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Résumé

Les systemes d'ordre fractionnaire suscitent un intérét croissant dans divers domaines
des sciences appliquées et de l’ingénierie, en raison de leur capacité a modéliser des
phénoménes complexes avec effets de mémoire ou comportements intermediaires entre
dynamique inertielle et visqueuse. Ces systémes sont décrits par des équations différentielles
fractionnaires, et leur représentation fréquentielle conduit généralement a des fonctions de
transfert irrationnelles, rendant leur analyse théorique et leur mise en ceuvre directe
particulierement délicates.

Face a l'absence de solutions analytiques exactes, [’utilisation de techniques
numériques et d’outils d’approximation devient incontournable. Ainsi, dans ce mémoire,
nous nous sommes intéressés aux méthodes de résolution, d’implémentation analogique et
d’analyse des systémes d’ordre fractionnaire, en nous appuyant sur des approximations
rationnelles des fonctions de transfert irrationnelles correspondantes.

Nous avons procédé a I’extraction et a ’analyse des caractéristiques fréquentielles et
temporelles de ces systemes, afin d’évaluer la précision et la pertinence des méthodes
¢tudiées. Des exemples illustratifs ont été développés pour démontrer D’efficacité des
approches retenues. Les résultats obtenus a travers les simulations se sont révélés
satisfaisants, et ont éte discutés en détail puis compareés a d'autres méthodes récentes issues de
la littérature spécialisee
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INTRODUCTION GENERALE

Les systémes dynamiques d’ordre fractionnaire constituent une extension naturelle
des systemes classiques a ordre entier. En remplacant les dérivées entiéres par des dérivées
d’ordre réel ou fractionnaire, ces systémes offrent un cadre mathématique plus flexible,
capable de modéliser avec réalisme des phénomeénes complexes, notamment ceux présentant
des effets de mémoire, d’hystérésis ou de diffusion anormale. De nombreuses applications
concretes existent dans les domaines électrochimiques, biologiques, thermiques ou
mécaniques.

Cependant, la mise en ceuvre des opérateurs fractionnaires dans un cadre de
simulation ou de régulation souleve une difficulté importante : leur nature irrationnelle rend
leur traitement direct impossible avec les outils classiques d’automatique. Pour surmonter
cela, plusieurs méthodes d’approximation ont été développées afin de représenter ces
opérateurs sous forme de fonctions de transfert rationnelles, compatibles avec les
environnements de simulation et de commande.

Dans ce travail, nous nous concentrons sur 1I’étude comparative de deux méthodes
d’approximation particuli¢rement connues : la méthode d’Oustaloup et la méthode de
Matsuda. Contrairement a certaines approches qui en explorent plusieurs, nous avons choisi
de nous focaliser uniquement sur ces deux techniques afin d’en analyser plus en profondeur

les avantages, les limitations, et les comportements respectifs.

Le contenu de ce mémoire est structuré comme suit :

e Le premier chapitre introduit les notions fondamentales du calcul fractionnaire, ainsi
que les propriétés mathématiques associées aux dérivées et intégrales d’ordre non
entier.

e Le deuxieme chapitre est dédié a la présentation des méthodes d’approximation , en
mettant en évidence leurs principes de fonctionnement, leurs formulations
mathématiques, ainsi que leurs domaines d’application.

e Le troisieme chapitre regroupe les résultats issus des simulations numériques. Nous
y avons appliqué les deux méthodes sur des opérateurs d’ordre fractionnaire choisis,
analysé leurs réponses fréequentielles (diagrammes de Bode) et temporelles (réponses

indicielle), puis comparé leurs performances selon divers criteres dynamigques.



Enfin, une conclusion générale résume les résultats obtenus, met en lumiere les points forts

et les limites de chaque méthode, et propose quelques pistes pour des travaux futurs



CHAPITERE |

Theorie sur les systemes fractionnaire



I.1. Introduction :
Les systémes d’ordre fractionnaire constituent un domaine de recherche en pleine expansion

dans les mathématiques appliquées, la physique et I’ingénierie. Ces systémes généralisent les
modéles classiques basés sur des dérivées et intégrales d’ordre entier, en introduisant la
notion de dérivation et d’intégration d’ordre non entier (fractionnaire). Ce concept permet de
mieux modéliser des phénomenes complexes présentant des comportements non locaux, des

effets de mémoire ou des propriétés viscoélastiques.

Un systeme d’ordre fractionnaire se caractérise par des équations différentielles ou I’ordre de
dérivation ou d’intégration n’est pas nécessairement un entier, mais peut étre un réel, voire un
nombre complexe. L’ordre fractionnaire représente ainsi une généralisation naturelle de la
notion classique de dérivée ou d’intégrale. Ces systémes sont particulicrement utiles pour
modéliser des phénoménes a mémoire ou des processus non markoviens, c’est-a-dire dont

I’évolution dépend de I’ensemble des états passés .

Dans le domaine de I’automatique, le calcul fractionnaire est utilisé pour la modélisation,
I’identification et la commande des systemes. Des conférences internationales prestigieuses,
telles que le CDC (Conference on Decision and Control) ou I'IFAC (International Federation
of Automatic Control), organisent régulierement des sessions spéciales consacrées a la
dérivation non entiére et a ses nombreuses applications. Depuis 2004, un workshop biennal

spécifiqguement dédié au calcul fractionnaire et a ses applications a également vu le jour

L’objectif de ce chapitre est de présenter certaines bases théoriques des opérateurs d’ordre
fractionnaire, nécessaires a la compréhension et au développement des chapitres suivants.
Nous introduirons les principales définitions, propriétés et outils mathématiques

fondamentaux associés a ces opérateurs.



1.2 OutiLs mathématiques de base

1.2.1 Calcul fractionnaire
Le calcul fractionnaire est le champ de I’analyse mathématique et d’application des

intégrales et des dérivées d’ordre arbitraire. Le calcul fractionnaire peut étre considéré
comme un sujet ancien et encore nouveau. Ces derniéres années 1’intérét considérable pour le
calcul fractionnaire a été stimulé par son application dans les différents domaines de la
physique et de I’ingénierie. La représentation mathématique des systémes fractionnaires dans
le domaine temporel et fréquentiel correspond a des équations différentielles a exploiter. Vu
I’absence des méthodes mathématiques, les systémes dynamiques d’ordre fractionnaire
étaient jusque-la étudiés de facon marginale seulement, que ce soit en théorie ou en
application [1], [2]. Pour des raisons d’analyse, de synthése, et de simulation de tels
systemes, 1’utilisation des fonctions rationnelles pour I’approximation s’avere d’une grande
importance. Alors pour analyser et concevoir les systemes de commande d’ordre

fractionnaire il faut les approximer par des fonctions rationnelles [3].

1.2.2 Fonctions utilisées dans le calcul fractionnaire
Dans cette section, nous présenterons deux fonctions largement utilisées qui fournissent

généralement des solutions aux problemes du calcul fractionnaire : la fonction Gamma
d'Euler et la fonction de Mittag-Leffler.

La Fonction Gamma (I)

La fonction Gamma est une fonction mathématique fondamentale, principalement utilisée
pour étendre la notion de la factorielle aux réels et aux nombres complexes. Elle joue un role
important dans de nombreux domaines des mathématiques et de la physique, en particulier

dans I'analyse complexe, la théorie des probabilités, et les équations différentielles [4]
I'(a) = fooo y*leVdy,a >0 (1. 1)
A partir de I'expression (I.1), on peut déduire que :
r)=J, evdy=1 (1.2)

L'intégration par parties de I'expression (I.1), conduit a la formule de récurrence suivante, qui

est une propriété importante de la fonction Gamma :

Ma+1) =, y*eVdy=[-e'y™ 7 +af, y*le?dy=al(a)

(1.3)
[(a+1) =al(a)



Et poura € Nona: [(a+1)=al (1. 4)

Puisque I'(1) = 1 dans (1.2), et en utilisant la formule (1.3) pour « = 1,2,3, ... ... on obtient :
r2) =1r@) = 1!

I'(3) =2r(2) = 2!
I'(4) =3r(3) = 3!

[m+1)=nI'(n) =n(n—-1)! =n! (1.5)

Dans ce qui suit on donne quelques valeurs particuliéres de I'(a) :

Poura=%,l“(1) =+

2
Pour @ = n + % avec n un entier positif I (n + %) = @t o

22np|

La fonction de Mittag-Leffler

La fonction de Mittag-Leffler est une fonction complexe qui généralise plusieurs fonctions
spéciales importantes en analyse mathematique. Elle a été introduite par l'analyste suédois
Gosta Mittag-Leffler. La fonction est souvent utilisée dans des contextes liés aux équations

différentielles fractionnaires et a lI'analyse des systemes dynamiques [5]

La fonction de Mittag-Leffler, notée , est définie par la série infinie suivante :

k
Eap(2) = Zio tuapy @ > 06 >0 (1. 6)

Pour g =1, on retrouve la fonction de Mittag-Leffler a un seul parametre, introduite par
Mittag-Leffler en 1903 :

k
Ea,1(2) = Zilo trary @ > 0 (1.7
Pour a = 1, dans la fonction (1.7), on peut déduire la fonction exponentielle comme suit :
[*] K
E11(2) = Xkeo T+1) (1. 8)

Puisque k € N et d'apres la propriété de la fonction Gamma (1.4) donc :

T'(k+1) =Kk (1.9)



En remplacant dans (1.8), on obtient I'expression de développement en séries de I'exponentiel

K
E11(2) = Xkso = ek (I. 10)

Pour les équations différentielles d'ordre non entier, la fonction de Mittag-Leffler joue le

méme role que la fonction exponentielle.

I.2. 3 Transformation de Laplace et produit de convolution :

La transformée de Laplace est un outil mathématique utilisé dans I'analyse des systemes, et
dans la résolution de certains problemes complexes dans le domaine temporel tels que, les

produits de convolution et les équations différentielles.

La transformée de Laplace d'une fonction est définie comme suit :

[ee)

L{If(x)} = F(s) = fo e SH(t)dt (I.11)
La transformée de Laplace de la i®™ dérivée de f(t); est donnée par: [6]
L{EO (0} = s'F(s) — Tidy sKFE*D(0) (I.12)

Ou

£O(0) représente les conditions initiales.

Le produit de convolution est un opérateur mathématique et un produit commutatif, noté

(f * g), qui associe aux deux fonctions f et g l'intégrale suivante :

f(t) * g(t) = [ f(t — Dgt)dt = g(t) * £(t) (1. 13)

Cette intégrale étant difficile a résoudre dans le domaine temporel, il devient préférable
d'utiliser sa transformée de Laplace qui est exprimée par le produit des deux transformées de

Laplace des fonctions f et g

L) * g0} = F()G(s) (1. 14)

1.2.4 Définitions fondamentales
Il existe plusieurs définitions mathématiques pour l'intégration et la dérivation d'ordre

fractionnaire. Parmi les plus notables, on peut mentionner les trois suivantes :

\ a) Définition de Grunwald-Letnikov (G-L)

10



Cette définition est peut considere comme une généralisation de la dérivée classique d'une

fonction f(t) d'ordre n € R qui prend la forme suivante :

D(t) = limh™ %7, (=1)* (}) £ (¢~ jh) (1.15)
Avec :
(111) - j!(:ij)! (1.16)

Remplacant le nombre entier npar a € R, on peut réécrire (1.16) comme suit

(4) == (1.17)

JHa=j)!

Maintenant on définit la dérivée d'ordre fractionnaire d'ordre @ de G-L comme suit [7] :
fa .
4D () = lmh~s 35 (1)) (5) fe—jm) (119

Ou h est le pas d'échantillonnage, [x] représente la partie entiére de x et (‘Jl) appelés

coefficient binominaux.

b) Définition de Riemann-Liouville (R-L)
Définition 1 :

Soient C et R les anneaux des nombres complexes et réels respectivement, R (.) Symbolise la

partie réelle d'un nombre complexe.

Soient a € C avec R(a) > 0,t, > R et f une fonction localement intégrable définie sur

[tOJ +oo[
(@) = 1 Jey €= [ f@d@  (1.19)
Définition 2 :

Soient @ € C avec R(a) > 0,n un entier positif, t, € R et f une fonction localement
intégrable définie sur [t,, +oo[. La dérivée d'ordre fractionnaire a de la fonction de f borne

inférieure t, est définie par:

1 d"

auDif () = o am ey €= D" [ f(@ @) (1.20)

11



Ou le nombre entier n esttel que (n — 1) < a < n.

Remarque: pour simplifier I'écriture, on notera dans la suit I* pour I§ et D® pour D§

c) Définition de Caputo

Une autre définition de la dérivée d'ordre fractionnaire est proposée par Caputo comme la

forme suivante [8] :

t f(n)(t_.[)n—a+1
I'(n- a)f ®)

RLDEfF(£) 2 [V=aDnf(t) = dt (1.21)

Oou
n—1<a<nmne€N.

Pour t,, a partir des deux des équations (1.20) et (1.21), on peut trouver les deux relations

suivantes :

REDEF(6) = “DM(E) + Tfh s fO(0)

(1.22), (1.23)
Rpe(FO) Tpzh FOO)S) = Do)

1.2.3 Propriétés des opérateurs d'ordre fractionnaire
Les principales propriétés des dérivées et intégrales d'ordre fractionnaire sont les suivantes

[9]:

Si f(z) est une fonction analytique de z, alors sa dérivée d’ordre fractionnaire D*f(z) est

une fonction analytique de z et

Pour @ =n, ou n est un entier, l'opération D*f(z) donne le méme résultat que la

differentiation classique d'ordre entier n.
Pour a = 0, l'opération D*f(z) est lI'opérateur identité : D°f(z) = f(2)

La différentiation et [lintégration d'ordre fractionnaire sont des opérations
linéaires:  D“f(af(z) + bg(z)) = aD*f(z) + bD%g(2)

La loi additive (propriété du semi groupe) : D*DPf(z) = DED*f(z) = D**Ff(z) est
valable

sous certaines contraintes sur la fonction f(z).

1.2.4 Transformation Laplace des opérateurs d'ordre fractionnaire

a) Intégration fractionnaire

12



La transformée de Laplace de l'opérateur d'intégration non entier défini par (1.6) est donné par
L{IZf(t)}=s"F(s),a >0 (1.24)

Ou : n—-1<a<n

b) Dérivation fractionnaire

Du fait de la non unicité de la définition de la dérivée non entiére, 1’expression de sa
transformée de Laplace n’est pas unique et fait apparaitre des différences dans la maniere de

prendre en compte les conditions initiales [10] [11] [12] [13].

Les différentes définitions de la transformée de Laplace de la dérivation fractionnaires sont

des généralisations de la transformée de Laplace de la dérivée néne entiére donnée par :

LD f(©)} = s"F (s) - Z s{DF T Vr )]
k=0

e Au sens de Riemann-Liouville(R-L)

L{DEf(t)} = s*F(s) — Xis s"{RéDt(“"“” f(t)} (1.25)

to

Les conditions initiales apparaissant dans (1.25) sont données en fonction d"une dérivée

entiere évaluée a l'origine.
e Au sens de Caputo
L{L{DEF (D)} = s%F (s) — Xpzd s@ k=D fk(0), a>0 (1.26)

Les conditions initiales apparaissant dans (1.26) sont données en fonction d"une dérivée

entiére évaluée a l'origine.
e Définition Grunwald-Letnikov(G-L)
L{LEDEf (1))} = s“F (s) (1.27)

Remarque 1 : Les transformées de Laplace des dérivées d'ordre non entier de Riemann
Liouville et de Caputo sont équivalentes siet seulement si le systeme est au repos pour < 0.

Elles se réduisent a

L{LEEDEf (0} = L{LIDEf ()Y} = s*F (s) (1.28)
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Remarque 2 : La transformée de Laplace de la dérivée de Riemann-Liouville est bien
connue. Mais son applicabilité en pratique est limitée a cause de | "absence d" interprétation
physique des conditions initiales.

I. 3 Représentation des systemes d'ordre fractionnaire
Plusieurs représentations peuvent décrire un systeme entier (équation différentielle, équation

de récurrence, représentation d'état, fonction de transfert...), le comportement d'un systéme
d'ordre fractionnaire est le plus souvent décrit par des équations différentielles ou des
fonctions de transfert contenant des opérateurs d'ordre fractionnaire.

Dans cette section nous présentons les trois modes existants de représentation des systemes

non entiers : [14]
Equation différentielle
Fonction de transfert
Représentation d'état

1.3.1 Equation différentielle fractionnaire

Plusieurs systemes dynamiques naturels ont un comportement qui peut étre modeélisé par des
équations différentielles comprenant des derivées d'ordre fractionnaire. Il est préférable
d'utiliser la dérivation de Caputo, car aux conditions initiales, elle ne contient que des
dérivées d’ordre entier, et sa dérivée d'une constante est égale a 0 . Ce qui conduit a une
transformation de Laplace plus simple de (1.42). Un systeme mono-variable (SISO) peut étre

identifié par I'équation différentielle d'ordre fractionnaire suivante : [15] [16]
aoY (t) + Xizq a;DYY (t) = bou(t) + XLy b;DPu(t) (1.29)

Ouu(t) € R et y(t) € R désignent respectivement I'entrée et la sortie du systeme. a;, b; €
Ra;,B; € R*, et les ordres de dérivation sont ordonnés pour des raisons évidentes

d'identifiabilité :
O<a1<a2<"'<an 0<ﬁ0<ﬁl<“'<ﬁm

Comme dans le cas d'une équation différentielle a dérivées entieres, les ordres de dérivation

doivent vérifier la contrainte a,, > f3,, pour que le systeme soit strictement propre.

1.3.2 Fonction de transfert d'ordre fractionnaire
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L'application de la transformée de Laplace a I'équation (1.29), en considérant les conditions

initiales nulles, permet de déduire la fonction de transfert :

_v(s) _ botZy byshi
U(s) ap+XYiL, a;sti

G(s) (1.30)

Ou Y(s) et U(s) sont, respectivement, les transformées de Laplace de y(t) et u(t). Lorsque
les ordres de dérivation a; et f8; sont quelconques le systéme est appelé systeme fractionnaire

généralisé. Dans le cas d'un systeme commensurable, cette fonction de Transfert s'écrit :

_ Y(s) _ bo+XjL, bjs/®
U(s)  ap+Xl, ajsi®’

G(s) 0<a<l1 (1.31)

Par contre dans le cas général du systéeme non entier multi variables, ayant L entrées et Q
sorties, il est décrit par un systéeme d'équations différentielles d'ordre non entier, dont la

matrice de fonction de transfert a pour expression :

G11.(5) GlL:(S)

G(s) = : “ :
GQ1(S) GQL(S)

(1.32)

1.3.3 Représentation d'état d'un systeme d'ordre fractionnaire

Comme dans le cas entier, une représentation d'état non entiére comporte deux équations:

Une équation d'état non entiére dans laquelle le vecteur d'état ne fait plus I'objet d'une

dérivation unitaire mais d'une dérivation d'ordre fractionnaire réel.
Une équation d'observation identique a celle des systemes d'ordre entier.

Elle est ainsi définie par le systeme d'équations :

¥ 2 cxtd 2 ucs 039
Ou:

D@ (x) = [DMX,,D*2X, ...DX,]T (1.34)
Dans lequel :
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u : vecteur des entrées dimension (1 x 1);

x . Vecteur d'état non entier de dimension (n x 1);

y: Vecteur des sorties de dimension (q X 1);

a: L'ordre de dérivation non entiére ;

Les matrice A, B, C, E sont toutes a élément constants.

Dans le cas des systémes commensurables le modele d'état non entiére (1.33) devient :

Dx(t) = Ax(t) + Bu(t)

{ y(0) = Cx(t) + Eu(t) (1:35)
Ou:

D3(x) = D3[xy, Xy ... Xp|T (1.36)

1.3.4 Commandabilité et observabilité des systemes fractionnaires
a) Commandabilite

La définition de la Commandabilité des systemes fractionnaires est la méme que celle des

systémes entiers.

Le systeme non entier d'ordre commensurable de I'équation (L.35) est Commandable si pour
un temps donné t, il existe t; > t, tel que, quelque soient deux états : x(t,) = x, et
x(t;) = x; dans L'espace d'état, il existe une entrée de commande u(t),t € [tot;] qui

permet de transférer I'état x(t) de x, a x, en un temps fini t;.

Le systeme non entier d'ordre commensurable est commandable si le rang de la matrice de

Commandabilité soit égalan .

C = [BABAA?B ... A""1B]

rang(C) = n (1.36)(1.37)

b) Observabilité
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De la méme maniére, la condition d'observabilit¢ des systemes d'ordre non entier
commensurables est établie en utilisant la définition d'observabilité des systémes entiers, et

est donnée par :

Les systemes non entiers d'ordre commensurable de I'équation (1.35) sont observables
pendant l'intervalle de temps [tot,],t; > 0, si n'importe quel état x(t,) peut étre déduit a
partir des observations de la sortie y(t) et de I'entrée u(t) pendant un temps fini t € [tyt,].
Dans ce cas aussi, la condition d'observabilité du systéeme est que le rang de la matrice
d'observabilité soit égal an .
C
CA
A
=] c (1.38)/(1.39)
\CA“ 1/
rang(0)
1.3.5 Stabilité des systéemes fractionnaires
La définition de stabilité au sens BIBO (Bounded Input, Bounded Output), dite aussi stabilité

externe, est donnée par la définition suivante : [16]

Un systeme est dit BIBO stable si et seulement si, a une entrée bornée, correspond une sortie

bornée.

Dans le cas des systémes entiers, la condition de stabilité est que I'équation caractéristique du
systéme n'admet aucune racine a partie réelle positive. Par contre les systemes fractionnaires
ou d'ordre non entier peuvent avoir des racines dans la moitie droite du plan complexe et étre

stable.

Il n'y a en ce moment aucune technique polynomiale pour analyser la stabilité des systemes
d'ordre fractionnaire, telles que le critere de Routh-Hurwitz pour les systemes d'ordre entier.
Jusqu'a maintenant le seul moyen connu, est I'application du principe basé sur les conditions

sur l'argument.
Un systeme d'ordre commensurable ayant pour polynéme caracteristique A(p) de (1.40): avec
A(p) = anp™ + An_1p™ "+ + arp’ + ag

Est stable si et seulement si :

T
|Arg(p;)| = “E'W
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Avec p; la i°™ racine de A(p). Cette condition définit la région (domaine) de stabilité d'un
systeme d'ordre fractionnaire, dans le plan complexe S, représentée dans la figure (1.1)

suivante :

Tmip) Trai'm
o ik im

n Flhg— ';:.'.F'u
L — = —
5]
& Z
Beip
Refph i“._'__ i ré_ )
n
L o Domame stable
2 n — p
! ? Domane instable

I<a<la=1l<<a<?2

Figure I. 1: Domaine de stabilité des systemes d‘ordre fractionnaire dans le plan
complexe

1.4 Conclusion
Ce chapitre a introduit les concepts fondamentaux liés au calcul différentiel et intégral

d’ordre fractionnaire. Il a posé les bases theoriques nécessaires a la compréhension du reste

de notre travail.

Les systéemes a ordre fractionnaire constituent une généralisation puissante des systemes
classiques a ordre entier. En autorisant des dérivées et intégrales d’ordre non entier, ils offrent
une capacité accrue de modélisation de phénomenes complexes, notamment ceux présentant
des effets de mémoire, d’hystérésis ou de diffusion anormale — caractéristiques

fréquemment rencontrées dans les domaines physique, biologique ou économique.

Nous avons présenté les principales définitions des dérivées fractionnaires, telles que celles
de Riemann-Liouville, Caputo et Grinwald-Letnikov, en mettant en évidence leurs
particularités et domaines d’application. Ces notions sont essentielles pour 1’analyse et la

mod¢élisation des systeémes dynamiques d’ordre fractionnaire.

Enfin, nous avons abordé les différents modeles mathématiques permettant de représenter ces
systemes, ainsi que les propriétés fondamentales associées, notamment la stabilité, la

commandabilité et I’observabilité.

18



La compréhension de ces outils théoriques ouvre des perspectives prometteuses en matiere de
conception de lois de commande, d’analyse de stabilit¢ et d’identification de systémes

complexes.
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CHAPITRE II
Méthodes d’ Approximation des Systémes
d’Ordre Fractionnaire
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I1. 1 Introduction :
Au cours des derniéres décennies, les systémes d’ordre fractionnaire ont suscité un intérét

croissant dans divers domaines des sciences appliquées et de 1’ingénierie. Contrairement aux
systémes classiques modélisés par des équations différentielles d’ordre entier, les systémes
fractionnaires intégrent des dérivées d’ordre non entier, offrant ainsi une capacité de
modélisation plus riche et plus fidéle de certains phénoménes physiques complexes [17].
Cependant, en raison de leur formulation mathématique basée sur des fonctions irrationnelles,
ces systémes ont longtemps été écartés des outils classiques d’analyse et de simulation. Ce
n’est que récemment, avec I’évolution des méthodes numériques et le développement d’outils
informatiques adaptés, que les opérateurs fractionnaires ont trouvé une place significative
dans la modélisation des systemes dynamiques, notamment dans le domaine du génie
électrique.

L’une des principales difficultés réside dans le fait que la majorité des logiciels d’analyse
sont congus pour les systémes a ordre entier. Pour surmonter cette limite, il est nécessaire de
recourir a des méthodes d’approximation qui permettent de représenter les opérateurs
d’ordre fractionnaire par des fonctions rationnelles. Ces techniques d’approximation peuvent
étre classées en deux grandes catégories : les méthodes discretes (dans le domaine temporel)
et les méthodes continues (dans le domaine fréquentiel).

Ce travail se propose de présenter un état de 1’art des méthodes d’approximation des systémes
d’ordre fractionnaire, avec une attention particuliére portée aux méthodes analogiques les
plus répandues dans la littérature, notamment celles de Charef et Oustaloup, qui se sont

avérees particulierement efficaces et largement adoptées dans les applications pratigues.
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I1. 2 Approximation des systémes d’ordre fractionnaire :
Dans la littérature scientifique, de nombreuses meéthodes ont été proposées pour

I’approximation des systémes d’ordre non entier. Ces méthodes peuvent étre classées en deux
grandes catégories : les approches dans le domaine fréquentiel, dites analogiques, et celles

dans le domaine temporel, qualifiées de numériques.

I1 .2.1 Approximation numérique des systémes d’ordre fractionnaire :
La principale difficulté liée a ’analyse des systémes d’ordre fractionnaire réside dans leur

simulation dans le domaine temporel. En effet, I’expression analytique de la sortie est
souvent complexe, voire impossible a implémenter directement, ce qui rend nécessaire le
recours a des techniques d’approximation.

Trois grandes approches numériques sont généralement identifiées dans la littérature :
— Le calcul direct de I’expression analytique de la sortie, lorsque cela est possible ;
— L’approximation directe du modéle fractionnaire par un modéle rationnel discret ;
— L’approximation du modéle fractionnaire par un modéle rationnel continu, suivie
d’un processus de discrétisation.

I1.2.1.1 Approximation par calcul de ’expression analytique :

Détaillée dans [17], [18] et [19], la méthode consiste a calculer la sortie du systéme d’ordre
fractionnaire a partir de sa représentation modale qui est donnée par la fonction suivante :

H(s) = ZL ey (11.1)

=1

Ou [=1,2,..., est la multiplicité de la valeur propre Al

La sortie est donnée par la formule suivante :

y(t) = L1 {sn/jlu} * u(t) = hi(t) * u(t) (11.2)

L’expression analytique de la sortie n’est pas simple, puisqu’elle exige le calcul d’une
intégrale compliquée. De plus, elle dépend de la précision utilisée dans le calcul du produit de

convolution de I’entrée et A(t).[20]

11.2.1.2 Approximation par un modéle rationnel discret :

Le principe de cette méthode est de remplacer , dans le modéle non entier, par son
équivalent discret w (z~1) Cette opération donne la fonction de transfert discrete suivante

p1(w(=) " 4t bj(wzm )™
(W(Z_1))na1+...+aL(W(Z_1))naL

H(z) =

(11.3)

Ou w(z™1) peut étre calculé de plusieurs méthodes. Parmi lesquelles on peut citer : Euler,

Tustin, Simpson, et Al Alaoui :
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I Euler (Grunwald) :
n
S”:(%(l—z‘ﬂ) =%(1—nz‘1+@2_2+---) (11.4)

i. Tustin :

S§n = (% i;i:)n = (%)n (1-2nz1+2n%z72+-) (11.5)
iii. Simpson :
sn = (iw)n = () A -4nz +2n@n+3)z72 + ) (11.6)

T 1+4z 14+z72 T

iv. Al Alaoui

n
-1 n n
S" = <£%> = (ﬁ) (1 —Znz 1 4 (—ﬁn + Enz) z %+ ) (I11.7)
7T 1+z 7T 7 49 49
7
L’inconvénient de ces méthodes est que 1’ordre du modéele entier obtenu est élevé, et cela

rend la simulation a temps réel dure a obtenir. [20]
11.2.1.3 Approximation en utilisant un modéle entier continu :

Cette méthode consiste a calculer la sortie d’un systeme d’ordre fractionnaire a partir d’un
modeéle équivalent d’ordre entier, obtenu a 1’aide de techniques d’approximation continue

des opérateurs fractionnaires par des fonctions rationnelles.

En général, ’analyse des systémes fractionnaires se limite a une bande de fréquences
définie, ce qui implique que le modéle entier obtenu doit reproduire fidélement la dynamique
du systeme initial dans cette plage.
Le processus d’approximation suit trois étapes :
e L’opérateur fractionnaire est modélisé dans une plage de fréquences limitée [wA, wB]
e Ce modele est ensuite approximé par un modele entier continu en utilisant une des
méthodes
e Enfin, le modéle entier obtenu est discrétisé a I’aide de méthodes classiques,

permettant ainsi le calcul de la sortie du systeme.

I1.2.2. Approximation analogique des systémes d’ordre fractionnaire :

Dans le cadre de la réalisation et de I'implémentation de correcteurs ou de la simulation de
systtmes d’ordre non entier, il est nécessaire de remplacer les fonctions de transfert
fractionnaires par des modeles entiers. Ces modeles doivent reproduire fidélement le
comportement des fonctions fractionnaires tout en étant plus faciles a manipuler sur le plan

pratique [21].
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Plusieurs méthodes d’approximation permettent d’atteindre cet objectif, en s’appuyant sur
différentes approches, telles que 1’expansion en fractions continues (CFE — Continued
Fraction Expansion), qui offre une convergence rapide pour I’évaluation des fonctions, ou
encore des techniques d’ajustement de courbes.

Dans la section suivante, nous présenterons brievement le principe de certaines de ces
méthodes. Une attention particuliére sera portée aux méthodes de Charef et d’Oustaloup,

largement utilisées dans la littérature pour leur robustesse et leur précision . [9] [22] [23] [24]

11.2.2.1 Méthodes d’approximation en utilisant 1’expansion des fonctions
continues :
1

La méthode générale d’approximation de I’opérateur intégrateur fractionnaire G;(S) = e
en utilisant la CFE, est donnée par les fonctions suivantes :

Gy (S) = —

(1+Ts)™

(11.8)

m
Gi(S) = (1+3) (11.9)
Ou Gy(S) est I’approximation en hautes fréquences, et G;(S) est I’approximation en basses
fréquences. [20]
a) Methode de Carlson :
La méthode proposee par Carlson tirée du processus régulier de Newton utilisé pour
l'approximation itérative de la racine d’ordre a, peut étre considérée comme appartenant a ce

groupe [3]. Cette méthode se base sur I'hypothése suivante :
HE)* - 6s) =0 (11.10)
H(S) = (6(s))" (I1.11)

P 1
En définissan = S.m =§

a chaque itération, partant de la valeur initiale H,(s)=1, une
fonction rationnelle approximée peut étre donnée par

(q-m)(H;_1(5))* +(q+m)G(s)
(s) = H,_ 11.12
Hi(s) = Hias (@-m)(Hi_1(s))*+(@+m)G(s) (11.12)

Le modéle d’approximation est obtenu ensuite, en remplagant chaque opérateur d’ordre

fractionnaire de la fonction de transfert irrationnelle par son approximation rationnelle [28].

b) Meéthode de Matsuda :
La méthode proposée par [3] est basée sur I’approximation de I’opérateur d’ordre
fractionnaire G(s) = s®par une fonction rationnelle  G(s) en identifiant le modéle
d’approximation a partir de son gain. Le gain est calculé en utilisant M fréquences reparties
dans une bande de fréquence [wg, wy] dans laquelle se fait I’approximation. Pour un

ensemble
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de points selectionnés w;,i = 0,1,2 ... M, I’approximation prend la forme :

~ _ S—Wwg S—wWq1 S—Wy _ . S—Wi—1 .
G(s) = ap+ ool = [“0'_ai | M-y (11.13)
Ou
a; = f(@y), fo(@) = G(s), fir1(s) = fis(;)“fal_ (11.14)

Le mod¢le d’approximation est obtenu en remplacant chaque opérateur d’ordre fractionnaire

de la fonction de transfert irrationnelle explicite par son approximation.

11.2.2.2 Approximations utilisant I'ajustement de courbes ou les techniques
d'identification :

En général, il est possible d’utiliser diverses techniques d’identification dans le domaine
fréquentiel pour approximer une fonction irrationnelle par une fonction rationnelle dont la
réponse fréquentielle est aussi proche que possible de celle de la fonction originale.

Cette approximation peut étre obtenue en minimisant une fonction codt définie comme suit :

J = [W(S)|6w)EW)| dw (11.15)
Ou
e W (s)est une fonction de pondération,
o G(w)représente la réponse fréquentielle de la fonction irrationnelle a approximer,
o G(w)est laréponse fréquentielle de la fonction rationnelle choisie pour
I’approximation.
Parmi les méthodes les plus couramment utilisées pour ce type d’approximation, on trouve
les approches proposées par Oustaloup et Charef .
a) La méthode d’Oustaloup:
La Méthode d’Oustaloup permet d’approximer un dérivateur fractionnaire savec (a« € R*)
dans un domaine fréquentiel donné. Elle repose sur une répartition récursive de poles et
zéros reels négatifs, assurant ainsi un comportement a phase minimale [27, 28].
Principe de ’approximation
En pratique, un dérivateur fractionnaire ne peut étre réalisé que sur un intervalle fréquentiel
limité, adapté aux besoins de 1'application considérée. L’approximation est donc restreinte a

une bande de fréquence définie par [w,, w;]avec :

wu = @ o (11.16)
ou :
e wy est la fréquence basse (borne inférieure de la bande),
e wy est la fréquence haute (borne supérieure),

e w, est la fréquence centrale de la bande.
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L’approximation de 1’opérateur s*dans cette bande est donnée par une fonction rationnelle :

1+
F(s)=C-Ti=—n % (11.17)

o

ou:
e 7, sont les z&ros et w; sont les poles avec C un gain de normalisation est 1’ordre de
I’approximation.
La distribution des p6les et des zéros suit une loi géométrique centrée sur w,, a I’aide des

relations suivantes :

wo = a® - wy,zy = a5 - w, (11.18)
Qk1 — ) > 1 (facteur d’échelle) ; Z£ = o > 0 (11.19)
Wy Wi
Le nombre total de pdles et zéros est défini a partir du paramétre N, donné par :
_ log (wp/wp)
N == 00 (D (11.20)

Et on peut également définir :

_ loga
= Yoatam (11.21)

Cette méthode est largement utilisee pour la synthése de controleurs fractionnaires car elle
permet de maintenir une precision acceptable dans la bande de fréquence spécifiée tout en
assurant une mise en ceuvre réalisable par des filtres classiques (formes rationnelles).
b) La Méthode de Charef : Fonction de singularité :

La méthode appelée également ""Méthode de la fonction de singularité™, a été introduite
par Charef et al. [21,22] pour approximer les systémes a comportement fractionnaire a
I’aide de fonctions de transfert rationnelles. Cette méthode repose sur la construction d’un
produit de poles et de zéros réels négatifs, soigneusement répartis, permettant de reproduire
la réponse fréquentielle des opérateurs fractionnaires sur une bande de fréquence définie.
L’approche differe selon le type de fonction a approximer : systemes du premier ou second
ordre et intégrateur , dérivateur.

e Systeme du premier ordre fractionnaire :
Pour un systéme dont la fonction de transfert est d’ordre fractionnaire du premier ordre, elle

s’exprime sous la forme suivante :

1
B
(1+57)

Cette expression correspond a un intégrateur fractionnaire tronqué, ou :

G(s) =

(11.22)

* [ € (0.1) est ’ordre fractionnaire,

*  PT est un parametre de fréquence caractéristique.
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Selon la méthode de la fonction de singularité proposée par Charef et al. [21], cette fonction
peut étre approximée, lorsque N — oo par le rapport de deux produits finis de termes du

premier ordre :

G(s) =——— = lim (1)

I O

(11.23)

Ici, N + 1 représente le nombre total de singularités (pdles et zéros), qui est directement lié
a la largeur de bande fréquentielle sur laquelle I’approximation est valable.

Dans un contexte pratique, cette approximation est tronquée a un nombre fini N,ce qui

donne:
N1+
G(s) = %ﬂ-;}) (11.24)
Les pdles p; et les zéros z; de cette fonction rationnelle sont définis de maniere
logarithmique, comme suit :
pi=(ab) py, i=12.,N (11.25)
zi=(ab)'-a-p,, i=12,..,.N—1 (11.26)

Les paramétres a, b et p, sont calculés a partir de ’ordre fractionnaire 8 et de ’erreur tolérée

€, (exprimée en dB), selon les expressions suivantes :
i _p “p_
po=pr 1028,  q=100G-H, b =106, B = l‘;’gg(—(;;) (11.27)
Cette approche permet d’approximer une pente en magnitude de —20p dB/décade a I’aide
d’une structure composée de pentes élémentaires de :
» —20 dB/décade (liées aux poles),
» 0 dB/décade (liées aux zéros),

formant ainsi une approximation en zig-zag du comportement fréquentiel souhaité.

e Systeme du second ordre fractionnaire :
Un systeme du second ordre fractionnaire permet de modéliser des dynamigques complexes en
introduisant une puissance fractionnaire dans 1’équation classique. La fonction de transfert
s’écrit :
1

(4221

2
wp Wn

G(s) = (11.28)

ou w, est la pulsation propre, ¢ le facteur d’amortissement, et 8 € (0.1)
Selon la valeur de #, deux cas sont distingués :
»Casl: 0<pB<05
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La fonction est réécrite sous forme d’un produit rationnel, avec une approximation des termes
fractionnaires a 1’aide d’une série de pdles et de zéros. Les parametres d’approximation sont
déterminés en fonction d’une bande de fréquence ciblée et d’une erreur tolérée en dB.
»Cas2: 0,5<p8<1
La structure reste similaire mais I’expression rationnelle est adaptée en fonction de . Dans
les deux cas, I’approximation finale est exprimée sous forme d’une fonction rationnelle
paramétrique utilisable pour la simulation et la commande. Les méthodes d’approximation
comme la méthode de Charef sont utilisées pour transformer les puissances fractionnaires
en fonctions rationnelles & poles et zéros réels, assurant ainsi une implémentation numérique
efficace.

e Approximation de I’intégrateur d’ordre fractionnaire :
Cette méthode est efficace et effortless a utiliser dont le yet est d'approximer standard une
fonction rationnelle l'intégrateur non entier. Dans un chief lieu, l'opérateur est modelisé
standard une fonction PPF dans une bande de fréquence d'utilité pratique. Ensuite, cette
derniére est approximée standard une fonction rationnelle en utilisant la méthode de Charef
exposée dans la segment précedente. Donc avec cette méthode on peut atteindre n'importe
quelle précision désirée sur n'importe quelle bande de fréequences . Pour une bande de
fréquences d'utilité pratiqgue donnée [wl wh ], l'opérateur intégrateur présenté peur étre

modélisé standard la fonction de transfert PPF suivante : [21]

G(s) = — (11.29)
<1+(m_c))
En supposant que w € [wl wh],0onaw > wc, alors:

K Kol 1
m

5 = o = Gi(s) (11.30)
(w_c) s s L

Avec K; = 1wc m et wc est la fréquence de coupure obtenue dans le diagramme de Bode a

G(s) =

—3 m dB qui est calculée par :w, = /10[e / 10m] — 1 0ol & est I’erreur maximale permise
entre les pentes de I’intégrateur d’ordre fractionnaire et sa fonction PPF dans une bande
fréquences donnée. Pour représenter la fonction par un modele temps-invariant, on va
I’approximer par la méthode de la fonction de singularité¢ vue dans la section précédente . La
méthode consiste en I’approximation de la pente 8 —20m dB/dec, dans le diagramme de
Bode, par une alternance de pentes a —20 dB/dec et 0 dB/dec. Cette derniere correspond a
une alternance de podles et de zéros sur I’axe réel négatif du plan complexe S.
Py<Zy<Py<Zy<-<Zy_q <Py (I1. 31)

On obtient I’approximation suivante :
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o ()
m — S
(142) =w (7
Obtenue en choisissant y et wmax, qui peut étre fixée a 100 wh, et avec :
Py = w,10Y/20m et Z, = aP, (11. 33)
— S
ki . “ﬁﬂl(“zo(ab)t)

—m =K —
<1+(wic)> “ﬁﬂl(“po(ib)i)

Pour voir la contribution de chaque pdle, on décompose la fonction en somme de fractions

G(S) =

(11. 32)

G(s) = (11.34)

simples (ou résidus). On obtient :

M 14—y .
o) - ) gy (11.35)
M=o <1+P0(ab)i> <1+P0(ab)i)

Avec

[N=1(; (a0
[Mjzo j1(1=(ab)™’)

(11.36)

e Approximation du dérivateur d’ordre fractionnaire :
Pour implémenter des correcteurs d'ordre fractionnaire, la méthode d'approximation de
I'intégrateur a été étendue au dérivateur d'ordre fractionnaire. Dans ce contexte, la fonction de

transfert est modélisée par un zéro a puissance fractionnaire (ZPF), notée : [30]
m
G(s) = Kp (1+ (wi) ) (11.37)

ou Kp = w, et w, est la fréquence de coupure obtenue dans le diagramme de Bode a —3 m

dB, calculée par :

W, = w; - 10Tm — 1 (11.38)
avec € représentant l'erreur maximale permise entre les pentes du dérivateur d'ordre
fractionnaire et sa fonction ZPF dans une bande de fréquences donnée.

Pour représenter cette fonction par un modéle temps-invariant, on utilise la méthode des
singularités, qui consiste a approximer la pente a +20 m dB/décade du diagramme de Bode de
la ZPF par une alternance de pentes a +20 dB/décade et 0 dB/décade. Cette alternance
correspond a une succession de zéros et de p6les sur I'axe réel négatif du plan complexe S

L'approximation obtenue est :
G(s) = Kp T (1 4+ ) T (1 +7) (11.39)

Ou z, = w, - 10z0met les parametres y, w,, ., (fixé a 100 wy,), a, b, et N sont déterminés selon
les relations définies précédemment.

En remplagant p; et z; par leurs expressions respectives, on obtient lI'approximation suivante :
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Gp(s) = Kp ?’=_()1(1+ ° i) ?’:o(l‘l' : i)

zo(ab) Py(ab)

(11.40)

Le calcul des résidus de cette fonction donne la formule :

GD(S) = Gy +Zl oh

its (ab)‘ Py
(11.41)
avec GO == KD et

hi=

j= O_Iil(l (ab)i - (ab)j>

P, (ab)l
(11.42)

Cette méthode permet d'implémenter efficacement des dérivateurs d'ordre fractionnaire dans
des systemes de commande

11.3.Conclusion

La synthése des systetmes d’ordre fractionnaire repose fondamentalement sur leur
approximation par des mode¢les d’ordre entier, afin de faciliter leur implémentation pratigue,
notamment dans les systémes de commande et d’analyse.

Dans ce chapitre, nous avons présenté un apercu théorique des principales méthodes
d’approximation disponibles dans la littérature. Aprés une bréve introduction aux approches
numériques, ’accent a été mis sur les méthodes analogiques, en particulier celles de Charef et
d’Oustaloup.

Ces deux approches ont été décrites en détail, car elles constituent des outils puissants pour

représenter avec précision les intégrateurs et dérivateurs d’ordre fractionnaire sur une bande
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de fréquences spécifiée. Elles permettent ainsi une modélisation efficace et flexible, adaptée
aux besoins des applications reelles.
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CHAPITRE Il
Application des Méthodes d’ Approximation des

Systémes d’Ordre Fractionnaire
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I11. 1 Introduction
Ce chapitre présente des exemples d’application des méthodes d’approximation d’Oustaloup

et Matsuda, les plus courantes dans la littérature. Ces méthodes permettent de représenter un
systéme d’ordre fractionnaire par un systéme d’ordre entier sur une bande de fréquence
limitée. A travers des simulations MATLAB, des intégrateurs et dérivateurs fractionnaires
seront approximés. L’objectif est de vérifier que I’approximation conserve la dynamique du

systeme dans la bande choisie, et de comparer les performances des deux méthodes.

Dans cette section, nous évaluons l’efficacité de cette méthode a travers des exemples

concrets. Deux paramétres essentiels sont pris en compte dans 1’analyse :
= [ordre de la dérivation et d’intégration fractionnaire «,

» et le nombre de poles et zéros utilisés dans I’approximation, noté N (aussi appelé

ordre de troncature).
Pour cela, nous considérons deux cas :
= un cas de faible ordre : N=5.
= et un cas de haute précision : N=20.

L’analyse se fait sur la bande de fréquence [wl, wh] = [0.01,1000].

I11.2 Application de la méthode d’Oustaloup
Comme présenté¢ au chapitre II, la méthode d’Oustaloup est 'une des techniques les plus

répandues pour I’approximation des dérivateurs fractionnaires. Elle consiste a remplacer
I’opérateur S%, défini sur une bande de fréquences, par une fonction de transfert rationnelle a

ordre entier, constituée de poles et de zéros répartis logarithmiguement.

111.2.1 Dérivateur fractionnaire :

La fonction de transfert de dérivateur d’ordre fractionnaire est donnée par
G(s) =s*

Nous considérons trois ordres dérivateurs (a¢ = 0.2; @ = 0.5et @ = 0.7) ; pour I’ordre de

filtre nous considérons deux cas :
= un cas de faible ordre : N=5.

= et un cas de haute précision : N=20.
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L’analyse se fait sur la bande de fréquence [w!l, wh] = [0.01,1000].
* Poura=0.2;G(s) = s

Les modeles approximés de 1’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont :

Ga=02;n=5(5)
_3.981s"5 + 1111s"4 + 2.819e04 s"3 + 7.081e04s"2 + 1.761e04s + 398.1
"~ sM5 + 442354 + 1.779e04 s*3 + 7.081e04 s*2 + 2.791e04s + 1000

Ga=0.2;v=20(5)
3.981s"20 + 6440s"19 + 3.749e06s"18 + 1.021e09s"17 + 1.428el11s"16 +
1.071e13 s15 + 4.402e14 s + 1.003e16s"13 + 1.275e17s"12 +
9.067e17 s*11 + 3.615e18s"*10 + 8.081e18s"9 + 1.013e19s"8 +
7.101e18 s"7 + 2.778e18 s"6 + 6.023e17 s"5 + 7.156el16s"4 +
4.56e15s"3 + 1.493el14s"2 + 2.285el2s + 1.259e10
s"20 + 1815519 + 1.186e06s"18 + 3.622e08s"17 + 5.685e10s"16 +
4.784e12s"15 + 2.206e14 s*14 + 5.641e15s"13 + 8.043el16s"12 +
6.419e17 s*11 + 2.871e18s"10 + 7.202e18s"9 + 1.013e19s"8 +
7.968e18 s"7 + 3.497e18s"6 + 8.507e17 s"5 + 1.134el17 s"4 +
8.109e15s"3 + 2.978e14s"2 + 5.115el12s + 3.162e10

La figure 3.1 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre

fractionnaire @ = 0.2 et de son approximé par la méthode d’Oustaloup.
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Figure I11. 1 Tracé de Bode de G(s) = s%2 et de son approximé par la méthode d’Oustaloup
* Poura=0.5;G(s) = s
Les modeles approximés de I’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont ;

Ga=o05n=5(5)
_31.62s"5 + 6248s"4 + 1.122e055"3 + 1.996e05s"2 + 3.514e04s + 562.3
"5 + 624.8s5"4 + 3.549e04 53 + 1.996e05s"2 + 1.111e05s + 5623

Ga=0.5;n=20(5)

31.62s"20 + 4.692e04 s"19 + 2.506e07 s*18 + 6.258e09s"17 + 8.03e11s"16 +
5.524e13 s"15 + 2.083e15s"14 + 4.353e16s"13 + 5.075e17s"12 +
3.311e18s"11 + 1.211e19s"10 + 2.483e19s"9 + 2.854e19 s"8 +
1.836e19s"7 + 6.587e18s"6 + 1.31e18s"5 + 1.428el7s"4 +

8.346el15s"3 + 2.506e14s"2 + 3.519el12s + 1.778el10
s"20 + 19795719 + 1.409e06 s*18 + 4.693e08 s"17 + 8.03e10s"16 +

1.605e17 s"12 + 1.396e18s"11 + 6.809e18 s"10 + 1.862e19 s"9 + 2.854e19 s"8 +
2.448e19s"7 + 1.171e19s"6 + 3.107e18 s"5 + 4.515e17 s"4 +
3.519e16s"3 + 1.409e15s"2 + 2.639e13s + 1.778ell

La figure 3.2 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre

fractionnaire & = 0.5 et de son approximé par la méthode d’Oustaloup.
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Figure I11. 2Tracé de Bode de G(s) = s%° et de son approximé par la méthode
d’Oustaloup

* Poura=0.7;G(s) =s%

Les mod¢les approximés de 1’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont ;

Ga=0.7,n=5(S)
1259”5 + 1.976e04s"4 + 2.819e05s"3 + 3.982e05s"2 + 5.569e04s + 707.9
~ sM5 + 786.6s5"4 + 5.624e04 5”3 + 3.982e05s"2 + 2.791e05s + 1.778e04

Ga=0.7,n=20(S)
125.9s"20 + 1.763e05s*19 + 8.891e07 s"18 + 2.096e10s"17 + 2.539el2s"16 +
1.649e14s"15 + 5.87e15s"14 + 1.158e17 s"13 + 1.275e18s"12 +
7.852e18s"11 + 2.711e19s*10 + 5.248e19s"9 + 5.694e19s"8 +
3.458e19s"7 + 1.171e19s"6 + 2.199e18s"5 + 2.263el7 s"4 +

1.249e16s"3 + 3.539e14s"2 + 4.692el2s + 2.239e10
s"20 + 2096s*19 + 1.581e06s"18 + 5.578e08s"17 + 1.011el1s"16 +

9.824e12 s"15 + 5.232e14s"14 + 1.545e16 s"13 + 2.544el17 s"12 +
2.344e18s"11 + 1.211e19s"10 + 3.507e19 s"9 + 5.694e19s"8 +
5.174e19s"7 + 2.622e19s"6 + 7.367e18s"5 + 1.134el18s"4 +
9.364e16s"3 + 3.971el15s"2 + 7.877e13s + 5.623ell

La figure 3.3 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre
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fractionnaire @ = 0.7 et de son approximé par la méthode d’Oustaloup.
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Figure 111. 3 Tracé de Bode de G(s) = s%7 et de son approximé par la méthode
d’Oustaloup

Commentaire

Les figures 3.1- 3.3 montrent les réponses en frequence (Amplitudes et phase) des opérateurs
fractionnaire s%2, s%5 et s°7 de ses approximations via la méthode d’Oustaloup pour deux

ordres différents: N =5 et N = 20.

Les résultats montrent que I’augmentation de l'ordre N améliore significativement la
précision de D’approximation, aussi bien en amplitude qu’en phase. En particulier,
I’approximation avec N = 20 reproduit fidelement la réponse exacte sur une large plage de
fréquences. Ces observations confirment que pour des applications de commande exigeantes,
un ordre d’approximation ¢€levé est préférable afin d’assurer une modélisation précise des

opérateurs fractionnaires.

[11.2.2 Intégrateur fractionnaire :

La fonction de transfert de I’intégrateur d’ordre fractionnaire est donnée par

1
G(S) = S_a

Nous considérons trois ordres intégrateurs (¢ = 0.2; @ = 0.5et @ = 0.7) ; pour 'ordre de

filtre nous considérons deux cas :
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= uncas de faible ordre : N=5.

= et un cas de haute précision : N=20.
L’analyse se fait sur la bande de fréquence [w!l, wh] = [0.01,1000].
12

* Poura=0.2;G(s) =

s0.

La figure 3.4 ci-dessous représente le tracé du diagramme de Bode de intégrateur d’ordre

fractionnaire @ = 0.2 et de son approximé par la méthode d’Oustaloup.
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Figure 111. 4Tracé de Bode de G(s) = soiz et de son approximé par la méthode
d’Oustaloup

. Poura=0.5;G(S)=so%

La figure 3.5 ci-dessous représente le tracé du diagramme de Bode de I’intégrateur d’ordre

fractionnaire @ = 0.5 et de son approximé par la méthode d’Oustaloup.
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Approximation par Oustaloup de s05
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Figure I11. 5 :Tracé de Bode de G(s) = sois et de son approximeé par la méthode
d’Oustaloup
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507
La figure 3.6 ci-dessous représente le tracé du diagramme de Bode de I’intégrateur d’ordre

fractionnaire @ = 0.7 et de son approximé par la méthode d’Oustaloup.
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Figure 111. 6 Tracé de Bode de G(s) = 5%7 et de son approximé par la méthode
d’Oustaloup

Commentaire
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Les figures 3.4 & 3.6 montrent les réponses en fréquence (Amplitudes et phase) des opérateurs
fractionnaire s7%2, s7%5 et s7%7 de ses approximations via la méthode d’Oustaloup pour

deux ordres différents: N = 5 et N = 20.

On observe que plus a est petit, plus ’erreur d’approximation, notamment en phase, est
importante. A I’inverse, lorsque a augmente, I’approximation devient plus fidéle, méme avec
un faible ordre. De plus, un ordre N plus élevé améliore la précision globale, surtout aux
basses et hautes fréquences. On en conclut que la précision de 1’approximation dépend
fortement de la valeur de a et de 'ordre N, et qu’il est préférable d’utiliser un ordre élevé,

notamment pour les petites valeurs de a.

[11. 3 Application de la méthode de Matsuda
Comme présenté au chapitre 1, La méthode de Matsuda permet d’approximer une dérivation

fractionnaire par une fonction rationnelle a I’aide de poles distribués logarithmiquement, dans
une plage fréquentielle définie. Elle est particuliéerement utile pour les simulations
numeériques, car elle produit des modeles d’ordre entier compatibles avec les outils classiques

d’analyse et de commande.

111.3.1 Dérivateur fractionnaire :

La fonction de transfert de dérivateur d’ordre fractionnaire est donnée par

G(s) =s*

Nous considérons trois ordres dérivateurs (o« = 0.2; a = 0.5et @ = 0.7) ; pour Iordre de

filtre nous considérons deux cas :
= un cas de faible ordre : N=5.
= et un cas de haute précision : N=20.
L’analyse se fait sur la bande de fréquence [wl, wh] = [0.01,1000].
* Poura=0.2;G(s) =s%

Les modeles approximés de 1’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont :

Ga=02;n=5(5)
_5.329s"5 + 2596 5"4 + 7.692e04s"3 + 1.903e05s"2 + 3.829e04s + 398.1
B s"5 + 961.8s"4 + 4.78e04 s"3 + 1.932e05s"2 + 6.52e04s + 1338
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Ga=0.2;n=20(5)

8.5395"20 + 8.222e04s"19 + 1.581e08s"18 + 1.005e11s"17 + 2.597e13s"16 +
3.042e15s"15 + 1.722e17 s"14 + 4.905e18s"13 + 7.211e19s"12 +
5.559e20s"11 + 2.266e21s"10 + 4.896e21s"9 + 5.586e21s"8 +
3.334e21s"7 + 1.023e21s"6 + 1.569e20s"5 + 1.15e19 s"4 +
_ 3.757e17 s"3 + 4.839e15s"2 + 1.933e13s + 1.259e10
s"20 + 1.535e04 s"19 + 3.843e07 s"18 + 2.984e10s"17 + 9.134el2s"16 +
1.246e15s"15 + 8.124e16s"14 + 2.648e18s"13 + 4.437e19s"12 +
3.889e20s"11 + 1.8e21s"10 + 4.416e21s"9 + 5.728e21s"8 +
3.896e21s"7 + 1.368e21s"6 + 2.417e20s"5 + 2.064e19 s"4 +
7.984e17s"3 + 1.256el6s"2 + 6.533e13s + 6.785e10

La figure 3.7 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre

fractionnaire @ = 0.2 et de son approxime par la méthode de Matsuda.
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Figure 111. 7.Tracé de Bode de G(s) = s%2 et de son approximé par la méthode de
Matsuda

* Poura=0.5;G(s) = s°°

Les modeles approximés de 1’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont :

Ga=05n=5(5)
_ 7213s"5 + 2.261e04s"4 + 4.604e055s"3 + 7.867e05s"2 + 1.051e05s + 562.3
~ s75 + 187054 + 1.399e05 5”3 + 8.187e05s"2 + 4.022e05s + 1.283e04
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Ga=0.5,n=20(5)
235.3s"20 + 1.731e06s"19 + 2.789e09 s"18 + 1.541e12s"17 + 3.527el4s"16 +
3.697e16 s"15 + 1.886e18s"14 + 4.861e19s"13 + 6.484e20s"12 +
4.542e21s"11 + 1.683e22s"10 + 3.306e22s"9 + 3.425e22s"8 +
1.852e22s"7 + 5.126e21s"6 + 7.052e20 s"5 + 4.597e19 s"4 +

1.314e18s"3 + 1.439el16s"2 + 4.57e13s + 1.78el10
s"20 + 2.568e04 s*19 + 8.086e07 s*"18 + 7.385e10s”17 + 2.584e13 s"16 +

3.964e15s"15 + 2.882e17s"14 + 1.041e19s"13 + 1.925e20s"12 +
1.859e21 s"11 + 9.467e21s"10 + 2.554e22s"9 + 3.647e22s"8 +
2.734e22 s"7 + 1.061e22s"6 + 2.08e21 s"5 + 1.984e20s"4 +
8.672e18s"3 + 1.569el17 s"2 + 9.738el4s + 1.324el2

La figure 3.8 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre

fractionnaire @ = 0.5 et de son approximé par la méthode de Matsuda.
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Figure Ill. 8.Tracé de Bode de G(s) = s%5 et de son approximé par la méthode de
Matsuda

* Poura=0.7;G(s) = s

Les modeles approximés de 1’ordre dérivateur en utilisant la méthode d’approximation pour

les deux ordres de filtre N = 5et N = 20 sont :

Ga=0.7,n=5(S)
_495.1s"5 + 1.179e05s"4 + 1.874e06s"3 + 2.495e06 s"2 + 2.498e05s + 707.9
"~ 75 + 352954 + 3.525e055"3 + 2.648e06s"2 + 1.665e06 s + 6.993e04
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Ga=0.7,n=20(5)

2607 s"20 + 1.64e07 s"19 + 2.368e10s718 + 1.197e13 s"17 + 2.53el15s"16 +
2.467el17 s™15 + 1.175e19s"14 + 2.834e20s"13 + 3.544e21s"12 +
2.329e22s"11 + 8.103e22s"10 + 1.493e23s"9 + 1.449e23s"8 +
7.332e22s"7 + 1.894e22s"6 + 2.421e21s"5 + 1.456e20s"4 +
3.793e18s"3 + 3.699e16s"2 + 9.873el13s + 2.24el0
s"20 + 4.408e04 s"19 + 1.652e08s"18 + 1.694el11s”17 + 6.5e13s"16 +
1.081e16 s"15 + 8.459e17 s"14 + 3.275e19s"13 + 6.474e20s"12 +
6.668e21s"11 + 3.619e22s"10 + 1.041e23s"9 + 1.583e23s"8 +
1.266€23 s"7 + 5.248e22s"6 + 1.102e22 s"5 + 1.131e21s"4 +
5.347e19s”3 + 1.058e18s"2 + 7.328e15s + 1.165e13

La figure 3.9 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre

fractionnaire @ = 0.7 et de son approximé par la méthode de Matsuda.
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Figure 111. 9Tracé de Bode de G(s) = s°7 et de son approximé par la méthode de
Matsuda

Commentaire

Les figures 3.7- 3.9 montrent les réponses en fréquence (Amplitudes et phase) des opérateurs
fractionnaire s%2, s%° et s7 de ses approximations via la méthode de Matsuda pour deux
ordres différents : N = 5 egft N = 20.

Les résultats montrent que 1’augmentation de lI'ordre N améliore significativement la
précision de I’approximation, aussi bien en amplitude qu’en phase. En particulier,
I’approximation avec N = 20 reproduit fidélement la réponse exacte sur une large plage de

fréquences. Ces observations confirment que pour des applications de commande exigeantes,
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un ordre d’approximation élevé est préférable afin d’assurer une modélisation précise des

opérateurs fractionnaires.

[11.3.2 Intégrateur fractionnaire :

La fonction de transfert de I’intégrateur d’ordre fractionnaire est donnée par

1
G(S) = S_a

Nous considérons trois ordres intégrateurs (¢ = 0.2; « = 0.5et @ = 0.7) ; pour 'ordre de

filtre nous considérons deux cas :
= un cas de faible ordre : N=5.
= et un cas de haute précision : N=20.

L’analyse se fait sur la bande de fréquence [wl, wh] = [0.01,1000].
. 1
= Poura=0.2;G(s) = 0z
La figure 3.10 ci-dessous représente le tracé du diagramme de Bode d’un intégrateur d’ordre

fractionnaire @ = 0.2 et de son approxime par la méthode de Matsuda.
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Figure 111. 10.Traceé de Bode de G(s) = Soiz et de son approximé par la méthode de
Matsuda

. Poura=0.5;G(s)=so%
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La figure 3.11 ci-dessous représente le tracé du diagramme de Bode de I’intégrateur d’ordre

fractionnaire @ = 0.5 et de son approximé par la méthode de Matsuda.
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Figure I11. 11 Tracé de Bode de G(s) = sois et de son approximé par la méthode de
Matsuda

. Poura=0.7;G(S)=so%

La figure 3.12 ci-dessous représente le tracé du diagramme de Bode de I’intégrateur d’ordre

fractionnaire @ = 0.7 et de son approximé par la méthode de Matsuda.
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Approximation par Matsuda de s07
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Figure I11. 12Tracé de Bode de G(s) = s(’% et de son approximé par la méthode de
Matsuda

Commentaire

Les figures 3.10 a 3.12 montrent les réponses en fréquence (Amplitudes et phase) des
opérateurs fractionnaire s=%2, s7%5 et s7%7 de ses approximations via la méthode de

Matsuda pour deux ordres différents : N = 5 et N = 20.

On observe que plus a est petit, plus ’erreur d’approximation, notamment en phase, est
importante. A I’inverse, lorsque a augmente, 1’approximation devient plus fidéle, méme avec
un faible ordre. De plus, un ordre N plus élevé améliore la précision globale, surtout aux
basses et hautes fréquences. On en conclut que la précision de 1’approximation dépend
fortement de la valeur de a et de 'ordre N, et qu’il est préférable d’utiliser un ordre élevé,

notamment pour les petites valeurs de a.

I11. 4 Etude comparative
Il s’agit, dans cette section d’effectuer une comparaison entre les deux méthodes

d’approximation, en analysant les performances de chacune. Et cela en se basant sur ce qui a

été fait précédemment pour voir les principales différences des deux méthodes.

* Poura=0.2;G(s) = s
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Comparaison Oustaloup vs Matsuda pour so.z’ N=5

20 L ) B L B S A B L B B L B AL I ALLL R

Magnitude (dB)

=)

o)

Z

)

2 T

i xact: s

o 54 ——— — Oustaloup N=5 B

Matsuda N=5

O il i el vl T e T—
10 10° 102 104 108

Frequency (rad/s)

Figure I11. 13: Tracé de Bode de s%2et de son approximé par la méthode d’Oustaloup et
Matsuda dans la bande de fréquences [w , wh] =[ 0. 01, 1000], N = 5.

Comparaison Oustaloup vs Matsuda pour so.z, N=20
20 T T T T T

10

Magnitude (dB)
o

-10

-20 L L L L L
20 T T T T T

15 |

10 -

Exact: s°?
— — — — Oustaloup N=20 B

Matsuda N=20 \

1072 10° 102 104
Frequency (rad/s)

Phase (deg)

5._

0
10 10

10°

Figure I11. 14: Tracé de Bode de s%Zet de son approximé par la méthode d’Oustaloup
et Matsuda dans la bande de fréquences [ , wh] =[ 0. 01, 1000], N = 20.

* Poura=0.5;G(s) = s°°
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Comparaison Oustaloup vs Matsuda pour s°'5, N=5
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Figure I11. 15: Tracé de Bode de s%> et de son approximé par la méthode d’Oustaloup
et Matsuda dans la bande de fréquences [@w , wh] =[ 0. 01, 1000], N = 5.

Comparaison Oustaloup vs Matsuda pour 50'5, N=20
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Figure I11. 16: Tracé de Bode de s%° et de son approximé par la méthode d’Oustaloup et
Matsuda dans la bande de fréquences [w , /] =[ 0. 01, 1000), N = 20.

* Poura=0.7;G(s) = s’
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Comparaison Oustaloup vs Matsuda pour 50‘7, N=5
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Figure I11. 17: Tracé de Bode de s%7 et de son approximé par la méthode d’Oustaloup
et Matsuda dans la bande de fréquences [@w , wh] =[ 0. 01, 1000], N = 5.
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Figure I11. 18: Tracé de Bode de s7 et de son approximé par la méthode d’Oustaloup
et Matsuda dans la bande de fréquences [w , wh] =[ 0. 01, 1000], N = 20.

Commentaire

D’apres les résultats de comparaison, on peut voir que les deux méthodes sont efficaces et
donnent de bonnes approximations, avec un léger avantage a la méthode de Matsuda. En

effet, dans les figures 3.17 et 3.18 et pour l'ordre de filtre élevé, entre les fréquences 1072 et
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10*, les deux tracés se superposent parfaitement ce qui signifie que le modéle approximé a la

méme dynamique que le modéle fractionnaire.

I11.5 Application sur un systéme fractionnaire
Dans cet exemple, un modéle approché d'une fonction de transfert d'ordre fractionnaire est

obtenu par différentes méthodes d'approximation, et les résultats sont comparés. La fonction

de transfert d'ordre fractionnaire est donnée ci-dessous :

s+1
0s*? +185s +288s%7 +1

G(s)= |

Les méthodes d'approximation sont appliquées aux termes en puissance fractionnaire s°2,
595 et s97, et la fonction de transfert globale est calculée. Ici, I'ordre de I'approximation est

de 3 et la plage de fréquences va de 0,01 a 100.

La figure ci-dessous represente un diagramme de Bode comparant la réponse en frequence
d’un systéme d’ordre fractionnaire (FOTF) a celles obtenues a I’aide de différentes

méthodes d’approximation :

Comparaison des approximations du systéme fractionnaire
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On observe que I’approximation de Matsuda, grace a un ordre plus ¢élevé, offre une meilleure
précision, notamment dans la phase et le gain sur une large plage de fréquences.
L’approximation d’Oustaloup modifiée améliore légérement la performance par rapport a la
version classique, mais reste moins fidéle que celle de Matsuda. Ces résultats montrent que la

précision de I’approximation dépend fortement du choix de la méthode et de 1’ordre utilisé.
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I11.6 Conclusion
Dans ce chapitre, nous avons cherché a vérifier I’hypothése selon laquelle, dans une bande de

fréquences limitée, les systémes d’ordre fractionnaire peuvent présenter un comportement
similaire a celui des systémes d’ordre entier. Pour cela, nous avons appliqué les méthodes
d’approximation d’Oustaloup et de Matsuda, en faisant varier ’ordre fractionnaire a ainsi que

le nombre de poles et de zéros (N = 5et N = 20).
Les principaux enseignements tirés de cette étude sont les suivants :

e Les systemes d’ordre fractionnaire reproduisent bien la dynamique des systemes

d’ordre entier dans une plage de fréquences restreinte.

e La qualit¢ de Dl'approximation dépend de plusieurs paramétres : la bande de
fréquences, le choix de I’ordre a, ainsi que le nombre de pdles et de zéros. Un N élevé

(généralement >10) est crucial, surtout pour la méthode d’Oustaloup.

e Les deux méthodes montrent des limites pour des valeurs extrémes de o, avec une

perte notable de précision.
En comparant les deux approches :

e La méthode de Matsuda offre de meilleures performances globales que celle
d’Oustaloup, notamment en termes de précision et de stabilité, méme avec un faible

N.

e Lorsque N est augmenté a 20, la précision s’améliore pour les deux méthodes, mais

Matsuda reste plus fiable, particulierement dans les zones de transition fréquentielle.

En résumé, bien que les deux méthodes soient efficaces dans une certaine mesure, la méthode
de Matsuda s’avere plus précise et plus robuste pour I’approximation de systémes d’ordre

fractionnaire, toutes conditions confondues.
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Conclusion générale

Ce mémoire s’inscrit dans le cadre de 1’étude des systémes dynamiques d’ordre
fractionnaire, en mettant I’accent sur les méthodes d’approximation rationnelle destinées a
faciliter leur traitement numérique. Les opérateurs fractionnaires, bien qu’efficaces pour
modéliser des phénomenes complexes intégrant des effets de mémoire ou d’hystérésis,
présentent des difficultés d’implémentation liées a leur nature irrationnelle.

Afin de surmonter ces obstacles, nous avons mené une analyse comparative entre
deux méthodes d’approximation reconnues : la méthode de Matsuda et celle d’Oustaloup.
Aprés avoir exposé les bases théoriques du calcul fractionnaire (derivation, intégration
d’ordre réel, transformée de Laplace), nous avons appliqué ces deux approches selon une
démarche rigoureuse a travers des simulations fréquentielles (diagrammes de Bode) et
temporelles (réponse indicielle).

L’étude a révélé que chaque méthode presente des avantages spécifiques. La
methode de Matsuda, fondée sur une expansion de Padé, s’est montrée particuliérement
efficace pour des bandes de fréquences étroites et, dans les exemples analysés, elle a produit
de meilleurs résultats que celle d’Oustaloup pour des ordres de filtre élevés, en offrant
une approximation plus fidéle avec un moindre écart en fréquence. A I’inverse, la méthode
d’Oustaloup, qui repose sur une répartition logarithmique des péles et des zéros, demeure
plus robuste et mieux adaptée a des bandes fréquentielles larges, ce qui en fait un choix
privilégié dans les applications de commande robuste.

La comparaison a ainsi mis en évidence que le choix de la méthode d’approximation
doit impérativement tenir compte du contexte d’application, notamment de 1’ordre
fractionnaire vis¢, de la plage fréquentielle, du niveau d’erreur tolérable et de la complexité
de mise en ceuvre.

En conclusion, ce travail a permis de clarifier les criteres de sélection entre différentes
méthodes d’approximation et d’offrir des éléments concrets d’aide a la décision selon les
objectifs de modélisation et de contréle. Il ouvre également des perspectives intéressantes,
telles que I’exploration d’autres techniques d’approximation, 1’analyse de systemes en boucle
fermée, ou encore I’application a des cas réels dans des domaines tels que I’électrochimie, la

régulation thermique ou les matériaux intelligents.
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Ce travail ouvre plusieurs perspectives intéressantes pour la suite. Une premiére orientation
possible serait ’étude d’autres techniques d’approximation, telles que la méthode de
Carlson...etc. Il serait également pertinent d’étendre cette étude aux systemes en boucle
fermée, afin d’évaluer I’impact de chaque approximation sur la stabilité, la robustesse et la
performance des systéemes de contréle.

Par ailleurs, une implémentation expérimentale sur des systéemes physiques réels
permettrait de confronter les résultats de simulation aux comportements mesurés, notamment
dans des domaines ou les systemes fractionnaires sont particulierement pertinents

électrochimie (batteries, supercondensateurs), régulation thermique, ...etc.
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