1

𝛼

[(
t2 − 𝜏

)𝛼]t2
t1

≤ 1
𝛼

(
t2 − t1

)𝛼
(48)

Then, Equation (45) gives

|||i𝜑(t2) − i𝜑(t1)||| ≤ 𝜂r
Γ(𝛼 + 1)

[
2
(
t2 − t1

)𝛼 + (t𝛼2 − t𝛼1
)]

(49)

The right-hand side of the inequality above approaches zero as
t1 → t2 for every i ∈ 1, 5.

Based on Steps 1–3, assisted by the Ascoli–Arzelà theorem,
we infer the continuity of  : Ωr → Ωr , its compactness, and its
satisfaction with Schauder’s fixed-point theorem assumptions.
Therefore,  possesses a fixed point that solves problem in Equa-
tions (26)–(27) on [0,𝓁].

Theorem 7. We give 𝛼 ∈ (0, 1], 𝓁 > 0, and

𝜂 = max{𝛽 + 𝜇, 𝜅 + 𝜇, 𝛿 + 𝜇, 𝛾 + 𝜐} (50)

for some 𝛽, 𝛿, 𝜅, 𝛾 , 𝜐,𝜇 ∈ ℝ+. If

𝜂𝓁𝛼

Γ(𝛼 + 1)
< 1 (51)

thus, there is a unique solution to the problem in Equations (26)–(27)
on [0,𝓁].

Proof. Similar to the steps taken to prove Theorem 6, problem
in Equations (26)–(27) has already been transformed into fixed-
point problem in Equation (31).
Let 𝜑,𝜔 ∈ Ω, then

||i𝜑(t) − i𝜔(t)||
≤ 1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1||𝜓i(𝜏,𝜑(𝜏)) − 𝜓i(𝜏,𝜔(𝜏))||d𝜏, ∀i ∈ 1, 5

(52)

For all t ∈ [0,𝓁], we have

||𝜓1(t,𝜑(t)) − 𝜓1(t,𝜔(t))|| ≤ max {𝛽 + 𝜇, 𝛿}‖𝜑 − 𝜔‖Ω||𝜓2(t,𝜑(t)) − 𝜓2(t,𝜔(t))|| ≤ max {𝛽, 𝜅 + 𝜇}‖𝜑 − 𝜔‖Ω||𝜓3(t,𝜑(t)) − 𝜓3(t,𝜔(t))|| ≤ max {𝜅, 𝛿 + 𝜇}‖𝜑 − 𝜔‖Ω||𝜓4(t,𝜑(t)) − 𝜓4(t,𝜔(t))|| ≤ (𝛾 + 𝜐)‖𝜑 − 𝜔‖Ω||𝜓5(t,𝜑(t)) − 𝜓5(t,𝜔(t))|| ≤ max {𝛾 , 𝜐}‖𝜑 − 𝜔‖Ω
(53)

Then

||𝜓i(t,𝜑(t)) − 𝜓i(t,𝜔(t))|| ≤ 𝜂‖𝜑 − 𝜔‖Ω, ∀i ∈ 1, 5 (54)

From Equation (52), we find

‖‖i𝜑 − i𝜔‖‖∞ ≤ 𝜂𝓁𝛼

Γ(𝛼 + 1)
‖𝜑 − 𝜔‖Ω, ∀i ∈ 1, 5 (55)

and

‖ 𝜑 −  𝜔‖Ω ≤ 𝜂𝓁𝛼

Γ(𝛼 + 1)
‖𝜑 − 𝜔‖Ω (56)

Referring to Equation (51),  is considered as a contraction oper-
ator. By employing Banach’s Contraction Principle, it can be de-
duced that  possesses a unique fixed point, which corresponds
to the unique solution of the problem in Equations (26)–(27) on
[0,𝓁].
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3.3. Ulam–Hyers Stability for the Normalized Model

Definition 8. The system of Caputo-type fractional differential equa-
tions in Equation (26) is Ulam–Hyers stable if there exists a real num-
ber c > 0 such that for each 𝜀 = max {𝜀1,… , 𝜀5} with 𝜀i > 0, i ∈
1, 5, and for each solution 𝜔 ∈ Ω of the inequality

||C𝛼
0+𝜔i(t) − 𝜓i(t,𝜔(t))|| ≤ 𝜀i, t ∈ [0,𝓁], i ∈ 1, 5 (57)

there exists 𝜑 ∈ Ω a solution of (26) with

‖𝜔 − 𝜑‖Ω ≤ c𝜀 (58)

Definition 9. The system of Caputo-type fractional differential equa-
tions in Equation (26) is generalized Ulam–Hyers stable if there ex-
ists 𝜉 ∈ C

(
ℝ+,ℝ+

)
, 𝜉 (0) = 0, such that for each solution 𝜔 ∈ Ω of

inequality in Equation (57), there exists a solution 𝜑 ∈ Ω of Equa-
tion (26) with

‖𝜔 − 𝜑‖Ω ≤ 𝜉(𝜀). (59)

Remark 10 (Ref. [40]). If 𝜔 ∈ Ω is a solution of inequality Equa-
tion (57), then there exist

(
𝜀i
)
i∈1,5 > 0 and 𝜙 ∈ Ω, such that

1) C𝛼
0+𝜔i (t) = 𝜓i (t,𝜔 (t)) + 𝜙i (t), t ∈ [0,𝓁] , i ∈ 1, 5,

2) ||𝜙i (t)|| ≤ 𝜀i, for all t ∈ [0,𝓁] , and each i ∈ 1, 5.

The subsequent lemma aids in establishing the stability of sys-
tem in Equation (26).

Lemma 11. If 𝜔 ∈ Ω is the solution of inequality in Equation (57),
then there exist

(
𝜀i
)
i∈1,5 > 0 such that 𝜔 will be the solution of the

inequality

|||||𝜔i(t) − 𝜔i(0) −
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜔(𝜏))d𝜏

||||| ≤ 𝓁𝛼𝜀i
Γ(𝛼 + 1)

(60)

for each i ∈ 1, 5.

Proof. If 𝜔 is a solution of Equation (57), we have from Re-
mark 10

⎧⎪⎨⎪⎩
C𝛼

0+𝜔i(t) = 𝜓i(t,𝜔(t)) + 𝜙i(t), t ∈ [0,𝓁], i ∈ 1, 5,||𝜙i(t)|| ≤ 𝜀i,
(
𝜀i
)
i∈1,5 > 0

(61)

hence

𝜔i(t) = 𝜔i(0) +
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1

[
𝜓i(𝜏,𝜔(𝜏)) + 𝜙i(𝜏)

]
d𝜏 (62)

Also,

|||||𝜔i(t) − 𝜔i(0) −
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜔(𝜏))d𝜏

|||||
=
|||||𝜔i(0) +

1
Γ(𝛼) ∫

t

0
(t − 𝜏)𝛼−1

[
𝜓i(𝜏,𝜔(𝜏)) + 𝜙i(𝜏)

]
d𝜏

−𝜔i(0) −
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜔(𝜏))d𝜏

|||||
≤ 1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1||𝜙i(𝜏)||d𝜏

≤ 𝓁𝛼𝜀i
Γ(𝛼 + 1)

, ∀i ∈ 1, 5 (63)

That establishes the lemma.

Theorem 12. Assuming that Equation (51) holds, system in Equa-
tion (26) is Ulam–Hyers stable. Furthermore, it can also be asserted
that (26) is a generalized Ulam–Hyers stable system.

Proof. Let
(
𝜀i
)
i∈1,5 > 0, we define 𝜔 ∈ Ω as a solution of the

inequality

||C𝛼
0+𝜔i(t) − 𝜓i(t,𝜔(t))|| ≤ 𝜀i, t ∈ [0,𝓁], i ∈ 1, 5 (64)

and 𝜑 ∈ Ω is the unique solution of system in Equation (26) with
the conditions

𝜑i(0) = 𝜔i(0), ∀i ∈ 1, 5 (65)

Then

𝜑i(t) = 𝜔i(0) +
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜑(𝜏))d𝜏 (66)

and

||𝜔i(t) − 𝜑i(t)|| = |||||𝜔i(t) − 𝜔i(0) −
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜑(𝜏))d𝜏

|||||
≤ |||||𝜔i(t) − 𝜔i(0) −

1
Γ(𝛼) ∫

t

0
(t − 𝜏)𝛼−1𝜓i(𝜏,𝜔(𝜏))d𝜏

|||||
+ 1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1||𝜓i(𝜏,𝜔(𝜏)) − 𝜓i(𝜏,𝜑(𝜏))||d𝜏

(67)

Using Equation (54), and Lemma 11, we get

||𝜔i(t) − 𝜑i(t)||
≤ 𝓁𝛼

Γ(𝛼 + 1)
(
𝜀i + 𝜂‖𝜑 − 𝜔‖Ω), ∀t ∈ [0,𝓁], ∀i ∈ 1, 5 (68)

Taking the maximum from both sides, we obtain

‖𝜑 − 𝜔‖Ω ≤ 𝓁𝛼

Γ(𝛼 + 1)
(
𝜀 + 𝜂‖𝜑 − 𝜔‖Ω) (69)

Thus

‖𝜑 − 𝜔‖Ω ≤ c𝜀, (70)

where c = 𝓁𝛼

Γ(𝛼+1)−𝜂𝓁𝛼
. This implies that system in Equation (26) is

stable in the Ulam–Hyers sense and is consequently generalized
Ulam–Hyers stable if we set 𝜉 (t) = ct.
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4. Analysis for the Fractional SIP(H)–SI(M) Model

4.1. Basic Reproduction Number and Equilibrium Points

In this section, the basic reproduction number of the system
in Equation (22) is calculated using the next-generation matrix
method. Denoted as ℜ0, which signifies the average number of
secondary infections resulting from the introduction of a single
infection into the susceptible population. This can be calculated
as the spectral radius of the −1 matrix.

Theorem 13. The basic reproduction number of system in Equa-
tion (22) is determined by

ℜ0 =

√
𝛽𝛾𝜆Λ

𝜐2𝜇(𝜅 + 𝜇)
(71)

Proof. Because the SIP(H)–SI(M) model is composed of infec-
tion components I, P, and F, we obtain:

yi − zi =
⎛⎜⎜⎜⎝
𝛽F(t)S(t) − (𝜅 + 𝜇)I(t)
𝜅I(t) − (𝛿 + 𝜇)P(t)
𝛾I(t)V(t) − 𝜐F(t)

⎞⎟⎟⎟⎠ (72)

Accordingly,

yi =
⎛⎜⎜⎜⎝
𝛽F(t)S(t)

0

𝛾I(t)V(t)

⎞⎟⎟⎟⎠, zi =
⎛⎜⎜⎜⎝

(𝜅 + 𝜇)I(t)
(𝛿 + 𝜇)P(t) − 𝜅I(t)

𝜐F(t)

⎞⎟⎟⎟⎠ (73)

Here, yi denotes the rate of new infections appearing in compart-
ment i, and zi denotes the rate of transitions between compart-
ment i and other infected compartments for each i ∈ {1, 2, 3}.
The new infection matrix  and transition matrix are assessed
at the disease-free equilibrium point E1 (Theorem 14), as follows:

 =
⎛⎜⎜⎜⎝
0 0 𝛽S∗

1

0 0 0

𝛾V∗
1 0 0

⎞⎟⎟⎟⎠,  =
⎛⎜⎜⎜⎝
𝜅 + 𝜇 0 0

−𝜅 𝛿 + 𝜇 0

0 0 𝜐

⎞⎟⎟⎟⎠ (74)

Following the next-generation matrix principle, the basic repro-
duction number is defined as the spectral radius of matrix −1

and is given by Equation (71).

The initial step in comprehending a differential equation is to
identify equilibrium points. In epidemiology, we are concerned
with two types of equilibrium point:

1) Disease-free equilibrium is defined as the point at which no
disease (or death from disease) is introduced into the popula-
tion and is depicted in the model as I = P = F = 0.

2) Other equilibrium points, where I ≠ 0 and F ≠ 0, are indi-
cated as endemic equilibriumpoints (or outbreak equilibrium
points).

We define the positive real values

m1 = 𝜅 + 𝜇, m2 = 𝛿 + 𝜇 (75)

to facilitate the calculations and establish the following theorem.

Theorem 14. The system in Equation (22) has two types of equilib-
rium points

1) Disease-free equilibrium

E1 =
(
S∗
1, I

∗
1 , P

∗
1 , V

∗
1 , F

∗
1

)
=
(
Λ
𝜇
, 0, 0, 𝜆

𝜐
, 0
)

(76)

2) Endemic equilibrium point E2 =
(
S∗
2, I

∗
2 , P

∗
2 , V

∗
2 , F

∗
2

)
, which is

E2 =

(
S∗
1

(
1 −

𝜇
(
𝛿 +m1

)
Λm2

I∗2

)
, I∗2 ,

𝜅

m2
I∗2 ,

𝜆

𝛾I∗2 + 𝜐
,

𝛾𝜆I∗2
𝜐
(
𝛾I∗2 + 𝜐

))
(77)

where

I∗2 =
m1m2𝜐

2

𝛾
[
m1m2𝜐 + 𝛽𝜆

(
𝛿 +m1

)](ℜ2
0 − 1

)
(78)

The existence of the endemic equilibrium point depends onℜ0 >

1.

Proof. To determine the equilibriumpoints for system in Equa-
tion (22), we set C𝛼

0+𝜑 (t) = 0⃗, with 𝜑 = (S, I, P, V, F). Therefore

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 = Λ + 𝛿P(t) − (𝛽F(t) + 𝜇)S(t) (eq1)

0 = 𝛽F(t)S(t) − (𝜅 + 𝜇)I(t) (eq2)

0 = 𝜅I(t) − (𝛿 + 𝜇)P(t) (eq3)

0 = 𝜆 − (𝛾I(t) + 𝜐)V(t) (eq4)

0 = 𝛾I(t)V(t) − 𝜐F(t) (eq5)

(79)

From equations (eq3) and (eq4), we have

P(t) = 𝜅

m2
I(t) and V(t) = 𝜆

𝛾I(t) + 𝜐
(80)

Substituting the expression of V (t) in equation (eq5), we get

F(t) = 𝛾𝜆I(t)
𝜐(𝛾I(t) + 𝜐)

(81)

If we add (eq1) to (eq2) we obtain

S(t) = S∗
1

(
1 −

𝜇
(
𝛿 +m1

)
Λm2

I(t)

)
(82)

1) If I = 0, we can easily obtain the first disease-free equilibrium
point E1.

2) When I ≠ 0, equation (eq2) gives us

I∗2 =
m1m2𝜐

2

𝛾
[
m1m2𝜐 + 𝛽𝜆

(
𝛿 +m1

)](ℜ2
0 − 1

)
(83)

Consequently, we obtain the required endemic equilibrium
point E2, which exists forℜ0 > 1.

Hence, the theorem is proved.
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4.2. Stability Study of Disease-Free Equilibrium Point

4.2.1. Local Stability Analysis of E1

Theorem 15. The disease-free equilibrium point of system in Equa-
tion (22) is locally asymptotically stable whenℜ0 < 1.

Proof. The Jacobian matrix for system in Equation (22) is writ-
ten as follows

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜓1

𝜕S
𝜕𝜓1

𝜕I
𝜕𝜓1

𝜕P
𝜕𝜓1

𝜕V
𝜕𝜓1

𝜕F
𝜕𝜓2

𝜕S
𝜕𝜓2

𝜕I
𝜕𝜓2

𝜕P
𝜕𝜓2

𝜕V
𝜕𝜓2

𝜕F
𝜕𝜓3

𝜕S
𝜕𝜓3

𝜕I
𝜕𝜓3

𝜕P
𝜕𝜓3

𝜕V
𝜕𝜓3

𝜕F
𝜕𝜓4

𝜕S
𝜕𝜓4

𝜕I
𝜕𝜓4

𝜕P
𝜕𝜓4

𝜕V
𝜕𝜓4

𝜕F
𝜕𝜓5

𝜕S
𝜕𝜓5

𝜕I
𝜕𝜓5

𝜕P
𝜕𝜓5

𝜕V
𝜕𝜓5

𝜕F

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(84)

where 𝜓1≤i≤5 (t,𝜑 (t)) represents the right-hand side of Equa-
tion (22). Then

J =

⎛⎜⎜⎜⎜⎜⎜⎝

−(𝛽F + 𝜇) 0 𝛿 0 −𝛽S
𝛽F −m1 0 0 𝛽S

0 𝜅 −m2 0 0

0 −𝛾V 0 −(𝛾I + 𝜐) 0

0 𝛾V 0 𝛾I −𝜐

⎞⎟⎟⎟⎟⎟⎟⎠
(85)

The eigenvalues of J
(
E1
)
are given as the roots of the following

characteristic polynomial

f1(X) = −(𝜇 + X)
(
m2 + X

)
(𝜐 + X)

×
[
X2 +

(
m1 + 𝜐

)
X +m1𝜐

(
1 −ℜ2

0

)]
(86)

The roots of f1 (X) are negative reals or complexes of negative real
parts, which makes E1 locally asymptotically stable.

4.2.2. Global Stability Analysis of E1

Theorem16. The disease-free equilibrium point E1 of system in Equa-
tion (22) is globally asymptotically stable ifℜ0 < 1.

Proof. To prove the theorem, we examine the following Lya-
punov function

W(S, I, P, V, F) = c1I + c2P + c3F (87)

We consider ci to be positive constants for i ∈ 1, 2, 3, to be deter-
mined later. The fractional derivative ofW alongwith the solution
of system in Equation (22) is calculated as follows:

C𝛼
0+W = c1

C𝛼
0+ I + c2

C𝛼
0+P + c3

C𝛼
0+F

= c1[𝛽FS − (𝜅 + 𝜇)I] + c2[𝜅I − (𝛿 + 𝜇)P] + c3[𝛾IV − 𝜐F]

≤ c1

[
𝛽Λ
𝜇

F − (𝜅 + 𝜇)I
]
+ c2[𝜅I − (𝛿 + 𝜇)P] + c3

[
𝛾𝜆

𝜐
I − 𝜐F

]

=
[
−c1(𝜅 + 𝜇) + c2𝜅 + c3

𝛾𝜆

𝜐

]
I − c2(𝛿 + 𝜇)P +

[
c1
𝛽Λ
𝜇

− c3𝜐
]
F

(88)

By choosing c1 = 𝜐, c2 = 0, and c3 =
𝛽Λ
𝜇
, we obtain

C𝛼
0+W ≤ 𝜐(𝜅 + 𝜇)

(
ℜ2

0 − 1
)
I (89)

Thus, if ℜ0 < 1, we get C𝛼
0+W ≤ 0, then dW

dt
< 0. According to

LaSalle’s invariance principle,[41] this implies that E1 is globally
asymptotically stable.

4.3. Stability Study of Endemic Equilibrium Point

4.3.1. Local Stability Analysis of E2

Let g0, g1, and g2, be such that

g0 =
(
𝛾I∗2 + 𝜐

)(𝜅𝛿 + (m1 + 𝛿
)(
𝛽F∗

2 + 𝜇
)

m2

)

g1 = m1

(
𝛾I∗2 + 𝜐

)
+

𝛽F∗
2

[
𝛿𝜇 +m1

(
𝛾I∗2 + 𝜐 + 𝜇

)
+m2

(
𝛾I∗2 + 𝜐

)]
+𝜇m2

(
m1 + 𝛾I∗2 + 𝜐

)
𝜇 +m2

g2 =
(
𝛽F∗

2 + 𝜇
)
m2 +

(
m1 + 𝛾I∗2 + 𝜐

)(
𝛽F∗

2 + 𝜇 +m2

)
+m1

(
𝛾I∗2 + 𝜐

)
(90)

Theorem 17. If we put

𝛽𝛾V∗
2S

∗
2 < min {g0, g1, g2} (91)

the endemic equilibrium point E2 of system in Equation (22) is locally
asymptotically stable whenℜ0 > 1.

Proof. As shown in the previous section, the Jacobian matrix
J
(
E2
)
for Equation (22) is

JE2 =

⎛⎜⎜⎜⎜⎜⎜⎝

−
(
𝛽F∗

2 + 𝜇
)

0 𝛿 0 −𝛽S∗
2

𝛽F∗
2 −m1 0 0 𝛽S∗

2

0 𝜅 −m2 0 0

0 −𝛾V∗
2 0 −

(
𝛾I∗2 + 𝜐

)
0

0 𝛾V∗
2 0 𝛾I∗2 −𝜐

⎞⎟⎟⎟⎟⎟⎟⎠
(92)

The characteristic polynomial is given by

f2(X ) = −(𝜐 + X)
(
X4 + a3X

3 + a2X
2 + a1X + a0

)
(93)

where

a0 = 𝜇m2

(
g0 − 𝛽𝛾V∗

2S
∗
2

)
a1 =

(
m2 + 𝜇

)(
g1 − 𝛽𝛾V∗

2S
∗
2

)
a2 = g2 − 𝛽𝛾V∗

2S
∗
2

a3 = 𝛽F∗
2 + 𝛾I

∗
2 +m1 +m2 + 𝜇 + 𝜐

(94)
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According to Descartes’ rule, the roots of f2 (X) are negative reals
or complexes of negative real parts. Therefore, the required result
is obtained.

4.3.2. Global Stability Analysis of E2

From system in Equation (22), we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Λ = −𝛿P∗
2 +
(
𝛽F∗

2 + 𝜇
)
S∗
2

(𝜅 + 𝜇)I∗2 = 𝛽S∗
2F

∗
2

(𝛿 + 𝜇)P∗
2 = 𝜅I∗2

𝜆 =
(
𝛾I∗2 + 𝜐

)
V∗
2

𝜐F∗
2 = 𝛾I∗2V

∗
2

(95)

Theorem 18. Suppose that

P∗

P
≤ 1 ≤ min

{(S∗

S
− 1
)2

+ FI∗

F∗I
,
(V∗

V
− 1
)2

+ FI∗

F∗I

}
(96)

Therefore, the endemic equilibrium point E2 of the system in Equa-
tion (22) is globally asymptotically stable whenℜ0 > 1.

Proof. We analyze the following nonlinear Lyapunov function
of the Goh-Volterra form:

W(S, I, P, V, F) =
[
S(t) − S∗ − S∗ log

S(t)
S∗

]
+
[
I(t) − I∗ − I∗ log

I(t)
I∗

]
+ 𝛿

𝛿 + 𝜇

[
P(t) − P∗ − P∗ log

P(t)
P∗

]
+ 𝛽S∗

𝜐

[
V(t) − V∗ − V∗ log

V(t)
V∗

]
+ 𝛽S∗

𝜐

[
F(t) − F∗ − F∗ log

F(t)
F∗

]
(97)

By leveraging the findings on Volterra-type Lyapunov functions
for fractional-order epidemic systems outlined in ref. [42], and
subsequently employing the Caputo derivative on both sides, the
following inequality can be established:

C𝛼
0+W ≤ (1 − S∗

S

)
C𝛼

0+S(t) +
(
1 − I∗

I

)
C𝛼

0+I(t)

+ 𝛿

𝛿 + 𝜇

(
1 − P∗

P

)
C𝛼

0+P(t)

+ 𝛽S∗

𝜐

(
1 − V∗

V

)
C𝛼

0+V(t) +
𝛽S∗

𝜐

(
1 − F∗

F

)
C𝛼

0+F(t)

(98)

A simple calculation provides the following result(
1 − S∗

S

)
C𝛼

0+S =
(
1 − S∗

S

)
[Λ + 𝛿P − (𝛽F + 𝜇)S]

=
(
1 − S∗

S

)
[−𝛿P∗ + (𝛽F∗ + 𝜇)S∗

+ 𝛿P − (𝛽F + 𝜇)S]

= 𝜇S∗
(
2 − S∗

S
− S
S∗

)
+ 𝛽F∗S∗

(
1 − S∗

S

)
− 𝛽FS + 𝛿P − 𝛿P∗

+ 𝛽FS∗ − 𝛿PS
∗

S
+ 𝛿P∗ S∗

S
(99)

In same way, we find(
1 − I∗

I

)
C𝛼

0+I =
(
1 − I∗

I

)
[𝛽FS − (𝜅 + 𝜇)I]

= 𝛽FS − (𝜅 + 𝜇)I − 𝛽FSI
∗

I
+ (𝜅 + 𝜇)I∗. (100)

Next

𝛿

𝛿 + 𝜇

(
1 − P∗

P

)
C𝛼

0+P = 𝛿

𝛿 + 𝜇

(
1 − P∗

P

)
[𝜅I − (𝛿 + 𝜇)P]

= 𝛿P∗ − 𝛿P + 𝛿𝜅

𝛿 + 𝜇
I − 𝛿𝜅

𝛿 + 𝜇
I P

∗

P
(101)

Also

𝛽S∗

𝜐

(
1 − V∗

V

)
C𝛼

0+V = 𝛽S∗

𝜐

(
1 − V∗

V

)
[𝜆 − (𝛾I + 𝜐)V ]

= 𝛽S∗

𝜐

(
1 − V∗

V

)
[(𝛾I∗ + 𝜐)V∗ − (𝛾I + 𝜐)V ]

= 𝛽S∗V∗
(
2 − V∗

V
− V
V∗

)
+ 𝛽S∗

𝜐
𝛾I∗V∗

− 𝛽S∗

𝜐
𝛾IV + 𝛽S∗

𝜐
𝛾IV∗ − 𝛽S∗

𝜐
𝛾I∗V∗V∗

V
(102)

and

𝛽S∗

𝜐

(
1 − F∗

F

)
C𝛼

0+F = 𝛽S∗

𝜐

(
1 − F∗

F

)
[𝛾IV − 𝜐F]

= 𝛽S∗

𝜐
𝛾IV − 𝛽S∗F − 𝛽S∗

𝜐
𝛾IV F∗

F
+ 𝛽S∗F∗

(103)

Then

C𝛼
0+W ≤ 𝜇S∗

(
2 − S∗

S
− S
S∗

)
+ 𝛽F∗S∗

(
4 − S∗

S
− V∗

V
− IVF∗

I∗V∗F
− FSI∗

F∗S∗I

)
+ 𝛽S∗V∗

(
2 − V∗

V
− V
V∗

)
+ 𝛿P∗

(S∗

S
− S∗P
SP∗ − P∗I

PI∗
+ I
I∗

)
(104)
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with

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 − S∗

S
− S

S∗
≤ 0

and 2 − V∗

V
− V

V∗ ≤ 0

S∗

S
− S∗P

SP∗ −
P∗I
PI∗

+ I
I∗

≤ 0

for P∗

P
≤ 1

4 − S∗

S
− V∗

V
− IVF∗

I∗V∗F
− FSI∗

F∗S∗I
≤ 0

for min
{(

S∗

S
− 1
)2

+ FI∗

F∗I
,
(

V∗

V
− 1
)2

+ FI∗

F∗I

}
≥ 1

(105)

Because all parameters are nonnegative, we obtain C𝛼
0+W ≤ 0,

which follows that dW
dt

≤ 0 when ℜ0 > 1. According to LaSalle’s
invariance principle,[41] (S, I, P, V, F) → (S∗, I∗, P∗, V∗, F∗) as
t → ∞.

5. Data Fitting Analysis through Numerical
Simulation

In this section, we validate our analytical findings by determining
specific parameter values and using the Adams-type predictor-
corrector method[43,44] to perform a numerical simulation of the
proposed nonlinear system in Equation (1) to obtain an approxi-
mate solution for the model.
The nlinfit function in MATLAB is a powerful tool for nonlin-

ear regressions. It is used to model predictive relationships be-
tween variables when the data or the relationship between vari-
ables is complex and does not fit simple linear models. It also
provides a convenient interface for data-fitting problems.
Using this tool, we identified the parameter values closest

to those in Table 2, resulting in a minimum error for the
fractional-order model. These estimated parameters were then
incorporated into the fractional-order SIP(H)–SI(M) model (1).
To ensure consistent physical dimensions, we modified the units
of all model parameters to align with the dimension (time)−𝛼 ,
which corresponds to the fractional derivatives with dimension
(order 𝛼).

5.1. Numerical Scheme for the Fractional SIP(H)–SI(M) Model

In this subsection, we outline the generalized predictor-corrector
scheme associated with the Adams–Bashforth–Moulton
algorithm,[45] which can be used to solve fractional epidemic
systems. The chosen method is stable, converges faster, and has
superior accuracy compared to other methods,[44–46] making it
an optimal choice for our SIP(H)–SI(M) model (1).
Consider the following Cauchy problem of Caputo fractional

derivative of order 𝛼 > 0

C𝛼
0+𝜑(t) = 𝜓(t,𝜑(t)), 0 ≤ t ≤ 𝓁, 𝛼 ∈ (m − 1, m]

𝜑(k)(0) = 𝜑
(k)
0 , k = 0, 1,… , m − 1, m ∈ ℕ

(106)

where 𝜓 is a nonlinear function. The Cauchy problem is equiva-
lent to the Volterra integral equation:

𝜑(t) =
m−1∑
k=0

tk

k!
𝜑
(k)
0 + 1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1𝜓(𝜏,𝜑(𝜏))d𝜏 (107)

Consider a uniform grid {tn = nh, with n = 0, 1,… , L} for some
integer L and h = 𝓁

L
. Let 𝜑h

(
tn
)
denote the approximation of

𝜑
(
tn
)
. Assume that we have already calculated approximations

𝜑h

(
tj
)
, for j = 1, 2,… , n, and we want to obtain 𝜑h

(
tn+1
)
using

Equation (107).

𝜑h

(
tn+1
)
=

m−1∑
k=0

tkn+1
k!
𝜑
(k)
0 + h𝛼

Γ(𝛼 + 2)
𝜓
(
tn+1,𝜑

pr
h

(
tn+1
))

+ h𝛼

Γ(𝛼 + 2)

n∑
j=0

aj,n+1𝜓
(
tj𝜑h

(
tj
))

(108)

where

𝛼j,n+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n𝛼+1 − (n − 𝛼)(n + 1)𝛼

if j = 0(
n − j + 2

)𝛼+1 + (n − j
)𝛼+1 − 2

(
n − j + 1

)𝛼+1
if 1 ≤ j ≤ n

1

if j = n + 1

(109)

The preliminary approximation 𝜑pr
h

(
tn+1
)
is called predictor and

is given by

𝜑
pr
h

(
tn+1
)
=

m−1∑
k=0

tkn+1
k!
𝜑
(k)
0 + 1

Γ(𝛼)

n∑
j=0

bj,n+1𝜓
(
tj,𝜑h

(
tj
))

(110)

with

bj,n+1 =
h𝛼

𝛼

[(
n + 1 − j

)𝛼 − (n − j
)𝛼]

(111)

Error in this method is

max
n=0,1,…,L

|||𝜑(tn) − 𝜑h

(
tn
)||| = O

(
hΘ
)

(112)

where Θ = min (2, 1 + 𝛼). Consequently, by taking 𝜑h

(
tn
)
=(

SHn
, IHn

, PHn
, SMn

, IMn

)
and

𝜓
(
tn,𝜑h

(
tn
))

=
(
𝜓1

(
tn,𝜑h

(
tn
))
,𝜓2

(
tn,𝜑h

(
tn
))
,𝜓3

(
tn,𝜑h

(
tn
))
,

𝜓4

(
tn,𝜑h

(
tn
))
,𝜓5

(
tn,𝜑h

(
tn
)))

(113)

where
(
𝜓i

)
1≤i≤5 satisfy Equation (25). We explore the numerical

scheme corresponding to the SIP(H)–SI(M) model (1):
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SHn+1
= SH0

+ h𝛼

Γ (𝛼 + 2)

(
ΛH −

(
𝛽IprMn+1

M
+ 𝜇

)
SprHn+1

+ 𝛿Rpr
Hn+1

)

+ h𝛼

Γ (𝛼 + 2)

n∑
j=0

aj,n+1

(
ΛH −

(
𝛽IMj

M
+ 𝜇

)
SHj

+ 𝛿RHj

)

IHn+1
= EH0

+ h𝛼

Γ (𝛼 + 2)

(
𝛽IprMn+1

M
SprH−n+1 − (𝜅 + 𝜇) IprHn+1

)

+ h𝛼

Γ (𝛼 + 2)

n∑
j=0

aj,n+1

(
𝛽IMj

M
SHj

− (𝜅 + 𝜇) IHj

)

PHn+1
= PH0

+ h𝛼

Γ (𝛼 + 2)

(
𝜅IprHn+1

− (𝛿 + 𝜇)Rpr
Hn+1

)
+ h𝛼

Γ (𝛼 + 2)

n∑
j=0

aj,n+1
(
𝜅IHj

− (𝛿 + 𝜇)RHj

)

SMn+1
= SM0

+ h𝛼

Γ (𝛼 + 2)

(
𝜆M −

(
𝛾IprHn+1

H
+ 𝜐

)
SprMn+1

)

+ h𝛼

Γ (𝛼 + 2)

n∑
j=0

aj,n+1

(
𝜆M −

(
𝛾IHj

H
+ 𝜐

)
SMj

)

IMn+1
= IM0

+ h𝛼

Γ (𝛼 + 2)

(
𝛾IprHn+1

H
SprMn+1

− 𝜐IprMn+1

)

+ h𝛼

Γ (𝛼 + 2)

n∑
j=0

aj,n+1

(
𝛾IHj

H
SMj

− 𝜐IMj

)

where aj,n+1 are given by Equation (109). Similarly, the predicted
values are

SprHn+1
= SH0

+ 1
Γ (𝛼)

n∑
j=0

bj,n+1

(
ΛH −

(
𝛽IMj

M
+ 𝜇

)
SHj

+ 𝛿RHj

)

IprHn+1
= IH0

+ 1
Γ (𝛼)

n∑
j=0

bj,n+1

(
𝛽IMj

M
SHj

− (𝜅 + 𝜇) IHj

)

Ppr
Hn+1

= C0 +
1

Γ (𝛼)

n∑
j=0

bj,n+1
(
𝜅IHj

− (𝛿 + 𝜇)PHj

)

SprMn+1
= SM0

+ 1
Γ (𝛼)

n∑
j=0

bj,n+1

(
𝜆M −

(
IHj

H
+ 𝜐

)
SMj

)

IprMn+1
= IM0

+ 1
Γ (𝛼)

n∑
j=0

bj,n+1

(
IHj

H
SMj

− 𝜐IMj

)
where bj,n+1 are given by Equation (111).

5.2. Fitted Data Analysis of Malaria in Algeria

This section presents a numerical study to contribute to a com-
prehensive understanding and effective management of malaria
in Algeria using data from reliable health sources. Statistical and
graphical methods were employed to examine the key epidemio-
logical indicators and provide insights into the malaria situation
in the country.

The total population of Algeria wasH = 30 774 621 in 2000.[47]

Initial reportedmalaria cases IH (0) = 541 from theWorldHealth
Organization.[48]

In our study, we assume that the total population H remains
constant; however, a significant increase in population was ob-
served from 2000 to 2021. Therefore, we cannot directly com-
pare the infection rate in 2000, where there were 541 cases out
of a population of 30 774 621, to the infection rate in 2021, where
there were 1 164 cases out of a population of 44 177 969. To en-
sure accuracy, we will adjust the infection rate for each year based
on the initial total population in 2000 (Table 1), enabling a precise
comparison of infection rates over time. Based on these consid-
erations, we will calculate the average recruitment and natural
death rates for the entire period from 2000 to 2021.[49]

Lemma 5 ensures that the population does not exceed a spec-
ified limit. This constraint is integral to maintaining the validity
of our model, as it reflects real-world limitations on population
growth and size. Indeed, we have

H0 = H2000 = 30 774 621 and H(t) ≤ H2021 = 44 177 969 (114)

Subsequently, it must hold that:

H2021 ≤ H2000 exp
(

Λ𝓁𝛼
Γ(𝛼 + 1)

)
≤ min

{
H2000 × exp

(
0.022818𝓁𝛼

Γ(𝛼 + 1)

)}
(115)

Our numerical simulation shows that the greatest value that 𝓁
can take is 36 when we select 0.79 ≤ 𝛼 ≤ 1. This decision makes
the existence and uniqueness of the solution for the SIP(H)–
SI(M) model on [0,𝓁] more evident. As a result, H should not
be greater than 4.67 × 107, in accordance with the limitations of
Lemma 5.
Figure 2 shows the simulation of the model predictions for

real-world malaria cases. The predicted parameter values, biolog-
ical descriptions, and pertinent references are displayed in the
table below.
The basic reproduction number in this case is:

ℜ0 ≃ 0.4203 < 1 (116)

Moreover, following Theorem 7, if we choose 0.79 ≤ 𝛼 ≤ 1, then
SIP(H)–SI(M) model admits a unique solution on [0,𝓁], with

𝓁 < 1.8083 (unit) (117)

As malaria statistics are collected annually or over several
months, we chose a unit of 20 years. In this context, the value
of 𝓁 should not exceed 36 years.
Figure 2 presents a chronological table spanning 21 years (be-

ginning in 2000) of confirmed malaria cases. This illustrates
fluctuations in the number of infections, reflecting variations
in the symptoms and disease severity. Additionally, the data re-
vealed a notable increase in cases coinciding with the emergence
of COVID-19.
In the context of Caputo’s model, various values of 𝛼 are ex-

amined to represent different scenarios or conditions. Figures 3
and 4 illustrate the simulation findings with the numerical
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Table 1. Adjusted parameters and initial data of infected population in Algeria from 2000 to 2021.

Interpretation Ref. 2000 2001 ⋯ 2019 2020 2021 Average

Population of Algeria [47] 30 774 621 31 200 985 ⋯ 42 705 368 43 451 666 44 177 969 —

Initial malaria cases [48] 541 435 ⋯ 1 014 2 726 1 164 —

Adjusted malaria cases — 541 429 ⋯ 731 1 931 811 —

Recruitment rate Λ [49] 0.0196 0.0193 ⋯ 0.0233 0.0224 0.0215 0.022818

Natural death rate μ [49] 0.005 0.0049 ⋯ 0.0044 0.0054 0.0045 0.0046818
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Figure 2. The reported cases of malaria in Algeria (shown with red markers) compared to the predicted cumulative infected cases provided by the
proposed model (represented by blue line) for 𝛼 = 0.79.

results employed to analyze the dynamics of two human classes
and two categories of mosquitoes.
It is essential to note that the SIP(H) model assumes a well-

mixed population, homogeneous mixing, and constant parame-
ters over time. However, it may not fully capture all aspects of
disease transmission such as birth, death, or variations in im-
munity. Furthermore, the suitability of the SIP(H) model varies
depending on the specific disease being modeled and the context
of the outbreak.
Next, we demonstrate the behavior of the fractional system in

Equation (1) using four specific values of 𝛼 ∈ (0, 1]. The simula-
tion results of the model are presented in Figure 5, showing the

dynamics of both human andmosquito populations over time for
various values of 𝛼.
The first graph shows the susceptible human populations

from 2000 to 2020. As the parameter 𝛼 increases, the decline in
the susceptible population accelerates, signifying a more rapid
spread of the disease. This observation suggests that higher
memory effects (corresponding to larger 𝛼 values) lead to a
swifter depletion of the susceptible human population, thereby
intensifying disease transmission dynamics.
Moving to the second graph, we examine the infected human

population during the same period. For lower 𝛼 values, the infec-
tion peak experiences a delay, whereas higher 𝛼 values cause the
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Figure 3. Numerical simulation results for the model for the human population.
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Figure 4. Numerical simulation results for the model for the mosquito population.

peak to manifest earlier and with greater intensity. This temporal
shift in the infection peak for smaller 𝛼 values provides a critical
window for implementing intervention strategies that can miti-
gate the impact of the disease.
The third graph depicts the susceptible mosquito populations

over time. Analogous to the human population, an increase in 𝛼
results in a more rapid reduction in the number of susceptible
mosquitoes. This behavior reflects the heightened transmission
dynamics associated with larger 𝛼 values.
These simulation results and accompanying graphs empha-

size the pivotal role of the fractional-order parameter 𝛼 inmalaria
transmission dynamics between humans and mosquitoes.
Higher 𝛼 values lead to rapid and intense disease spread, which
affects human susceptibility and infection peaks. Conversely,
smaller 𝛼 values allow for delayed infection peaks, thereby cre-
ating an opportunity for early intervention. These insights un-

derscore the significance of fractional models for understanding
disease spread and optimizing public health strategies.
After the initial analysis, adjustments were made to the cru-

cial parameter 𝛽, which represents the disease transmission rate
among the infected individuals. Gradual and diverse modifica-
tions are applied to return to the initial baseline value, and the
resulting impact on the populations of infected individuals is
illustrated in Figure 6 for the fractional cases, specifically with
𝛼 = 0.85 and 𝛼 = 0.95.
The graphical results reveal a pronounced reduction in the

peaks of the infection curves within each population category
as the contact rate 𝛽 decreases. Notably, smaller values of the
fractional parameter 𝛼 correspond to a slower and more sus-
tained disease spread, effectively capturing the memory effect in-
herent in the model. This biological interpretation underscores
that increasing 𝛼 accelerates disease transmission, whereas lower
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Figure 5. The dynamics of Caputo’s fractional model for various values of 𝛼 and using the estimation parameters in Table 2.
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Figure 6. Impact of 𝛽 on the infected population for different values of 𝛼 with 𝛼 = 0.85, 𝛼 = 0.95 and using the estimation parameters in Table 2.

values delay the appearance of infection peaks, a behavior contin-
gent upon the impact of preceding events.
Furthermore, our graphical analysis emphasizes the critical

role of preventive measures. Neglecting interventions such
as reducing human-mosquito contact, leads to a substantial
increase in infections, facilitating a longer and swifter disease
spread. Therefore, targeted efforts to minimize the contact
between humans and mosquitoes should be central to inter-
vention strategies. Implementing insecticides and medications
to reduce mosquito populations significantly contributes to the
maintenance of human population stability and curbing disease
transmission.

5.3. Significance and Closing Remarks on Numerical Simulation

In Algeria, concerted efforts by authorities aim to raise public
awareness about the critical importance of implementing safety
measures to prevent malaria transmission. These preventive
measures include targeted pesticide spraying in high-risk areas,
distribution of treated mosquito bed nets for nocturnal protec-
tion, and provision of medications for treatment and prevention.
Implementing these preventive strategies is pivotal for manag-

Table 2. Parameters and initial data of the SIP(H)–SI(M) model.

Parameter Interpretation Baseline Value Reference

Λ Recruitment rate of human 0.022818 Estimated [49]

SH (0) Initial number of SH 30 773 545 Calculated

IH (0) Initial number of IH 541 [48]

PH (0) Initial number of PH 535 Assumed

SM (0) Initial number of SM 288 232 Assumed

IM (0) Initial number of IM 19 310 Assumed

𝛽 Rate of transmission from IM to SH 0.294482673 Fitted

𝛿 Immunity loss rate of humans 0,0314446765 Fitted

𝜅 Immunity acquisition rate of humans 0,512191861 Fitted

𝜆 Recruitment rate of mosquito 0.104576629 Fitted

𝛾 Rate of transmission from IH to SM 0.126616512 Fitted

𝜐 Natural death rate of mosquitoes 0.456197917 Fitted

𝜇 Natural death rate of humans 0.0046818 Estimated [49]

ing the spread of malaria as they effectively reduce the risk of
infection and subsequent transmission.
In our mathematical model, these preventive measures di-

rectly impact the parameter 𝛽, which represents the rate of in-
fection transmission from mosquitoes to humans. Our simula-
tions explore how variations in this parameter influence disease
progression and spread. Figures 5 and 6 illustrate how different
values of the fractional-order parameter 𝛼 affect the duration of
the critical disease state, particularly the number of infected in-
dividuals. Specifically, 𝛼 ∈ (0, 1) quantifies memory during epi-
demics. As 𝛼 approaches zero, the system exhibits perfect mem-
ory, whereas approaching one signifies no memory. Notably, an
increase in 𝛽 leads to a rapid surge in the number of infected
individuals, emphasizing that neglecting safety measures signif-
icantly accelerates disease spread.
A comparison of our results with those of recent studies em-

ploying traditional models reveals that the fractional-ordermodel
better captures the intricate dynamics of disease transmission,
particularly in the context of malaria. Recent research utiliz-
ing fractional-order models has demonstrated their efficacy in
providing more accurate epidemic predictions, especially when
accounting for natural delays in transmission processes. Our
model aligns with these findings, but introduces a novel dimen-
sion by explicitly considering the impact of memory on disease
spread, an aspect overlooked in traditional models.

6. Conclusion

This study conducted a comprehensive analysis of the SIP(H)–
SI(M) model, affirming its efficacy in elucidating malaria trans-
mission and spread dynamics. Our primary objective was to ex-
plore effective prevention, control strategies, and to draw insights
from multiple studies that provide essential tools for predicting
the impact of malaria and mitigating its effects.
From both epidemiological andmathematical perspectives, we

delineated a suitable and feasible region for the model’s solu-
tions, and subsequently investigated their existence, uniqueness,
and stability. Notably, our inquiry was extended to apply frac-
tional operators within the SIP(H)–SI(M)model, specifically test-
ing it in the context of Algeria. Parameters were meticulously es-
timated using real-world data, and numerical simulations illumi-
nated the dynamic behavior of human andmosquito populations
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over time. These simulations consistently revealed that higher in-
fection transmission rates correlate with an increased number of
infected individuals.
Remarkably, the disease-free equilibrium remained stable

across all the numerical simulations when the basic reproduc-
tion number fell below unity. Our choice of Adams–Bashforth–
Moulton numerical scheme offers distinct advantages over al-
ternative methods: improved stability, faster convergence, and
heightened accuracy in handling fractional epidemic models.
These attributes make it particularly effective for studying in-
tricate disease dynamics such as those observed in malaria, in
which fractional calculus plays a pivotal role.
The performance demonstrated by this numerical approach

significantly contributes to accurate predictions for effective con-
trol of malaria spread. Furthermore, our detailed analysis under-
scores the critical imperative of reducing the basic reproduction
number below unity. Achieving this reduction requires targeted
interventions, including treatment measures, and minimization
of human-mosquito contact. Effective medications, insecticides,
and treated bed nets emerge as pivotal tools for curbingmosquito
populations and mitigating malaria transmission.

Acknowledgements
This work was supported by (DGRSTD)- Algeria.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the sup-
plementary material of this article.

Keywords
estimation parameters, existence and stability, malaria, mathematical
modeling, numerical simulation

Received: June 30, 2024
Revised: September 24, 2024

Published online: November 6, 2024

[1] J. Li,Math Biosci Eng 2011, 8, 753.
[2] S. Olaniyi, OS. Obabiyi, Int. J. Pure Appl. Math. 2013, 88, 125.
[3] Osman MA-RE-N, Adu IK, C. A. Yang, Asian Res J Math 2017, 7, 1.
[4] J. Djordjevic, C. J. Silva, D. F. M. Torres, Appl. Math. Lett. 2018, 84,

168.
[5] F. Ndaïrou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres,Math. Meth-

ods. Appl. Sci. 2018, 41, 8929.
[6] A. Rachah, D. F. M. Torres, Math. Comput. Sci. 2016, 10,

331.
[7] A. Ullah, T. Abdeljawad, S. Ahmad, K. Shah, J. Funct. Spaces 2020.
[8] P. A. Naik, M. Farman, A. Zehra, K. S. Nisar, E. Hincal, Partial Differ.

Equ. Appl. Math. 2024, 10, 100663.

[9] P. A. Naik, A. Zehra, M. Farman, A. Shehzad, S. Shahzeen, Z. Huang,
Front. Phys. 2023, 11, 1307307.

[10] S. Jamil, P. A. Naik, M. Farman, M. U. Sleem, A. H. Ganie, J. Appl.
Math. Comput. 2024, 70, 3441.

[11] P. A. Naik, B. M. Yeolekar, S. Qureshi, M. Yeolekar, A. Madzvamuse,
Nonliner Dyn 2024, 112, 11679.

[12] P. A. Naik, M. Yavuz, S. Qureshi, M. Naik, K. M. Owolabi, A.
Soomro, A. H. Ganie, Comput. Methods Programs Biomed. 2024, 254,
108306.

[13] M. Farman, A. Shehzad, K. S. Nisar, E. Hincal, A. Akgul, Comput. Biol.
Med. 2024, 178, 108756.

[14] K. S. Nisar, M. Farman, Int. J. Model. Simul. 2024, 1.
[15] M. Farman, N. Gokbulut, U. Hurdoganoglu, E. Hincal, K. Suer, Com-

put. Biol. Med. 2024, 173, 108367.
[16] K. S. Nisar, M. Farman, A. Zehra, E. Hincal, Int. J. Model. Simul. 2024,

1.
[17] K. S. Nisar, M. Farman, M. Abdel-Aty, C. Ravichandran, Alex. Eng. J.

2024, 95, 283.
[18] A. O. Atede, A. Omame, S. C. Inyama, Bull. Biomath. 2023, 1, 78.
[19] B. Basti, Y. Arioua, N. Benhamidouche, Acta Math. Univ. Comenian.

2020, 89, 243.
[20] B. Basti, B. Chennaf, M. A. Boubekeur, S. Bounouiga, Adv. Theory

Simul. 2024, 7, 2301285.
[21] B. Basti, N. Hammami, I. Berrabah, F. Nouioua, R. Djemiat, N.

Benhamidouche, Symmetry 2021, 13, 1431.
[22] M. D. Ortigueira, J. A. Tenreiro Machado, J. Comput. Phys. 2015, 293,

4.
[23] U. K. Nwajeri, A. Omame, C. P. Onyenegecha, Results Phys. 2021, 28,

104643.
[24] R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M.

Diwekar, Chem. Eng. Sci. 2014, 117, 217.
[25] B. Basti, N. Benhamidouche, Surv. Math. Appl. 2020, 15, 153.
[26] B. Basti, R. Djemiat, N. Benhamidouche, Mem. Differ. Equ. Math.

Phys. 2023, 89, 1.
[27] R. Djemiat, B. Basti, N. Benhamidouche, Adv. Theory Nonlinear Anal.

Appl. 2022, 6, 287.
[28] R. Djemiat, B. Basti, N. Benhamidouche, Appl. Math. E-Notes 2022,

22, 427.
[29] R. Djemiat, B. Basti, N. Benhamidouche, An. Stiint. Univ. Al. I. Cuza

Iasi. Mat. 2023, 69, 143.
[30] R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Dan-

bury2006.
[31] F. Nouioua, B. Basti, Ann. Univ. Paedag. Crac. Stud. Math. 2021, 20,

43.
[32] S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi, S. Side, Chaos, Solit.

Fract. 2020, 139, 110072.
[33] A. A. Gebremeskel, H. E. Krogstad, Am. J. Appl. Math. 2015, 3,

36.
[34] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Math. Methods Appl. Sci.

2023, 46, 9103.
[35] Y. Arioua, B. Basti, N. Benhamidouche, Appl. Math. E-Notes 2019, 19,

397.
[36] B. Basti, Y. Arioua, N. Benhamidouche, J. Math. Appl. 2019, 42,

35.
[37] B. Basti, N. Benhamidouche, Appl. Math. E-Notes 2020, 20,

367.
[38] B. Basti, Y. Arioua, J. Math. Phys. Anal. Geom. 2022, 18,

350.
[39] B. Lekdim, B. Basti, Jordan J. Math. Stat. 2024, 17, 199.
[40] A. Zeeshan, Z. Akbar, S. Kamal, Hacettepe J. Math. Stat. 2018, 48,

1092.
[41] J. P. LaSalle, IRE Trans. Circuit Theory 1960, 7, 520.
[42] C. Vargas-De-Leon, Commun. Nonlinear Sci. Numer. Simul. 2015, 24,

75.
[43] K. Diethelm, N. J. Ford, A. D. Freed, Nonlinear Dyn. 2002, 29, 3.

Adv. Theory Simul. 2025, 8, 2400630 © 2024 Wiley-VCH GmbH2400630 (16 of 17)

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

[44] K. Diethelm, N. J. Ford, A. D. Freed, Numer. Algorithms 2004, 36, 31.
[45] P. Roman, in AIP Conference Proceedings, AIP Publishing LLC, Melville,

NY, USA, 2021.
[46] R. Garrappa, Int. J. Comput. Math. 2010, 87, 2281.
[47] Algeria Population 1950-2024, https://www.macrotrends.net/

countries/DZA/algeria/population (accessed: April 2024).

[48] Number of confirmed malaria cases, World Health Organiza-
tion, https://www.who.int/data/gho/data/indicators/indicator-
details/GHO/number-confirmed-malaria-cases (accessed: May
2023)

[49] Population growth in Algeria, https://www.donneesmondiales.com/
afrique/algerie/croissance-population.php (accessed: Jan 2024).

Adv. Theory Simul. 2025, 8, 2400630 © 2024 Wiley-VCH GmbH2400630 (17 of 17)

http://www.advancedsciencenews.com
http://www.advtheorysimul.com
https://www.macrotrends.net/countries/DZA/algeria/population
https://www.macrotrends.net/countries/DZA/algeria/population
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-confirmed-malaria-cases
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-confirmed-malaria-cases
https://www.donneesmondiales.com/afrique/algerie/croissance-population.php
https://www.donneesmondiales.com/afrique/algerie/croissance-population.php

	Mathematical Exploration of Malaria Transmission Dynamics: Insights from Fractional Models and Numerical Simulation
	1. Introduction
	2. Necessary Definitions and Preliminaries
	3. Dynamic Analysis of the Feasible Region
	3.1. Positivity and Boundedness of the Model
	3.2. Existence Results of Solutions for the Normalized Model
	3.3. Ulam9040�Hyers Stability for the Normalized Model

	4. Analysis for the Fractional SIP(H)9040�SI(M) Model
	4.1. Basic Reproduction Number and Equilibrium Points
	4.2. Stability Study of Disease-Free Equilibrium Point
	4.2.1. Local Stability Analysis of 
	4.2.2. Global Stability Analysis of 

	4.3. Stability Study of Endemic Equilibrium Point
	4.3.1. Local Stability Analysis of 
	4.3.2. Global Stability Analysis of 


	5. Data Fitting Analysis through Numerical Simulation
	5.1. Numerical Scheme for the Fractional SIP(H)9040�SI(M) Model
	5.2. Fitted Data Analysis of Malaria in Algeria
	5.3. Significance and Closing Remarks on Numerical Simulation

	6. Conclusion
	Acknowledgements
	Conflict of Interest
	Data Availability Statement

	Keywords


