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Abstract — The electrocardiogram (ECG) is a fundamental tool for diagnosing

gzm?szg; hear@ disease. How_ever, no_is_e present d_uring _signa_l acquisition can a_lter sigpal

wavelet-based qugllty and co'mpllcate clinical analysis. This article proposes an mno_vatlve

method, ECG noise suppression method based on the use of Wavelet§. After dpcomposmg the

signal. signal into different frequency components, an evaluation technique was used to
identify and retain only the significant elements of the signal. This approach
effectively reduces interference while preserving essential information. The
results show a significant improvement in the clarity of ECG signals, enabling
more reliable analysis and diagnosis.

I. INTRODUCTION various performance metrics to assess its

effectiveness.

The remainder of this paper is organized as
follows: Section 2 introduces the DWT method and
outlines the methodology. Section 3 presents the
results, followed by a discussion in Section 4.
Finally, Section 5 concludes the study by
summarizing the key findings.

An ECG captures the heart's electrical activity to
assess cardiac health. However, it is often affected
by wvarious noises and artifacts (power line
interference, baseline  drift, motion-induced
disturbances, muscle noise) caused by factors such
as equipment, electrode contact, or breathing [1].
Removing these noises is essential for accurate
diagnosis. Nonetheless, the denoising process is
complex due to the ECG signals' non-stationary
nature and the potential loss of critical information

1. MATERIALS AND METHOD
A. Introduction of DWT

during filtering.

To address this, several techniques have been
proposed in the literature, including adaptive
filtering [2, 3], independent component analysis [4,
5], filter banks [6], discrete wavelet transform
(DWT) [7-9], and empirical mode decomposition
(EMD) [10-13]. Among these, DWT stands out for
its multi-resolution decomposition approach,
enabling hierarchical and structured signal analysis.
This paper presents an innovative ECG noise
suppression technique based on discrete wavelet
transform.The proposed method is evaluated using

The Discrete Wavelet Transform (DWT) [14][15]
is a powerful method widely used in many fields to
analyse signals. It allows a signal to be decomposed
into different frequency components at several
resolutions, offering simultaneous temporal and
frequency representation. Unlike the Fourier
Transform, which is limited to the analysis of
stationary signals, DWT is particularly effective for
non-stationary signals, where the characteristics
change over time.

DWT relies on high-pass and low-pass filters to
separate signals into two parts:




1. The approximations, representing the low-
frequency components, containing the general
trends of the signal.

2. The details, corresponding to the high-

frequency  components,  highlighting  rapid
variations or fine details.
The number of decompositions, or levels,

depends on the signal and the problem being
addressed.

B. The proposed DWT denoising methods

The proposed DWT denoising method is
presented in this study for its effectiveness in
processing noisy ECG signals, with the Hurst
exponent incorporated as a key criterion. The Hurst
exponent, a measure of the long-term memory and
self-similarity of a time series, quantifies the degree
of correlation in a signal over time [16]. Its values
vary from 0 to 1, where H<0.5 denotes an anti-
persistent process, H=0.5 corresponds to a random
(uncorrelated) process, and H>0.5 indicates a
persistent process with long-range. In the DWT
method, the signal is decomposed into
approximations and details across four levels of
decomposition, using an adapted mother wavelet.

Selecting an appropriate mother wavelet for ECG
data is crucial, as it significantly influences the quality
of the results. Empirical research and comparative
analyses are necessary to identify the most suitable
wavelet for a given application. In our study, after
conducting thorough tests, we chose the Daubechies
order 2 (db2) mother wavelet due to its effectiveness
in capturing the characteristics of ECG signals. The
Hurst exponent is employed to analyse the wavelet
coefficients, identifying those that exhibit non-
significant or predefined threshold values, which are

then removed. The signal is subsequently
reconstructed, retaining only the significant
components.

H < Treshold

!
)

Fig. 1 DWT flowchart

I1l. RESULTS

The effectiveness of the proposed methods was
evaluated using experimental tests on real and
synthetic ECG signals. The real signals were
collected from the MIT-BIH database [17] (Figl),
while the synthetic signals were generated using
mathematical models [18] (Fig2). These two types
of data offer a complementary perspective for
assessing the robustness and accuracy of the
techniques studied.
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The results obtained for the DWT denoising
methods is shown in the figures below. These
graphs allow visual observation of this approach in
terms of noise suppression and preservation of the
main characteristics of the signal.
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Fig. 4 DWT decomposition of noisy synthetic ECG signal.
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Fig. 5 DWT-based denoising of noisy synthetic ECG signal
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Fig. 7 DWT-based denoising of noisy real ECG signal

To objectively assess the performance of this
methods, several quantitative evaluation metrics
were used, including signal-to-noise ratio (SNR),
mean absolute error (MAE) and mean square error
(MSE).

The SNR is utilized to measure the overall quality
of a signal in the presence of noise, while MAE and
MSE quantify the discrepancies between predicted
and actual values, thus providing a comprehensive
assessment of our method's accuracy. The following
table summarises the performance:

Table 1. DWT performance across different noise intensities.

Noise
MSE MAE SNR,utput
intensity
5dB 0.016769 | 0.103217 7dB
10dB 0.004391 | 0.052856 12dB
15dB 0.001467 | 0.0330502 16Db

IvV.DISCUSSION

From these results, it is clear that the DWT method
provides effective noise suppression, achieving
satisfactory performance in terms of SNR, MSE,
and MAE. These observations demonstrate the
capability of DWT to process non-stationary signals
such as ECG, thanks to its structured decomposition
and the ability to isolate significant components.
While the method may face certain limitations due
to the rigidity of the filters used in wavelet
decomposition, the results confirm its potential for
high-performance denoising of non-stationary
biological signals.

V. CONCLUSION

This study explored the application of the
Discrete Wavelet Transform (DWT) for ECG
signal denoising, incorporating the Hurst exponent
as key criteria for identifying and eliminating noisy
components. Experimental results demonstrated
that DWT effectively suppressed noise while
preserving the main characteristics of the ECG
signal.

These findings highlight the importance of using a
structured decomposition method like DWT, which
is well-suited for processing complex and non-
stationary signals such as ECG, ensuring a balance
between noise reduction and signal integrity.
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