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Fused deposition modelling or 3D printing is a frequently utilized additive 

manufacturing technique. This approach allows for the creation of light-
weight products using various infill strategies and percentages. By adjusting 

parameters such as temperature, density, speed of printing, etc., components 

with diverse characteristics can be produced. Polylactic acid (PLA) is fa-
voured for 3D printing due to its low cost and sustainability, being derived 

from renewable sources and biodegradable. Understanding the mechanical 
performance of different 3D-printing strategies is essential for optimizing 

PLA part production. This study is focused on the application of fused depo-
sition modelling for rapid prototyping and manufacturing, particularly, fo-
cusing on the influence of extruder temperature, filling density, and weight 

on the tensile strength of printed PLA samples. The study is adhered to 
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ASTM D-638 tensile standards, with 27 samples printed and tested using an 

Anycubic i3 Mega machine. The results reveal that extruder temperature 

minimally affects tensile strength, while filling density has a significant im-
pact, and weight shows no notable effect. Additionally, two predictive models 

(artificial neural network (ANN) and Taguchi L9) are developed, showing 

favourable alignment with experimental data, with correlation coefficients 

reaching 91.03% for the ANN method and 80.75% for stress, 90.13% for 

strain, and 50.83% for Young’s modulus within the Taguchi method. 

Key words: fused deposition modelling, mechanical properties, PLA, ANN, 
Taguchi’s method, 3D printing. 

Моделювання натоплювання або 3D-друк є широко використовуваною 

технікою адитивного виробництва. Цей підхід дає змогу створювати легкі 
продукти з використанням різних способів заповнення та процентного 

співвідношення компонентів. Реґулюванням таких параметрів, як тем-
пература, густина, швидкість друку та ін., можна виготовляти компонен-
ти з різними характеристиками. Полімолочна кислота (PLA) широко ви-
користовується для 3D-друку завдяки її низькій вартості та екологічнос-
ті, оскільки вона одержується з поновлюваних джерел і піддається біоло-
гічному розкладанню. Визначення механічних характеристик за різних 

способів 3D-друку має важливе значення для оптимізації виробництва 

деталів з PLA. Дану роботу спрямовано на використання моделювання 

натоплювання для швидкого прототипування та виробництва, особливо 

зосереджуючись на впливі температури екструдера, густині наповнення 

та ваги на межу міцности друкованих зразків PLA. Під час досліджень 

було використано стандарти міцности на розтяг ASTM D-638; при цьому 

27 зразків було надруковано та протестовано за допомогою машини 

Anycubic i3 Mega. Результати показують, що температура екструдера та 

вага мінімально вплинули на межу міцности, тоді як густина наповнення 

мала значний вплив. Крім того, розроблено два прогностичні моделі 
(штучна нейронна мережа та Тагучі L9), які демонструють сприятливе 

узгодження з експериментальними даними з коефіцієнтами кореляції, 
які сягають 91,03% для методу штучної нейронної мережі та 80,75% для 

напруги, 90,13% для деформації та 50,83% для модуля Юнґа за моделем 

Тагучі. 

Ключові слова: моделювання натоплювання, механічні властивості, по-
лімолочна кислота, штучна нейронна мережа, метод Тагучі, 3D-друк. 

(Received 18 May, 2024; in final version, 9 July, 2024) 
  

1. INTRODUCTION 

In recent years, there has been a revolutionary shift in the methodolo-
gies employed for designing, prototyping, and manufacturing compo-
nents. Among these techniques, 3D printing alternatively referred to 

as additive manufacturing, stands out as a pivotal technology. Re-
searchers have directed their attention toward investigating this inno-
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vative approach due to its capability to craft intricate and sophisticat-
ed shapes with a remarkable level of precision [1–3]. This unique and 

groundbreaking technology transforms conventional manufacturing 

by constructing objects based on digital models, eliminating the neces-
sity for traditional cutting or casting machines and numerous ad-
vantages exist compared to traditional manufacturing methods [4, 5]. 
The evolution of 3D printing encompasses various additive manufac-
turing (AM) methods, notably fused deposition modelling (FDM), a 

widely embraced 3D printing technique. FDM operates by layering 

thermoplastic filaments through a computer-controlled extruder noz-
zle, offering unparalleled flexibility, cost-effectiveness, and user-
friendly functionality [6, 7]. Serving as a predominant force in shap-
ing components with intricate designs and integrating diverse materi-
als, it has brought about a revolutionary impact across industries, in-
cluding biomedical, aerospace, automotive engineering, civil engineer-
ing, and beyond [8–10]. 
 Dina et al. [11] conducted an investigation to evaluate the effect of 

different printing parameters on the tensile strength of polylactic acid 

(PLA) samples manufactured through FDM 3D printing. Using a 

Taguchi array design perpendicular to L25, they systematically exam-
ined parameters such as layer thickness, print speed, nozzle tempera-
ture, direction angle, and number of lines. The results highlighted the 

significant influence of printing process variables on tensile strength, 
revealing values ranging from 37 MPa to 53 MPa. The ideal variables 

that help achieve maximum tensile strength were also identified, in-
cluding a layer thickness of 0.22 mm and a printing speed of 45 mm/s, 
nozzle temperature 205°C, direction angle 70°, use 4 profiles. The ten-
sile test results were compared with predictions generated by both the 

artificial neural network (ANN) and the mathematical model to vali-
date the results. The maximum error recorded by the artificial neural 
network was 8.91%, while the maximum error shown by the mathe-
matical model was 19.96%. 
 Meiabadi et al. [12] conducted a study examining the influence of 

printing angles and UV curing on the mechanical characteristics of 

FDM fabricated PLA samples. Their investigation focused on assessing 

the tensile properties of specimens printed at varying angles along X-, 
Y-, and Z-axes. Noteworthy outcomes from the study indicated a sig-
nificant impact of printing angles on the tensile behaviour of PLA, 
particularly, with the X 60° specimen demonstrating the highest ten-
sile strength. Additionally, the research revealed that lower infill den-
sity and the UV curing process resulted in diminished mechanical 
properties and material embrittlement, impacting both elongation and 

Young’s modulus. 
 Another study about the comprehensive examination and design op-
timization of 3D printing structures by scrutinizing the ultimate ten-
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sile strength (UTS) of FDM PLA materials across varying printing an-
gles by Tianyun et al. [13]. Notably, the findings revealed a significant 

alteration in the UTS of 3D-printing materials corresponding to 

changes in the printing angle. The study observed a consistent de-
crease in tensile strength as the layer thickness increased from 0.1 mm 

to 0.3 mm. Particularly, noteworthy is the substantial UTS gap of 

52.29%, observed between 0° and 90° 3D-printing materials with a 

layer thickness of 0.1 mm. 
 Muammel et al. [14] investigated a study to explore the influence of 

diverse 3D-printing process parameters on the tensile strength and 

hardness properties of PLA, employing FDM technique. Their investi-
gation encompassed the examination of various build orientations, 
raster direction angles, and layer heights. The results obtained from 

the study revealed that the on-edge orientation samples exhibited the 

highest values for Young’s modulus and ultimate tensile strength, 
measuring at 1.896 ± 0.044 GPa and 49.12 ± 0.78 MPa, respectively. 
Furthermore, the specimen with a 0.1 mm layer thickness demonstrat-
ed the most favourable elongation at break, reaching 3.13%. 
 The examination of existing literature indicates a limited number of 

research studies addressing advancements in additive manufacturing 

specifically using fused deposition modelling (refer to Fig. 1). There-
fore, the present study strategically directs its attention towards in-
vestigating the influence of extruder density, printing temperature, 
and weight on the tensile strength of PLA samples. 
 The uniqueness of this study lies in its thorough examination of the 

application of FDM for rapid prototyping and manufacturing, with a 

particular emphasis on three key parameters: extruder temperature, 

filling density, and weight. While most previous studies typically fo-
cus on one or two of these parameters, this research deliberately ex-

 

Fig. 1. Cause and effect diagram of FDM process parameters. 
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plored the interaction among these variables and their impact on the 

tensile strength of printed PLA samples. Furthermore, the use of 

ASTM D-638 tensile standards ensures compliance with recognized 

testing protocols, thereby reinforcing the reliability of the results. The 

implementation of two predictive models, namely ANN and Taguchi, to 

interpret experimental data strengthens the robustness of the analysis. 

2. MATERIALS AND METHODS 

2.1. Samples Preparation 

In this work, we drew all the samples in CATIA CAD software. After 

that we converted the CAD file to STL format, and we configured the 

printing settings through Ultimaker Cura and using the Anycubic i3 

Mega printer according to ASTM D638 Type IV (this test method for 

analysing tensile property data for plastic materials) [15] (Fig. 2). Us-
ing PLA filament to determine the printing temperature and PLA fil-
ament density impact on tensile strength. 
 The Anycubic i3 Mega is a Cartesian-style FDM printer that utilizes 

a heated bed and a single extruder to deposit thermoplastic materials, 
allowing the creation of 3D objects [16]. Impression size is not more 

than 210×210×205 mm3, 1.75 mm diameter filament suitable for PLA, 
ABS, HIPS, PETG, and wood, with 0.4 mm buse that can reach 260°C. 
The heating plate reaches 110°C and prints the objects from an SD card 

or USB cable. 
 PLA filament is a frequently used 3D printing material. PLA is a 

thermoplastic produced using renewable resources like cornstarch, 
sugar cane, tapioca roots, and potato starch, and the technical proper-
ties of PLA filament in Table 1 [17]. 
 The infill pattern (zigzag) and bed temperature is of 60°C. The layer 

thickness and orientation angle were constants (Table 1). The samples 

were printed according to three temperatures (200°C, 210°C, 220°C) 

and three densities (20%,30% and 40%), which means 27 specimens 

 

Fig. 2. CAD model and specification of tensile specimen. 
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printing as follows (Fig. 3). 

2.2. Tensile Test 

The 27 printed samples (Fig. 4, b) were testing on the universal testing 

machine (Test 112) with a speed of 0.1 mm and force of 5 kN for tensile 

strength keeps at the completely tensile course (Fig. 4, c, d). The in-
herent software module meticulously logged the data pertaining to the 

utmost tensile strength, elongation, and force load. The results of ten-
sile strength of the tensile strength are shown in Table 2. 
 The calculation of stress (σ) during tensile testing is succinctly ar-
ticulated through the fundamental formula as Eq. (1): 

 σ = F/A, (1) 

TABLE 1. PLA technical properties and fixed printer settings. 

Filament  

specifications Values Settings Specification 

Diameter 1.75 mm Speed printing, mm/s 70 

Length 330⋅106
 µm Wall thickness, mm 1.2 

Weight 
1 kg for each 

spool Infill pattern zigzag 

Density 1.24 g/cm3 Build plate temperature, °C 60 

Tensile strength 62 kg/cm2 Fan speed, % 100 

Flexural modulus 28000 kg/cm2 Layer height, mm 0.2 

Colour PLA Green Initial layer speed, mm/s 10 

 

Fig. 3. Printing parameters for samples. 
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signifies the cross-sectional area of the specimen. It is an important 

mechanical property of materials that is used to describe their re-
sistance to deformation and failure under tensile forces. This formula 

applies to homogeneous materials with uniform cross-sections and is 

valid only up to the point of fracture. Beyond the point of fracture, the 

material undergoes plastic deformation, and the stress-strain relation-
ship becomes nonlinear. The tensile stress formula is widely used in var-
ious fields, such as engineering, physics, and materials science, to char-
acterize the mechanical behaviour of materials under tensile forces. It is 

also used to design and optimize structures and components that are 

subjected to tensile loads, such as bridges, buildings, and aircraft [18]. 

2.3. Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) serve as a mathematical instrument 

inspired by the structure and function of the human brain and biologi-
cal nervous system [19]. They are composed of interconnected nodes, or 

neurons, that process and transmit information through weighted con-
nections. ANNs are capable of learning from data, recognizing patterns, 

and making predictions or decisions based on the input–output relation-
ships. 

 

Fig. 4. Tensile test procedure. 
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TABLE 2. Empirical and anticipated tensile strength of pla samples using 
ann model. 

No 
Temperature 

(°C) 
Density 

(%) 
Weight 

(g) 

Strain (mm) Stress (MPa) 
Young’s modulus×10−3 

(GPa) 

Exp ANN Err Exp ANN Err Exp ANN Err 

1 200 20 4.881 0.011 0.012 −0.001 32.29 43.36 −11.07 2630.20 2737.87 −107.67 

2 200 20 4.871 0.010 0.012 −0.001 30.46 43.27 −12.81 2774.20 2753.13 021.07 

3 200 20 4.895 0.011 0.012 −0.001 32.05 43.49 −11.44 2755.60 2718.32 037.28 

4 200 30 5.081 0.009 0.015 −0.006 28.96 43.00 −14.04 2956.90 2575.81 381.09 

5 200 30 5.122 0.012 0.015 −0.003 37.07 43.46 −6.39 2696.20 2548.85 147.35 

6 200 30 5.105 0.012 0.015 −0.003 34.59 43.29 −8.70 2760.80 2555.83 204.97 

7 200 40 5.403 0.014 0.013 0.001 42.13 44.16 −2.04 2747.40 2753.22 −005.82 

8 200 40 5.409 0.013 0.013 0.000 39.70 44.21 −4.51 2877.60 2755.92 121.68 

9 200 40 5.405 0.016 0.013 0.003 44.74 44.18 0.56 2368.70 2754.12 −385.42 

10 210 20 4.887 0.011 0.010 0.001 32.58 32.54 0.04 2756.40 2775.05 −018.65 

11 210 20 4.887 0.010 0.010 0.000 29.69 32.54 −2.84 2803.90 2775.05 028.85 

12 210 20 4.868 0.011 0.009 0.002 32.78 32.43 0.34 2754.10 2804.92 −050.82 

13 210 30 5.145 0.011 0.014 −0.003 35.36 32.79 2.58 2901.80 2768.98 132.82 

14 210 30 5.149 0.012 0.014 −0.002 36.16 32.81 3.35 2727.90 2764.46 −036.56 

15 210 30 5.131 0.011 0.014 −0.003 34.70 32.69 2.01 2952.70 2785.26 167.44 

16 210 40 5.400 0.013 0.010 0.003 40.60 32.16 8.43 2711.80 2669.00 042.80 

17 210 40 5.405 0.013 0.010 0.003 41.87 32.24 9.63 2823.40 2662.23 161.17 

18 210 40 5.395 0.012 0.010 0.002 38.74 32.09 6.65 2949.70 2676.19 273.51 

19 220 20 4.859 0.010 0.009 0.001 30.82 29.61 1.21 2785.10 2786.62 −001.52 

20 220 20 4.856 0.011 0.009 0.002 32.25 29.62 2.64 2750.20 2787.19 −036.99 

21 220 20 4.851 0.011 0.009 0.001 31.50 29.63 1.87 2764.50 2788.06 −023.56 

22 220 30 5.153 0.012 0.010 0.003 37.76 29.19 8.57 2818.50 2745.07 073.43 

23 220 30 5.122 0.012 0.010 0.003 37.01 29.24 7.77 2764.20 2761.36 002.84 

24 220 30 5.398 0.012 0.009 0.003 36.19 29.01 7.18 2759.60 2746.59 013.01 

25 220 40 5.386 0.011 0.009 0.001 34.91 29.10 5.81 3013.20 2964.64 048.56 

26 220 40 5.401 0.012 0.009 0.003 37.71 29.09 8.62 2864.60 2956.48 −091.88 

27 220 40 5.410 0.012 0.009 0.003 38.51 29.09 9.42 2942.50 2950.75 −008.25 

 
 ANNs have been widely used in various fields, such as computer vi-
sion, natural language processing, speech recognition, and robotics, to 

solve complex problems that are difficult or impossible to solve using 

traditional algorithms [20, 21]. The function ANN method is employed 

for output prediction. This neural network comprises three layers, name-
ly, an input layer, an output (or target) layer, and an intervening hidden 

layer. The number of input and output parameters related by the quanti-
ty of neurons in the input and output layers. 
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 In this study, ANN model underwent training using MATLAB, in-
corporating input parameters such as temperature, density, and sam-
ple weight, along with output parameters including stress modulus, 
strain, and Young’s modulus. The neural synthesis tool facilitated the 

importation of a 3×27 input matrix and corresponding 3×27 output da-
ta, as illustrated in Fig. 5. 

2.4. Taguchi Method 

The Taguchi method, created by Japanese engineer Genichi Taguchi, is 

recognized as a robust engineering tool for enhancing the quality of 

engineering design by integrating statistical methods and concepts 

from design of experiments. It has demonstrated successful applica-
tion across various domains such as manufacturing and engineering, 
product design, experimental design, reliability engineering, and 

chemical process design, specifically in maximizing yields of specific 

compounds. The approach advocates notable advancements in three 

key design phases: system design, parameters design, and tolerance 

design [22, 23]. 
 In this work, the experiments were arranged using Taguchi’s or-
thogonal array of fractional factorial design (L9) with the assistance of 

Minitab software. 
 The Taguchi method entails performing experiments to optimize the 

printing process by adjusting input factors to attain the targeted S/N 

ratio. By emphasizing the S/N ratio, the Taguchi method seeks to en-
hance quality, robustness, and performance while mitigating the im-
pact of variability and external factors. Given that this investigation 

 

Fig. 5. Schematic of the ANN. 
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focuses on maximizing stress, strain, and Young’s modulus values, the 

data points are computed using a ‘bigger is better’ approach to attain 

superior performance and reduced sensitivity to variation. This cate-
gorization ensures that the S/N ratio is characterized as Eq. (2): 

 
2

10
1

1
10 log

n
i

i

yS

N n =

  = −    σ  
∑ , (2) 

where yi represents the mean of measurements for each trial, and σ is 

the standard deviation [24, 25]. 

3. RESULTS AND DISCUSSION 

3.1. Tensile Strength 

Following the execution of a tensile test on the 27 specimens (Fig. 6), 

the experimental findings depicted in Figs. 7 and 8 were ascertained. 
Notably, the density exhibited a noteworthy influence on the strain, 
Stress, and Young’s modulus (output parameters), when juxtaposed 

with the temperature. This observation underscores that an augmenta-
tion in the density value corresponds to an escalation in the three out-
put parameters. For instance, at a density of 20% and a temperature of 

200°C, the strain, stress, and Young’s modulus registered values of 

0.010%, 30.46 MPa, and 2774 MPa, respectively. These values exhib-
ited an increase to 0.013%, 39.70 MPa, and 282877 MPa at the same 

temperature but with a density of 40%. 

 

Fig. 6. Samples after testing on tensile test machine. 
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 Conversely, a rise in temperature was correlated with a reduction in 

strain and stress. Notably, at a temperature of 200°C and a density of 

20%, the strain, tensile strength, and Young’s modulus were recorded 

at 0.011%, 32.29 MPa, and 2630.20 MPa, respectively. However, 
these values experienced a decrease to 0.010% and 30.82 MPa at a 

temperature of 220°C and a density of 20%, while concurrently, the 

value of Young’s modulus increased to 2785.10 MPa under identical 
printing conditions. 

3.2. ANN Results 

Figure 9, a illustrates the mean squared error (MSE) values across dif-
ferent epochs (Eq. (3)). A decreased MSE corresponds to an increased 

accuracy in predictions made by (ANN) model [26, 27]. Notably, dur-
ing observations, the MSE exhibited significant values, approximately 

3.2705 for training, 4.527⋅10−1
 for validation, and 8.1064 for testing . 

The training and validation processes concluded after 7 iterations, as 

depicted in Fig. 9, b. The optimization was achieved with a validation 

score of 0.00070939, observed at the eleventh iteration through gradi-
ent analysis. This point was deemed optimal by the artificial neural 
network: 

 2

1

1
( )

n

i i
i

MSE y y
n =

= −∑ 

, (3) 

where n is the number of observations in the dataset, yi is the actual 

 

Fig. 7. Stress (MPa)–strain (%) curve for experimental condition (27 specimens). 
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target value for observation i, and iy


 is the value predicted by the 

model for observation i [28]. 
 In contrast, Fig. 10 displays the R coefficient values concerning the 

target. Achieving minimal error necessitates that the total R value in 

training, testing, and validation schemes be close to 1 [29]. Remarka-
bly, the ANN model demonstrated a notably high correlation coeffi-
cient, reaching 0.960623, 0.94826, and 0.9103 for training, valida-
tion, and testing, respectively (Eq. (4)). Table 2 illustrates a compari-
son between the actual experimental data for the average values of 

stress, strain, and Young’s modulus and the corresponding anticipated 

values generated by ANN. Evidently, there is a remarkable proximity 

between the experimental and predicted data, characterized by an ex-
ceptionally small error deviation. The average error, quantified at 

3⋅10−5, further emphasizes the close agreement between the observed 

and forecasted values: 

  
a b 

 
c 

Fig. 8. Stresses (MPa) and strains (%) data for experimental condition (27 speci-
mens). 
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 2 2 2

1 1

1 ( ) / ( ) ,
n n

i i i i
i i

R y y y y
= =

= − − −∑ ∑

 (4) 

where n is the number of observations, yi is the actual target value for 

observation i, iy


 is the predicted value by the model for observation i, 

and iy  is the mean of the actual values. 

3.3. Taguchi Results 

Figures 11, a–c depict the outcomes and recommendations derived 

from the application of the Taguchi method concerning strain, stress, 
and Young’s modulus values as a function of temperature, density, 
and weight, respectively. The influence of density on various outcomes 

is noteworthy, with higher density values correlating to increased 

strain, stress, and Young’s modulus. For instance, at 20%, the corre-
sponding values were 0.011% for strain, 31 MPa for stress, and 

2750 MPa for Young’s modulus, compared to 0.013%, 40 MPa, and 

2800 MPa at 40%. Additionally, temperature exhibited a notable im-
pact on these parameters, as elevated temperatures decreased strain 

and stress, while Young’s modulus saw an increase in values. At 

200°C, the values were 0.012%, 36 MPa, and 2730 MPa; at 220°C, they 

were 0.011%, 35 MPa, and 2850 MPa. Conversely, the weight factor 

displayed irregular behaviour in the three outputs. 
 Figures 11, d–f depict the residual plots for strain, stress, and 

Young’s modulus. By examining the normal probability plot of residuals, 

it becomes evident that the points closely align with a straight line, af-
firming the normal distribution of residuals for all output parameters. 
 Analysing the histogram of residuals provides insight into the da-

  
a b 

Fig. 9. Cumulative mean squared errors across epochs in network data. 
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ta’s general characteristics, encompassing typical values, spread, and 

shape. Notably, the presence of long tails in the plot suggests signifi-
cant skewness in the data. 
 Considering the waste versus order plot, a tool for identifying non-
random errors, rapid changes in successive residues’ signs reveal a 

negative correlation in strain and stress. In contrast, Young’s modulus 

exhibits a positive correlation, as the majority of residues share the 

same sign. 
 The residuals versus fits plot is expected to display a random pattern of 

residuals on both sides of zero. However, the observed series of increasing 

  
a b 

  
c d 

Fig. 10. Neural network regression graph. 
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and decreasing points indicates a prevalence of positive residuals over 

negative ones, pointing towards a non-random nature of the errors. 
 The optimal parameters were determined by selecting the highest 

signal-to-noise (S/N) ratio for each factor, chosen to maximize the 

output parameters, as illustrated in Table 3. The values presented in 

Table 3 represent average measurements derived from three samples 

(L9) for each type of PLA sample. The optimal parameters include a 

maximum strain (ε) of 0.0140 MPa and stress (σ) of 42.1891 MPa 

achieved in run 3, with corresponding S/N ratios of −37.0284 and 

32.5040, respectively. In contrast, a minimum strain of 0.0106 MPa 

and stress of 31.5246 MPa were attained in run 9, accompanied by S/N 

ratios of −39.45808 and 29.97301, respectively. The maximum 

Young’s modulus, reaching 2940.1 MPa, was observed in run 3 with an 

associated S/N ratio of 69.3672, while the minimum Young’s modulus 

of 2664.5666 MPa was recorded in the initial run, correlating with an 

S/N ratio of 68.5125. The findings demonstrated a robust alignment 

between the model and experimental data, showcasing correlation co-
efficients of 80.75% for stress and 90.13% for strain. However, a 

comparatively lower value of 50.83% was observed for Young’s modu-
lus. Table 4 presents the regression equation for strain, stress, and 

Young’s modulus factor as functions of the three preceding factors. 

  

Fig. 11. Plot depicting the primary effects of the input variables and residual plots. 
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 The obtained results align with Kafshgar et al. findings [30], as de-
termined through ANOVA and the Taguchi method. Consistencies 

were observed in the behaviour of UTS, modulus of elasticity, and yield 

strength with variations in process parameters. The peak values were 

identified at an infill density of 60%, extrusion temperature of 220°C, 

raster angle of 90°, and layer thickness of 0.1 mm. Similarly, elonga-
tion at break and toughness exhibited analogous patterns, reaching 

their highest levels at an infill density of 60%, extrusion temperature 

of 200°C, raster angle of 45°, and layer thickness of 0.2 mm. 
 Nugroho et al. [31] determined that tensile strength is primarily in-
fluenced by infill density, followed by nozzle temperature, infill pat-
tern, and extrusion width. The optimized parameters yielding a tensile 

strength of 30.52 MPa at a 95% confidence interval were identified as 

75% infill density (C3), 215°C nozzle temperature (A3), honeycomb 

infill (D1), and 0.3 mm extrusion width (B1). Both printing tempera-
ture and density emerged as pivotal factors. 
 Abdulridha et al. [32] reported a tensile strength of 55 MPa in their 

investigation of PLA parts manufactured by FDM printing. The high-

TABLE 3. Tensile test results incorporating the S/N ratio and tensile predict-
ed values of strain, stress and Young’s modulus. 

No. T, °C 
D, 
% 

W, g 
ε (exp.), 

% 

σ (exp.), 
MPa 

E (exp.), 
MPa 

S/N (ε) S/N (σ) 
S/N 

(E) 

ε (pr.), 
% 

σ (pr.), 
MPa 

E (pr.), 
MPa 

1 200 20 4.85 0.0108 31.597 2720.0 −39.2 29.9 68.6 0.0112 32.5110 2672.7 

2 210 20 5.41 0.0111 33.540 2804.6 −39.0 30.5 68.9 0.0112 33.9823 2797.8 

3 220 20 5.14 0.0140 42.189 2664.5 −37.0 32.5 68.5 0.0135 40.8340 2718.6 

4 200 30 5.41 0.0106 31.683 2771.4 −39.4 30.0 68.8 0.0101 30.3284 2825.5 

5 210 30 5.14 0.0115 35.409 2860.8 −38.7 30.9 69.1 0.0119 36.3227 2813.5 

6 220 30 4.85 0.0130 40.401 2828.3 −37.6 32.1 69.0 0.0131 40.8436 2821.4 

7 200 40 5.14 0.0106 31.524 2766.6 −39.4 29.9 68.8 0.0107 31.9664 2759.7 

8 210 40 4.85 0.0121 36.984 2780.7 −38.2 31.3 68.8 0.0116 35.6299 2834.8 

9 220 40 5.41 0.0116 37.045 2940.1 −38.6 31.3 69.3 0.0120 37.9585 2892.8 

TABLE 4. The regression equation for strain, stress, and Young’s modulus 

factor as functions of the three input factors. 

Taguchi response Regression equation 

Strain −0.000027 − 0.00256D + 0.00011T − 0.0015551W 

Stress −30.2 − 0.0295D + 0.4138T − 3.95W 

Young’s modulus 1470 + 4.97D + 2.92T + 109W 
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est value was achieved with 80% density, a grid-filling pattern, layer 

thickness of 0.25 mm, shell thickness of 0.8 mm, six upper and lower 

layers, and a filling overlap of 10%. 
 Teharia et al. [33] focused on optimizing PLA-based tensile speci-
mens using FFF technology. Their results indicated that the ideal pro-
cess parameters for high tensile strength are layer thickness of 

200 µm, nozzle temperature of 210°C, speed/feed rate of 50 mm/min, 
grid filling pattern, and point direction of 0°. The ANN analysis fur-
ther contributed to identifying optimal parameters, with R-values of 

95%, indicating minimal error. 

4. CONCLUSIONS 

This study investigates the tensile strength of a PLA specimen pro-
duced through an FDM 3D printer, employing both experimental and 

statistical analyses with a focus on three process parameters. The ex-
periments were designed using Taguchi and ANN methodologies. The 

ensuing conclusions are as follows. 
 Density significantly influences strain, stress, and Young’s modu-
lus. Higher density values correlate with increased values for these 

three output parameters. At 20% density and 200°C, the values were 

0.010% strain, 30.46 MPa stress, and 2774 MPa Young’s modulus. At 

40% density and the same temperature, values increased to 0.013% 

strain, 39.70 MPa stress, and 282877 MPa Young’s modulus. 
 Rise in temperature led to a reduction in strain and stress. At 200°C 

and 20% density, values were 0.011% strain, 32.29 MPa stress, and 

2630.20 MPa Young’s modulus. At 220°C and the same density, strain 

decreased to 0.010%, stress to 30.82 MPa, while Young’s modulus in-
creased to 2785.10 MPa. 
 Optimization was achieved with a validation score of 0.00070939 at 

the eleventh iteration through gradient analysis, identified as the op-
timal point by the ANN. 
 The ANN model demonstrated high correlation coefficients of 

0.960623, 0.94826, and 0.9103 for training, validation, and testing, 
respectively. Remarkably close agreement between experimental and 

predicted data is evident, characterized by an exceptionally small av-
erage error deviation of 3⋅10−5. 
 Optimal parameters were determined by selecting the highest sig-
nal-to-noise (S/N) ratio for each factor to maximize the output param-
eters. The highest strain (0.0140 MPa) and stress (42.1891 MPa) were 

achieved in run 3 with S/N ratios of −37.0284 and 32.5040, respective-
ly. The lowest strain (0.0106 MPa) and stress (31.5246 MPa) were at-
tained in run 9 with S/N ratios of −39.45808 and 29.97301, respec-
tively. Maximum Young’s modulus (2940.1 MPa) was observed in run 

3 with an S/N ratio of 69.3672, while the minimum (2664.5666 MPa) 
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was recorded in the initial run with an S/N ratio of 68.5125. 

 This contribution was created under the support of the PRFU Pro-
ject A11N01UN280120230002 organized by the Algerian Ministry of 

Higher Education and Scientific Research. 
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