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ABSTRACT
This paper comprehensively investigates the existence, uniqueness, and stability of traveling wave solutions for an initial value
problem of generalized nonlinear Korteweg–de Vries equations of fractional order. We apply the Banach contraction principle
and Schauder’s fixed-point theorem to establish the existence and uniqueness of solutions. Furthermore, we examine the stabil-
ity of the solutions using Ulam–Hyers theorems. Two well-detailed examples and one explicit solution are provided to illustrate
the practical applicability and validity of our theoretical results. The solution’s parameter conditions detail the amplitude, energy,
wavelength, frequency, and propagation characteristics of waves. These parameters capture the intricate balance between nonlin-
ear and dispersive effects that shape the wave phenomena modeled by the Korteweg–de Vries equation. The solution indicates
that as the amplitude parameter increases, wave height also rises due to a higher wave number (shorter wavelength) and nonlin-
ear amplification, resulting in more waves within a given interval. The amplitude further increases with the wave number due to
higher energy levels associated with shorter wavelengths.
MSC2020 Classification: 35R11, 35A01, 34A08, 35C06, 34K37

1 | Introduction

Nonlinear fractional partial differential equations (PDEs) have
been used to model several evolutionary phenomena in differ-
ent scientific areas [1–4]. The Korteweg–de Vries (KdV) equation
has been a cornerstone in studying nonlinear wave phenomena.
Its applications extend beyond shallow water waves [5], includ-
ing ion-acoustic waves in plasmas [6], internal waves in stratified
fluids [7–9], and even lattice waves in crystal structures [10]. It
was first introduced in 1895 by Korteweg and de Vries to model
the propagation of long waves in shallow channels [11].

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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The generalized nonlinear fractional Korteweg–de Vries
equation (GNFKdVE) introduces fractional derivatives to better
capture the memory and hereditary properties of various materi-
als and media. For this consideration, we propose the following
initial value problem (IVP):

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜙

𝜕𝑡
+ 𝜕

𝜇
𝜙

𝜕𝑝𝜇
= 

(
𝑝, 𝑡, 𝜙,

𝜕𝜙

𝜕𝑝

)
, (𝑝, 𝑡) ∈ ,

𝜙(𝛿𝑡, 𝑡) = 𝑐0 exp(𝜇𝑡), 𝑐0 ∈ ℂ,
𝜕𝜙

𝜕𝑝
(𝛿𝑡, 𝑡) = 𝜕

2
𝜙

𝜕𝑝2 (𝛿𝑡, 𝑡) = 0, 𝛿 ∈ ℝ+,

(1)
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where 𝜇 ∈ (2, 3] and 𝜕
𝜇
𝜙

𝜕𝑝𝜇
represents the Caputo fractional deriva-

tive of order 𝜇 with respect to 𝑝, such that

𝜕
𝜇
𝜙

𝜕𝑝𝜇
=
⎧
⎪
⎨
⎪
⎩

𝑑
3
𝜙

𝑑𝑝3 , 𝜇 = 3,


3−𝜇
𝛿𝑡

𝜕
3
𝜙

𝜕𝑝3 =
1

Γ(3−𝜇)
∫

𝑝

𝛿𝑡
(𝑝 − 𝑞)2−𝜇 𝜕

3

𝜕𝑞3 𝜙(𝑞, 𝑡)𝑑𝑞, 2 < 𝜇 < 3.

In this context, the symbol  𝜇

∗ denotes the Riemann–Liouville
fractional integral of order 𝜇. Furthermore, 𝜙 = 𝜙(𝑝, 𝑡) represents
the wave amplitude, width, or height as a function of position 𝑝

and time 𝑡. Additionally, ∶  × ℂ × ℂ → ℂ is a nonlinear func-
tion, with

 = {(𝑝, 𝑡) ∈ ℝ × [0, 𝑇 ]; 𝛿𝑡 ≤ 𝑝 ≤ 𝜆}, for 𝑇 > 0 and 𝜆 ≥ 𝛿𝑇 .

Our study engages in both analytical and numerical discussions
of GNFKdVEs to explore the behavior of their exact solutions,
offering essential insights into simulating the complex dynam-
ics of these equations. Recent advancements in computational
techniques have further enhanced our ability to solve GNFKdVEs
efficiently, providing a deeper understanding of their intricate
wave phenomena.

Note that, for  ≡ 𝜂𝜙
𝜕𝜙

𝜕𝑝
, 𝜂 ∈ ℝ, and 𝜇 = 3, the fractional-order

PDE in (1) becomes the standard one-dimensional nonlinear
KdV equation [12]. As mentioned above, the equation has several
applications, and its versatility and integrability make it a power-
ful tool in both theoretical and applied physics [13].

The existence, uniqueness, and stability of solutions for
GNFKdVEs (1) are investigated in this paper, with a specific
emphasis on when these equations are presented in the form of
traveling wave:

𝜙(𝑝, 𝑡) = exp(𝜇𝑡)𝑦(𝑝 − 𝛿𝑡), for 𝜇 ∈ (2, 3] and 𝛿 ∈ ℝ+ (2)

The base profile, denoted as 𝑦, remains undisclosed a priori and
requires identification upon reaching our main results. The
traveling wave method enables us to transform the
fractional-order PDE (1) into a fractional differential equation
(FDE). This concept is thoroughly demonstrated with examples
in our paper. This approach (2) shows promise and has the poten-
tial to produce new findings for other applications involving
fractional-order PDEs.

2 | Necessary Definitions and Preliminaries

We elucidate here the essential definitions derived from frac-
tional calculus theory. Let𝔼 = [0, 𝜆] be a finite interval. The space
under consideration is𝐶(𝔼,ℂ) the Banach space of all continuous
functions from 𝔼 to ℂ, characterized by the norm

‖𝑦‖∞ = sup
𝑧∈𝔼

|𝑦(𝑧)|.

Definition 1. ([2]). The left-sided (arbitrary) fractional
integral of order 𝜇 > 0 of a continuous function 𝑦 ∶ 𝔼→ ℂ is
given by


𝜇

0+𝑦(𝑧) =
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1

𝑦(𝜏)𝑑𝜏, 𝑧 ∈ 𝔼.

Γ(𝜇) = ∫ ∞0 𝜏
𝜇−1 exp(−𝜏)𝑑𝜏 is the Euler gamma function.

Definition 2. (Caputo fractional derivative [2]). The left-
sided Caputo fractional derivative of order 𝜇 > 0 of a function 𝑦 ∶
𝔼 → ℂ is given by

𝐶


𝜇

0+𝑦(𝑧) =
⎧
⎪
⎨
⎪
⎩

𝑑
𝑚
𝑦(𝑧)

𝑑𝑧𝑚
, for 𝜇 = 𝑚 ∈ ℕ0,


𝑚−𝜇

0+
𝑑
𝑚
𝑦(𝑧)

𝑑𝑧𝑚
= ∫ 𝑧

0
(𝑧−𝜏)𝑚−𝜇−1

Γ(𝑚−𝜇)
𝑑
𝑚
𝑦(𝜏)

𝑑𝜏𝑚
𝑑𝜏, for 𝑚 − 1 < 𝜇 < 𝑚 ∈ ℕ.

Lemma 3. ([2]). Let 𝜇 > 0 and assume that 𝐶


𝜇

0+𝑦 ∈
𝐶(𝔼,ℂ), then


𝜇

0+
𝐶


𝜇

0+𝑦(𝑧) = 𝑦(𝑧) −
𝑚−1∑

𝑘=0

𝑦
(𝑘)(0)
𝑘!

𝑧
𝑘
, 𝑚 − 1 < 𝜇 ≤ 𝑚 ∈ ℕ∗.

Definition 4. Let  ∶  × ℂ × ℂ → ℂ be a nonlinear contin-
uous function. The equation

𝜕𝜙

𝜕𝑡
+ 𝜕

𝜇
𝜙

𝜕𝑝𝜇
= 

(

𝑝, 𝑡, 𝜙,
𝜕𝜙

𝜕𝑝

)

, (𝑝, 𝑡) ∈  (3)

is Ulam–Hyers stable if there exists a real number 𝛾 > 0 such that
for each 𝜀 > 0 and each solution 𝜙, which is 𝐶3(,ℂ) in position
𝑝 and 𝐶

1(,ℂ) in time 𝑡, of the inequality

|
|
|
|
|
|

𝜕𝜙

𝜕𝑡
+ 𝜕

𝜇
𝜙

𝜕𝑝𝜇
− 

(

𝑝, 𝑡, 𝜙,
𝜕𝜙

𝜕𝑝

)|
|
|
|
|
|

≤ 𝜀,∀(𝑝, 𝑡) ∈  (4)

there exists a solution 𝜙 of (3), with

|
|
|
𝜙(𝑝, 𝑡) − 𝜙(𝑝, 𝑡)||

|
≤ 𝛾𝜀,∀(𝑝, 𝑡) ∈ .

Definition 5. The equation (3) is generalized Ulam–Hyers
stable if there exists 𝑄 ∈ 𝐶

(
ℝ+,ℝ+

)
, with 𝑄(0) = 0, such that for

each solution 𝜙, which is 𝐶3(,ℂ) in position 𝑝 and 𝐶
1(,ℂ) in

time 𝑡, of the inequality (4), there exists a solution 𝜙 of (3) with

|
|
|
𝜙(𝑝, 𝑡) − 𝜙(𝑝, 𝑡)||

|
≤ 𝑄(𝜀),∀(𝑝, 𝑡) ∈ .

3 | Main Work and Findings

We introduce the following assumptions:

(ℵ1)The function is continuous and exhibits invariance of scale
(2). It becomes



(

𝑝, 𝑡, 𝜙,
𝜕𝜙

𝜕𝑝

)

= exp(𝜇𝑡)𝑓
(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
, (5)

with 𝑧 = 𝑝 − 𝛿𝑡 and 𝑓 ∶ 𝔼 × ℂ × ℂ → ℂ is a continuous function.

(ℵ2) There are two real constants 𝛼, 𝛽 > 0 such that the function
𝑓 defined in (5) satisfies

|
|
|
𝑓 (𝑧, 𝑦, 𝑥) − 𝑓

(
𝑧, 𝑦, 𝑥

)|
|
|
≤ 𝛼||𝑦 − 𝑦|| + 𝛽||𝑥 − 𝑥||,∀𝑦, 𝑥, 𝑦, 𝑥 ∈ ℂ.
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(ℵ3) Three nonnegative functions 𝑢, 𝑣,𝑤 ∈ 𝐶
(
𝔼,ℝ+

)
exist

such that

|𝑓 (𝑧, 𝑦, 𝑥)| ≤ 𝑢(𝑧) + 𝑣(𝑧)|𝑦| +𝑤(𝑧)|𝑥|,∀𝑧 ∈ 𝔼,

for any 𝑦, 𝑥 ∈ ℂ. Furthermore, we denote

𝑢
∗ = sup

𝑧∈𝔼
𝑢(𝑧), 𝑣∗ = sup

𝑧∈𝔼
𝑣(𝑧), and 𝑤

∗ = sup
𝑧∈𝔼

𝑤(𝑧).

3.1 | Traveling Wave Solutions for GNFKdVEs

First, we derive the problem that the function 𝑦 in (2) satisfies,
which is used to define traveling wave forms.

Theorem 6. Let 𝑐0 ∈ ℂ, 𝛿 ∈ ℝ+ and 2 < 𝜇 ≤ 3. If (ℵ1) holds,
then the traveling wave form (2) reduces IVP of GNFKdVEs (1) to
the following FDE:

𝐶


𝜇

0+𝑦(𝑧) = 𝜓(𝑧), 𝑧 ∈ 𝔼 (6)

where
𝜓(𝑧) = 𝑓

(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
+ 𝛿𝑦

′(𝑧) − 𝜇𝑦(𝑧),

with the conditions

𝑦(0) = 𝑐0 and 𝑦
′(0) = 𝑦

′′(0) = 0 (7)

Proof. First, for 𝑧 = 𝑝 − 𝛿𝑡, we obtain 𝑧 ∈ 𝔼. Substituting
expression (2) in IVP of GNFKdVEs (1) results the following
equalities (check also [14–24]):

𝜕𝜙

𝜕𝑡
= exp(𝜇𝑡)

(
𝜇𝑦(𝑧) − 𝛿𝑦

′(𝑧)
)

(8)

On the flip side, for 𝜏 = 𝑞 − 𝛿𝑡, we get

𝜕
𝜇
𝜙

𝜕𝑝𝜇
= 1
Γ(3 − 𝜇) ∫

𝑝

𝛿𝑡

(𝑝 − 𝑞)2−𝜇 𝜕
3
𝜙(𝑞, 𝑡)
𝜕𝑞3 𝑑𝑞

=
exp(𝜇𝑡)
Γ(3 − 𝜇) ∫

𝑝

𝛿𝑡

(𝑝 − 𝑞)2−𝜇
𝑑

3
𝑦(𝑞 − 𝛿𝑡)
𝑑𝑞3 𝑑𝑞

=
exp(𝜇𝑡)
Γ(3 − 𝜇) ∫

𝑧

0
(𝑧 − 𝜏)2−𝜇 𝑑

3
𝑦(𝜏)
𝑑𝜏3 𝑑𝜏

= exp(𝜇𝑡)𝐶𝜇

0+𝑦(𝑧).

(9)

If we replace (5), (8), and (9) in (1), we obtain

𝐶


𝜇

0+𝑦(𝑧) = 𝜓(𝑧).

From (1), we find

𝜙(𝛿𝑡, 𝑡) = 𝑦(0) exp(𝜇𝑡), 𝜕𝜙

𝜕𝑝
(𝛿𝑡, 𝑡) = 𝑦

′(0) exp(𝜇𝑡),

and 𝜕
2
𝜙

𝜕𝑝2 (𝛿𝑡, 𝑡) = 𝑦
′′(0) exp(𝜇𝑡).

Consequently

𝑦(0) = 𝑐0 and 𝑦
′(0) = 𝑦

′′(0) = 0.

That establishes the theorem. ◽

Lemma 7. Problem (6)–(7) is equivalent to the integral
equation

𝑦(𝑧) = 𝑐0 +
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1

𝜓(𝜏)𝑑𝜏,∀𝑧 ∈ 𝔼,

where 𝜓 ∈ 𝐶(𝔼,ℂ) satisfies the functional equation

𝜓(𝑧) = 𝑔

(
𝑧, 𝑐0 + 

𝜇

0+𝜓(𝑧), 𝜓(𝑧)
)
− 𝜇

(
𝑐0 + 

𝜇

0+𝜓(𝑧)
)
,

and 𝑔 ∶ 𝔼 × ℂ × ℂ → ℂ is a continuous function satisfying

𝑔(𝑧, 𝑦(𝑧), 𝜓(𝑧)) = 𝛿
𝜇−1

0+ 𝜓(𝑧) + 𝑓

(
𝑧, 𝑦(𝑧), 𝜇−1

0+ 𝜓(𝑧)
)
.

Proof. Using Theorem 6, and applying  𝜇

0+ to both sides of
Equation (6), we obtain


𝜇

0+
𝐶


𝜇

0+𝑦(𝑧) = 
𝜇

0+𝜓(𝑧).

From Lemma 3, we find


𝜇

0+
𝐶


𝜇

0+𝑦(𝑧) = 𝑦(𝑧) − 𝑦(0) − 𝑧𝑦
′(0) − 1

2
𝑧

2
𝑦
′′(0).

Substituting (7) gives us

𝑦(𝑧) = 𝑐0 + 
𝜇

0+𝜓(𝑧) (10)

As
𝑦
′(𝑧) = 𝑑

𝑑𝑧

(
𝑐0 + 

𝜇

0+𝜓(𝑧)
)
=  𝜇−1

0+ 𝜓(𝑧)

and
𝑦
′′(𝑧) = 𝑑

2

𝑑𝑧2

(
𝑐0 + 

𝜇

0+𝜓(𝑧)
)
=  𝜇−2

0+ 𝜓(𝑧),

then

𝜓(𝑧) = 𝑓
(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
+ 𝛿𝑦

′(𝑧) − 𝜇𝑦(𝑧)

= 𝑔

(
𝑧, 𝑐0 + 

𝜇

0+𝜓(𝑧), 𝜓(𝑧)
)
− 𝜇

(
𝑐0 + 

𝜇

0+𝜓(𝑧)
)
.

Alternatively, by applying 𝐶


𝜇

0+ to both sides of Equation (10) and
taking advantage of the linearity of Caputo’s derivative, as well as
the fact that 𝐶


𝜇

0+𝑐0 = 0, we can derive (6). Furthermore,

𝑦(0) =
(
𝑐0 + 

𝜇

0+𝜓
)
(0) = 𝑐0,

𝑦
(𝑘)(0) =  𝜇−𝑘

0+ 𝜓(0) = 0, for each 𝑘 = 1, 2.

The proof is complete. ◽

3.2 | Principal Theorems’ Proofs

This part investigates the existence and uniqueness of traveling
wave solutions for IVP of GNFKdVEs (1).

Theorem 8. Assume that (ℵ1)–(ℵ3) hold. If we set 𝜃 =
max {𝛽,𝑤∗} and
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Γ(𝜇) > 𝜇(𝛿 + 𝜃 + 𝜆) + 𝑣
∗
𝜆

𝜇𝜆1−𝜇 (11)

then, there is at least one solution for IVP of GNFKdVEs (1) on 
in the traveling wave form (2).

Proof. Assume the assumption (ℵ1) holds. Using Theorem 6,
IVP of GNFKdVEs (1) is reduced to fractional-order’s problem
(6)–(7).

Our proof begins with a transformation of problem (6)–(7) into
the fixed point problem 𝜑(𝑧) = 𝜑(𝑧). Let us define

𝜑(𝑧) = 𝑐0 +
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1

𝜓(𝜏)𝑑𝜏 (12)

where
𝜓(𝑧) = 𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧)) − 𝜇𝜑(𝑧), 𝑧 ∈ 𝔼,

with

𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧)) = 𝛿
𝜇−1

0+ 𝜓(𝑧) + 𝑓

(
𝑧, 𝜑(𝑧), 𝜇−1

0+ 𝜓(𝑧)
)
.

We observe that when𝜓 ∈ 𝐶(𝔼,ℂ), then𝜑 remains continuous,
as demonstrated in step (i.) of this proof. Consequently, belongs
to 𝐶(𝔼,ℂ) and is characterized by the norm

‖𝜑‖∞ = sup
𝑧∈𝔼

|𝜑(𝑧)|.

Regarding problem (6)–(7) is equivalent to (12), which means
that  includes fixed points that solve the above-mentioned
problem.

Also, Schauder’s fixed point theorem’s assumption (see [25]) is
satisfied by . The following steps prove this.

i.  is a continuous operator.
Let

(
𝜑
𝑛

)
𝑛∈ℕ be a real sequence such that lim

𝑛→∞
𝜑
𝑛
= 𝜑 in

𝐶(𝔼,ℂ). Then for any 𝑧 ∈ 𝔼,

|
|𝜑𝑛

(𝑧) − 𝜑(𝑧)|| ≤
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1|

|𝜓𝑛
(𝜏) − 𝜓(𝜏)||𝑑𝜏,

where
{

𝜓
𝑛
(𝑧) = 𝑔

(
𝑧, 𝜑

𝑛
(𝑧), 𝜓

𝑛
(𝑧)

)
− 𝜇𝜑

𝑛
(𝑧),

𝜓(𝑧) = 𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧)) − 𝜇𝜑(𝑧).

By applying assumption (ℵ2), we get

|
|
|
𝑔
(
𝑧, 𝜑

𝑛
(𝑧), 𝜓

𝑛
(𝑧)

)
− 𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧))||

|

≤
|
|
|
|
𝛿

(


𝜇−1
0+ 𝜓

𝑛
−  𝜇−1

0+ 𝜓

)
(𝑧)

|
|
|
|

+
|
|
|
|
𝑓

(
𝑧, 𝜑

𝑛
(𝑧), 𝜇−1

0+ 𝜓(𝑧)
)

−𝑓
(
𝑧, 𝜑(𝑧), 𝜇−1

0+ 𝜓(𝑧)
)|
|
|
|

≤ 𝛼‖‖𝜑𝑛
− 𝜑‖‖∞ +

𝛿 + 𝛽

𝜆1−𝜇Γ(𝜇)
‖
‖𝜓𝑛

− 𝜓‖‖∞.

Then,

|
|𝜓𝑛
(𝑧) − 𝜓(𝑧)||

= |
|
|
𝜇
(
𝜑(𝑧) − 𝜑

𝑛
(𝑧)

)
+ 𝑔

(
𝑧, 𝜑

𝑛
(𝑧), 𝜓

𝑛
(𝑧) − 𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧))

)|
|
|

≤ (𝜇 + 𝛼)‖‖𝜑𝑛
− 𝜑‖‖∞ +

𝛿 + 𝛽

𝜆1−𝜇Γ(𝜇)
‖
‖𝜓𝑛

− 𝜓‖‖∞.

Thus,

‖
‖𝜓𝑛

− 𝜓‖‖∞ ≤
(𝜇 + 𝛼)𝜆1−𝜇Γ(𝜇)
𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃

‖
‖𝜑𝑛

− 𝜑‖‖∞.

Since 𝜑
𝑛
→ 𝜑, we get 𝜓

𝑛
→ 𝜓 when 𝑛→ ∞.

Now, let 𝜉 > 0, be such that for each 𝑧 ∈ 𝔼, we have

|
|𝜓𝑛
(𝑧)|| ≤ 𝜉, |𝜓(𝑧)| ≤ 𝜉.

Then, we have

(𝑧 − 𝜏)𝜇−1

Γ(𝜇)
|
|𝜓𝑛
(𝜏) − 𝜓(𝜏)|| ≤

(𝑧 − 𝜏)𝜇−1

Γ(𝜇)
[
|
|𝜓𝑛
(𝜏)|| + |𝜓(𝜏)|

]

≤
2𝜉
Γ(𝜇)

(𝑧 − 𝜏)𝜇−1
.

The function 𝜏 → 2𝜉
Γ(𝜇)

(𝑧 − 𝜏)𝜇−1 is integrable on [0, 𝑧], for
each 𝑧 ∈ 𝔼. Therefore, the implication of Lebesgue’s dom-
inated convergence theorem is

|
|𝜑𝑛

(𝑧) − 𝜑(𝑧)|| → 0 as 𝑛→ ∞,

and hence,
lim
𝑛→∞

‖
‖𝜑𝑛

− 𝜑‖‖∞ = 0.

This indicates the continuity of .

ii.  is defined from a bounded, closed and convex subset into
itself.
Using (11), we define

𝑎 ≥
𝜇||𝑐0

|
|
(
𝜆

1−𝜇Γ(𝜇) − 𝛿 − 𝜃
)
+ 𝑢

∗
𝜆

𝜇(𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃) − (𝜇 + 𝑣∗)𝜆
,

and

𝑎
=
{
𝜑 ∈ 𝐶(𝔼,ℂ) ∶ ‖𝜑‖∞ ≤ 𝑎

}
.

Obviously, 
𝑎

is a subset of 𝐶(𝔼,ℂ) characterized by being
bounded, closed and convex.
Consider the integral operator  ∶ 

𝑎
→ 𝐶(𝔼,ℂ) defined by

(12). It follows that 
(

𝑎

)
⊂ 

𝑎
.

Indeed, using (ℵ3), we have for each 𝑧 ∈ 𝔼

|𝜓(𝑧)| = |𝑔(𝑧, 𝜑(𝑧), 𝜓(𝑧)) − 𝜇𝜑(𝑧)|

≤ 𝑢
∗ + (𝜇 + 𝑣

∗)|𝜑(𝑧)| + 𝛿 +𝑤
∗

𝜆1−𝜇Γ(𝜇)
‖𝜓‖∞.

Then, we get

‖𝜓‖∞ ≤
𝜆

1−𝜇Γ(𝜇)(𝑢∗ + (𝜇 + 𝑣
∗))𝑎

𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃
.
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Thus,

|𝜑(𝑧)| ≤ |
|𝑐0

|
| +

1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1|𝜓(𝜏)|𝑑𝜏

≤ |
|𝑐0

|
| +

𝑢
∗
𝜆 + (𝜇 + 𝑣

∗)𝜆𝑎
𝜇(𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃)

≤

𝜇|𝑐0|(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)+𝑢∗𝜆
𝜇(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)

𝜇(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)
𝜇(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)−(𝜇+𝑣∗)𝜆

𝜇(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)
𝜇(𝜆1−𝜇Γ(𝜇)−𝛿−𝜃)−(𝜇+𝑣∗)𝜆

+ (𝜇 + 𝑣
∗)𝜆𝑎

𝜇(𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃)
≤ 𝑎.

Then 
(

𝑎

)
⊂ 

𝑎
.

iii. 
(

𝑎

)
is an equicontinuous subset.

Let 𝑧1, 𝑧2 ∈ 𝔼, 𝑧1 < 𝑧2, and 𝜑 ∈ 
𝑎
. Then,

|
|
|
𝜑

(
𝑧2
)
− 𝜑

(
𝑧1
)|
|
|

= 1
Γ(𝜇)

|
|
|
|∫

𝑧2

0

(
𝑧2 − 𝜏

)𝜇−1
𝜓(𝜏)𝑑𝜏 −

∫

𝑧1

0

(
𝑧1 − 𝜏

)𝜇−1
𝜓(𝜏)𝑑𝜏

|
|
|
|

≤
1
Γ(𝜇) ∫

𝑧1

0

|
|
|
|

((
𝑧2 − 𝜏

)𝜇−1 −
(
𝑧1 − 𝜏

)𝜇−1
)
𝜓(𝜏)

|
|
|
|
𝑑𝜏

+ 1
Γ(𝜇) ∫

𝑧2

𝑧1

(
𝑧2 − 𝜏

)𝜇−1
|𝜓(𝜏)|𝑑𝜏

≤
𝜆

1−𝜇(𝑢∗ + (𝜇 + 𝑣
∗)𝑎)

𝜆1−𝜇Γ(𝜇) − 𝛿 − 𝜃

[

∫

𝑧1

0

|
|
|

(
𝑧2 − 𝜏

)𝜇−1 −
(
𝑧1 − 𝜏

)𝜇−1|
|
|
𝑑𝜏

+
∫

𝑧2

𝑧1

(
𝑧2 − 𝜏

)𝜇−1
𝑑𝜏

]

.

(13)
We have

(
𝑧2 − 𝜏

)𝜇−1 −
(
𝑧1 − 𝜏

)𝜇−1 = − 1
𝜇

𝑑

𝑑𝜏

[(
𝑧2 − 𝜏

)𝜇 −
(
𝑧1 − 𝜏

)𝜇]
.

Then,

∫

𝑧1

0

|
|
|

(
𝑧2 − 𝜏

)𝜇−1 −
(
𝑧1 − 𝜏

)𝜇−1|
|
|
𝑑𝜏

≤
1
𝜇

[(
𝑧2 − 𝑧1

)𝜇 +
(
𝑧
𝜇

2 − 𝑧
𝜇

1
)]
.

We also have

∫

𝑧2

𝑧1

(
𝑧2 − 𝜏

)𝜇−1
𝑑𝜏 = − 1

𝜇

[(
𝑧2 − 𝜏

)𝜇]𝑧2

𝑧1
≤

1
𝜇

(
𝑧2 − 𝑧1

)𝜇
.

Thus, (13) gives us

|
|
|
𝜑

(
𝑧2
)
− 𝜑

(
𝑧1
)|
|
|
≤

2
(
𝑧2 − 𝑧1

)𝜇 +
(
𝑧
𝜇

2 − 𝑧
𝜇

1
)

𝜆1−𝜇Γ(𝜇 + 1) − 𝜇(𝛿 + 𝜃)
(
𝜆

1−𝜇(𝑢∗ + (𝜇 + 𝑣
∗)𝑎)

)
.

The right-hand side of the aforementioned inequality
converges to zero as 𝑧1 approaches 𝑧2.

As a consequence of steps i., ii., and iii., and with the aid
of the Ascoli-Arzelà theorem, we deduce the continuity of  ∶

𝑎
→ 

𝑎
, its compactness, and its compliance with the conditions

required by Schauder’s fixed point theorem [25]. Consequently,
possesses a fixed point that solves problem (6)–(7) on 𝔼.

Similarly, we can demonstrate the existence of at least one solu-
tion for IVP of GNFKdVEs (1) under the traveling wave form (2).
This is achievable if (11) holds for any (𝑝, 𝑡) ∈ . ◽

Illustrative example 1. Let us consider the following IVP of
GNFKdVEs

⎧
⎪
⎨
⎪
⎩

𝜕𝜙

𝜕𝑡
+ 𝜕

2.5
𝜙

𝜕𝑝2.5 =
exp(2.55𝑡−𝑝)

(
2 exp(2.5𝑡)+|𝜙|+||

|
𝜕𝜙

𝜕𝑝

|
|
|

)

((𝑝−0.05𝑡)2+3 ln(𝑝−0.05𝑡+𝑒2))
(

exp(2.5𝑡)+|𝜙|+||
|
𝜕𝜙

𝜕𝑝

|
|
|

) , (𝑝, 𝑡) ∈ ,

𝜙(0.05𝑡, 𝑡) = 𝜕𝜙

𝜕𝑝
(0.05𝑡, 𝑡) = 𝜕

2
𝜙

𝜕𝑝2 (0.05𝑡, 𝑡) = 0.
(14)

The transformation

𝜙(𝑝, 𝑡) = exp(2.5𝑡)𝑦(𝑧), with 𝑧 = 𝑝 − 0.05𝑡,

reduces IVP of GNFKdVEs (14) to this FDE

𝐶


2.5
0+ 𝑦(𝑧) = −2.5𝑦(𝑧) + 0.05𝑦′(𝑧) + 𝑓

(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
, 𝑧 ∈ [0, 1],

with the conditions

𝑦(0) = 𝑦
′(0) = 𝑦

′′(0) = 0,

where

𝑓
(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
=

exp(−𝑧)
(
2 + |𝑦(𝑧)| + |𝑦′(𝑧)|

)

(
𝑧2 + 3 ln

(
𝑧 + 𝑒2

))
(1 + |𝑦(𝑧)| + |𝑦′(𝑧)|)

.

exp(−𝑧), 𝑧2 and ln
(
𝑧 + 𝑒

2) are continuous functions for any 𝑧 ∈
[0, 1], then 𝑓 is continuous. For any 𝑦, 𝑥, 𝑦, 𝑥 ∈ ℂ and 𝑧 ∈ [0, 1],
we get

|
|
|
𝑓 (𝑧, 𝑦, 𝑥) − 𝑓

(
𝑧, 𝑦, 𝑥

)|
|
|
≤

1
6
|
|𝑦 − 𝑦|| +

1
6
|
|𝑥 − 𝑥||.

Therefore, assumption (ℵ2) is satisfied with 𝛼 = 𝛽 = 1
6

. In
addition,

|𝑓 (𝑧, 𝑦, 𝑥)| ≤
exp(−𝑧)

𝑧2 + 3 ln
(
𝑧 + 𝑒2

) (2 + |𝑦| + |𝑥|).

Thus, assumption (ℵ3) is satisfied with

𝑢(𝑧) =
2 exp(−𝑧)

𝑧2 + 3 ln
(
𝑧 + 𝑒2

) ,

𝑣(𝑧) =
exp(−𝑧)

𝑧2 + 3 ln
(
𝑧 + 𝑒2

) and

𝑤(𝑧) =
exp(−𝑧)

𝑧2 + 3 ln
(
𝑧 + 𝑒2

) .

We also have

𝑢
∗ = 1

3
, 𝑣

∗ = 1
6

and 𝑤
∗ = 1

6
,

for
𝜃 = max {𝛽,𝑤∗} = 1

6
.

Mathematical Methods in the Applied Sciences, 202510506



Condition (11) gives

Γ(𝜇) ≃ 1.3293 >
𝜇(𝛿 + 𝜃 + 𝜆) + 𝑣

∗
𝜆

𝜇𝜆1−𝜇 ≃ 1.2833.

It follows from Theorem 8 that IVP of GNFKdVEs (14) has at least
one solution.

Theorem 9. Assume that assumptions (ℵ1) and (ℵ2) hold. If

we put 𝜆 <

(
Γ(𝜇)
𝛿+𝛽

) 1
𝜇−1 and

(𝜇 + 𝛼)𝜆𝜇

Γ(𝜇 + 1) − 𝜇(𝛿 + 𝛽)𝜆𝜇−1 < 1 (15)

then IVP of GNFKdVEs (1) has a unique solution in the traveling
wave form (2) on.

Proof. Similarly to the steps taken in the proof of Theorem 8,
IVP of GNFKdVEs (1) is reduced to fractional-order’s problem
(6)–(7), which can be formulated as a fixed point problem (12).

Let 𝜑1, 𝜑2 ∈ 𝐶(𝔼,ℂ), then we get

𝜑1(𝑧) − 𝜑2(𝑧) =
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1(

𝜓1(𝜏) − 𝜓2(𝜏)
)
𝑑𝜏,

where

𝜓
𝑖
(𝑧) = 𝑔

(
𝑧, 𝜑

𝑖
(𝑧), 𝜓

𝑖
(𝑧)

)
− 𝜇𝜑

𝑖
(𝑧), 𝑔

(
𝑧, 𝜑

𝑖
(𝑧), 𝜓

𝑖
(𝑧)

)

= 𝛿
𝜇−1

0+ 𝜓
𝑖
(𝑧) + 𝑓

(
𝑧, 𝜑

𝑖
(𝑧), 𝜇−1

0+ 𝜓
𝑖
(𝑧)

)
, for 𝑖 = 1, 2.

Also,

|
|𝜑1(𝑧) − 𝜑2(𝑧)|| ≤

1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1|

|𝜓1(𝜏) − 𝜓2(𝜏)||𝑑𝜏 (16)

We have

‖
‖𝜓1 − 𝜓2

‖
‖∞ ≤

(𝜇 + 𝛼)Γ(𝜇)
Γ(𝜇) − (𝛿 + 𝛽)𝜆𝜇−1

‖
‖𝜑1 − 𝜑2

‖
‖∞.

From (16), we find

‖
‖𝜑1 − 𝜑2

‖
‖∞ ≤

(𝜇 + 𝛼)𝜆𝜇

Γ(𝜇 + 1) − 𝜇(𝛿 + 𝛽)𝜆𝜇−1
‖
‖𝜑1 − 𝜑2

‖
‖∞.

Thus, according to (15),  is a contraction operator.

By applying Banach’s contraction principle (see [25]), we infer
that  has a unique fixed point, which serves as the unique solu-
tion to problem (6)–(7) on 𝔼. Similarly, the existence and unique-
ness of a traveling wave for IVP of GNFKdVEs (1) is established,
provided that condition (15) holds true for any (𝑝, 𝑡) ∈ . ◽

Illustrative example 2. We consider the IVP of GNFKdVEs

⎧
⎪
⎨
⎪
⎩

𝜕𝜙

𝜕𝑡
+ 𝜕

2.7
𝜙

𝜕𝑝2.7 =
cos(𝑝−3𝑡)

(
2 exp(2.7𝑡)+|𝜙|+||

|
𝜕𝜙

𝜕𝑝

|
|
|

)

exp(𝑝−5.7𝑡)
(

exp(2.7𝑡)+|𝜙|+||
|
𝜕𝜙

𝜕𝑝

|
|
|

) , (𝑝, 𝑡) ∈ ,

𝜙(3𝑡, 𝑡) = 2, 𝜕𝜙

𝜕𝑝
(3𝑡, 𝑡) = 𝜕

2
𝜙

𝜕𝑝2 (3𝑡, 𝑡) = 0.
(17)

The transformation

𝜙(𝑝, 𝑡) = exp(2.7𝑡)𝑦(𝑧), with 𝑧 = 𝑝 − 3𝑡,

reduces IVP of GNFKdVEs (14) to this FDE

𝐶


2.5
0+ 𝑦(𝑧) = −2.7𝑦(𝑧) + 3𝑦′(𝑧) + 𝑓

(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
, 𝑧 ∈

[
0, 1

2

]
,

with the conditions

𝑦(0) = 2, and 𝑦
′(0) = 𝑦

′′(0) = 0,

where

𝑓
(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)
=

cos(𝑧)
(
2 + |𝑦(𝑧)| + |𝑦′(𝑧)|

)

exp(𝑧)(1 + |𝑦(𝑧)| + |𝑦′(𝑧)|)
.

As exp(𝑧) and cos(𝑧) are continuous nonnegative functions for
any 𝑧 ∈

[
0, 1

2

]
, then 𝑓 is continuous. For any 𝑦, 𝑥, 𝑦, 𝑥 ∈ ℂ and

𝑧 ∈
[
0, 1

2

]
, we get

|
|
|
𝑓 (𝑧, 𝑦, 𝑥) − 𝑓

(
𝑧, 𝑦, 𝑥

)|
|
|
≤ |
|𝑦 − 𝑦|| + |

|𝑥 − 𝑥||.

Therefore, assumption (ℵ2) is satisfied with 𝛼 = 𝛽 = 1. We have

𝜆 = 1
2
<

(
Γ(𝜇)
𝛿 + 𝛽

) 1
𝜇−1

≃ 0.57139,

and the condition in (15)

(𝜇 + 𝛼)𝜆𝜇

Γ(𝜇 + 1) − 𝜇(𝛿 + 𝛽)𝜆𝜇−1 ≃ 0.67261 < 1.

It follows from Theorem 9 that IVP of GNFKdVEs (17) has a
unique solution.

4 | Ulam–Hyers Stability Results

In this section, we use Definitions 4 and 5 to study the stability of
the equation in (1) on.

Let 𝜓
ℎ
∈ 𝐶(𝔼,ℂ) as a continuous function satisfying the func-

tional equation

𝜓
ℎ
(𝑧) = 𝑔

(
𝑧, ℎ(𝑧), 𝜓

ℎ
(𝑧)

)
− 𝜇ℎ(𝑧), with ℎ ∈ 𝐶(𝔼,ℂ),

where 𝑔 ∶ 𝔼 × ℂ × ℂ→ ℂ satisfies for any ℎ ∈ 𝐶(𝔼,ℂ) and 2 <

𝜇 ≤ 3;

𝑔
(
𝑧, ℎ(𝑧), 𝜓

ℎ
(𝑧)

)
= 𝛿

𝜇−1
0+ 𝜓

ℎ
(𝑧) + 𝑓

(
𝑧, ℎ(𝑧), 𝜇−1

0+ 𝜓
ℎ
(𝑧)

)
.

We also define

𝜙
ℎ
(𝑝, 𝑡) = exp(𝜇𝑡)ℎ(𝑧) , with 𝑧 = 𝑝 − 𝛿𝑡 (18)

Before proceeding, we present the following remark introduced
in [26], followed by a lemma aimed to simplify subsequent
calculations.

Remark 10. If 𝑥 ∈ 𝐶(𝔼,ℂ) is a solution of the inequality

|
|
|
𝐶


𝜇

0+𝑥(𝑧) − 𝜓
𝑥
(𝑧)||

|
≤ 𝜀,∀𝑧 ∈ 𝔼 (19)

for some 𝜀 > 0, then there exists 𝓁 ∈ 𝐶(𝔼,ℂ), such that
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1. 𝐶


𝜇

0+𝑥(𝑧) = 𝜓
𝑥
(𝑧) + 𝓁(𝑧), for any 𝑧 ∈ 𝔼,

2. |𝓁(𝑧)| ≤ 𝜀, for all 𝑧 ∈ 𝔼.

Lemma 11. If 𝑥 ∈ 𝐶(𝔼,ℂ) is the solution of the inequality (19),
then there exists 𝜀 > 0 such that 𝑥will be the solution of the inequal-
ity:

|
|
|
|
𝑥(𝑧) − 𝑥(0) − 𝑧𝑥

′(0) − 1
2
𝑧

2
𝑥
′′(0) −  𝜇

0+𝜓𝑥
(𝑧)

|
|
|
|

≤
𝜀𝜆

𝜇

Γ(𝜇 + 1)
,∀𝑧 ∈ 𝔼.

Proof. If 𝑥 ∈ 𝐶(𝔼,ℂ) is a solution of (19). Then from
Remark 10, we have

{
𝐶


𝜇

0+𝑥(𝑧) = 𝜓
𝑥
(𝑧) + 𝓁(𝑧), 𝑧 ∈ 𝔼,

|𝓁(𝑧)| ≤ 𝜀, 𝜀 > 0,

hence

𝑥(𝑧) = 𝑥(0) + 𝑧𝑥
′(0) + 1

2
𝑧

2
𝑥
′′(0) +  𝜇

0+
(
𝜓
𝑥
+ 𝓁

)
(𝑧), ∀𝑧 ∈ 𝔼.

Then, for all 𝑧 ∈ 𝔼, we get

|
|
|
|
𝑥(𝑧) − 𝑥(0) − 𝑧𝑥

′(0) − 1
2
𝑧

2
𝑥
′′(0) −  𝜇

0+𝜓𝑥
(𝑧)

|
|
|
|

= |
|
|


𝜇

0+
(
𝜓
𝑥
+ 𝓁

)
(𝑧) −  𝜇

0+𝜓𝑥
(𝑧)||

|

≤
1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1𝓁(𝜏)𝑑𝜏

≤
𝜀𝜆

𝜇

Γ(𝜇 + 1)
.

Hence, the lemma is proved. ◽

Theorem 12. If assumptions (ℵ1) and (ℵ2) hold, then
equation (3) is Ulam–Hyers stable and consequently generalized
Ulam–Hyers stable.

Proof. Let 𝜙
𝑥

be a traveling wave solution of inequality (4), that
is, 𝜙

𝑥
is 𝐶3(,ℂ) in space 𝑝 and 𝐶

1(,ℂ) in time 𝑡 and satisfies

|
|
|
|
|

𝜕𝜙
𝑥

𝜕𝑡
+

𝜕
𝜇
𝜙
𝑥

𝜕𝑝𝜇
− 

(

𝑝, 𝑡, 𝜙
𝑥
,
𝜕𝜙

𝑥

𝜕𝑝

)|
|
|
|
|
≤ 𝜀, for each 𝜀 > 0.

Consequently, after using the transformation (18) and Theorem 6,
we can get easily

|
|
|
𝐶


𝜇

0+𝑥(𝑧) − 𝜓
𝑥
(𝑧)||

|
≤ 𝜀, 𝑥 ∈ 𝐶(𝔼,ℂ) (20)

Let us denote by 𝜙
𝑦

the unique traveling wave solution of the
following IVP of GNFKdVEs

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜙
𝑦

𝜕𝑡
+ 𝜕

𝜇
𝜙
𝑦

𝜕𝑝𝜇
= 

(
𝑝, 𝑡, 𝜙

𝑦
,
𝜕𝜙

𝑦

𝜕𝑝

)
, (𝑝, 𝑡) ∈ ,

𝜙
𝑦
(𝛿𝑡, 𝑡) = exp(𝜇𝑡)𝑥(0), 𝑥(0) ∈ ℂ, 𝛿 ∈ ℝ+,

𝜕𝜙
𝑦

𝜕𝑝
(𝛿𝑡, 𝑡) = exp(𝛿𝑡)𝑥′(0), 𝜕

2
𝜙
𝑦

𝜕𝑝2 (𝛿𝑡, 𝑡) = exp(𝛿𝑡)𝑥′′(0) 𝑥
′(0), 𝑥′′(0) ∈ ℂ.

After using the transformation (18) and Theorem 9, we observe
that 𝑦 ∈ 𝐶(𝔼,ℂ) is also the unique solution of the problem

𝐶


𝜇

0+𝑦(𝑧) = 𝜓
𝑦
(𝑧), with 𝑦

(𝑘)(0) = 𝑥
(𝑘)(0), for 𝑘 = 0, 1, 2 (21)

Lemma 3 helps us to infer, after applying  𝜇

0+ to both sides of
Equation (21), that

𝑦(𝑧) = 𝑥(0) + 𝑧𝑥
′(0) + 1

2
𝑧

2
𝑥
′′(0) +  𝜇

0+𝜓𝑦
(𝑧), ∀𝑧 ∈ 𝔼 (22)

On the other hand, using Lemma 11 and (22) makes us obtain

|𝑥(𝑧) − 𝑦(𝑧)| =
|
|
|
|
𝑥(𝑧) −

(
𝑥(0) + 𝑧𝑥

′(0) + 1
2
𝑧

2
𝑥
′′(0) +  𝜇

0+𝜓𝑦
(𝑧)

)|
|
|
|

=
|
|
|
|
𝑥(𝑧) − 𝑥(0) − 𝑧𝑥

′(0) − 1
2
𝑧

2
𝑥
′′(0)

− 𝜇

0+𝜓𝑥
(𝑧) +  𝜇

0+
(
𝜓
𝑥
− 𝜓

𝑦

)
(𝑧)||

|

≤
|
|
|
|
𝑥(𝑧) − 𝑥(0) − 𝑧𝑥

′(0) − 1
2
𝑧

2
𝑥
′′(0) −  𝜇

0+𝜓𝑥
(𝑧)

|
|
|
|

+ |
|
|


𝜇

0+
(
𝜓
𝑥
− 𝜓

𝑦

)
(𝑧)||

|

≤
𝜀𝜆

𝜇

Γ(𝜇 + 1)
+ 1
Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1||

|
𝜓
𝑥
(𝜏) − 𝜓

𝑦
(𝜏)||

|
𝑑𝜏.

(23)

By (ℵ2), we have for each 𝑧 ∈ 𝔼

|
|
|
𝜓
𝑥
(𝑧) − 𝜓

𝑦
(𝑧)||

|

≤ 𝜇|𝑥(𝑧) − 𝑦(𝑧)| + |
|
|
𝑔
(
𝑧, 𝑥(𝑧), 𝜓

𝑥
(𝑧)

)
− 𝑔

(
𝑧, 𝑦(𝑧), 𝜓

𝑦
(𝑧)

)|
|
|
,

with

|
|
|
𝑔
(
𝑧, 𝑥(𝑧), 𝜓

𝑥
(𝑧)

)
− 𝑔

(
𝑧, 𝑦(𝑧), 𝜓

𝑦
(𝑧)

)|
|
|

≤
|
|
|
𝛿

𝜇−1
0+

(
𝜓
𝑥
− 𝜓

𝑦

)
(𝑧)||

|

+
|
|
|
|
𝑓

(
𝑧, 𝑥(𝑧), 𝜇−1

0+ 𝜓
𝑥

)
− 𝑓

(
𝑧, 𝑦(𝑧), 𝜇−1

0+ 𝜓
𝑦

)|
|
|
|

≤ (𝛿 + 𝛽)||
|


𝜇−1
0+

(
𝜓
𝑥
− 𝜓

𝑦

)
(𝑧)||

|
+ 𝛼|𝑥(𝑧) − 𝑦(𝑧)|.

Then
|
|
|
𝜓
𝑥
(𝑧) − 𝜓

𝑦
(𝑧)||

|
≤ (𝜇 + 𝛼)|𝑥(𝑧) − 𝑦(𝑧)|

+ 𝛿 + 𝛽

Γ(𝜇 − 1) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−2||

|
𝜓
𝑥
(𝜏) − 𝜓

𝑦
(𝜏)||

|
𝑑𝜏.

By using Gronwall’s inequality [27], we get

|
|
|
𝜓
𝑥
(𝑧) − 𝜓

𝑦
(𝑧)||

|
≤ 𝜅|𝑥(𝑧) − 𝑦(𝑧)| , ∀𝑧 ∈ 𝔼, (24)

where 𝜅 = (𝜇 + 𝛼) exp
(

𝛿+𝛽
𝜆1−𝜇Γ(𝜇)

)
. Thus, by replacing (24) in (23),

we get
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|𝑥(𝑧) − 𝑦(𝑧)| ≤ 𝜀𝜆
𝜇

Γ(𝜇 + 1)
+ 𝜅

Γ(𝜇) ∫

𝑧

0
(𝑧 − 𝜏)𝜇−1|𝑥(𝜏) − 𝑦(𝜏)|𝑑𝜏,

and using Gronwall’s inequality gives us

|𝑥(𝑧) − 𝑦(𝑧)| ≤ 𝜆
𝜇
𝜀

Γ(𝜇 + 1)
exp

(
𝜅𝜆

𝜇

Γ(𝜇 + 1)

)

,

In another way,

|
|
|
𝜙
𝑥
(𝑝, 𝑡) − 𝜙

𝑦
(𝑝, 𝑡)||

|
= |exp(𝜇𝑡)(𝑥(𝑧) − 𝑦(𝑧))| ≤ 𝛾𝜀,

where 𝛾 = 𝜆
𝜇
𝜀

Γ(𝜇+1)
exp

(
𝜅𝜆

𝜇

Γ(𝜇+1)
+ 𝜇𝑇

)
. Definition 4 helps us infer

that equation (3) is Ulam–Hyers stable on. This completes the
proof.

If we select 𝑄(𝜀) = 𝛾𝜀, it follows that 𝑄(0) = 0. Subsequently,
according to Definition 5, it can be inferred that equation (3) man-
ifests generalized Ulam–Hyers’ stability. ◽

Remark 11. We can observe that both equations in problems
(14) and (17) manifest Ulam–Hyers’ stability.

5 | Illustration With Numerical Simulation

The KdV equation describes various wave phenomena across sci-
entific fields. Its solutions include periodic waveforms, modeled
by trigonometric functions, and solitons [4, 8, 9], which main-
tain their shape and speed over long distances. Periodic solutions
model surface water waves, internal ocean waves, and plasma
wave propagation. Solitons are crucial for understanding solitary
waves in shallow water, optical pulses in fiber optics, and wave
dynamics in elastic media. The equation’s ability to capture the
interplay between nonlinearity and dispersion makes it essential
for predicting and analyzing wave behavior in fluid dynamics,
coastal engineering, and plasma physics.

Here, we provide an explicit solution in the form of a trav-
eling wave, modeled by trigonometric functions for IVP of
GNFKdVEs (1).

Let 2 < 𝜇 ≤ 3 and 𝜔 ∈ ℂ be a constant that depends on 𝜇, which
we refer to as the“wavelength.” Then

𝑦(𝑧) = 2
𝜇2 (exp(𝜔𝑧) + cos(𝜔𝑧) − sin(𝜔𝑧)),

is a solution of problem (6)–(7), where

𝑓
(
𝑧, 𝑦(𝑧), 𝑦′(𝑧)

)

= 2𝜔3
𝑧

3−𝜇

𝜇2

[
𝐸1,4−𝜇(𝜔𝑧) −

𝑖 + 1
2

𝐸1,4−𝜇(𝑖𝜔𝑧)

+ 𝑖 − 1
2

𝐸1,4−𝜇(−𝑖𝜔𝑧)
]
+ 2

𝜇
𝑦(𝑧) − 2𝜔𝛿

𝜇2 𝑦
′(𝑧).

Then the traveling wave solution for IVP of GNFKdVEs (1) is
given by

𝜙(𝑝, 𝑡) = 2
𝜇2 exp(𝜇𝑡)(exp(𝜔(𝑝 − 𝛿𝑡))

+ cos(𝜔(𝑝 − 𝛿𝑡)) − sin(𝜔(𝑝 − 𝛿𝑡))),
(25)

where



(

𝑝, 𝑡, 𝜙,
𝜕𝜙

𝜕𝑝

)

= 2𝜔3(𝑝 − 𝛿𝑡)3−𝜇

𝜇2 exp(−𝜇𝑡)

[
𝐸1,4−𝜇(𝜔(𝑝 − 𝛿𝑡)) − 𝑖 + 1

2
𝐸1,4−𝜇(𝑖𝜔(𝑝 − 𝛿𝑡))

+ 𝑖 − 1
2

𝐸1,4−𝜇(−𝑖𝜔(𝑝 − 𝛿𝑡))
]
+ 𝜇𝜙(𝑝, 𝑡) − 𝛿

𝜕𝜙

𝜕𝑝
.

The conditions on 𝜇, 𝛿, and 𝜔 in the solution (25) describe the
amplitude, energy, wavelength, frequency, and propagation char-
acteristics of the waves. These parameters collectively capture the
intricate balance between nonlinear and dispersive effects that
shape the wave phenomena modeled by the KdV equation.

For 𝛿 = 1
1000

and 𝜇 taking different values in the interval (2, 3],
we provide two figures that describe various wave character-
istics. These characteristics, which include wave width, wave
height, and the temporal depth of wave formation (TDWF), will
be explained in detail under each figure.

1. When the wavelength 𝜔 decreases as 𝜇 increases, we put:

𝜔(𝜇) = 2
25
(1 − 2𝜇).

Solution (25) can be represented by the following figure:

⊛ Figure 1 illustrates the wave’s spatial and tempo-
ral evolution. As 𝜇 increases, the wave height also
increases due to the combined effects of a higher
wave number (shorter wavelength) and nonlin-
ear amplification. This results in more waves fit-
ting into a given spatial interval, leading to an
increase in the number of waves. Additionally, the
amplitude increases with the wave number, which
can be attributed to higher energy levels associ-
ated with shorter wavelengths in nonlinear wave
equations like the KdV equation.

⊛ GNFKdVE (1) includes a nonlinear term , which
amplifies the wave amplitude as the wave num-
ber increases. This phenomenon, known as wave
steepening, results from more pronounced non-
linear interactions at higher 𝜇 values. The dis-
persion relation 𝛿 describes how the phase speed
depends on the wave number, with higher wave
numbers corresponding to faster phase speeds.
Consequently, the decreasing wavelength leads to
a shorter wave period, increasing the wave’s steep-
ness and amplitude.

These points collectively explain why increasing the frac-
tional order 𝜇 results in more waves with higher amplitudes
in the context of your solution to the equation.

2. When the wavelength 𝜔 increases as 𝜇 increases, for
example:

𝜔(𝜇) = 1
𝜋

(

𝜇 − 4𝜋2

11

)

.

Solution (25) is represented as follows:
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FIGURE 1 | Effect of decreasing the wavelength 𝜔 simultaneously with increasing the fractional order 𝜇 on the characteristics of traveling wave
solution (25). [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 | Effect of increasing the wavelength 𝜔 simultaneously with increasing the fractional order 𝜇 on the characteristics of traveling wave
solution (25). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2 illustrates that as the fractional order 𝜇 increases,
the wavelength 𝜔 also increases, leading to a decrease in
the wave number. This results in fewer waves within a
given spatial interval and lower amplitudes. Although the
energy of the waves may increase slightly, the nonlinear
effects become less significant. This behavior is depicted in
the graphical representation, which shows fewer but larger
waves as the wavelength increases.

6 | Conclusion

This paper has explored the existence and uniqueness of trav-
eling wave solutions for a generalized nonlinear fractional
Korteweg–de Vries equation using several fixed-point theorems.
Stability was further examined through the Ulam–Hyers stability
theorem, demonstrating the robustness of the results under small
perturbations.
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Through detailed examples and explicit solutions, we highlighted
the interplay between nonlinearity and dispersion in wave phe-
nomena, showing how parameters like amplitude and wave num-
ber influence propagation characteristics. The traveling wave
method proved to be an effective analytical tool, simplifying
the fractional partial differential equation and providing deeper
insights into its dynamics.

These findings enhance the understanding of fractional-order
Korteweg–de Vries equations and illustrate the utility of frac-
tional calculus in modeling complex phenomena with memory
effects. However, the assumptions underlying our model require
further exploration to ensure its generalizability. Future work
will focus on analyzing these assumptions, comparing them with
those in related studies, and assessing their implications for
broader applications, such as systems with different boundary
conditions or additional complexities. This effort will not only
address potential limitations but also pave the way for refining the
model to better capture real-world scenarios and further enrich
the field.
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