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Abstract

Thin films of pure NiO and Cu doped NiO (CNO) were synthesized using the sol-gel spin-coating route. All samples
exhibited a cubic phase with a predominant orientation along the (200) axis, which relaxed with Cu doping. Surface mor-
phology showed an increase in grain size with molarity (36.20-129.9 nm), resulting in a rougher surface texture with a
smoother and more uniform surface after Cu doping (Rrms: 91.30—13.80 nm), leading to a decrease in average transmit-
tance and a slight reduction in band gap energy (£,: 3.62-3.56 ¢V). The structural, electronic and optical properties of
NiO and CNO structures were analyzed by implementing the density functional theory corrected by the Hubbard approach
(DFT+GGA+U). The study highlighted the coexistence of ionic and covalent bonding. The DFT+GGA+U method
allowed a notable improvement in the calculated E, (3.57 eV for x=0% and 3.55 for 6.25%), revealing a decrease in E,
with Cu doping. The dielectric functions showed three main peaks, while the static dielectric constants underwent minor
variations in response to Cu doping. Electrochemical analysis revealed n-type behavior, high energy efficiency (88%),
and specific capacitance up to 37.8 F.g!, confirming the suitability of CNO/ITO electrode for supercapacitor applications.
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Introduction

Nickel oxide (NiO) emerges as a material of p-type semi-
conducting oxide with a broad band gap ranging from 3.6
eV to 4 eV [1]. NiO adopts a NaCl-like structure with octa-
hedral coordination of Ni(II) and O*" ions [2]. The excep-
tional properties of NiO make it highly promising for diverse
applications, including catalysts, chemical sensors, antifer-
romagnetic materials, electrochromic devices, supercapaci-
tor applications like other metal oxides (MnO, [3, 4]) and
carbon materials [5]. These studies were preceded by other
investigations on supercapacitors that focused on rigid, flex-
ible capacitors and dye-sensitized solar cells [6, 7]. In recent
years, doping NiO with various elements such as Cu, Fe and
Au has gained significant attention due to its impact on the
optical, electronic, and magnetic properties [8]. Few studies
have shown that Cu-doping in NiO (CNO) alters the crystal
structure, reducing it towards an amorphous phase, while
also decreasing the energy band gap [8, 9]and weakening
ferromagnetism [10].

Numerous studies have investigated nickel oxide (NiO)
thin films for supercapacitor applications, focusing on
compositional tuning through doping strategies, including
copper incorporation, to enhance electrochemical proper-
ties [11-13]. While most works emphasize doping, lim-
ited attention has been given to the influence of precursor
molarity in spin-coating techniques, despite its critical role
in preserving structural integrity, optical transparency, and
electrical conductivity, as well as minimizing defect forma-
tion in NiO films [14]. Given its high theoretical capaci-
tance, excellent chemical stability, and low production
cost, NiO continues to stand out as a strong candidate for
supercapacitor electrode applications [15]. Supercapacitor
electrodes can be classified into two types based on their
energy storage mechanism: electrochemical electrodes and
double-layer electrodes [16]. Copper-doped NiO (CNO) has
demonstrated superior electrochemical behavior, making it
a key material for enhancing energy storage performance
[17].

To complement experimental investigations, density
functional theory (DFT) serves as a powerful theoretical
approach for understanding the fundamental mechanisms
governing the electronic, structural, and optical properties
of NiO and its doped counterparts. DFT is a valuable tool
for exploring the electronic, structural, and optical proper-
ties of NiO and doped variants used in supercapacitors [18].
However, standard DFT approaches such as LDA and GGA
often struggle with accurately modeling systems containing
strongly correlated d or f'electron s [19], like NiO. To over-
come these limitations, methods such as LDA+U, which
incorporates on-site Coulomb interactions via the Hubbard
model, have been developed [20]. This hybrid approach
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improves the treatment of localized d-states while retaining
conventional DFT accuracy for itinerant electrons, enabling
more reliable theoretical predictions and optimization of
NiO-based supercapacitor materials [21].

Unlike previous Cu—NiO studies focused mainly on dop-
ant concentration [22, 23], this work investigates the role
of precursor molarity in spin-coated films, demonstrat-
ing its critical impact on morphology, defect density, and
electrochemical response. Moreover, the incorporation of
DFT+U analysis provides a deeper understanding of Cu-
induced electronic modifications, offering a complementary
theoretical perspective rarely combined with experimental
optimization in NiO-based supercapacitor studies.

In this work, CNO thin films were fabricated by varying
Cu in NiO (x=6.25%). The thin films were characterized
in terms of their electronic, optical, structural, and morpho-
logical properties. Theoretical calculations were performed
using the DFT-GGA+ U method in order to predict the char-
acteristics of NiO and CNO structures, to be compared then
with experimental values. Electrochemical performance
was evaluated through cyclic voltammetry (CV) and galva-
nostatic charge—discharge (GCD) measurements.

Experimental
Synthesis and characterization of Cu doped NiO

Nickel acetate tetrahydrate (Ni(CH,COO), 4H,0), copper
chloride (CuCl,), monoethanolamine (MEA), and ethanol
were utilized as the starting precursor, dopant source, stabi-
lizer, and solvent, respectively, to prepare NiO an CNO thin
films by the of sol-gel spin coating method on glass sub-
strates. The metal ions concentration was varied at 0.4 M,
0.6 M, and 0.8 M. A most suitable molarity of 0.8 M, which
yielded high crystallinity, was selected for Cu doping at
concentration of x=6.25%. The molar ratio of metal ions to
MEA was maintained at 1.0. The solution was aged at room
temperature for 24 h and stirred at 65 °C for 2 h. Using a
spin coater, the sol-gel was dropped into a dry and clean
substrate (using deionised water and an ultrasonic cleaner)
at 2800 rpm for 30 s. The film was then preheated for 10
min at 250 °C to remove organic residues and evaporate the
solvent. The preheating and coating procedures were car-
ried out multiple times. The films were ultimately annealed
for 1.5 h at 450°C. The precursors were also combined in
different molar ratios to obtain the required amount of Cu
dopant. The electrochemical performance was evaluated
using CV and GCD measurements, carried out in a three-
electrode configuration with the working electrode CNO
thin film prepared on an indium tin oxide (ITO)-coated glass
substrate, a platinum wire as the counter electrode and an
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Ag/AgCl electrode as the reference, using a 0.1 M Na,SO,
electrolyte.

The structural properties of NiO and CNO thin films
were investigated using X-ray diffractometer (XRD; Bruker
D8 Advance, 26=5.0500° —89.9500°, step size: 0.1000°,
scan step time: 0.8800 s, Continuous scan mode, Cu-Ka::
A=1.5406 A). The surface morphology was examined
through atomic force microscopy (AFM: MFP-3D CAR)
with the microscopy of scanning electron and energy dis-
persive X-ray spectroscopy (EDS) (Quattro ESEM, USA).
Fourier-transformed infrared spectroscopy (FTIR; Perkin-
Elmer System 2000 spectrometer, USA) has been conducted
in the spectra range 4000400 cm ', The optical transmis-
sion spectra were also recorded in the range of 300-800
nm utilizing a UV-Vis spectrophotometer (UV-3101 PC,
Shimadzu).

Computational calculation

DFT computations, as implemented in CASTEP code, were
executed to investigate the electronic, magnetic, structural
and optical properties of NiO and CNO. Meta-GGA (gen-
eralized gradient approximation) DFT-RSCAN functional
is used to treat the exchange—correlation function [24]. The
substitution technique and the optimized primitive NiO cell
(Fig. la; space group Fm-3 m: 225) were used to construct
a conventional rock salt-type NiO cell (Fig. 1b), leading to
building a 2 x 2x2 NiO supercell (Fig. 1¢). To achieve a Cu
content of x=6.25%, one Ni atom was substituted with Cu
in the 2x2x2 supercell, as shown in Fig. lc. The kinetic
energy cut-off of 571.4 eV was applied for the plane-wave
ultrasoft pseudopotential method generated on the fly
(OTFG) [25]. Gamma centered grid of 5x5x5 and 3 x3x3
k-point is used for the conventional cell and 2 x 2 X2 super-
cell, respectively. The valence-electron configurations for
the Ni (3d%4s!), O (25 2p*) and Cu (3d'%s") were selected.
The convergence criteria are 0.03 eV/for maximum force,
10A for maximum displacement, 1.0 x 1073 eV/atom for
energy change, 0.05 GPa for maximum stress, and 1.0 x 107°
eV per atom for self-consistent field (SCF) threshold. The
semiempirical GGA+U approach was used and the effective

Fig. 1 (a) NiO primitive cell, (b) (a)
NiO conventional cell, and (¢)

2 x2x2 NiO supercell; nickel (Ni) _—~ ?
atoms are denoted by blue color -
and oxygen (O) atoms are denoted /! L/
by red color and copper (Cu) \ - ﬁ/
atoms are denoted by brown color

Hubbard U values were set at 10 eV for Ni 3d,8 eV for O
2p, and 10 eV for Cu 3d states. The chosen U values were
adopted from previously reported literature on transition-
metal oxides to ensure consistency with earlier studies [8,
15, 20, 24]. The NiO and CNO antiferromagnetic phase,
consistent with prior reports, was adopted [25].

Results and discussion
Experimental results

Crystallographic analysis of the deposited films confirmed
the formation of a single-phase cubic rock-salt structure,
characteristic of NiO (JCPDS 73-1519), devoid of sec-
ondary impurities. The diffraction patterns (Fig. 2) exhib-
ited intense reflections corresponding to the (111), (200),
and (220) planes. Rietveld refinement, performed using
HighScore Plus [26, 27], indicated a lattice parameter of
a=4.1829 A, which aligns well with standard values. The
sharpness of the diffraction peaks across all precursor con-
centrations attests to the high crystallinity of the synthesized
films, with a distinct preferential growth along the (200)
direction. The lattice parameter value does not change sig-
nificantly, as the atomic radii of Ni and Cu are very close
and all the films exhibit an average thickness of approxi-
mately 400 nm which is comparable to those reported pre-
viously [28, 29]. XRD measurements revealed slight peak
shifts and lattice distortions consistent with the substitution
of Ni** by Cu** ions.

The preferential orientation was quantitatively assessed
using the texture coefficient (TC) formalism [30]. Analysis
revealed TC(200) values exceeding unity, confirming that
the (200) plane represents the thermodynamically favored
growth direction. Regarding the microstructural evolu-
tion, an elevation in precursor molarity promoted grain
growth, increasing the crystallite size from~31 nm to~46
nm (Fig. 2¢), a behavior consistent with solution-processed
oxide films [31]. Conversely, Cu incorporation interrupted
this trend, reducing the crystallite size to 40.79 nm. This
shrinkage is attributed to the ionic radius mismatch between

@ Springer
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Fig. 2 (a) XRD Patterns, (b) strain variation, (c) crystallite size variation, (d) FWHM variation and (e) 7C (hkl) variation of NiO thin films and

CNO thin films (0.4 M, 0.6 M,0.8 M, and 0.8 M with 6.25% Cu)

Ni** (0.78 A) and Cu®* (0.96 A), which generates lattice
stress and inhibits grain boundary coalescence [32]. This
reduction is further supported by the decreased intensity of
the (200) XRD peak after Cu doping, indicating a decline
in film crystallinity (Fig. 2a). The enhancement in the crys-
talline structure of NiO thin films with increased precursor
molarity refers to the higher distribution of Ni species on the
glass substrate surface.

Micro-strain analysis (Fig. 2b) indicated a relaxation
of lattice defects with increasing precursor concentration
(0.4 M, 0.6 M, 0.8 M NiO), whereas Cu doping reintro-
duced lattice strain [28, 29]. 2D pictures of ITO substrate,
NiO (0.4 M, 0.6 M, 0.8 M) and CNO thin films are shown
as samples of presentation (Fig. 3a, b, ¢, d, e). 50 X 50 pm?
2D and 3D AFM images are presented for NiO and CNO
thin films (Fig. 3f, g, h, 1). The grain shapes are generally
round, and their medium average size rises with molarity.
However, a significant decrease in grain size is observed
after 6.25% Cu doping (Table 1). This finding agrees with
the increase that occurs in (200) preferential orientation.
Hence, the a-axis grain growth as the molarity rises. The
surface becomes rougher with an increased level of molarty
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and becames smooth after Cu doping. This morphology is
compatible with the average grain size values (Table 1).

The surface morphology (SEM) and elemental com-
position (EDS) of NiO and CNO thin films were further
characterized at 10 k magnification (Fig. 4a). The surface
morphology of the deposited NiO and CNO thin film appears
quasi smoothly with spherical grains (Fig. 4a,b). Uniform
surfaces with closely packed spherical particles reflect the
high quality of the prepared film [33]. CNO exhibits more
pronounced voids and cracks, suggesting that Cu ion incor-
poration influences the surface morphology [34]. EDS anal-
ysis confirms the presence of oxygen (O) and nickel (Ni)
in both samples, with the appearance of copper (Cu) peaks
for CNO thin films (Fig. 4b). Furthermore, it is obtained
from the quantitative examination that the Cu concentration
of 5.6% corresponds with the actual Cu content of 6.25%
incorporated during the preparation (inset in Fig. 4b), attest-
ing to the successful doping.

The variations in optical properties are primarily influ-
enced by the changes in the crystallite size, specifically, the
increase in the band gap energy due to a reduction in crys-
tallite size [35]. The transmittance of NiO and CNO thin
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Fig. 3 2D pictures of (a) ITO substrate, NiO (b) 0.4 M, (¢) 0.6 M, (d) 3D; NiO along with CNO thin films (f) 0.4 M, (g) 0.6 M, (h) 0.8 M
0.8 M and CNO (d) thin films samples fabricated by sol-gel spin coat- and (i) 0.8 M:6.25% Cu
ing process at laboratory scale. AFM images of 50 X 50 um? 2D and

Table 1 Structural and morphological parameters of NiO and CNO films (x=6.25%)

Molarity (M) 26 (°) a(A) FWHM (°)  Peakintensity  Crystallite size (nm)  Grain size (AFM) (nm)  Rrms (nm)
0.4 43.397 4.165 0.289 (200) 30.90 36.20 16.69
0.6 43.373 4.167 0.214 (200) 41.73 59.14 45.22
0.8 (x=0.0%) 43.349 4.165 0.196 (200) 45.56 129.9 91.30
0.8 (x=6.25%) 43.445 4.160 0.219 (200) 40.79 49.54 13.80
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Fig.4 SEM images and EDX spactra of (a) NiO (0.8 M) and (d) CNO thin films (0.8 M: 6.25% Cu). Accelerating voltage: 10.000 kV, Magnifica-
tion: 65 000 x, Working distance for SEM: 9.2105 mm, Calibration standards used for EDS analysis: Fe

films decreases from 80 to 70% with increasing molarity
(Fig. 5a). Similar results have been previously reported
for NiO thin films via sol-gel technique [36]. This can
be attributed to the growth of the grain size which leads
to a decrease in grain boundary density or in the number of
scattering centers. The absorption maximum wavelength of
NiO thin films are demonstrated to rely on their particle size
and generally decreases with particle size reduction [35].
The relation of Tauc, (ahv) "=A(hv—-Eg) was used to
compute the optical band gap (Eg) of the nanoparticles [37],
where a is the absorption coefficient [38], 4v is the energy
of photon, 4 is the band tailing parameter, £g is the bandgap
energy and n=1/2 corresponds to indirect electronic transi-
tions [39]. The Eg is computed by extrapolating the linear
region of the (ahv)"? vs. hv to the energy axis at (ahv)>=0,
as indicated in the inset of Fig. 5b. The calculated Eg ranges
from 3.56 to 3.62 eV, which is consistent with values previ-
ously reported in the literature for NiO thin films [40, 41].
These calculated values show a gradual decrease in Eg with
increasing molarity (Table 2) [42]. The sharp UV absorption
edge shifts slightly to longer wavelengths upon Cu doping,
reducing E, from 3.57 eV to 3.56 ¢V (Table 2). This reduc-
tion is in agreement to the findings reported for Cu-doped
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NiO thin film [43]. Additionally, improving the crystallin-
ity and reducing crystal defects can be responsible for Eg
decrease in CNO thin films [28].

The optical parameters including the absorption coef-
ficient «, the extinction coefficient k, the refractive index
n, the imaginary part €, and the real part of the dielectric
function be calculated from the transmittance and the absor-
bance (Fig. 5b, c, d).

Fundamental optical constants were derived from the
transmittance spectra using standard relations involving
film thickness [44]. The extinction coefficient (k), represent-
ing light attenuation, was evaluated for normal incidence
[24], while the refractive index (n) was determined as a
function of wavelength [45]. Consequently, the real ¢; and
imaginary ¢, parts of the complex dielectric function were
established [24]. As depicted in Figs. 5b and Sc, both the
dielectric function and refractive index exhibit an ascending
trend with photon energy in the visible range (2-3.5 eV),
Above this range, both values decrease as the photon energy
further increases, which can be attributed to the growth in
crystallite size.

The absorption coefficient exhibits an exponential
increase with photon energy below the optical band gap Eg,
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Fig. 5 (a) Optical transmission spectra, (b) absorption coefficient, (c)
complex refractive index (d) dielectric function of NiO (0.4 M, 0.6 M,
and 0.8 M) and CNO, (0.8 M, Cu 6.25%) thin films. Inset in (a) dem-

Table 2 Optical criterion of pure NiO and CNO cubic phases
(x=6.25%)

Molarity (M)  Eg (eV) Ed(eV) E,(eV) &y (ny) Eu (eV)
0.4 3.622 3.002  4.641 1.64 (1.28) 0.571
0.6 3.587 3.109 4619 1.67(1.29) 0.787
0.8 Pure 3576 4966  5.688 1.87(1.36) 0.814
0.8(x=6.25%) 3.560  5.443 5.858  1.92(1.38) 0.816

a behavior that is characteristic of the so-called Urbach
tail associated with disorder-induced localized states in
the band-gap region. This exponential absorption edge
leads to a slight effective narrowing of Eg between the
valence (Ev) and conduction (Ec) bands. The corresponding
Urbach energy Eu, which quantifies the width of the band
tail and thus the degree of structural disorder, is obtained
from the linear part of the In(a)—photon-energy plot, as
shown in the inset of Fig. 5d [46, 47]. The extracted values
of Eg and Eu as a function of precursor molarity are sum-
marized in Table 2, and they are consistent with previously
reported data for NiO thin films [31].

® =

4
3x10* 08 M

——0.8 M :6.25% C

E (eV)
d —04M
6 (d) —06M
—08M
——0.8 M :6.25% Cu
c 4
9 &1
k7]
c 2
>
"; 0.3
T @
o
D o2
2
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0.1 €,
0.0 T T T
2.0 2.5 3.0 3.5 4.0
E (eV)

onstrates (ahv)? versus hv and Eg. Inset in (c) represents 1/(n’—1) ver-
sus E2. Insect in (b) denotes In(a) versus E

Figures 5b and ¢ depict the dependence of the optical
parameters a, k, n, €;, and €, on photon energy E=/hv. In the
sub-band-gap region (E<E,), the dispersion of the refractive
index was analyzed using the Wemple—DiDomenico single-
oscillator formalism, expressed by Eq. (3), which is widely
employed to model the energy dependence of # in dielectric
materials [48]. In this approach, a linear fit of (n*>—1)"! ver-
sus E, (inset of Fig. 5c) allows the determination of the
static refractive index n, as E approaches 0, together with
the oscillator energy E,, the dispersion energy Ed, and the
static dielectric constant &,=(n,)* for NiO and CNO thin
films (Table 2). Here, the intercept of the fitted line is related
to the ratio £0/Ed, while the slope is proportional to—1/
(EOEd) [48].

The a coefficient remains unchanged with increasing £
across all films up to the edge of optical absorption). Beyond
this point, the absorption coefficient rises sharply and shifts
towards lower energy values with varying molarities, sug-
gesting a reduction in £,. The refractive index increases with
energy in the visible light spectrum and shows sensitivity

@ Springer



Journal of Solid State Electrochemistry

(0.4 M
0.6 M
0.8 M
0.8 M :6.25% Cu

— "\

oy

N
1631 1506

Transmittance %

"/
2920 2320

770
846 451

T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
Wavelength (cm™)

Fig.6 FTIR scales of pure NiO and CNO fine films (0.4 M, 0.6 M,0.8
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to changes in precursor concentration. Furthermore, n,
increases with molarity, likely due to a reduction in the den-
sity of the film induced by the increase in crystallite size
(Table 2). These results are consistent with those related by
other investigators for pure NiO [45]. Moreover, the dielec-
tric function exhibits a similar trend to the refractive index
from which it has been derived (Fig. 5b) whereas the optical
band gap and disorder vary inversely.

Figure 6 illustrates the FTIR spectroscopy results, offer-
ing valuable understanding into the structural and chemical
properties of NiO thin films at varying molarities (0.4 M, 0.6
M, 0.8 M) and CNO (0.8 M with 6.25% Cu) thin films. The
characteristic Ni—O vibrational bond was observed around
451 cm™!, corresponding to Ni—O stretching modes, confirm-
ing the successful formation of the oxide structure [49]. The
band near 451 cm! may indicate Cu—O vibrations, though
it overlaps with Ni-O modes. Additionally, residual organ-
ics indicated by peaks at 1506 and 2920 cm™! correspond to
O-H stretching vibrations [44]. The bands at 1631 cm™! and
2320 cm™! are attributed to chemically adsorbed CO, and
H-O-H bending vibrations on NiO nanoparticle surfaces,
indicating strong interactions between the thin films and
atmospheric water and CO, [49].

DFT + U computations

The configuration in which Cu atoms has been positioned at
a close distance across the O atom corresponds to the most

stable (ground) state [50]. The stable configuration will fur-
ther serve as a basis for analyzing the influence of Hubbard
U values on the electronic structure [51]. Moreover, the
Hubbard correction significantly enhances the computed E,,.

The lattice constants (e=b=c) are slightly reduced after
Cu doping (Table 3) and agree well with the experimental
values (0.8 M NiO and 6.25% CNO) within a relative error
of 1.08% for a=b=c (Table 2). The bond length is slightly
influenced by Cu doping, attributed to the corresponding
ionic sizes of Ni and Cu.

The band gap theoretical results (3.55 eV for x=6.25%
and 3.57 eV for x=0) show strong agreement with the
experimental values (0.8 M; NiO and CNO), with a maxi-
mum relative deviation of only 0.28%. An indirect band gap
is observed for both NiO and CNO (Fig. 7 middle). Cu dop-
ing causes a slight narrowing of the band gap, with the top
of the valence band primarily originating from Cu 3 d states
(Fig. 7 right), a trend also reported in previous studies [18,
52].

The partial density of O 2s, O 2p, Ni 3s, Ni 3d, Cu 3 s
and Cu 3d, spining up and down states (PDOS) for NiO and
CNO are plotted (Fig. 7 left). The band states of valence,
extending down to —10 eV, with a narrower band appear-
ing at —7.8 eV to —9.2 eV for the CNO and pure structures,
respectively, primarily include a strong mixture of O 2p and
Ni 3d states, with some assistance from Cu3d states in the
case of CNO. The downward change of the CB, dominated
by Ni4ds and Cu3d states, leads to the decrease of Eg after
Cu doping. Cu3d states are spread around Fermi level hav-
ing zero net spin causing the antiferromagnetic behavior of
CNO. Cu doping induces a moment of approximately 1 5/
Cu with a negligible contribution from the oxygen atom [18,
52].

The charge density of slices (001) including Ni, O and Cu
atoms for NiO (Fig. 8a) and CNO (Fig. 8b) are demonstrated.
The yellow color signifies charge accumulation around the
oxygen (O) atoms, while the green and blue colors repre-
sent regions of charge depletion. The red color represents
charge loss in the interstitial region. High electronegativ-
ity is associated with an tendency to attract more electrons,
(Ni (1.91), Cu (1.8), and O (3.5)), which are in agreement
with the average Mulliken atomic and the bond populations
(Table 3). The degree of covalent and ionic bonding in pure
and CNO is reflected by the variation between the formal
ionic charge and the effective valence charge. Covalency
rises with Cu doping, leading to more covalent Cu—O bonds

Table 3 Lattice constants, average Mulliken bond and atomic populations, length of bond and effective valence of NiO and Cu-NiO structures

(x=6.25%)

x (%) Atomic Population (e) Effective valence (e) Bond Population (e) Bond length (A) a=b=c(A)
Ni Cu 0 Ni Cu Ni-O Cu—0 Ni-O Cu—0

0 1.04 - —1.040 0.96 - 0.500 - 2.150 - 4.039

6.25 1.023 0.881 -1.014 0.977 1.119 0.205 0.200 2.119 2.107 4228
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Fig. 8 Electron charge density
distribution of (001) surface con-
sidering (a) NiO and (b) CNO rock
salt structures

in comparison with Ni—O bonds. The charge density further
supports this increase in covalency with Cu doping.

Figure 9a presents the real and imaginary parts of the
complex dielectric function for CNO and NiO. The peak
around~8 eV (Im. Cu 0%) originates from the electron

~ 35231

~ 2644el

~ 1.764e1

~ 8853

~ 6.254e-2

excitation from the O-2p state to the Ni-3s state. Similarly,the
peak around~9 eV (Im. Cu 6.25%) arises from electron
excitation from the O-2p state to the Cu-3d state, and its
intensity continues unchanged after Cu doping owing to the
substitution of Ni by Cu. The peaks at~12 eV (Im. Cu 0%)

@ Springer
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and~ 13 eV (Im. Cu 6.25%) are attributed to electron excita-
tion from Ni-3d state (near VB) to O-2p state (near CB). The
transition from Ni-3d state to O-2 s state results in strong
peaks at approximately 16 eV (Im. Cu 0%) and~18 eV
(Im. Cu 6.25%), which increases after doping owing to the
decrease of Ni-3d responsible for this shift. A slight red shift
in the dielectric function is noticed, referred to the small
E, narrowing for CNO. The constant ¢ (0) exhibits a small
change with x: g (0)=2.95 for x=0% and &; (0)=2.90 for
x=6.25%, which is consistent with experimental results
(Table 2). The complex conductivity function, absorption
coefficient, complex refractive index, optical reflectivity

@ Springer

and energy-loss function are also derived (Fig. 9b-f). The
absorption shows two strong peaks at~19 and~24 eV. The
energy loss function peaks at~29.0 eV for NiO pure and
31 eV for CNO corresponds to sharp decrease in reflectivity.
The refractive index decreases slightly from 1.70 to 1.72 at
low photon energies after Cu doping, this behavior deviates
slightly from experimental observations (Table 2) owing to
experimental conditions not taken into account (thickness
and surface morphology) in the DFT+LDA+U computa-
tions. Additionally, both the refractive index and the absorp-
tion coefficient exhibit trends compatible with experimental
outcomes within the range of visible energy.
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Electrochemical measurement

The comprehensive electrochemical analysis of the CNO/
ITO working electrode highlights its strong potential for
high-performance supercapacitor applications. For pure and
lightly doped metal oxide semiconductors (i.e., non-degen-
erate), such as NiO with low Cu doping (<6.25%), the stan-
dard Mott—Schottky (MS) equation remains valid and can
be expressed as [53]:

1 2 KgT

where ¢ is the vacuum permittivity, C's. is the space-charge
region capacitance, k is the static dielectric constant of the
thin film (k = 2.9),A is the geometric surface area of the
CNO electrode (A = 1em?) and N, is the apparent doping
density, Ey; is the flat-band potential. Figure 10a exhib-
its the Mott-Schottky plot for CNO thin film prepared on
ITO substrate as working electrode. The positive slope of
C-.2 vs E plot indicates the CNO is n-type semiconductor.
This finding is consistent with previous studies [54, 55],
but contrasts with the negative slope reported for NiO thin
films in other works [53]. The Es;, of the CNO electrode is

7 = vz B - =) (M
CZ.  ecokNyA? approximately 0.65 V versus Ag/AgCl reference electrode,
Fig. 10 L(a) Mott-Schottky plot 0.010
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prepared on ITO substrate at 100 50 mVis
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(b) CV plots of CNO/ITO working - 0.005 [——200 mv/s
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determined from the intercept of the linear region of the
Mott-Schottky plot on the potential axis (E) corrected by
the thermal voltage term (K pT/e). The N,. was deter-
mined from the slope of the MS plot, yielding a value of 7.
471x10% cm™. This result is close to the theoretical value
(32.89x10% cm™) and falls slightly outside the typical
range reported for CNO in the literature [54, 56, 57]. This
high carrier concentration suggests enhanced electronic
conductivity and supports efficient charge transport at the
electrode—electrolyte interface.

Figure 10b displays the CV curves of CNO/ITO work-
ing electrode recorded at scan rates of 50, 100, 150, 200
and 250 mVs ! in the potential range of 0.327-0.395 V.
The CV plots exhibit quasi-rectangular shapes across
50-250 mVs! scan rates, which are characteristic of
ideal electrical double-layer capacitor (EDLC) behavior,
indicating that the charge storage mechanism is predomi-
nantly capacitive. As the scan rate increases, the anodic
and cathodic currents rise proportionally, indicating good
rate capability and a surface-controlled charge storage
mechanism.

The nearly symmetric and undistorted CV curves at all
scan rates suggest high reversibility, fast charge—discharge
response, and efficient ion transport. These results confirm
the excellent electrochemical stability of the CNO/ITO
electrode, making it a promising candidate for supercapaci-
tor applications.

The calculated specific capacitance reaches a maximum
of 37.8 Fg ' at 50 mV s ™!, decreases gradually to 30.01 F g
at 250 mV s !, retaining approximately 79% of the initial
capacitance and suggests room for improvement through
morphological or compositional optimization. This perfor-
mance, though lower than nanostructured NiO analogues,
provides a baseline for further development of doped metal
oxide electrodes.

The galvanostatic charge—discharge (GCD) curve of the
CNO/TO electrode (Fig. 10d) exhibits a nearly ideal tri-
angular shape, indicative of good capacitive behavior. At
a low current density of 0.25 A g !, the electrode demon-
strates a high energy efficiency of 88%, calculated as the
ratio of discharge to charge capacity and slight drops to
approximately 80% at 2.0 A g !, likely due to increased
internal resistance and limited ion diffusion at higher
charge—discharge rates.

The calculated Cs values increase with the applied cur-
rent density from 4.85 F g ' at 0.25A g ' to 38.83 F g ! at
2 A g'!, confirming good capacitive behavior and efficient
charge storage. Such behavior indicates better utilization of
active sites at higher current densities and possibly enhanced
surface wettability or improved ion diffusion dynamics
within the electrode material, highlighting the excellent
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electrochemical performance of the CNO/ITO system for
supercapacitor applications. Similar findings have been
stated in additional research: a capacitance of 59 F g™! was
achieved by the CNO composite electrode at a scan rate of
50 mVs ' [58], NiO nanosheets exhibited specific capaci-
tance values that increased from 28 to 42 F g~! when tested
at higher scanning rates [59] and from 182.44 F g”! for NiO
to 436.95 F g ! for 10 at% Cu NiO thin films [56].

Figure 1la—c illustrates the EIS and cycling stability
analyses of Cu-doped NiO thin films with different depos-
ited layers (C3 and C5, corresponding to 10 and 15 lay-
ers, respectively). The Nyquist plots in Fig. 11a exhibit a
single semicircle at high frequencies, characteristic of the
charge-transfer resistance (Rct). The reduced semicircle
diameter for the C5 sample indicates a lower Rct, imply-
ing faster electron transport and improved interface con-
tact between the electrode and electrolyte due to enhanced
Cu incorporation and increased film thickness. This figure
exhibits the same characteristic shape previously described
by Yadav et al. [60].

The cyclic voltammetry (CV) profiles in Figs. 11b,c
reveal high reversibility and excellent electrochemical sta-
bility over 100 continuous cycles in 0.1 M Na,SO, elec-
trolyte. The nearly overlapping CV curves, along with the
negligible decrease in current density, demonstrate the
strong adhesion and mechanical integrity of the films. The
CS5 electrode retains a more symmetric CV shape and higher
current response compared to C3, suggesting enhanced
redox activity and improved ion diffusion pathways. Over-
all, the EIS and cycling results confirm that increasing the
number of deposited layers (C5) significantly improves the
charge transport kinetics and long-term durability of Cu-
doped NiO electrodes, positioning them as promising can-
didates for high-performance supercapacitor applications.
This behavior is consistent with the findings of El Nady [61]
and Chan [62].

Table 4 provides a comparison between the present
study and key literature reports on NiO-based electrodes.
While most previous works relied on nanopowder syn-
thesis routes such as spray deposition [63], polymeriza-
tion [64], hydrothermal processing [65], or chemical
precipitation [66, 67], our study focuses on spin-coated
thin films whose properties are tuned through precursor
molarity. Although earlier reports report specific capaci-
tances between 24 and 52 F/g depending on the method
and dopant type, our Cu-NiO thin film demonstrates
competitive electrochemical performance under compa-
rable conditions. This confirms that precursor molarity is
a critical parameter controlling the morphology, charge-
transfer behavior, and overall electrochemical response of
Cu-doped NiO systems.
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Fig. 11 (a) is Nyquist plots of Cu-
doped NiO thin films (C3 and C5)
fitted with the equivalent circuit
model (inset), showing reduced
charge-transfer resistance (Rct) for
C3 and C5. Applied potential of
—0.5 Vvs. Ag/AgCl witha 10 mV
amplitude, over a frequency range
ranging from 0.01 Hz to 100 kHz.
(b) and (c¢) are CV curves of C5
and C3 electrodes, respectively,
recorded over 100 consecutive
cycles in 0.1 M Na,SO,
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Table 4 Comparison of synthesis methods, electrolyte, and capaci-
tance of NiO -based nanoparticles

Doping  Synthesis Specific capaci- Electrolyte ~ Ref
element  method tance (F/g)
Pure/Zr  Spray 24 (at 50 mV/s 1M KOH [63]
deposition from CV)
Pure Chemical 41.03 (at 1 A/g  2M Na.SOs [64]
polymerization from GCD)
Pure Hydrothermal 30 (at 50mV/s IM Na.SOs  [65]
from CV)
Cu Chemical 52 (atS0mV/s 02M [66]
precipitation from CV) TBACh
Mn Chemical 39 (at S0 mV/s  2M Na.SOs [67]
precipitation from CV)
Cu Sol gel 37.8 (at 50 mV/s 0.1M This
from CV( Na2SO4 Work
Conclusion

Experimental and theoretical examinations were conducted
on NiO and CNO thin films. Here are some main high-
lighted points:

i.  All samples demonstrated a cubic rock-salt phase with
a predominant (200) orientation. Increasing Ni molar-
ity notably affected the crystallite size, lattice constant
and grain size. Cu doping smoothed the surface. The
transparency and the energy band gap decreased with
increasing molarity and Cu doping. FTIR analysis con-
firmed successful NiO formation.

ii. GGA+U calculations reveal that Cu doping narrows
the band gap, aligning well with experimental results.
Antiferromagnetic ground states with stable Cu impuri-
ties emerge. Cu 3d states appear near the Fermi level.
Cu—O0 and Ni—O bonds retain mixed bonding. Dielectric
peaks shift slightly; refractive index shows minor Cu
sensitivity.

iii. The CNO/ITO electrode exhibited n-type behavior with
a flat-band potential of —0.65 V and a donor density of
7. 471x10% ¢cm=. CV and GCD analyses confirmed
excellent capacitive behavior, high reversibility, and
energy efficiency up to 88%. The specific capacitance
reached 37.8 F/g at 50 mVs ! (CV) and 38.83 F g ! at
2 A g! (GCD), highlighting efficient charge storage and
good rate capability, making the CNO/ITO system a
promising candidate for supercapacitor applications.

iv. EIS and cycling stability analyses confirmed that opti-
mized Cu doping and increased layer number mark-
edly reduced charge-transfer resistance and enhanced
durability. The thicker sample exhibited the lowest Rct,
highest current response, and superior cycling stability,
confirming its potential as an efficient and durable elec-
trode for supercapacitor applications.

@ Springer

Cu-doped NiO thin films exhibit improved surface uni-
formity, reduced band gap, and enhanced capacitance, as
demonstrated through experimental investigations and
DFT+GGA+U calculations. The results highlight the
potential of CNO/ITO films for supercapacitor applications,
suggesting future research should focus on optimizing dop-
ing levels and advancing device integration.

Statement on the use of Al tools:

The manuscript was entirely written by the authors. Al-
based tools (ChatGPT) were used only for language refine-
ment and grammar checking, without generating scientific
content.
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