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Fused deposition modelling or 3D printing is a frequently utilized additive
manufacturing technique. This approach allows for the creation of light-
weight products using various infill strategies and percentages. By adjusting
parameters such as temperature, density, speed of printing, etc., components
with diverse characteristics can be produced. Polylactic acid (PLA) is fa-
voured for 3D printing due to its low cost and sustainability, being derived
from renewable sources and biodegradable. Understanding the mechanical
performance of different 3D-printing strategies is essential for optimizing
PLA part production. This study is focused on the application of fused depo-
sition modelling for rapid prototyping and manufacturing, particularly, fo-
cusing on the influence of extruder temperature, filling density, and weight
on the tensile strength of printed PLA samples. The study is adhered to
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ASTM D-638 tensile standards, with 27 samples printed and tested using an
Anycubic i3 Mega machine. The results reveal that extruder temperature
minimally affects tensile strength, while filling density has a significant im-
pact, and weight shows no notable effect. Additionally, two predictive models
(artificial neural network (ANN) and Taguchi L9) are developed, showing
favourable alignment with experimental data, with correlation coefficients
reaching 91.03% for the ANN method and 80.75% for stress, 90.13% for
strain, and 50.83% for Young’s modulus within the Taguchi method.

Key words: fused deposition modelling, mechanical properties, PLA, ANN,
Taguchi’s method, 3D printing.

MopgentoBanEA HaTONMIIOBAaHHA a00 3D-IPYK € INMUPOKO BUKOPUCTOBYBAHOIO
TEXHIKO0I0 afuTUBHOTO BUpPOoOHUITTBA. [leii minxin mae sMory crBoproBaTu JieTKi
IIPOAYKTU 3 BUKOPHCTAHHAM Pi3HMX CHOCO0IB 3allOBHEHHA Ta IIPOIEHTHOTO
CIIiBBiIHOIIIEHHS KOMIIOHEHTiB. PeryaoBaHHAM TaKMWX IIapaMeTpiB, AK TeM-
mnepaTypa, 'yCTUHA, IIBUAKICTh APYKY Ta iH., MOKHA BUTOTOBJIATA KOMIIOHEH-
Ty 3 pisHUMU xapaxkTepuctTuxkamu. Ilosimonouna kuciora (PLA) mupoko Bu-
KOPUCTOBYETHCA s 3D-IpyKy 3aBOAKY i HU3BbKiM BAPTOCTi Ta €KOJOTiUYHOC-
Ti, OCKiZIbKM BOHA OHEPIKYETHCS 3 TOHOBJIIOBAHUX JKepe i miggaeTbes 6ioiro-
TiYyHOMY DO3KJalaHHIO. Bu3HaueHHA MeXaHIUYHMX XapaKTEePUCTUK 3a PiSHUX
cmocobiB 3D-IpyKy Mae BasKJMBe 3HAUEHHS AJIA ONTHMi3allii BUPOOHUIITBA
meraniB 3 PLA. Jlamy poboTy CIpAMOBAaHO Ha BUKOPUCTAHHA MOJAETIOBAHHS
HATOILIIOBAHHSA [JIA IIBUAKOTO IPOTOTUIIYBAHHSA Ta BUPOOHUIITBA, OCOOJIMBO
30CepeKYI0UNCh Ha BIJIMBI TeMIEPATypU eKCTPyAepa, TYCTUHI HATOBHEHHS
Ta BarW Ha MeyKy MiIntHOCTH IpyKoBaHuX 3paskiB PLA. Ilig uac mocaimsxeHb
OyJio BUKOpuCcTaHO cTaHgapTy MinmHoctu Ha podtar ASTM D-638; npu nromy
27 3paskiB OyJi0 HAAPYKOBAHO Ta IIPOTECTOBAHO 3a IOMOMOTOI0 MAIITWHU
Anycubic i3 Mega. PesyabTaTu oxKasyoTh, II[0 TeMIIepaTypa eKCTpyaepa Ta
Bara MiHiMaJbHO BIJIMHYJIY HA MEXKY MiITHOCTH, TOAi AK I'yCTUHA HATIOBHEHHA
maja 3HauHWil BoiaumB. Kpim Toro, pospobieHo gBa HIPOTHOCTHUYHI MoOzesi
(mrTyuna HelipoHHa Mepeska Ta Taryui L9), aKi meMOHCTPYIOTH CHPUATIVBE
Y3TrOM:KEeHHA 3 €KCIepUMEHTAJbHUMHU JAaHUMHU 3 KoedilieHTamMm Kopesmdrrii,
aki caraoTs 91,03% nas meToxmy miTyuHOI HelipouHol Mmepexi Ta 80,75% mis
nanpyru, 90,13% npas gedopmarii ta 50,83% musa mogyas FOura sa momenem
Taryui.

KarouoBi croBa: MoeTioBalHsA HATOIIJIIOBAHHSA, MeXaHiuHi BJIACTUBOCTI, IIO-
JIiMOJIOUHA KHUCJIOTA, ITYyYHA HelIpOHHA Mepeika, metox Taryui, 3D-npyxK.
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1. INTRODUCTION

In recent years, there has been a revolutionary shift in the methodolo-
gies employed for designing, prototyping, and manufacturing compo-
nents. Among these techniques, 3D printing alternatively referred to
as additive manufacturing, stands out as a pivotal technology. Re-
searchers have directed their attention toward investigating this inno-
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vative approach due to its capability to craft intricate and sophisticat-
ed shapes with a remarkable level of precision [1-3]. This unique and
groundbreaking technology transforms conventional manufacturing
by constructing objects based on digital models, eliminating the neces-
sity for traditional cutting or casting machines and numerous ad-
vantages exist compared to traditional manufacturing methods [4, 5].
The evolution of 3D printing encompasses various additive manufac-
turing (AM) methods, notably fused deposition modelling (FDM), a
widely embraced 3D printing technique. FDM operates by layering
thermoplastic filaments through a computer-controlled extruder noz-
zle, offering unparalleled flexibility, cost-effectiveness, and user-
friendly functionality [6, 7]. Serving as a predominant force in shap-
ing components with intricate designs and integrating diverse materi-
als, it has brought about a revolutionary impact across industries, in-
cluding biomedical, aerospace, automotive engineering, civil engineer-
ing, and beyond [8—10].

Dina et al. [11] conducted an investigation to evaluate the effect of
different printing parameters on the tensile strength of polylactic acid
(PLA) samples manufactured through FDM 3D printing. Using a
Taguchi array design perpendicular to L25, they systematically exam-
ined parameters such as layer thickness, print speed, nozzle tempera-
ture, direction angle, and number of lines. The results highlighted the
significant influence of printing process variables on tensile strength,
revealing values ranging from 37 MPa to 53 MPa. The ideal variables
that help achieve maximum tensile strength were also identified, in-
cluding a layer thickness of 0.22 mm and a printing speed of 45 mm/s,
nozzle temperature 205°C, direction angle 70°, use 4 profiles. The ten-
sile test results were compared with predictions generated by both the
artificial neural network (ANN) and the mathematical model to vali-
date the results. The maximum error recorded by the artificial neural
network was 8.91%, while the maximum error shown by the mathe-
matical model was 19.96%.

Meiabadi et al. [12] conducted a study examining the influence of
printing angles and UV curing on the mechanical characteristics of
FDM fabricated PLA samples. Their investigation focused on assessing
the tensile properties of specimens printed at varying angles along X-,
Y-, and Z-axes. Noteworthy outcomes from the study indicated a sig-
nificant impact of printing angles on the tensile behaviour of PLA,
particularly, with the X 60° specimen demonstrating the highest ten-
sile strength. Additionally, the research revealed that lower infill den-
sity and the UV curing process resulted in diminished mechanical
properties and material embrittlement, impacting both elongation and
Young’s modulus.

Another study about the comprehensive examination and design op-
timization of 3D printing structures by scrutinizing the ultimate ten-
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sile strength (UTS) of FDM PLA materials across varying printing an-
gles by Tianyun et al.[13]. Notably, the findings revealed a significant
alteration in the UTS of 3D-printing materials corresponding to
changes in the printing angle. The study observed a consistent de-
crease in tensile strength as the layer thickness increased from 0.1 mm
to 0.3 mm. Particularly, noteworthy is the substantial UTS gap of
52.29%, observed between 0° and 90° 3D-printing materials with a
layer thickness of 0.1 mm.

Muammel et al.[14] investigated a study to explore the influence of
diverse 3D-printing process parameters on the tensile strength and
hardness properties of PLA, employing FDM technique. Their investi-
gation encompassed the examination of various build orientations,
raster direction angles, and layer heights. The results obtained from
the study revealed that the on-edge orientation samples exhibited the
highest values for Young’s modulus and ultimate tensile strength,
measuring at 1.896 +0.044 GPa and 49.12+0.78 MPa, respectively.
Furthermore, the specimen with a 0.1 mm layer thickness demonstrat-
ed the most favourable elongation at break, reaching 3.13%.

The examination of existing literature indicates a limited number of
research studies addressing advancements in additive manufacturing
specifically using fused deposition modelling (refer to Fig. 1). There-
fore, the present study strategically directs its attention towards in-
vestigating the influence of extruder density, printing temperature,
and weight on the tensile strength of PLA samples.

The uniqueness of this study lies in its thorough examination of the
application of FDM for rapid prototyping and manufacturing, with a
particular emphasis on three key parameters: extruder temperature,
filling density, and weight. While most previous studies typically fo-
cus on one or two of these parameters, this research deliberately ex-
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Fig. 1. Cause and effect diagram of FDM process parameters.
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plored the interaction among these variables and their impact on the
tensile strength of printed PLA samples. Furthermore, the use of
ASTM D-638 tensile standards ensures compliance with recognized
testing protocols, thereby reinforcing the reliability of the results. The
implementation of two predictive models, namely ANN and Taguchi, to
interpret experimental data strengthens the robustness of the analysis.

2. MATERIALS AND METHODS
2.1. Samples Preparation

In this work, we drew all the samples in CATIA CAD software. After
that we converted the CAD file to STL format, and we configured the
printing settings through Ultimaker Cura and using the Anycubic i3
Mega printer according to ASTM D638 Type IV (this test method for
analysing tensile property data for plastic materials) [15] (Fiig. 2). Us-
ing PLA filament to determine the printing temperature and PLA fil-
ament density impact on tensile strength.

The Anycubic i3 Mega is a Cartesian-style FDM printer that utilizes
a heated bed and a single extruder to deposit thermoplastic materials,
allowing the creation of 3D objects [16]. Impression size is not more
than 210x210x205 mm3, 1.75 mm diameter filament suitable for PLA,
ABS, HIPS, PETG, and wood, with 0.4 mm buse that can reach 260°C.
The heating plate reaches 110°C and prints the objects from an SD card
or USB cable.

PLA filament is a frequently used 3D printing material. PLA is a
thermoplastic produced using renewable resources like cornstarch,
sugar cane, tapioca roots, and potato starch, and the technical proper-
ties of PLA filament in Table 1 [17].

The infill pattern (zigzag) and bed temperature is of 60°C. The layer
thickness and orientation angle were constants (Table 1). The samples
were printed according to three temperatures (200°C, 210°C, 220°C)
and three densities (20% ,30% and 40% ), which means 27 specimens
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Fig. 2. CAD model and specification of tensile specimen.
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TABLE 1. PLA technical properties and fixed printer settings.

Filament . o
specifications Values Settings Specification
Diameter 1.75 mm Speed printing, mm/s 70
Length 330-10° pm Wall thickness, mm 1.2
. 1 kg for each . .
Weight spool Infill pattern zigzag
Density 1.24 g/cm® Build plate temperature, °C 60
Tensile strength 62 kg/cm? Fan speed, % 100
Flexural modulus 28000 kg/cm? Layer height, mm 0.2
Colour PLA Green  Initial layer speed, mm/s 10
200°C 20%
2
<L
E
210°C 30% -8
e
=
(o]
220°C 40%

e
3 specimens

Fig. 3. Printing parameters for samples.

printing as follows (Fig. 3).

2.2. Tensile Test

The 27 printed samples (Fig. 4, b) were testing on the universal testing
machine (Test 112) with a speed of 0.1 mm and force of 5 kN for tensile
strength keeps at the completely tensile course (Fig. 4, ¢, d). The in-
herent software module meticulously logged the data pertaining to the
utmost tensile strength, elongation, and force load. The results of ten-
sile strength of the tensile strength are shown in Table 2.

The calculation of stress (o) during tensile testing is succinctly ar-
ticulated through the fundamental formula as Eq. (1):

c=F/A, 1)
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Fig. 4. Tensile test procedure.

signifies the cross-sectional area of the specimen. It is an important
mechanical property of materials that is used to describe their re-
sistance to deformation and failure under tensile forces. This formula
applies to homogeneous materials with uniform cross-sections and is
valid only up to the point of fracture. Beyond the point of fracture, the
material undergoes plastic deformation, and the stress-strain relation-
ship becomes nonlinear. The tensile stress formula is widely used in var-
ious fields, such as engineering, physics, and materials science, to char-
acterize the mechanical behaviour of materials under tensile forces. It is
also used to design and optimize structures and components that are
subjected to tensile loads, such as bridges, buildings, and aircraft [18].

2.3. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) serve as a mathematical instrument
inspired by the structure and function of the human brain and biologi-
cal nervous system [19]. They are composed of interconnected nodes, or
neurons, that process and transmit information through weighted con-
nections. ANNSs are capable of learning from data, recognizing patterns,
and making predictions or decisions based on the input—output relation-
ships.
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TABLE 2. Empirical and anticipated tensile strength of pla samples using

ann model.
No| Temperature |Density|Weight Strain (mm) Stress (MPa) | YOURE’S (rg;c:)ﬂusxm*
(0) (%) (g)
Exp [ANN| Err |Exp |ANN| Err | Exp | ANN | Err

1 200 20  4.881 0.0110.012-0.00132.2943.36-11.07 2630.202737.87-107.67
2 200 20 4.871 0.0100.012-0.00130.4643.27-12.812774.202753.13 021.07
3 200 20 4.895 0.0110.012-0.00132.0543.49-11.442755.602718.32 037.28
4 200 30  5.081 0.0090.015-0.00628.9643.00—14.042956.902575.81 381.09
5 200 30  5.122 0.0120.015-0.00337.0743.46 —6.39 2696.202548.85 147.35
6 200 30  5.105 0.0120.015-0.00334.5943.29 —8.70 2760.802555.83 204.97
7 200 40 5.403 0.0140.013 0.001 42.1344.16 —2.04 2747.402753.22-005.82
8 200 40 5.409 0.0130.013 0.000 39.7044.21 —4.51 2877.602755.92 121.68
9 200 40 5.405 0.0160.013 0.003 44.7444.18 0.56 2368.702754.12-385.42
10 210 20  4.887 0.0110.010 0.001 32.5832.54 0.04 2756.402775.05-018.65
11 210 20 4.887 0.0100.010 0.000 29.6932.54 —2.84 2803.902775.05 028.85
12 210 20 4.868 0.0110.009 0.002 32.7832.43 0.34 2754.102804.92-050.82
13 210 30  5.145 0.0110.014-0.00335.3632.79 2.58 2901.802768.98 132.82
14 210 30  5.149 0.0120.014-0.00236.1632.81 3.35 2727.902764.46-036.56
15 210 30  5.131 0.0110.014-0.00334.7032.69 2.01 2952.702785.26 167.44
16 210 40 5.400 0.0130.010 0.003 40.6032.16 8.43 2711.802669.00 042.80
17 210 40 5.405 0.0130.010 0.003 41.8732.24 9.63 2823.402662.23 161.17
18 210 40 5.395 0.0120.010 0.002 38.7432.09 6.65 2949.702676.19 273.51
19 220 20 4.859 0.0100.009 0.001 30.8229.61 1.21 2785.102786.62-001.52
20 220 20  4.856 0.0110.009 0.002 32.2529.62 2.64 2750.202787.19-036.99
21 220 20  4.851 0.0110.009 0.001 31.5029.63 1.87 2764.502788.06-023.56
22 220 30  5.153 0.0120.010 0.003 37.7629.19 8.57 2818.502745.07 073.43
23 220 30  5.122 0.0120.010 0.003 37.0129.24 7.77 2764.202761.36 002.84
24 220 30  5.398 0.0120.009 0.003 36.1929.01 7.18 2759.602746.59 013.01
25 220 40  5.386 0.0110.009 0.001 34.9129.10 5.81 3013.202964.64 048.56
26 220 40 5.401 0.0120.009 0.003 37.7129.09 8.62 2864.602956.48-091.88
27 220 40 5.410 0.0120.009 0.003 38.5129.09 9.42 2942.502950.75-008.25

ANNSs have been widely used in various fields, such as computer vi-
sion, natural language processing, speech recognition, and robotics, to
solve complex problems that are difficult or impossible to solve using
traditional algorithms [20, 21]. The function ANN method is employed
for output prediction. This neural network comprises three layers, name-
ly, an input layer, an output (or target) layer, and an intervening hidden
layer. The number of input and output parameters related by the quanti-
ty of neurons in the input and output layers.
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Stress, MPa

Input layer
Output layer

Hidden layer

Fig. 5. Schematic of the ANN.

In this study, ANN model underwent training using MATLAB, in-
corporating input parameters such as temperature, density, and sam-
ple weight, along with output parameters including stress modulus,
strain, and Young’s modulus. The neural synthesis tool facilitated the
importation of a 3x27 input matrix and corresponding 3x27 output da-
ta, asillustrated in Fig. 5.

2.4. Taguchi Method

The Taguchi method, created by Japanese engineer Genichi Taguchi, is
recognized as a robust engineering tool for enhancing the quality of
engineering design by integrating statistical methods and concepts
from design of experiments. It has demonstrated successful applica-
tion across various domains such as manufacturing and engineering,
product design, experimental design, reliability engineering, and
chemical process design, specifically in maximizing yields of specific
compounds. The approach advocates notable advancements in three
key design phases: system design, parameters design, and tolerance
design [22, 23].

In this work, the experiments were arranged using Taguchi’s or-
thogonal array of fractional factorial design (L.9) with the assistance of
Minitab software.

The Taguchi method entails performing experiments to optimize the
printing process by adjusting input factors to attain the targeted S/N
ratio. By emphasizing the S/N ratio, the Taguchi method seeks to en-
hance quality, robustness, and performance while mitigating the im-
pact of variability and external factors. Given that this investigation
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focuses on maximizing stress, strain, and Young’s modulus values, the
data points are computed using a ‘bigger is better’ approach to attain
superior performance and reduced sensitivity to variation. This cate-
gorization ensures that the S/N ratio is characterized as Eq. (2):

S __ 13(u)
N 1010g10(n Z( jJ, (2)

i=1

where y; represents the mean of measurements for each trial, and ¢ is
the standard deviation [24, 25].

3. RESULTS AND DISCUSSION
3.1. Tensile Strength

Following the execution of a tensile test on the 27 specimens (Fig. 6),
the experimental findings depicted in Figs. 7 and 8 were ascertained.
Notably, the density exhibited a noteworthy influence on the strain,
Stress, and Young’s modulus (output parameters), when juxtaposed
with the temperature. This observation underscores that an augmenta-
tion in the density value corresponds to an escalation in the three out-
put parameters. For instance, at a density of 20% and a temperature of
200°C, the strain, stress, and Young’s modulus registered values of
0.010%, 30.46 MPa, and 2774 MPa, respectively. These values exhib-
ited an increase to 0.013%, 39.70 MPa, and 282877 MPa at the same
temperature but with a density of 40%.

Fig. 6. Samples after testing on tensile test machine.
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Fig. 7. Stress (MPa)—strain (% ) curve for experimental condition (27 specimens).

Conversely, a rise in temperature was correlated with a reduction in
strain and stress. Notably, at a temperature of 200°C and a density of
20% , the strain, tensile strength, and Young’s modulus were recorded
at 0.011%, 32.29 MPa, and 2630.20 MPa, respectively. However,
these values experienced a decrease to 0.010% and 30.82 MPa at a
temperature of 220°C and a density of 20%, while concurrently, the
value of Young’s modulus increased to 2785.10 MPa under identical
printing conditions.

3.2. ANN Results

Figure 9, a illustrates the mean squared error (MSE) values across dif-
ferent epochs (Eq. (3)). A decreased MSE corresponds to an increased
accuracy in predictions made by (ANN) model [26, 27]. Notably, dur-
ing observations, the MSE exhibited significant values, approximately
3.2705 for training, 4.527-107! for validation, and 8.1064 for testing.
The training and validation processes concluded after 7 iterations, as
depicted in Fig. 9, b. The optimization was achieved with a validation
score of 0.00070939, observed at the eleventh iteration through gradi-
ent analysis. This point was deemed optimal by the artificial neural
network:

1& _
MSE =—3 (S ARE (3)
i=1

where n is the number of observations in the dataset, y; is the actual
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Fig. 8. Stresses (MPa) and strains (% ) data for experimental condition (27 speci-
mens).

target value for observation i, and y, is the value predicted by the
model for observation i [28].

In contrast, Fig. 10 displays the R coefficient values concerning the
target. Achieving minimal error necessitates that the total R value in
training, testing, and validation schemes be close to 1 [29]. Remarka-
bly, the ANN model demonstrated a notably high correlation coeffi-
cient, reaching 0.960623, 0.94826, and 0.9103 for training, valida-
tion, and testing, respectively (Eq. (4)). Table 2 illustrates a compari-
son between the actual experimental data for the average values of
stress, strain, and Young’s modulus and the corresponding anticipated
values generated by ANN. Evidently, there is a remarkable proximity
between the experimental and predicted data, characterized by an ex-
ceptionally small error deviation. The average error, quantified at
3-107%, further emphasizes the close agreement between the observed
and forecasted values:
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Fig. 9. Cumulative mean squared errors across epochs in network data.

B =1-3,-5) / X -5 )

where n is the number of observations, y; is the actual target value for
observation i, y, is the predicted value by the model for observation i,
and y, is the mean of the actual values.

3.3. Taguchi Results

Figures 11, a—c depict the outcomes and recommendations derived
from the application of the Taguchi method concerning strain, stress,
and Young’s modulus values as a function of temperature, density,
and weight, respectively. The influence of density on various outcomes
is noteworthy, with higher density values correlating to increased
strain, stress, and Young’s modulus. For instance, at 20%, the corre-
sponding values were 0.011% for strain, 31 MPa for stress, and
2750 MPa for Young’s modulus, compared to 0.013%, 40 MPa, and
2800 MPa at 40% . Additionally, temperature exhibited a notable im-
pact on these parameters, as elevated temperatures decreased strain
and stress, while Young’s modulus saw an increase in values. At
200°C, the values were 0.012%, 36 MPa, and 2730 MPa; at 220°C, they
were 0.011%, 35 MPa, and 2850 MPa. Conversely, the weight factor
displayed irregular behaviour in the three outputs.

Figures 11, d—f depict the residual plots for strain, stress, and
Young’s modulus. By examining the normal probability plot of residuals,
it becomes evident that the points closely align with a straight line, af-
firming the normal distribution of residuals for all output parameters.

Analysing the histogram of residuals provides insight into the da-
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Fig. 10. Neural network regression graph.

ta’s general characteristics, encompassing typical values, spread, and
shape. Notably, the presence of long tails in the plot suggests signifi-
cant skewness in the data.

Considering the waste versus order plot, a tool for identifying non-
random errors, rapid changes in successive residues’ signs reveal a
negative correlation in strain and stress. In contrast, Young’s modulus
exhibits a positive correlation, as the majority of residues share the
same sign.

The residuals versus fits plot is expected to display a random pattern of
residuals on both sides of zero. However, the observed series of increasing
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Fig. 11. Plot depicting the primary effects of the input variables and residual plots.

and decreasing points indicates a prevalence of positive residuals over
negative ones, pointing towards a non-random nature of the errors.

The optimal parameters were determined by selecting the highest
signal-to-noise (S/N) ratio for each factor, chosen to maximize the
output parameters, as illustrated in Table 3. The values presented in
Table 3 represent average measurements derived from three samples
(L9) for each type of PLA sample. The optimal parameters include a
maximum strain (¢) of 0.0140 MPa and stress (o) of 42.1891 MPa
achieved in run 3, with corresponding S/N ratios of —37.0284 and
32.5040, respectively. In contrast, a minimum strain of 0.0106 MPa
and stress of 31.5246 MPa were attained in run 9, accompanied by S/N
ratios of -39.45808 and 29.97301, respectively. The maximum
Young’s modulus, reaching 2940.1 MPa, was observed in run 3 with an
associated S/N ratio of 69.3672, while the minimum Young’s modulus
of 2664.5666 MPa was recorded in the initial run, correlating with an
S/N ratio of 68.5125. The findings demonstrated a robust alignment
between the model and experimental data, showcasing correlation co-
efficients of 80.75% for stress and 90.13% for strain. However, a
comparatively lower value of 560.83% was observed for Young’s modu-
lus. Table 4 presents the regression equation for strain, stress, and
Young’s modulus factor as functions of the three preceding factors.
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TABLE 3. Tensile test results incorporating the S/N ratio and tensile predict-
ed values of strain, stress and Young’s modulus.

i R S N A e T N
1 200 20 4.85 0.0108 31.597 2720.0 -39.2 29.9 68.6 0.0112 32.5110 2672.7
2 210 20 5.41 0.0111 33.540 2804.6 -39.0 30.5 68.9 0.0112 33.9823 2797.8
3 220 20 5.14 0.0140 42.189 2664.5 -37.0 32.5 68.5 0.0135 40.8340 2718.6
4 200 30 5.41 0.0106 31.683 2771.4 -39.4 30.0 68.8 0.0101 30.3284 2825.5
5 210 30 5.14 0.0115 35.409 2860.8 -38.7 30.9 69.1 0.0119 36.3227 2813.5
6 220 30 4.85 0.0130 40.401 2828.3 -37.6 32.1 69.0 0.0131 40.8436 2821.4
7 200 40 5.14 0.0106 31.524 2766.6 -39.4 29.9 68.8 0.0107 31.9664 2759.7
8 210 40 4.85 0.0121 36.984 2780.7 -38.2 31.3 68.8 0.0116 35.6299 2834.8
9 220 40 5.41 0.0116 37.045 2940.1 -38.6 31.3 69.3 0.0120 37.9585 2892.8

The obtained results align with Kafshgar et al. findings [30], as de-
termined through ANOVA and the Taguchi method. Consistencies
were observed in the behaviour of UTS, modulus of elasticity, and yield
strength with variations in process parameters. The peak values were
identified at an infill density of 60% , extrusion temperature of 220°C,
raster angle of 90°, and layer thickness of 0.1 mm. Similarly, elonga-
tion at break and toughness exhibited analogous patterns, reaching
their highest levels at an infill density of 60% , extrusion temperature
of 200°C, raster angle of 45°, and layer thickness of 0.2 mm.

Nugroho et al.[31] determined that tensile strength is primarily in-
fluenced by infill density, followed by nozzle temperature, infill pat-
tern, and extrusion width. The optimized parameters yielding a tensile
strength of 30.52 MPa at a 95% confidence interval were identified as
75% infill density (C3), 215°C nozzle temperature (A3), honeycomb
infill (D1), and 0.3 mm extrusion width (B1). Both printing tempera-
ture and density emerged as pivotal factors.

Abdulridha et al. [32] reported a tensile strength of 55 MPa in their
investigation of PLA parts manufactured by FDM printing. The high-

TABLE 4. The regression equation for strain, stress, and Young’s modulus
factor as functions of the three input factors.

Regression equation
—0.000027 - 0.00256D +0.000117 - 0.0015551W
-30.2-0.0295D +0.4138T - 3.95W
1470+4.97D +2.92T + 109W

Taguchi response

Strain
Stress
Young’s modulus
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est value was achieved with 80% density, a grid-filling pattern, layer
thickness of 0.25 mm, shell thickness of 0.8 mm, six upper and lower
layers, and a filling overlap of 10%.

Teharia et al. [33] focused on optimizing PLA-based tensile speci-
mens using FFF technology. Their results indicated that the ideal pro-
cess parameters for high tensile strength are layer thickness of
200 ym, nozzle temperature of 210°C, speed/feed rate of 50 mm/min,
grid filling pattern, and point direction of 0°. The ANN analysis fur-
ther contributed to identifying optimal parameters, with R-values of
95% , indicating minimal error.

4. CONCLUSIONS

This study investigates the tensile strength of a PLA specimen pro-
duced through an FDM 3D printer, employing both experimental and
statistical analyses with a focus on three process parameters. The ex-
periments were designed using Taguchi and ANN methodologies. The
ensuing conclusions are as follows.

Density significantly influences strain, stress, and Young’s modu-
lus. Higher density values correlate with increased values for these
three output parameters. At 20% density and 200°C, the values were
0.010% strain, 30.46 MPa stress, and 2774 MPa Young’s modulus. At
40% density and the same temperature, values increased to 0.013%
strain, 39.70 MPa stress, and 282877 MPa Young’s modulus.

Rise in temperature led to a reduction in strain and stress. At 200°C
and 20% density, values were 0.011% strain, 32.29 MPa stress, and
2630.20 MPa Young’s modulus. At 220°C and the same density, strain
decreased to 0.010%, stress to 30.82 MPa, while Young’s modulus in-
creased to 2785.10 MPa.

Optimization was achieved with a validation score of 0.00070939 at
the eleventh iteration through gradient analysis, identified as the op-
timal point by the ANN.

The ANN model demonstrated high correlation coefficients of
0.960623, 0.94826, and 0.9103 for training, validation, and testing,
respectively. Remarkably close agreement between experimental and
predicted data is evident, characterized by an exceptionally small av-
erage error deviation of 3-1075,

Optimal parameters were determined by selecting the highest sig-
nal-to-noise (S/N) ratio for each factor to maximize the output param-
eters. The highest strain (0.0140 MPa) and stress (42.1891 MPa) were
achieved in run 83 with S/N ratios of —37.0284 and 32.5040, respective-
ly. The lowest strain (0.0106 MPa) and stress (31.5246 MPa) were at-
tained in run 9 with S/N ratios of —-39.45808 and 29.97301, respec-
tively. Maximum Young’s modulus (2940.1 MPa) was observed in run
3 with an S/N ratio of 69.3672, while the minimum (2664.5666 MPa)
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was recorded in the initial run with an S/N ratio of 68.5125.

This contribution was created under the support of the PRFU Pro-
ject A1IINO1UN280120230002 organized by the Algerian Ministry of
Higher Education and Scientific Research.
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