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Résumé 

Les systèmes d'ordre fractionnaire suscitent un intérêt croissant dans divers domaines 

des sciences appliquées et de l’ingénierie, en raison de leur capacité à modéliser des 

phénomènes complexes avec effets de mémoire ou comportements intermédiaires entre 

dynamique inertielle et visqueuse. Ces systèmes sont décrits par des équations différentielles 

fractionnaires, et leur représentation fréquentielle conduit généralement à des fonctions de 

transfert irrationnelles, rendant leur analyse théorique et leur mise en œuvre directe 

particulièrement délicates. 

Face à l'absence de solutions analytiques exactes, l’utilisation de techniques 

numériques et d’outils d’approximation devient incontournable. Ainsi, dans ce mémoire, 

nous nous sommes intéressés aux méthodes de résolution, d’implémentation analogique et 

d’analyse des systèmes d’ordre fractionnaire, en nous appuyant sur des approximations 

rationnelles des fonctions de transfert irrationnelles correspondantes. 

Nous avons procédé à l’extraction et à l’analyse des caractéristiques fréquentielles et 

temporelles de ces systèmes, afin d’évaluer la précision et la pertinence des méthodes 

étudiées. Des exemples illustratifs ont été développés pour démontrer l’efficacité des 

approches retenues. Les résultats obtenus à travers les simulations se sont révélés 

satisfaisants, et ont été discutés en détail puis comparés à d'autres méthodes récentes issues de 

la littérature spécialisée 

 ملخص

 سة، وذلكالهندوالأنظمة ذات الرتبة الكسرية تحظى باهتمام متزايد في مختلف مجالات العلوم التطبيقية 

ميكا ن الديناطة بيقدة التي تتضمن تأثيرات الذاكرة أو السلوكيات المتوسلقدرتها على نمذجة الظواهر المع

 مثيلاتهاؤدي تالعطالية والديناميكا اللزجة. توُصف هذه الأنظمة من خلال معادلات تفاضلية كسرية، وت

رًا ملمباشر أذها افي المجال الترددي غالباً إلى دوال تحويل غير نسبية، مما يجعل تحليلها النظري وتنفي

 .بالغ الدقة والصعوبة

ه.  مفر منلامرًا أوفي ظل غياب حلول تحليلية دقيقة، يصبح اللجوء إلى التقنيات العددية وأدوات التقريب 

لاعتماد لك باومن هذا المنطلق، تناولنا في هذا البحث طرق حل وتحقيق الأنظمة الكسرية وتحليلها، وذ

 .نسبية المقابلةعلى تقريب عقلاني للدوال التحويلية غير ال

قمنا باستخراج وتحليل الخصائص الترددية والزمنية لهذه الأنظمة من أجل تقييم دقة وملاءمة الطرق 

المدروسة. كما تم تطوير أمثلة توضيحية لإبراز فعالية المقاربات المعتمدة. وقد أظهرت النتائج 

ومقارنتها بطرق أخرى حديثة واردة  المستخلصة من خلال المحاكاة نتائج مرضية، تم مناقشتها بالتفصيل

 .في الأدبيات المتخصصة
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INTRODUCTION GENERALE 
  

  

Les systèmes dynamiques d’ordre fractionnaire constituent une extension naturelle 

des systèmes classiques à ordre entier. En remplaçant les dérivées entières par des dérivées 

d’ordre réel ou fractionnaire, ces systèmes offrent un cadre mathématique plus flexible, 

capable de modéliser avec réalisme des phénomènes complexes, notamment ceux présentant 

des effets de mémoire, d’hystérésis ou de diffusion anormale. De nombreuses applications 

concrètes existent dans les domaines électrochimiques, biologiques, thermiques ou 

mécaniques. 

Cependant, la mise en œuvre des opérateurs fractionnaires dans un cadre de 

simulation ou de régulation soulève une difficulté importante : leur nature irrationnelle rend 

leur traitement direct impossible avec les outils classiques d’automatique. Pour surmonter 

cela, plusieurs méthodes d’approximation ont été développées afin de représenter ces 

opérateurs sous forme de fonctions de transfert rationnelles, compatibles avec les 

environnements de simulation et de commande. 

Dans ce travail, nous nous concentrons sur l’étude comparative de deux méthodes 

d’approximation particulièrement connues : la méthode d’Oustaloup et la méthode de 

Matsuda. Contrairement à certaines approches qui en explorent plusieurs, nous avons choisi 

de nous focaliser uniquement sur ces deux techniques afin d’en analyser plus en profondeur 

les avantages, les limitations, et les comportements respectifs. 

Le contenu de ce mémoire est structuré comme suit : 

 Le premier chapitre introduit les notions fondamentales du calcul fractionnaire, ainsi 

que les propriétés mathématiques associées aux dérivées et intégrales d’ordre non 

entier. 

 Le deuxième chapitre est dédié à la présentation des méthodes d’approximation , en 

mettant en évidence leurs principes de fonctionnement, leurs formulations 

mathématiques, ainsi que leurs domaines d’application. 

 Le troisième chapitre regroupe les résultats issus des simulations numériques. Nous 

y avons appliqué les deux méthodes sur des opérateurs d’ordre fractionnaire choisis, 

analysé leurs réponses fréquentielles (diagrammes de Bode) et temporelles (réponses 

indicielle), puis comparé leurs performances selon divers critères dynamiques. 
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Enfin, une conclusion générale résume les résultats obtenus, met en lumière les points forts 

et les limites de chaque méthode, et propose quelques pistes pour des travaux futurs 
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CHAPITERE  I 
Théorie sur les systèmes fractionnaire 
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 I.1. Introduction : 

Les systèmes d’ordre fractionnaire constituent un domaine de recherche en pleine expansion 

dans les mathématiques appliquées, la physique et l’ingénierie. Ces systèmes généralisent les 

modèles classiques basés sur des dérivées et intégrales d’ordre entier, en introduisant la 

notion de dérivation et d’intégration d’ordre non entier (fractionnaire). Ce concept permet de 

mieux modéliser des phénomènes complexes présentant des comportements non locaux, des 

effets de mémoire ou des propriétés viscoélastiques. 

Un système d’ordre fractionnaire se caractérise par des équations différentielles où l’ordre de 

dérivation ou d’intégration n’est pas nécessairement un entier, mais peut être un réel, voire un 

nombre complexe. L’ordre fractionnaire représente ainsi une généralisation naturelle de la 

notion classique de dérivée ou d’intégrale. Ces systèmes sont particulièrement utiles pour 

modéliser des phénomènes à mémoire ou des processus non markoviens, c’est-à-dire dont 

l’évolution dépend de l’ensemble des états passés . 

Dans le domaine de l’automatique, le calcul fractionnaire est utilisé pour la modélisation, 

l’identification et la commande des systèmes. Des conférences internationales prestigieuses, 

telles que le CDC (Conference on Decision and Control) ou l’IFAC (International Federation 

of Automatic Control), organisent régulièrement des sessions spéciales consacrées à la 

dérivation non entière et à ses nombreuses applications. Depuis 2004, un workshop biennal 

spécifiquement dédié au calcul fractionnaire et à ses applications a également vu le jour  

L’objectif de ce chapitre est de présenter certaines bases théoriques des opérateurs d’ordre 

fractionnaire, nécessaires à la compréhension et au développement des chapitres suivants. 

Nous introduirons les principales définitions, propriétés et outils mathématiques 

fondamentaux associés à ces opérateurs. 
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I.2 OutiLs mathématiques de base 

I.2.1 Calcul fractionnaire 

 Le calcul fractionnaire est le champ de l’analyse mathématique et d’application des 

intégrales et des dérivées d’ordre arbitraire. Le calcul fractionnaire peut être considéré 

comme un sujet ancien et encore nouveau. Ces dernières années l’intérêt considérable pour le 

calcul fractionnaire a été stimulé par son application dans les différents domaines de la 

physique et de l’ingénierie. La représentation mathématique des systèmes fractionnaires dans 

le domaine temporel et fréquentiel correspond à des équations différentielles à exploiter. Vu 

l’absence des méthodes mathématiques, les systèmes dynamiques d’ordre fractionnaire 

étaient jusque-là étudiés de façon marginale seulement, que ce soit en théorie ou en 

application [1], [2]. Pour des raisons d’analyse, de synthèse, et de simulation de tels 

systèmes, l’utilisation des fonctions rationnelles pour l’approximation s’avère d’une grande 

importance. Alors pour analyser et concevoir les systèmes de commande d’ordre 

fractionnaire il faut les approximer par des fonctions rationnelles [3]. 

I.2.2 Fonctions utilisées dans le calcul fractionnaire 

Dans cette section, nous présenterons deux fonctions largement utilisées qui fournissent 

généralement des solutions aux problèmes du calcul fractionnaire : la fonction Gamma 

d'Euler et la fonction de Mittag-Leffler. 

La Fonction Gamma (Γ) 

La fonction Gamma est une fonction mathématique fondamentale, principalement utilisée 

pour étendre la notion de la factorielle aux réels et aux nombres complexes. Elle joue un rôle 

important dans de nombreux domaines des mathématiques et de la physique, en particulier 

dans l'analyse complexe, la théorie des probabilités, et les équations différentielles [4] 

                      Γ(𝛼) = ∫  
∞

0
𝑦𝛼−1𝑒−𝑦𝑑𝑦, 𝛼 > 0                                                                    (I. 1) 

A partir de l'expression (I.1), on peut déduire que : 

Γ(1) = ∫  
∞

0
𝑒−𝑦𝑑𝑦 = 1                                        (I.2) 

L'intégration par parties de l'expression (I.1), conduit à la formule de récurrence suivante, qui 

est une propriété importante de la fonction Gamma : 

             
Γ(𝛼 + 1) = ∫  

∞

0
 𝑦𝛼𝑒−𝑦𝑑𝑦 = [−𝑒𝑦𝑦−𝛼]0

∞ + 𝛼 ∫  
∞

0
 𝑦𝛼−1𝑒−𝑦𝑑𝑦 = 𝛼Γ(𝛼)

Γ(𝛼 + 1) = 𝛼Γ(𝛼)
             (𝐼. 3) 
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Et pour 𝛼 ∈ ℕ on a :                    Γ(𝛼 + 1) = 𝛼!                                                                 (𝐼. 4) 

Puisque Γ(1) = 1 dans (I.2), et en utilisant la formule (I.3) pour 𝛼 = 1,2,3,…… on obtient : 

Γ(2) = 1Γ(1) = 1!

Γ(3) = 2Γ(2) = 2!

Γ(4) = 3Γ(3) = 3!  

Γ(𝑛 + 1) = 𝑛Γ(𝑛) = 𝑛(𝑛 − 1)! = 𝑛!                                                                   (𝐼. 5) 

Dans ce qui suit on donne quelques valeurs particulières de Γ(𝛼) : 

Pour 𝛼 =
1

2
, Γ (

1

2
) = √𝜋 

Pour 𝛼 = n +
1

2
, avec n un entier positif Γ (n +

1

2
) =

(2n)!

22nn!
√𝜋 

 

La fonction de Mittag-Leffler 

La fonction de Mittag-Leffler est une fonction complexe qui généralise plusieurs fonctions 

spéciales importantes en analyse mathématique. Elle a été introduite par l'analyste suédois 

Gösta Mittag-Leffler. La fonction est souvent utilisée dans des contextes liés aux équations 

différentielles fractionnaires et à l'analyse des systèmes dynamiques [5] 

La fonction de Mittag-Leffler, notée , est définie par la série infinie suivante : 

                                   E𝛼,𝛽(z) = ∑  ∞
k=0

zk

Γ(𝛼k+𝛽)
, 𝛼 > 0, 𝛽 > 0                                            (𝐼. 6) 

Pour 𝛽 = 1, on retrouve la fonction de Mittag-Leffler à un seul paramètre, introduite par 

Mittag-Leffler en 1903 : 

                                        E𝛼,1(z) = ∑  ∞
k=0

zk

Γ(𝛼k+1)
, 𝛼 > 0                                                    (𝐼. 7) 

Pour 𝛼 = 1, dans la fonction (I.7), on peut déduire la fonction exponentielle comme suit : 

                                         E1,1(z) = ∑  ∞
k=0

zk

Γ(k+1)
                                                                 (𝐼. 8) 

Puisque 𝑘 ∈ ℕ et d'après la propriété de la fonction Gamma (I.4) donc : 

                                           Γ(𝑘 + 1) = k!                                                                           (𝐼. 9) 
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En remplaçant dans (I.8), on obtient l'expression de développement en séries de l'exponentiel 

: 

E1,1(z) = ∑  ∞
k=0

zk

k!
= ek                                                               (𝐼. 10) 

Pour les équations différentielles d'ordre non entier, la fonction de Mittag-Leffler joue le 

même rôle que la fonction exponentielle. 

I.2. 3 Transformation de Laplace et produit de convolution : 

La transformée de Laplace est un outil mathématique utilisé dans l'analyse des systèmes, et 

dans la résolution de certains problèmes complexes dans le domaine temporel tels que, les 

produits de convolution et les équations différentielles. 

La transformée de Laplace d'une fonction est définie comme suit : 

                            ℒ{f(x)} = F(s) = ∫  
∞

0
e−stf(t)dt                                                           (𝐼. 11) 

La transformée de Laplace de la 𝑖ème  dérivée de 𝑓(𝑡); est donnée par: [6] 

                      ℒ{f (i)(x)} = siF(s) − ∑  i−1
k=0 s

kf (i−k−1)(0)                                                  (𝐼. 12) 

Où 

𝑓(𝑖)(0) représente les conditions initiales. 

Le produit de convolution est un opérateur mathématique et un produit commutatif, noté 

  (𝑓 ∗ 𝑔), qui associe aux deux fonctions 𝑓 et 𝑔 l'intégrale suivante : 

                           f(t) ∗ g(t) = ∫  
t

0
f(t − τ)g(τ)dτ = g(t) ∗ f(t)                                       (𝐼. 13) 

Cette intégrale étant difficile à résoudre dans le domaine temporel, il devient préférable 

d'utiliser sa transformée de Laplace qui est exprimée par le produit des deux transformées de 

Laplace des fonctions 𝑓 et 𝑔 

                                  ℒ{f(x) ∗ g(t)} = F(s)G(s)                                                               (𝐼. 14) 

I.2.4 Définitions fondamentales 

Il existe plusieurs définitions mathématiques pour l'intégration et la dérivation d'ordre 

fractionnaire. Parmi les plus notables, on peut mentionner les trois suivantes : 

 

\ a) Définition de Grunwald-Letnikov (G-L) 
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Cette définition est peut considère comme une généralisation de la dérivée classique d'une 

fonction 𝑓(𝑡) d'ordre 𝑛 ∈ ℛ qui prend la forme suivante : 

                𝐷𝑛(𝑡) = lim
𝑛→0
 ℎ−𝑛 ∑  ∞

𝑗=1 (−1)
𝑘 (𝑛

𝑗
)𝑓(𝑡 − 𝑗ℎ)                                       (I.15) 

Avec : 

                                                  (𝑛
𝑗
) =

𝑛!

𝑗!(𝑛−𝑗)!
                                           (I.16) 

Remplaçant le nombre entier 𝑛par 𝛼 ∈ ℛ, on peut réécrire (I.16) comme suit 

                                                     (𝑎
𝑗
) =

𝑎!

𝑗!(𝛼−𝑗)!
             (I.17) 

Maintenant on définit la dérivée d'ordre fractionnaire d'ordre 𝛼 de G-L comme suit [7] : 

                        𝐷𝑡
𝛼

𝛼
𝐺𝐿 𝑓(𝑡) = lim

𝑛→0
 ℎ−𝛼 ∑  

|
𝑡−𝛼

ℎ
|

𝑗=0
(−1)𝑗 (𝛼

𝑗
) 𝑓(𝑡 − 𝑗ℎ)    (I.18) 

Où ℎ est le pas d'échantillonnage, [𝑥] représente la partie entière de 𝑥 et (𝑎
𝑗
) appelés 

coefficient binominaux. 

 

b) Définition de Riemann-Liouville (R-L) 

Définition 1 : 

Soient C et ℛ les anneaux des nombres complexes et réels respectivement, ℛ (.) Symbolise la 

partie réelle d'un nombre complexe. 

Soient 𝛼 ∈ 𝐶 avec ℛ(𝛼) > 0, 𝑡0 > 𝑅 et 𝑓 une fonction localement intégrable définie sur 

[𝑡0, +∞[. 

                    𝐼𝛼𝑓(𝜏) =
1

Γ(𝛼)
∫  
𝑡

𝑡0
(𝑡 − 𝜏)𝛼−1 ∫ 𝑓(𝜏)𝑑(𝜏)     (I.19) 

Définition 2 :  

Soient 𝛼 ∈ C  avec  ℛ(𝛼) > 0 , 𝑛 un entier positif, 𝑡0 ∈ ℛ et 𝑓 une fonction localement 

intégrable définie sur  [𝑡0, +∞[ . La dérivée d'ordre fractionnaire 𝛼 de la fonction de 𝑓 borne 

inférieure 𝑡0 est définie par: 

𝛼𝑅𝐿𝐷𝑡0
𝛼 𝑓(𝑡) =

1

Γ(n−𝛼)

𝑑𝑛

d𝑡𝑛
∫  
𝑡

𝑡0
(𝑡 − 𝜏)𝑛−𝛼−1 ∫𝑓(𝜏) 𝑑(𝜏)   (I.20) 
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Où le nombre entier 𝑛 est tel que (n − 1) < 𝛼 < 𝑛. 

Remarque:  pour simplifier l'écriture, on notera dans la suit 𝐼𝛼 pour 𝐼0
𝛼 et 𝐷𝛼  pour 𝐷0

𝛼 

c) Définition de Caputo 

Une autre définition de la dérivée d'ordre fractionnaire est proposée par Caputo comme la 

forme suivante [8] : 

          𝐷𝑡
𝛼

0
𝑅𝐿 𝑓(𝑡) ≜ 𝐼𝑛−𝛼𝐷𝑛𝑓(𝑡) =

1

Γ(n−𝛼)
∫  
𝑡

𝑡0

𝑓(𝑛)(𝑡−𝜏)𝑛−𝛼+1

(𝑡)
𝑑𝑡                                        (I.21) 

Où 

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁. 

Pour  𝑡0 , à partir des deux des équations (I.20) et (I.21), on peut trouver les deux relations 

suivantes : 

                𝑅𝐿𝐷𝛼𝑓(𝑡) = 𝑐𝐷𝑛𝑓(𝑡) + ∑  𝑛−1
𝑘=0  

𝑡(𝑘−𝛼)

Γ(k−𝛼+1)
𝑓(𝑘)(0+)

𝑅𝐿𝐷𝛼 (𝑓(𝑡)∑  𝑛−1
𝑘=0  𝑓

(𝑘)(0+ )
𝑡𝑘

𝑘!
) = 𝑐𝐷𝑛𝑓(𝑡)

                            (I.22), (I.23) 

I.2.3 Propriétés des opérateurs d'ordre fractionnaire 

Les principales propriétés des dérivées et intégrales d'ordre fractionnaire sont les suivantes 

[9] : 

Si 𝑓(𝑧) est une fonction analytique de 𝑧, alors sa dérivée d’ordre fractionnaire 𝐷𝛼𝑓(𝑧) est 

une fonction analytique de 𝑧 et 𝛼 

Pour 𝛼 = 𝑛, ou n est un entier, l'opération 𝐷𝛼𝑓(𝑧) donne le même résultat que la 

differentiation classique d'ordre entier 𝑛. 

Pour 𝛼 = 0, l'opération 𝐷𝛼𝑓(𝑧) est l'opérateur identité : 𝐷0𝑓(𝑧) = 𝑓(𝑧) 

La différentiation et l'intégration d'ordre fractionnaire sont des opérations 

linéaires:        𝐷𝛼𝑓(𝑎𝑓(𝑧) + 𝑏𝑔(𝑧)) = 𝑎𝐷𝛼𝑓(𝑧) + 𝑏𝐷𝛼𝑔(𝑧) 

La loi additive (propriété du semi groupe) : 𝐷𝛼𝐷𝛽𝑓(𝑧) = 𝐷𝛽𝐷𝛼𝑓(𝑧) = 𝐷𝛼+𝛽𝑓(𝑧) est 

valable 

sous certaines contraintes sur la fonction 𝑓(𝑧). 

I.2.4 Transformation Laplace des opérateurs d'ordre fractionnaire 

a) Intégration fractionnaire 
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La transformée de Laplace de l'opérateur d'intégration non entier défini par (I.6) est donné par  

                                    𝐿{𝐼𝑡
𝛼𝑓(𝑡)} = 𝑠−𝜆𝐹(𝑠), 𝛼 > 0      (I.24) 

Où : (𝑛 − 1) < 𝛼 < 𝑛. 

 

b) Dérivation fractionnaire 

Du fait de la non unicité de la définition de la dérivée non entière, l’expression de sa 

transformée de Laplace n’est pas unique et fait apparaître des différences dans la manière de 

prendre en compte les conditions initiales [10] [11] [12] [13]. 

 Les différentes définitions de la transformée de Laplace de la dérivation fractionnaires sont 

des généralisations de la transformée de Laplace de la dérivée nène entière donnée par : 

𝐿{𝐷𝑛𝑓(𝑡)} = 𝑠𝑛𝐹(𝑠) −∑  

𝑛−1

𝑘=0

𝑠𝑘{𝐷𝑡
(𝛼−𝑘−1)

𝑓(𝑡)}  

 Au sens de Riemann-Liouville(R-L) 

                      𝐿{𝐷𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑  𝑛−1

𝑘=0 𝑠
𝑘{ 𝐷𝑡

(𝛼−𝑘−1)𝑓(𝑡)0
𝑅𝐿 }

𝑡0
                                 (I.25) 

Les conditions initiales apparaissant dans (I.25)  sont données en fonction d"une dérivée 

entière évaluée à l'origine. 

 Au sens de Caputo 

            𝐿{𝐿{ 𝐷𝑡
𝛼

𝑡
𝑐 𝑓(𝑡)}} = 𝑠𝛼𝐹(𝑠) − ∑  𝑛−1

𝑘=0 𝑠
(𝛼−𝑘−1)𝑓𝑘(0),              𝛼 > 0                         (I.26) 

Les conditions initiales apparaissant dans (I.26)  sont données en fonction d"une dérivée 

entière évaluée à l'origine. 

 Définition Grunwald-Letnikov(G-L) 

                       𝐿{𝐿{ 𝐷𝑡
𝛼

𝑡
𝑐 𝑓(𝑡)}} = 𝑠𝛼𝐹(𝑠)                                                                            (I.27) 

Remarque 1 : Les transformées de Laplace des dérivées d'ordre non entier de Riemann 

Liouville et de Caputo sont équivalentes siet seulement si le système est au repos pour < 0. 

Elles se réduisent à 

                        𝐿{𝐿{ 𝐷𝑡
𝛼

𝑡
𝑐 𝑓(𝑡)}} = 𝐿{𝐿{𝐷𝑡

𝛼𝑓(𝑡)}} = 𝑠𝛼𝐹(𝑠)                                               (I.28) 
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Remarque 2 : La transformée de Laplace de la dérivée de Riemann-Liouville est bien 

connue. Mais son applicabilité en pratique est limitée à cause de I "absence d′′ interprétation 

physique des conditions initiales. 

I. 3 Représentation des systèmes d'ordre fractionnaire 

Plusieurs représentations peuvent décrire un système entier (équation différentielle, équation 

de récurrence, représentation d'état, fonction de transfert...), le comportement d'un système 

d'ordre fractionnaire est le plus souvent décrit par des équations différentielles ou des 

fonctions de transfert contenant des opérateurs d'ordre fractionnaire. 

Dans cette section nous présentons les trois modes existants de représentation des systèmes 

non entiers : [14] 

Equation différentielle 

Fonction de transfert 

Représentation d'état 

1.3.1 Equation différentielle fractionnaire 

Plusieurs systèmes dynamiques naturels ont un comportement qui peut être modélisé par des 

équations différentielles comprenant des dérivées d'ordre fractionnaire. Il est préfërable 

d'utiliser la dérivation de Caputo, car aux conditions initiales, elle ne contient que des 

dérivées d’ordre entier, et sa dérivée d'une constante est égale à 0 . Ce qui conduit à une 

transformation de Laplace plus simple de (I.42). Un système mono-variable (SISO) peut être 

identifié par l'équation différentielle d'ordre fractionnaire suivante : [15] [16] 

                             𝑎0𝑌(𝑡) + ∑  𝑛
𝑖=1 𝑎𝑖𝐷

𝑎𝑖𝑌(𝑡) = 𝑏0𝑢(𝑡) + ∑  𝑚
𝑗=1 𝑏𝑗𝐷

𝛽𝑢(𝑡)                       (I.29) 

Oủ𝑢(𝑡) ∈ 𝑅 et 𝑦(𝑡) ∈ 𝑅 désignent respectivement l'entrée et la sortie du système. 𝑎𝑖 , 𝑏𝑗 ∈

R 𝛼𝑖 , 𝛽𝑗 ∈ 𝑅
+, et les ordres de dérivation sont ordonnés pour des raisons évidentes 

d'identifiabilité : 

0 < 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑛   0 < 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑚 

Comme dans le cas d'une équation différentielle à dérivées entières, les ordres de dérivation 

doivent vérifier la contrainte 𝛼𝑛 > 𝛽𝑚 pour que le système soit strictement propre.         

I.3.2 Fonction de transfert d'ordre fractionnaire 
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L'application de la transformée de Laplace à l'équation (I.29), en considérant les conditions 

initiales nulles, permet de déduire la fonction de transfert : 

                                         𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏0+∑  𝑚

𝑗=1  𝑏𝑗𝑠
𝛽𝑗

𝑎0+∑  n
𝑖=1  𝑎𝑖𝑠

𝑎𝑖
                                                        (I.30) 

O𝑢 𝑌(𝑠) et 𝑈(𝑠) sont, respectivement, les transformées de Laplace de 𝑦(𝑡) et 𝑢(𝑡). Lorsque 

les ordres de dérivation 𝛼𝑖 et 𝛽𝑗 sont quelconques le système est appelé système fractionnaire 

généralisé. Dans le cas d'un système commensurable, cette fonction de Transfert s'écrit : 

                                   G(s) =
Y(s)

U(s)
=
b0+∑  m

j=1  bjs
𝑗𝛼

a0+∑  n
i=1  ais

𝑖𝛼  ,          0 < 𝛼 < 1                                   (I.31) 

Par contre dans le cas général du système non entier multi variables, ayant 𝐿 entrées et 𝑄 

sorties, il est décrit par un système d'équations diffërentielles d'ordre non entier, dont la 

matrice de fonction de transfert a pour expression : 

                                                G(s) = (

G11(s) ⋯ G1L(s)
⋮ ⋱ ⋮

GQ1(s) ⋯ GQL(s)
)                                         (I.32) 

 

 

I.3.3 Représentation d'état d'un système d'ordre fractionnaire 

Comme dans le cas entier, une représentation d'état non entière comporte deux équations: 

Une équation d'état non entière dans laquelle le vecteur d'état ne fait plus l'objet d'une 

dérivation unitaire mais d'une dérivation d'ordre fractionnaire réel. 

Une équation d'observation identique à celle des systèmes d'ordre entier. 

Elle est ainsi définie par le système d'équations : 

                                       {
𝐷(a)x(t) = Ax(t) + Bu(t)
Y(t) = Cx(t) + D𝑢(t)

                                                          (I.33) 

Où : 

                                       𝐷(𝛼)(𝑥) = [𝐷𝑎1𝑋1, 𝐷
𝛼2𝑋2…𝐷

𝛼𝑛𝑋𝑛]
𝑇                                         (I.34) 

Dans lequel : 
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𝑢 : vecteur des entrées dimension (1 × 1); 

𝑥 : Vecteur d'état non entier de dimension (n × 1); 

𝑦: Vecteur des sorties de dimension (q × 1); 

𝛼: L'ordre de dérivation non entière ; 

Les matrice A, B, C, E sont toutes à élément constants. 

Dans le cas des systèmes commensurables le modèle d'état non entière (I.33) devient : 

                                     

                                                 {
Dax(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Eu(t)

                                                   (I.35) 

Où : 

                                                  Da(x) = Da[x1, x2…xn]
T                                                  (I.36) 

 

 

I.3.4 Commandabilitê et observabilité des systèmes fractionnaires  

a) Commandabilite 

La définition de la Commandabilité des systèmes fractionnaires est la même que celle des 

systèmes entiers. 

Le système non entier d'ordre commensurable de l'équation (L.35) est Commandable si pour 

un temps donné 𝑡0 il existe 𝑡1 > 𝑡0 tel que, quelque soient deux états : 𝑥(𝑡0) = 𝑥0 et 

  𝑥(𝑡1) = 𝑥1 dans L'espace d'état, il existe une entrée de commande u(t), 𝑡 ∈ [𝑡0𝑡1] qui 

permet de transférer l'état 𝑥(𝑡) de 𝑥0 à 𝑥1 en un temps fini 𝑡1. 

Le système non entier d'ordre commensurable est commandable si le rang de la matrice de 

Commandabilité soit égal à n . 

                                                         
𝒞 = [BABAA2B…An−1B]

rang(𝒞) = n
                                 (I.36)(I.37) 

b) Observabilité 



 17 

De la même manière, la condition d'observabilité des systèmes d'ordre non entier 

commensurables est établie en utilisant la définition d'observabilité des systèmes entiers, et 

est donnée par : 

Les systèmes non entiers d'ordre commensurable de l'équation (I.35) sont observables 

pendant l'intervalle de temps [𝑡0𝑡1] , 𝑡1 > 0, si n'importe quel état 𝑥(𝑡0) peut être déduit à 

partir des observations de la sortie 𝑦(𝑡) et de l'entrée 𝑢(𝑡) pendant un temps fini 𝑡 ∈ [𝑡0𝑡1]. 

Dans ce cas aussi, la condition d'observabilité du système est que le rang de la matrice 

d'observabilité soit égal à n . 

                                                           
0 =

(

 
 

C
CA
CA
⋮

CAn−1)

 
 

rang(0) = n

                                            (I.38)/(I.39) 

I.3.5 Stabilité des systèmes fractionnaires 

La définition de stabilité au sens BIBO (Bounded Input, Bounded Output), dite aussi stabilité 

externe, est donnée par la définition suivante : [16] 

Un système est dit BIBO stable si et seulement si, à une entrée bornée, correspond une sortie 

bornée. 

Dans le cas des systèmes entiers, la condition de stabilité est que l'équation caractéristique du 

système n'admet aucune racine à partie réelle positive. Par contre les systèmes fractionnaires 

ou d'ordre non entier peuvent avoir des racines dans la moitie droite du plan complexe et être 

stable. 

Il n'y a en ce moment aucune technique polynomiale pour analyser la stabilité des systèmes 

d'ordre fractionnaire, telles que le critère de Routh-Hurwitz pour les systèmes d'ordre entier. 

Jusqu'à maintenant le seul moyen connu, est l'application du principe basé sur les conditions 

sur l'argument. 

Un système d'ordre commensurable ayant pour polynôme caractéristique Δ(𝑝) de (I.40): avec 

Δ(𝑝) = 𝑎𝑛𝑝
𝑛 + 𝑎𝑛−1𝑝

𝑛−1 +⋯+ 𝑎1𝑝
1 + 𝑎0 

Est stable si et seulement si : 

|Arg(𝑝𝑖)| ≥ 𝛼
𝜋

2
, ∀𝑖 
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Avec 𝑝𝑖 la 𝑖ème  racine de Δ(𝑝). Cette condition définit la région (domaine) de stabilité d'un 

système d'ordre fractionnaire, dans le plan complexe 𝑆, représentée dans la figure (I.1) 

suivante : 

 

 

 

 

 

0 < 𝛼 < 1𝛼 = 11 < 𝛼 < 2 

Figure I.  1: Domaine de stabilité des systèmes d'ordre fractionnaire dans le plan 

complexe 

 

I.4 Conclusion 

Ce chapitre a introduit les concepts fondamentaux liés au calcul différentiel et intégral 

d’ordre fractionnaire. Il a posé les bases théoriques nécessaires à la compréhension du reste 

de notre travail. 

Les systèmes à ordre fractionnaire constituent une généralisation puissante des systèmes 

classiques à ordre entier. En autorisant des dérivées et intégrales d’ordre non entier, ils offrent 

une capacité accrue de modélisation de phénomènes complexes, notamment ceux présentant 

des effets de mémoire, d’hystérésis ou de diffusion anormale — caractéristiques 

fréquemment rencontrées dans les domaines physique, biologique ou économique. 

Nous avons présenté les principales définitions des dérivées fractionnaires, telles que celles 

de Riemann-Liouville, Caputo et Grünwald-Letnikov, en mettant en évidence leurs 

particularités et domaines d’application. Ces notions sont essentielles pour l’analyse et la 

modélisation des systèmes dynamiques d’ordre fractionnaire. 

Enfin, nous avons abordé les différents modèles mathématiques permettant de représenter ces 

systèmes, ainsi que les propriétés fondamentales associées, notamment la stabilité, la 

commandabilité et l’observabilité. 
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La compréhension de ces outils théoriques ouvre des perspectives prometteuses en matière de 

conception de lois de commande, d’analyse de stabilité et d’identification de systèmes 

complexes. 
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CHAPITRE II 

Méthodes d’Approximation des Systèmes 

d’Ordre Fractionnaire 
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II. 1 Introduction : 

Au cours des dernières décennies, les systèmes d’ordre fractionnaire ont suscité un intérêt 

croissant dans divers domaines des sciences appliquées et de l’ingénierie. Contrairement aux 

systèmes classiques modélisés par des équations différentielles d’ordre entier, les systèmes 

fractionnaires intègrent des dérivées d’ordre non entier, offrant ainsi une capacité de 

modélisation plus riche et plus fidèle de certains phénomènes physiques complexes [17]. 

Cependant, en raison de leur formulation mathématique basée sur des fonctions irrationnelles, 

ces systèmes ont longtemps été écartés des outils classiques d’analyse et de simulation. Ce 

n’est que récemment, avec l’évolution des méthodes numériques et le développement d’outils 

informatiques adaptés, que les opérateurs fractionnaires ont trouvé une place significative 

dans la modélisation des systèmes dynamiques, notamment dans le domaine du génie 

électrique. 

L’une des principales difficultés réside dans le fait que la majorité des logiciels d’analyse 

sont conçus pour les systèmes à ordre entier. Pour surmonter cette limite, il est nécessaire de 

recourir à des méthodes d’approximation qui permettent de représenter les opérateurs 

d’ordre fractionnaire par des fonctions rationnelles. Ces techniques d’approximation peuvent 

être classées en deux grandes catégories : les méthodes discrètes (dans le domaine temporel) 

et les méthodes continues (dans le domaine fréquentiel). 

Ce travail se propose de présenter un état de l’art des méthodes d’approximation des systèmes 

d’ordre fractionnaire, avec une attention particulière portée aux méthodes analogiques les 

plus répandues dans la littérature, notamment celles de Charef et Oustaloup, qui se sont 

avérées particulièrement efficaces et largement adoptées dans les applications pratiques. 
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II. 2 Approximation des systèmes d’ordre fractionnaire : 

Dans la littérature scientifique, de nombreuses méthodes ont été proposées pour 

l’approximation des systèmes d’ordre non entier. Ces méthodes peuvent être classées en deux 

grandes catégories : les approches dans le domaine fréquentiel, dites analogiques, et celles 

dans le domaine temporel, qualifiées de numériques. 

II .2.1 Approximation numérique des systèmes d’ordre fractionnaire : 

La principale difficulté liée à l’analyse des systèmes d’ordre fractionnaire réside dans leur 

simulation dans le domaine temporel. En effet, l’expression analytique de la sortie est 

souvent complexe, voire impossible à implémenter directement, ce qui rend nécessaire le 

recours à des techniques d’approximation. 

Trois grandes approches numériques sont généralement identifiées dans la littérature : 

– Le calcul direct de l’expression analytique de la sortie, lorsque cela est possible ; 

– L’approximation directe du modèle fractionnaire par un modèle rationnel discret ; 

– L’approximation du modèle fractionnaire par un modèle rationnel continu, suivie 

d’un processus de discrétisation. 

II.2.1.1 Approximation par calcul de l’expression analytique : 

Détaillée dans [17], [18] et [19], la méthode consiste à calculer la sortie du système d’ordre 

fractionnaire à partir de sa représentation modale qui est donnée par la fonction suivante :  

                    H(𝑠) = ∑
𝐴𝑙

𝑠𝑛− λ𝑙 

𝐿

𝑙=1
                                                                                   (𝐼𝐼.1) 

Où 𝑙=1,2,…, est la multiplicité de la valeur propre 𝜆𝑙  

La sortie est donnée par la formule suivante : 

          y(t) =  ℒ−1 {
𝐴𝑙

𝑠𝑛− λ𝑙 
} ∗ u(t) = h𝑙(𝑡) ∗ u(t)                                                        (𝐼𝐼.2) 

L’expression analytique de la sortie n’est pas simple, puisqu’elle exige le calcul d’une 

intégrale compliquée. De plus, elle dépend de la précision utilisée dans le calcul du produit de 

convolution de l’entrée et ℎ(𝑡).[20] 

II.2.1.2 Approximation par un modèle rationnel discret : 

 Le principe de cette méthode est de remplacer  , dans le modèle non entier, par son 

équivalent discret w (𝑧−1 ) Cette opération donne la fonction de transfert discrète suivante   

H(z) =
𝑏1(𝑤(𝑧−1))

𝑛𝑏1
+⋯+𝑏𝑗(𝑤(𝑧−1))

𝑛𝑏𝑗

(𝑤(𝑧−1))𝑛𝑎1+⋯+𝑎𝐿(𝑤(𝑧−1))𝑛𝑎𝐿
                                                                                        

(𝐼𝐼.3) 

Où  𝑤(𝑧−1)  peut être calculé de plusieurs méthodes. Parmi lesquelles on peut citer : Euler, 

Tustin, Simpson, et Al Alaoui : 
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i. Euler (Grunwald) : 

   𝑆𝑛 = (
1

𝑇
(1 − 𝑧−1))

𝑛

=
1

𝑇𝑛
(1 − 𝑛𝑧−1 +

𝑛(𝑛−1)

2
𝑧−2 +⋯)                                        (𝐼𝐼.4)               

ii. Tustin : 

𝑆𝑛 = (
2

𝑇

1−𝑧−1

1+𝑧−1
)
𝑛

= (
2

𝑇
)
𝑛
(1 − 2 𝑛 𝑧−1 + 2 𝑛2𝑧−2 +⋯)                                             (𝐼𝐼.5)                                  

iii.  Simpson : 

𝑆𝑛 = (
3

𝑇

(1−𝑧−1)(1+𝑧−1)

1+4𝑧−1+𝑧−2
)
𝑛

= (
3

𝑇
)
𝑛
(1 − 4 𝑛 𝑧−1 + 2𝑛(4𝑛 + 3)𝑧−2 +⋯)                  (𝐼𝐼.6)                                                                                                   

iv. Al Alaoui  

𝑆𝑛 = (
8

7𝑇

1−𝑧−1

1+𝑧−1

7

)

𝑛

= (
8

7𝑇
)
𝑛

(1 −
8

7
𝑛𝑧−1 + (−

24

49
𝑛 +

32

49
𝑛2) 𝑧−2 +⋯)

𝑛

                         (𝐼𝐼.7) 

L’inconvénient de ces méthodes est que l’ordre du modèle entier obtenu est élevé, et cela 

rend la simulation à temps réel dure à obtenir. [20] 

II.2.1.3 Approximation en utilisant un modèle entier continu : 

Cette méthode consiste à calculer la sortie d’un système d’ordre fractionnaire à partir d’un 

modèle équivalent d’ordre entier, obtenu à l’aide de techniques d’approximation continue 

des opérateurs fractionnaires par des fonctions rationnelles. 

En général, l’analyse des systèmes fractionnaires se limite à une bande de fréquences 

définie, ce qui implique que le modèle entier obtenu doit reproduire fidèlement la dynamique 

du système initial dans cette plage. 

Le processus d’approximation suit trois étapes : 

 L’opérateur fractionnaire est modélisé dans une plage de fréquences limitée [𝑤𝐴,𝑤𝐵] 

 Ce modèle est ensuite approximé par un modèle entier continu en utilisant une des 

méthodes  

 Enfin, le modèle entier obtenu est discrétisé à l’aide de méthodes classiques, 

permettant ainsi le calcul de la sortie du système. 

II.2.2. Approximation analogique des systèmes d’ordre fractionnaire : 

Dans le cadre de la réalisation et de l’implémentation de correcteurs ou de la simulation de 

systèmes d’ordre non entier, il est nécessaire de remplacer les fonctions de transfert 

fractionnaires par des modèles entiers. Ces modèles doivent reproduire fidèlement le 

comportement des fonctions fractionnaires tout en étant plus faciles à manipuler sur le plan 

pratique [21]. 
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Plusieurs méthodes d’approximation permettent d’atteindre cet objectif, en s’appuyant sur 

différentes approches, telles que l’expansion en fractions continues (CFE – Continued 

Fraction Expansion), qui offre une convergence rapide pour l’évaluation des fonctions, ou 

encore des techniques d’ajustement de courbes. 

Dans la section suivante, nous présenterons brièvement le principe de certaines de ces 

méthodes. Une attention particulière sera portée aux méthodes de Charef et d’Oustaloup, 

largement utilisées dans la littérature pour leur robustesse et leur précision . [9] [22] [23] [24] 

II.2.2.1 Méthodes d’approximation en utilisant l’expansion des fonctions 

continues : 

La méthode générale d’approximation de l’opérateur intégrateur fractionnaire GI(S) =
1

𝑠𝑚
 

en utilisant la CFE, est donnée par les fonctions suivantes : 

                  Gh(S) =
1

(1+𝑇𝑠)𝑚
                                                                                          (𝐼𝐼.8) 

                         Gl(S) = (1 +
1

𝑠
)
𝑚

                                                                                 (𝐼𝐼.9) 

Où  Gh(S) est l’approximation en hautes fréquences, et Gl(S) est l’approximation en basses 

fréquences. [20] 

a)  Méthode de Carlson : 

La méthode proposée par Carlson tirée du processus régulier de Newton utilisé pour 

l'approximation itérative de la racine d’ordre 𝛼, peut être considérée comme appartenant à ce 

groupe [3]. Cette méthode se base sur l'hypothèse suivante : 

                   (𝐻(𝑠))
1 𝜇⁄

− 𝐺(𝑠) = 0                                                                                   (𝐼𝐼.10) 

                  H(S) = (𝐺(𝑠))
𝜇

                                                                                              (𝐼𝐼.11) 

En définissan =
1

𝜇
 . 𝑚 =

𝑞

2
   à chaque itération, partant de la valeur initiale 𝐻0(𝑠)=1, une 

fonction rationnelle approximée peut être donnée par  

                      𝐻𝑖(𝑠) = 𝐻𝑖−1(𝑠)
(𝑞−𝑚)(𝐻𝑖−1(𝑠))

2
+(𝑞+𝑚)𝐺(𝑠)

(𝑞−𝑚)(𝐻𝑖−1(𝑠))
2
+(𝑞+𝑚)𝐺(𝑠)

                                                   (𝐼𝐼.12) 

Le modèle d’approximation est obtenu ensuite, en remplaçant chaque opérateur d’ordre 

fractionnaire de la fonction de transfert irrationnelle par son approximation rationnelle [28]. 

 

b) Méthode de Matsuda : 

La méthode proposée par [3] est basée sur l’approximation de l’opérateur d’ordre 

fractionnaire 𝐺(𝑠) = 𝑠𝛼par une fonction rationnelle  𝐺̂(𝑠) en identifiant le modèle 

d’approximation à partir de son gain. Le gain est calculé en utilisant M fréquences reparties 

dans une bande de fréquence  [𝜔0, 𝜔𝑀] dans laquelle se fait l’approximation. Pour un 

ensemble 
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 de points sélectionnés 𝜔𝑖,𝑖 = 0,1,2…𝑀, l’approximation prend la forme : 

    𝐺̂(𝑠) = 𝑎0 +
𝑠−𝜔0

𝑎1(𝑠)+

𝑠−𝜔1

𝑎2(𝑠)+

𝑠−𝜔2

𝑎3(𝑠)+
… = [𝑎0;

𝑠−𝜔𝑖−1

𝑎𝑖
]𝑀𝑖−1                                                (𝐼𝐼.13) 

Où 

          𝑎𝑖 = 𝑓(𝜔𝑖), 𝑓0(𝜔) = 𝐺(𝑠), 𝑓𝑖+1(𝑠) =
𝑠−𝜔𝑖

𝑓𝑖(𝑠)−𝑎𝑖
                                                         (𝐼𝐼.14) 

Le modèle d’approximation est obtenu en remplaçant chaque opérateur d’ordre fractionnaire 

de la fonction de transfert irrationnelle explicite par son approximation. 

II.2.2.2 Approximations utilisant l'ajustement de courbes ou les techniques 

d'identification : 

En général, il est possible d’utiliser diverses techniques d’identification dans le domaine 

fréquentiel pour approximer une fonction irrationnelle par une fonction rationnelle dont la 

réponse fréquentielle est aussi proche que possible de celle de la fonction originale. 

Cette approximation peut être obtenue en minimisant une fonction coût définie comme suit :                      

         𝐽 = ∫𝑊(𝑠)|𝐺(𝑤)𝐺̂(𝑤)|
2
𝑑𝑤                                                                         (𝐼𝐼.15) 

Où 

 𝑊(𝑠)est une fonction de pondération, 

 𝐺(𝑤)représente la réponse fréquentielle de la fonction irrationnelle à approximer, 

 𝐺̂(𝑤)est la réponse fréquentielle de la fonction rationnelle choisie pour 

l’approximation. 

Parmi les méthodes les plus couramment utilisées pour ce type d’approximation, on trouve 

les approches proposées par Oustaloup et Charef . 

a) La méthode d’Oustaloup: 

La Méthode d’Oustaloup permet d’approximer un dérivateur fractionnaire 𝑠𝛼avec (𝛼 ∈ ℝ+) 

dans un domaine fréquentiel donné. Elle repose sur une répartition récursive de pôles et 

zéros réels négatifs, assurant ainsi un comportement à phase minimale [27, 28]. 

Principe de l’approximation 

En pratique, un dérivateur fractionnaire ne peut être réalisé que sur un intervalle fréquentiel 

limité, adapté aux besoins de l'application considérée. L’approximation est donc restreinte à 

une bande de fréquence définie par [𝜔𝑏, 𝜔ℎ]avec : 

                             

                          𝜔𝑢 = √𝜔𝑏 ∙ 𝜔ℎ                                                                                 (𝐼𝐼.16) 

où : 

 𝜔𝑏  est la fréquence basse (borne inférieure de la bande), 

 𝜔ℎ est la fréquence haute (borne supérieure), 

 𝜔𝑢 est la fréquence centrale de la bande. 
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L’approximation de l’opérateur 𝑠𝛼dans cette bande est donnée par une fonction rationnelle : 

                           𝐹̂(𝑠) = 𝐶 ∙ ∏
1+

𝑠

𝑧𝑘

1+
𝑠

𝜔𝑘̀

𝑁
𝐾=−𝑁                                                                 (𝐼𝐼.17)                     

où : 

 𝑧𝑘 sont les zéros et 𝜔𝑘̀  sont les pôles avec C un gain de normalisation est l’ordre de 

l’approximation. 

La distribution des pôles et des zéros suit une loi géométrique centrée sur 𝜔𝑢 à l’aide des 

relations suivantes : 

                           𝜔0̀ = 𝛼
0.5 ∙ 𝜔𝑢 , 𝑧0 = 𝛼

−0.5 ∙ 𝜔𝑢                                                          (𝐼𝐼.18)            

                        
𝜔𝑘+1̀

𝜔𝑘̀
= 𝜂 > 1 (facteur d’échelle) ; 

𝑧𝑘

𝜔𝑘̀
= 𝛼 > 0                                    (𝐼𝐼.19) 

Le nombre total de pôles et zéros est défini à partir du paramètre N, donné par :                                                   

                         𝑁 =
𝑙𝑜𝑔 (𝜔ℎ 𝜔𝑏⁄ )

2 ∙ 𝑙𝑜𝑔(𝜂)
                                                                                    (𝐼𝐼.20) 

 Et on peut également définir : 

                          𝜇 =
log  𝛼

𝑙𝑜𝑔(𝛼𝜂)
                                                                                          (𝐼𝐼.21)              

Cette méthode est largement utilisée pour la synthèse de contrôleurs fractionnaires car elle 

permet de maintenir une précision acceptable dans la bande de fréquence spécifiée tout en 

assurant une mise en œuvre réalisable par des filtres classiques (formes rationnelles). 

b) La Méthode de Charef : Fonction de singularité : 

La méthode appelée également "Méthode de la fonction de singularité", a été introduite 

par Charef et al. [21,22] pour approximer les systèmes à comportement fractionnaire à 

l’aide de fonctions de transfert rationnelles. Cette méthode repose sur la construction d’un 

produit de pôles et de zéros réels négatifs, soigneusement répartis, permettant de reproduire 

la réponse fréquentielle des opérateurs fractionnaires sur une bande de fréquence définie. 

L’approche diffère selon le type de fonction à approximer : systèmes du premier ou second 

ordre et intégrateur , dérivateur. 

 Système du premier ordre fractionnaire : 

Pour un système dont la fonction de transfert est d’ordre fractionnaire du premier ordre, elle 

s’exprime sous la forme suivante : 

                            𝐺(𝑠) =
1

(1+
𝑆

𝑃𝑇
)
𝛽                                                                                      (𝐼𝐼.22)                       

Cette expression correspond à un intégrateur fractionnaire tronqué, où : 

⁕ 𝛽 ∈ (0.1) est l’ordre fractionnaire, 

⁕  𝑃𝑇 est un paramètre de fréquence caractéristique. 
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Selon la méthode de la fonction de singularité proposée par Charef et al. [21], cette fonction 

peut être approximée, lorsque 𝑁 ⟶ ∞  par le rapport de deux produits finis de termes du 

premier ordre : 

               𝐺(𝑠) =
1

(1+
𝑠

𝑃𝑇
)
𝛽 = lim

𝑁→∞

∏ (1+
𝑠

𝑧𝑖
)𝑁−1

𝑖=0

∏ (1+
𝑠

𝑝𝑖
)𝑁

𝑖=0

                                                                (𝐼𝐼.23) 

Ici, 𝑁 + 1 représente le nombre total de singularités (pôles et zéros), qui est directement lié 

à la largeur de bande fréquentielle sur laquelle l’approximation est valable. 

Dans un contexte pratique, cette approximation est tronquée à un nombre fini 𝑁,ce qui 

donne: 

               𝐺(𝑠) ≈
∏ (1+

𝑠

𝑧𝑖
)𝑁−1

𝑖=0

∏ (1+
𝑠

𝑝𝑖
)𝑁

𝑖=0

                                                                                             (𝐼𝐼.24)     

Les pôles 𝑝𝑖 et les zéros 𝑧𝑖 de cette fonction rationnelle sont définis de manière 

logarithmique, comme suit :     

               𝑝𝑖 = (𝑎𝑏)
𝑖 ∙ 𝑝0 ,       𝑖 = 1,2,… , 𝑁                                                                    (𝐼𝐼.25)  

              𝑧𝑖 = (𝑎𝑏)
𝑖 ∙ 𝑎 ∙ 𝑝0 ,       𝑖 = 1,2,… , 𝑁 − 1                                                         (𝐼𝐼.26) 

Les paramètres 𝑎, 𝑏 et 𝑝0 sont calculés à partir de l’ordre fractionnaire 𝛽 et de l’erreur tolérée 

𝜖𝑝 (exprimée en dB), selon les expressions suivantes : 

              𝑝0 = 𝑝𝑇 ∙ 10
𝜖𝑝

20𝛽 ,        𝑎 = 10
𝜖𝑝

10(1−𝛽) ,    𝑏 = 10
𝜖𝑝

10𝛽,   𝛽 =
log(𝑎)

log(𝑎𝑏)
                      (𝐼𝐼.27) 

Cette approche permet d’approximer une pente en magnitude de −20β dB/décade à l’aide 

d’une structure composée de pentes élémentaires de : 

⁕ −20 dB/décade (liées aux pôles), 

⁕ 0 dB/décade (liées aux zéros), 

formant ainsi une approximation en zig-zag du comportement fréquentiel souhaité. 

 Système du second ordre fractionnaire : 

Un système du second ordre fractionnaire permet de modéliser des dynamiques complexes en 

introduisant une puissance fractionnaire dans l’équation classique. La fonction de transfert 

s’écrit : 

                      𝐺(𝑠) =
1

(
𝑠2

𝜔𝑛
2+

2𝜉𝑠

𝜔𝑛
+1)

𝛽                                                                                        (𝐼𝐼.28)   

où 𝜔𝑛 est la pulsation propre, 𝜉 le facteur d’amortissement, et 𝛽 ∈ (0.1) 

Selon la valeur de 𝛽, deux cas sont distingués : 

▪ Cas 1 :     𝟎 < 𝛽 < 0.5           
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La fonction est réécrite sous forme d’un produit rationnel, avec une approximation des termes 

fractionnaires à l’aide d’une série de pôles et de zéros. Les paramètres d’approximation sont 

déterminés en fonction d’une bande de fréquence ciblée et d’une erreur tolérée en dB. 

▪ Cas 2 :   𝟎, 𝟓 < 𝜷 < 1 

La structure reste similaire mais l’expression rationnelle est adaptée en fonction de β. Dans 

les deux cas, l’approximation finale est exprimée sous forme d’une fonction rationnelle 

paramétrique utilisable pour la simulation et la commande. Les méthodes d’approximation 

comme la méthode de Charef sont utilisées pour transformer les puissances fractionnaires 

en fonctions rationnelles à pôles et zéros réels, assurant ainsi une implémentation numérique 

efficace. 

 Approximation de l’intégrateur d’ordre fractionnaire : 

Cette méthode est efficace et effortless à utiliser dont le yet est d'approximer standard une 

fonction rationnelle l'intégrateur non entier. Dans un chief lieu, l'opérateur est modélisé 

standard une fonction PPF dans une bande de fréquence d'utilité pratique. Ensuite, cette 

dernière est approximée standard une fonction rationnelle en utilisant la méthode de Charef 

exposée dans la segment précédente. Donc avec cette méthode on peut atteindre n'importe 

quelle précision désirée sur n'importe quelle bande de fréquences . Pour une bande de 

fréquences d'utilité pratique donnée [𝜔𝑙 𝜔ℎ ], l'opérateur intégrateur présenté peur être 

modélisé standard la fonction de transfert PPF suivante : [21] 

                        G(s) =
kl

(1+(
s

ωc
))

m                                                                                    (𝐼𝐼.29)   

En supposant que 𝜔 ∈ [𝜔𝑙 𝜔ℎ ] , on a 𝜔 ≫ 𝜔𝑐 , alors : 

                  𝐺(𝑠) =
𝐾𝑙

(
𝑆

𝜔𝑐
)
𝑚 =

𝐾𝑙𝜔𝑐
𝑚

𝑠𝑚
=

1

𝑠𝑚
= 𝐺𝑙(𝑠)                                                              (𝐼𝐼.30) 

Avec 𝐾𝑙 = 1𝜔𝑐 𝑚 et 𝜔𝑐 est la fréquence de coupure obtenue dans le diagramme de Bode à 

−3 𝑚 𝑑𝐵 qui est calculée par :𝜔𝑐 = √10[𝜀 ∕ 10𝑚] − 1  où 𝜀 est l’erreur maximale permise 

entre les pentes de l’intégrateur d’ordre fractionnaire et sa fonction PPF dans une bande 

fréquences donnée. Pour représenter la fonction par un modèle temps-invariant, on va 

l’approximer par la méthode de la fonction de singularité vue dans la section précédente . La 

méthode consiste en l’approximation de la pente à −20𝑚 𝑑𝐵/𝑑𝑒𝑐, dans le diagramme de 

Bode, par une alternance de pentes à −20 𝑑𝐵/𝑑𝑒𝑐 et 0 𝑑𝐵/𝑑𝑒𝑐. Cette dernière correspond à 

une alternance de pôles et de zéros sur l’axe réel négatif du plan complexe 𝑆. 

           𝑃0 < 𝑍0 < 𝑃1 < 𝑍1 < ⋯ < 𝑍𝑁−1 < 𝑃𝑁                                                                (𝐼𝐼. 31) 

On obtient l’approximation suivante : 
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                  𝐺(𝑆) =
𝐾𝑙

(1+(
𝑆

𝑤𝑐
))

𝑚

≅𝐾𝑙

∏ (1+
𝑆

𝑧𝑖
)𝑁−1

𝑖=0

∏ (1+
𝑆

𝑃𝑖
)𝑁−1

𝑖=0

                                                                    (𝐼𝐼. 32) 

Obtenue en choisissant 𝑦 et 𝜔𝑚𝑎𝑥, qui peut être fixée à 100 𝜔ℎ, et avec : 

                      𝑃0 = 𝜔𝑐10
𝑦 20𝑚⁄   et  𝑍0 = 𝑎𝑃0                                                                      (𝐼𝐼. 33) 

          𝐺(𝑠) =
𝑘𝑙

(1+(
𝑠

𝜔𝑐
))

𝑚 ≅ 𝐾𝑙
∏ (1+

𝑆

𝑧0(𝑎𝑏)
𝑡)

𝑁−1
𝑖=0

∏ (1+
𝑆

𝑃0(𝑎𝑏)
𝑖
)𝑁−1

𝑖=0

                                                                    (𝐼𝐼.34) 

Pour voir la contribution de chaque pôle, on décompose la fonction en somme de fractions 

simples (ou résidus). On obtient :  

        𝐺(𝑠) = 𝐾𝑙
∏ (1+

𝑆

𝑧0(𝑎𝑏)
2)

𝑁−1
𝑖=0

∏ (1+
𝑆

𝑃0(𝑎𝑏)
𝑖
)𝑁−1

𝑖=0

= ∑
ℎ𝑖

(1+
𝑆

𝑃0(𝑎𝑏)
𝑖
)

𝑁
𝑖=0                                                               (𝐼𝐼.35) 

Avec 

                   ℎ𝑖 = 𝐾𝐼
∏ (1−

(𝑎𝑏)𝑖−𝑗

𝑎
)𝑁−1

𝑗=0

∏ (1−(𝑎𝑏)𝑖−𝑗)𝑁
𝑗=0,𝑗≠1

                                                                                (𝐼𝐼.36)  

 Approximation du dérivateur d’ordre fractionnaire : 

 Pour implémenter des correcteurs d'ordre fractionnaire, la méthode d'approximation de 

l'intégrateur a été étendue au dérivateur d'ordre fractionnaire. Dans ce contexte, la fonction de 

transfert est modélisée par un zéro à puissance fractionnaire (ZPF), notée : [30]  

          G(s) = KD (1 + (
s

ωc
)
m

)                                                                                          (𝐼𝐼.37) 

où 𝐾𝐷 = 𝜔𝑐  et 𝜔𝑐 est la fréquence de coupure obtenue dans le diagramme de Bode à −3 m 

dB, calculée par : 

                     𝜔𝑐 = 𝜔𝑙 ∙ 10
𝜖

10𝑚 − 1                                                                                      (𝐼𝐼.38) 

avec 𝜖 représentant l'erreur maximale permise entre les pentes du dérivateur d'ordre 

fractionnaire et sa fonction ZPF dans une bande de fréquences donnée. 

Pour représenter cette fonction par un modèle temps-invariant, on utilise la méthode des 

singularités, qui consiste à approximer la pente à +20 m dB/décade du diagramme de Bode de 

la ZPF par une alternance de pentes à +20 dB/décade et 0 dB/décade. Cette alternance 

correspond à une succession de zéros et de pôles sur l'axe réel négatif du plan complexe 𝑆 

L'approximation obtenue est : 

𝐺(𝑠) = 𝐾𝐷∏ (1 +
𝑠

𝑧𝑖
)𝑁−6

𝑖=0 ∏ (1 +
𝑠

𝑃𝑖
)𝑁

𝑖=0                                                                             (𝐼𝐼.39) 

Où 𝑧0 = 𝜔𝑐 ∙ 10
𝑦

20𝑚et les paramètres 𝑦, 𝜔𝑚𝑎𝑥 (fixé à 100 𝜔ℎ), 𝑎, 𝑏, et 𝑁 sont déterminés selon 

les relations définies précédemment. 

En remplaçant 𝑝𝑖 et 𝑧𝑖 par leurs expressions respectives, on obtient l'approximation suivante : 
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           𝐺𝐷(𝑠) = 𝐾𝐷∏ (1 +
𝑠

𝑧0(𝑎𝑏)
𝑖)

𝑁−1
𝑖=0 ∏ (1 +

𝑠

𝑃0(𝑎𝑏)
𝑖)

𝑁
𝑖=0                                                  

(𝐼𝐼.40) 

 

Le calcul des résidus de cette fonction donne la formule : 

                           𝐺𝐷(𝑠) = 𝐺0 + ∑ ℎ𝑖
𝑠

1+𝑠∙(𝑎𝑏)𝑖∙𝑃0
    𝑁

𝑖=0                                                           

(𝐼𝐼.41) 

avec 𝐺0 = 𝐾𝐷 et 

          ℎ𝑖 = −
𝐾𝐷

𝑃0(𝑎𝑏)
𝑖   ∏ (1 − (𝑎𝑏)𝑖 − (𝑎𝑏)𝑗)𝑁

𝑗=0,𝑗≠𝑖                                                                 

(𝐼𝐼.42) 

 Cette méthode permet d'implémenter efficacement des dérivateurs d'ordre fractionnaire dans 

des systèmes de commande 

 

 

 

 

 

 

 

 

 

 

 

II.3.Conclusion 

La synthèse des systèmes d’ordre fractionnaire repose fondamentalement sur leur 

approximation par des modèles d’ordre entier, afin de faciliter leur implémentation pratique, 

notamment dans les systèmes de commande et d’analyse. 

Dans ce chapitre, nous avons présenté un aperçu théorique des principales méthodes 

d’approximation disponibles dans la littérature. Après une brève introduction aux approches 

numériques, l’accent a été mis sur les méthodes analogiques, en particulier celles de Charef et 

d’Oustaloup. 

Ces deux approches ont été décrites en détail, car elles constituent des outils puissants pour 

représenter avec précision les intégrateurs et dérivateurs d’ordre fractionnaire sur une bande 
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de fréquences spécifiée. Elles permettent ainsi une modélisation efficace et flexible, adaptée 

aux besoins des applications réelles. 
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CHAPITRE III 

Application des Méthodes d’Approximation des 

Systèmes d’Ordre Fractionnaire 
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III. 1 Introduction 

Ce chapitre présente des exemples d’application des méthodes d’approximation d’Oustaloup 

et Matsuda, les plus courantes dans la littérature. Ces méthodes permettent de représenter un 

système d’ordre fractionnaire par un système d’ordre entier sur une bande de fréquence 

limitée. À travers des simulations MATLAB, des intégrateurs et dérivateurs fractionnaires 

seront approximés. L’objectif est de vérifier que l’approximation conserve la dynamique du 

système dans la bande choisie, et de comparer les performances des deux méthodes. 

Dans cette section, nous évaluons l’efficacité de cette méthode à travers des exemples 

concrets. Deux paramètres essentiels sont pris en compte dans l’analyse : 

 l’ordre de la dérivation et d’intégration fractionnaire 𝛼, 

 et le nombre de pôles et zéros utilisés dans l’approximation, noté 𝑁 (aussi appelé 

ordre de troncature). 

Pour cela, nous considérons deux cas : 

 un cas de faible ordre : N=5. 

 et un cas de haute précision : N=20. 

L’analyse se fait sur la bande de fréquence [𝜔𝑙,𝜔ℎ] = [0.01,1000]. 

III.2 Application de la méthode d’Oustaloup 

Comme présenté au chapitre II, la méthode d’Oustaloup est l’une des techniques les plus 

répandues pour l’approximation des dérivateurs fractionnaires. Elle consiste à remplacer 

l’opérateur 𝑆𝛼, défini sur une bande de fréquences, par une fonction de transfert rationnelle à 

ordre entier, constituée de pôles et de zéros répartis logarithmiquement. 

III.2.1 Dérivateur fractionnaire : 

La fonction de transfert de dérivateur d’ordre fractionnaire est donnée par 

𝐺(𝑠) = 𝑠𝛼  

Nous considérons trois ordres dérivateurs (𝛼 = 0.2;  𝛼 = 0.5 et 𝛼 = 0.7) ; pour l’ordre de 

filtre  nous considérons deux cas : 

 un cas de faible ordre : N=5. 

 et un cas de haute précision : N=20. 
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L’analyse se fait sur la bande de fréquence [𝜔𝑙,𝜔ℎ] = [0.01,1000]. 

 Pour 𝜶 = 𝟎. 𝟐 ; 𝑮(𝒔) = 𝒔𝟎.𝟐  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

      

𝐺𝛼=0.2;𝑁=5(𝑠)

=
3.981 s^5 +  1111 s^4 +  2.819e04 s^3 +  7.081e04 s^2 +  1.761e04 s +  398.1

s^5 +  442.3 s^4 +  1.779e04 s^3 +  7.081e04 s^2 +  2.791e04 s +  1000
 

 

𝐺𝛼=0.2;𝑁=20(𝑠)

=

3.981 s^20 +  6440 s^19 +  3.749e06 s^18 +  1.021e09 s^17 +  1.428e11 s^16 + 
 1.071e13 s^15 +  4.402e14 s^ +  1.003e16 s^13 +  1.275e17 s^12 +
 9.067e17 s^11 +  3.615e18 s^10 +  8.081e18 s^9 +  1.013e19 s^8 +
 7.101e18 s^7 +  2.778e18 s^6 +  6.023e17 s^5 +  7.156e16 s^4 +

 4.56e15 s^3 +  1.493e14 s^2 +  2.285e12 s +  1.259e10
s^20 +  1815 s^19 +  1.186e06 s^18 +  3.622e08 s^17 +  5.685e10 s^16 + 
 4.784e12 s^15 +  2.206e14 s^14 +  5.641e15 s^13 +  8.043e16 s^12 +
 6.419e17 s^11 +  2.871e18 s^10 +  7.202e18 s^9 +  1.013e19 s^8 +
 7.968e18 s^7 +  3.497e18 s^6 +  8.507e17 s^5 +  1.134e17 s^4 +

 8.109e15 s^3 +  2.978e14 s^2 +  5.115e12 s +  3.162e10 

 

 

La figure 3.1 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre  

fractionnaire 𝛼 = 0.2 et de son approximé par la méthode d’Oustaloup. 
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 Figure III. 1 Tracé de Bode de 𝐺(𝑠) = 𝑠0.2 et de son approximé par la méthode d’Oustaloup 

 Pour 𝜶 = 𝟎. 𝟓 ; 𝑮(𝒔) = 𝒔𝟎.𝟓  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

𝐺𝛼=0.5;𝑁=5(𝑠)

=
31.62 s^5 +  6248 s^4 +  1.122e05 s^3 +  1.996e05 s^2 +  3.514e04 s +  562.3

s^5 +  624.8 s^4 +  3.549e04 s^3 +  1.996e05 s^2 +  1.111e05 s +  5623
 

 

                                                                                                             

𝐺𝛼=0.5;𝑁=20(𝑠)

=

31.62 s^20 +  4.692e04 s^19 +  2.506e07 s^18 +  6.258e09 s^17 +  8.03e11 s^16 + 
 5.524e13 s^15 +  2.083e15 s^14  +  4.353e16 s^13 +  5.075e17 s^12 + 
 3.311e18 s^11 +  1.211e19 s^10 +  2.483e19 s^9 +  2.854e19 s^8 +
 1.836e19 s^7 +  6.587e18 s^6 +  1.31e18 s^5 +  1.428e17 s^4 +

 8.346e15 s^3 +  2.506e14 s^2 +  3.519e12 s +  1.778e10 
s^20 +  1979 s^19 +  1.409e06 s^18 +  4.693e08 s^17 +  8.03e10 s^16 +

 1.605e17 s^12 +  1.396e18 s^11 +  6.809e18 s^10 +  1.862e19 s^9 +  2.854e19 s^8 +
 2.448e19 s^7 +  1.171e19 s^6 +  3.107e18 s^5 +  4.515e17 s^4 +

 3.519e16 s^3 +  1.409e15 s^2 +  2.639e13 s +  1.778e11
 

 

 

La figure 3.2 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre  

fractionnaire 𝛼 = 0.5 et de son approximé par la méthode d’Oustaloup. 
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Figure III. 2Tracé de Bode de 𝑮(𝒔) = 𝒔𝟎.𝟓 et de son approximé par la méthode 

d’Oustaloup 

 Pour 𝜶 = 𝟎. 𝟕 ; 𝑮(𝒔) = 𝒔𝟎.𝟕  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

𝐺𝛼=0.7;𝑁=5(𝑠)

=
125.9 s^5 +  1.976e04 s^4 +  2.819e05 s^3 +  3.982e05 s^2 +  5.569e04 s +  707.9

s^5 +  786.6 s^4 +  5.624e04 s^3 +  3.982e05 s^2 +  2.791e05 s +  1.778e04
 

       

𝐺𝛼=0.7;𝑁=20(𝑠)

=

125.9 s^20 +  1.763e05 s^19 +  8.891e07 s^18 +  2.096e10 s^17 +  2.539e12 s^16 +
 1.649e14 s^15 +  5.87e15 s^14 +  1.158e17 s^13 +  1.275e18 s^12 +
 7.852e18 s^11 +  2.711e19 s^10 +  5.248e19 s^9 +  5.694e19 s^8  +
 3.458e19 s^7 +  1.171e19 s^6 +  2.199e18 s^5 +  2.263e17 s^4 +

 1.249e16 s^3 +  3.539e14 s^2 +  4.692e12 s +  2.239e10  
s^20 +  2096 s^19 +  1.581e06 s^18 +  5.578e08 s^17 +  1.011e11 s^16 +
 9.824e12 s^15 +  5.232e14 s^14 +  1.545e16 s^13 +  2.544e17 s^12 +
 2.344e18 s^11 +  1.211e19 s^10 +  3.507e19 s^9 +  5.694e19 s^8 +
 5.174e19 s^7 +  2.622e19 s^6 +  7.367e18 s^5 +  1.134e18 s^4 +

 9.364e16 s^3 +  3.971e15 s^2 +  7.877e13 s +  5.623e11

 

 

La figure 3.3 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre  
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fractionnaire 𝛼 = 0.7 et de son approximé par la méthode d’Oustaloup. 

 

Figure III. 3 Tracé de Bode de 𝑮(𝒔) = 𝒔𝟎.𝟕 et de son approximé par la méthode 

d’Oustaloup 

Commentaire 

Les figures 3.1- 3.3 montrent les réponses en fréquence (Amplitudes et phase) des opérateurs 

fractionnaire 𝑠0.2, 𝑠0.5 et 𝑠0.7 de ses approximations via la méthode d’Oustaloup pour deux 

ordres différents : 𝑁 = 5 et 𝑁 = 20. 

Les résultats montrent que l’augmentation de l’ordre 𝑁 améliore significativement la 

précision de l’approximation, aussi bien en amplitude qu’en phase. En particulier, 

l’approximation avec 𝑁 = 20 reproduit fidèlement la réponse exacte sur une large plage de 

fréquences. Ces observations confirment que pour des applications de commande exigeantes, 

un ordre d’approximation élevé est préférable afin d’assurer une modélisation précise des 

opérateurs fractionnaires. 

III.2.2 Intégrateur fractionnaire : 

La fonction de transfert de l’intégrateur d’ordre fractionnaire est donnée par 

 

𝐺(𝑠) =
1

𝑠𝛼
 

Nous considérons trois ordres intégrateurs (𝛼 = 0.2;  𝛼 = 0.5 et 𝛼 = 0.7) ; pour l’ordre de 

filtre  nous considérons deux cas : 
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 un cas de faible ordre : N=5. 

 et un cas de haute précision : N=20. 

L’analyse se fait sur la bande de fréquence [𝜔𝑙,𝜔ℎ] = [0.01,1000]. 

 Pour 𝜶 = 𝟎. 𝟐 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟐
  

La figure 3.4 ci-dessous représente le tracé du diagramme de Bode de intégrateur d’ordre  

fractionnaire 𝛼 = 0.2 et de son approximé par la méthode d’Oustaloup. 

 

Figure III. 4Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟐
 et de son approximé par la méthode 

d’Oustaloup 

 Pour 𝜶 = 𝟎. 𝟓 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟓
  

 

La figure 3.5 ci-dessous représente le tracé du diagramme de Bode de l’intégrateur d’ordre  

fractionnaire 𝛼 = 0.5 et de son approximé par la méthode d’Oustaloup. 
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Figure III. 5 :Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟓
 et de son approximé par la méthode 

d’Oustaloup 

 Pour 𝜶 = 𝟎. 𝟕 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟕
  

La figure 3.6 ci-dessous représente le tracé du diagramme de Bode de l’intégrateur d’ordre  

fractionnaire 𝛼 = 0.7 et de son approximé par la méthode d’Oustaloup. 

 

 Figure III. 6 Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟕
 et de son approximé par la méthode 

d’Oustaloup 

Commentaire 
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Les figures 3.4 à 3.6 montrent les réponses en fréquence (Amplitudes et phase) des opérateurs 

fractionnaire 𝑠−0.2, 𝑠−0.5 et 𝑠−0.7 de ses approximations via la méthode d’Oustaloup pour 

deux ordres différents : 𝑁 = 5 et 𝑁 = 20. 

On observe que plus 𝛼 est petit, plus l’erreur d’approximation, notamment en phase, est 

importante. À l’inverse, lorsque 𝛼 augmente, l’approximation devient plus fidèle, même avec 

un faible ordre. De plus, un ordre 𝑁 plus élevé améliore la précision globale, surtout aux 

basses et hautes fréquences. On en conclut que la précision de l’approximation dépend 

fortement de la valeur de 𝛼 et de l’ordre 𝑁, et qu’il est préférable d’utiliser un ordre élevé, 

notamment pour les petites valeurs de 𝛼. 

III. 3 Application de la méthode de Matsuda 

Comme présenté au chapitre II, La méthode de Matsuda permet d’approximer une dérivation 

fractionnaire par une fonction rationnelle à l’aide de pôles distribués logarithmiquement, dans 

une plage fréquentielle définie. Elle est particulièrement utile pour les simulations 

numériques, car elle produit des modèles d’ordre entier compatibles avec les outils classiques 

d’analyse et de commande. 

III.3.1 Dérivateur fractionnaire : 

La fonction de transfert de dérivateur d’ordre fractionnaire est donnée par 

𝐺(𝑠) = 𝑠𝛼  

Nous considérons trois ordres dérivateurs (𝛼 = 0.2;  𝛼 = 0.5 et 𝛼 = 0.7) ; pour l’ordre de 

filtre  nous considérons deux cas : 

 un cas de faible ordre : N=5. 

 et un cas de haute précision : N=20. 

L’analyse se fait sur la bande de fréquence [𝜔𝑙,𝜔ℎ] = [0.01,1000]. 

 Pour 𝜶 = 𝟎. 𝟐 ; 𝑮(𝒔) = 𝒔𝟎.𝟐  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

       

𝐺𝛼=0.2;𝑁=5(𝑠)

=
5.329 s^5 +  2596 s^4 +  7.692e04 s^3 +  1.903e05 s^2 +  3.829e04 s +  398.1

s^5 +  961.8 s^4 +  4.78e04 s^3 +  1.932e05 s^2 +  6.52e04 s +  1338
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𝐺𝛼=0.2;𝑁=20(𝑠)

=

8.539 s^20 +  8.222e04 s^19 +  1.581e08 s^18 +  1.005e11 s^17 +  2.597e13 s^16  + 
 3.042e15 s^15 +  1.722e17 s^14   +  4.905e18 s^13 +  7.211e19 s^12 +
 5.559e20 s^11 +  2.266e21 s^10 +  4.896e21 s^9 +  5.586e21 s^8 +
 3.334e21 s^7 +  1.023e21 s^6 +  1.569e20 s^5 +  1.15e19 s^4 +

 3.757e17 s^3 +  4.839e15 s^2 +  1.933e13 s  +  1.259e10
s^20 +  1.535e04 s^19 +  3.843e07 s^18 +  2.984e10 s^17 +  9.134e12 s^16 + 

 1.246e15 s^15 +  8.124e16 s^14 +  2.648e18 s^13 +  4.437e19 s^12 +
 3.889e20 s^11 +  1.8e21 s^10 +  4.416e21 s^9 +  5.728e21 s^8 +
 3.896e21 s^7 +  1.368e21 s^6 +  2.417e20 s^5 +  2.064e19 s^4 +

 7.984e17 s^3 +  1.256e16 s^2 +  6.533e13 s +  6.785e10

 

 

La figure 3.7 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre  

fractionnaire 𝛼 = 0.2 et de son approximé par la méthode de Matsuda. 

 

Figure III. 7.Tracé de Bode de 𝑮(𝒔) = 𝒔𝟎.𝟐 et de son approximé par la méthode de 

Matsuda 

 Pour 𝜶 = 𝟎. 𝟓 ; 𝑮(𝒔) = 𝒔𝟎.𝟓  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

𝐺𝛼=0.5;𝑁=5(𝑠)

=
72.13 s^5 +  2.261e04 s^4 +  4.604e05 s^3 +  7.867e05 s^2 +  1.051e05 s +  562.3

s^5 +  1870 s^4 +  1.399e05 s^3 +  8.187e05 s^2 +  4.022e05 s +  1.283e04
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𝐺𝛼=0.5;𝑁=20(𝑠)

=

235.3 s^20 +  1.731e06 s^19 +  2.789e09 s^18 +  1.541e12 s^17 +  3.527e14 s^16  + 
 3.697e16 s^15 +  1.886e18 s^14 +  4.861e19 s^13 +  6.484e20 s^12 + 
 4.542e21 s^11 +  1.683e22 s^10 +  3.306e22 s^9 +  3.425e22 s^8 +
 1.852e22 s^7 +  5.126e21 s^6 +  7.052e20 s^5 +  4.597e19 s^4 +

 1.314e18 s^3 +  1.439e16 s^2 +  4.57e13 s +  1.78e10  
s^20 +  2.568e04 s^19 +  8.086e07 s^18 +  7.385e10 s^17 +  2.584e13 s^16 +

 3.964e15 s^15 +  2.882e17 s^14  +  1.041e19 s^13 +  1.925e20 s^12 +
 1.859e21 s^11 +  9.467e21 s^10 +  2.554e22 s^9 +  3.647e22 s^8  +
 2.734e22 s^7 +  1.061e22 s^6 +  2.08e21 s^5 +  1.984e20 s^4 +

8.672e18 s^3 +  1.569e17 s^2 +  9.738e14 s +  1.324e12
 

 

                                                                                                                                                    

La figure 3.8 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre  

fractionnaire 𝛼 = 0.5 et de son approximé par la méthode de Matsuda. 

 

Figure III. 8.Tracé de Bode de 𝑮(𝒔) = 𝒔𝟎.𝟓 et de son approximé par la méthode de 

Matsuda 

 Pour 𝜶 = 𝟎. 𝟕 ; 𝑮(𝒔) = 𝒔𝟎.𝟕  

Les modèles approximés de l’ordre dérivateur en utilisant la méthode d’approximation pour 

les deux ordres de filtre 𝑁 = 5 et 𝑁 = 20 sont : 

𝐺𝛼=0.7;𝑁=5(𝑠)

=
495.1 s^5 +  1.179e05 s^4 +  1.874e06 s^3 +  2.495e06 s^2 +  2.498e05 s +  707.9

s^5 +  3529 s^4 +  3.525e05 s^3 +  2.648e06 s^2 +  1.665e06 s +  6.993e04
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𝐺𝛼=0.7;𝑁=20(𝑠)

=

2607 s^20 +  1.64e07 s^19 +  2.368e10 s^18 +  1.197e13 s^17 +  2.53e15 s^16  +
 2.467e17 s^15 +  1.175e19 s^14 +  2.834e20 s^13 +  3.544e21 s^12 +
 2.329e22 s^11 +  8.103e22 s^10 +  1.493e23 s^9 +  1.449e23 s^8 +
 7.332e22 s^7 +  1.894e22 s^6 +  2.421e21 s^5 +  1.456e20 s^4 +

 3.793e18 s^3 +  3.699e16 s^2 +  9.873e13 s +  2.24e10  
s^20 +  4.408e04 s^19 +  1.652e08 s^18 +  1.694e11 s^17 +  6.5e13 s^16 +
 1.081e16 s^15 +  8.459e17 s^14 +  3.275e19 s^13 +  6.474e20 s^12 +
 6.668e21 s^11 +  3.619e22 s^10 +  1.041e23 s^9 +  1.583e23 s^8  +
 1.266e23 s^7 +  5.248e22 s^6 +  1.102e22 s^5 +  1.131e21 s^4 +

 5.347e19 s^3 +  1.058e18 s^2 +  7.328e15 s  +  1.165e13

 

                                                                                                                  

  La figure 3.9 ci-dessous représente le tracé du diagramme de Bode de dérivateur d’ordre 

fractionnaire 𝛼 = 0.7 et de son approximé par la méthode de Matsuda. 

 

Figure III. 9Tracé de Bode de 𝑮(𝒔) = 𝒔𝟎.𝟕 et de son approximé par la méthode de 

Matsuda 

Commentaire 

Les figures 3.7- 3.9 montrent les réponses en fréquence (Amplitudes et phase) des opérateurs 

fractionnaire 𝑠0.2, 𝑠0.5 et 𝑠0.7 de ses approximations via la méthode de Matsuda pour deux 

ordres différents : 𝑁 = 5 egft 𝑁 = 20. 

Les résultats montrent que l’augmentation de l’ordre 𝑁 améliore significativement la 

précision de l’approximation, aussi bien en amplitude qu’en phase. En particulier, 

l’approximation avec 𝑁 = 20 reproduit fidèlement la réponse exacte sur une large plage de 

fréquences. Ces observations confirment que pour des applications de commande exigeantes, 
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un ordre d’approximation élevé est préférable afin d’assurer une modélisation précise des 

opérateurs fractionnaires. 

III.3.2 Intégrateur fractionnaire : 

La fonction de transfert de l’intégrateur d’ordre fractionnaire est donnée par 

𝐺(𝑠) =
1

𝑠𝛼
 

Nous considérons trois ordres intégrateurs (𝛼 = 0.2;  𝛼 = 0.5 et 𝛼 = 0.7) ; pour l’ordre de 

filtre  nous considérons deux cas : 

 un cas de faible ordre : N=5. 

 et un cas de haute précision : N=20. 

L’analyse se fait sur la bande de fréquence [𝜔𝑙,𝜔ℎ] = [0.01,1000]. 

 Pour 𝜶 = 𝟎. 𝟐 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟐
  

La figure 3.10 ci-dessous représente le tracé du diagramme de Bode d’un intégrateur d’ordre  

fractionnaire 𝛼 = 0.2 et de son approximé par la méthode de Matsuda. 

 

Figure III. 10.Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟐
 et de son approximé par la méthode de 

Matsuda 

 Pour 𝜶 = 𝟎. 𝟓 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟓
  



 45 

 

La figure 3.11 ci-dessous représente le tracé du diagramme de Bode de l’intégrateur d’ordre  

fractionnaire 𝛼 = 0.5 et de son approximé par la méthode de Matsuda. 

 

 

Figure III. 11 Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟓
 et de son approximé par la méthode de 

Matsuda 

 Pour 𝜶 = 𝟎. 𝟕 ; 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟕
  

 

La figure 3.12 ci-dessous représente le tracé du diagramme de Bode de l’intégrateur d’ordre  

fractionnaire 𝛼 = 0.7 et de son approximé par la méthode de Matsuda. 
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Figure III. 12Tracé de Bode de 𝑮(𝒔) =
𝟏

𝒔𝟎.𝟕
 et de son approximé par la méthode de 

Matsuda 

 

Commentaire 

Les figures 3.10 à 3.12 montrent les réponses en fréquence (Amplitudes et phase) des 

opérateurs fractionnaire 𝑠−0.2, 𝑠−0.5 et 𝑠−0.7 de ses approximations via la méthode de 

Matsuda pour deux ordres différents : 𝑁 = 5 et 𝑁 = 20. 

On observe que plus 𝛼 est petit, plus l’erreur d’approximation, notamment en phase, est 

importante. À l’inverse, lorsque 𝛼 augmente, l’approximation devient plus fidèle, même avec 

un faible ordre. De plus, un ordre 𝑁 plus élevé améliore la précision globale, surtout aux 

basses et hautes fréquences. On en conclut que la précision de l’approximation dépend 

fortement de la valeur de 𝛼 et de l’ordre 𝑁, et qu’il est préférable d’utiliser un ordre élevé, 

notamment pour les petites valeurs de 𝛼. 

III. 4 Etude comparative  

Il s’agit, dans cette section d’effectuer une comparaison entre les deux méthodes 

d’approximation, en analysant les performances de chacune. Et cela en se basant sur ce qui a 

été fait précédemment pour voir les principales différences des deux méthodes.   

 Pour 𝜶 = 𝟎. 𝟐 ; 𝑮(𝒔) = 𝒔𝟎.𝟐 
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Figure III. 13: Tracé de Bode de 𝒔𝟎.𝟐et de son approximé par la méthode d’Oustaloup et 

Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟓. 

 

 

 Figure III. 14: Tracé de Bode de 𝒔𝟎.𝟐et de son approximé par la méthode d’Oustaloup 

et Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟐𝟎. 

 Pour 𝜶 = 𝟎. 𝟓 ; 𝑮(𝒔) = 𝒔𝟎.𝟓 
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Figure III. 15: Tracé de Bode de 𝒔𝟎.𝟓 et de son approximé par la méthode d’Oustaloup 

et Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟓. 

 

Figure III. 16: Tracé de Bode de 𝒔𝟎.𝟓 et de son approximé par la méthode d’Oustaloup et 

Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟐𝟎. 

 Pour 𝜶 = 𝟎. 𝟕 ; 𝑮(𝒔) = 𝒔𝟎.𝟕 



 49 

 

Figure III. 17: Tracé de Bode de 𝒔𝟎.𝟕 et de son approximé par la méthode d’Oustaloup 

et Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟓. 

 

 

Figure III. 18: Tracé de Bode de 𝒔𝟎.𝟕 et de son approximé par la méthode d’Oustaloup 

et Matsuda dans la bande de fréquences [𝝎 , 𝝎𝒉] = [ 𝟎. 𝟎𝟏 , 𝟏𝟎𝟎𝟎], 𝑵 = 𝟐𝟎. 

Commentaire 

D’après les résultats de comparaison, on peut voir que les deux méthodes sont efficaces et 

donnent de bonnes approximations, avec un léger avantage à la méthode de Matsuda. En 

effet, dans les figures 3.17 et 3.18 et pour l’ordre de filtre élevé, entre les fréquences 10−3 et 
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104 , les deux tracés se superposent parfaitement ce qui signifie que le modèle approximé à la 

même dynamique que le modèle fractionnaire. 

III.5 Application sur un système fractionnaire 

Dans cet exemple, un modèle approché d'une fonction de transfert d'ordre fractionnaire est 

obtenu par différentes méthodes d'approximation, et les résultats sont comparés. La fonction 

de transfert d'ordre fractionnaire est donnée ci-dessous : 

 

Les méthodes d'approximation sont appliquées aux termes en puissance fractionnaire 𝑠0.2, 

𝑠0.5 et 𝑠0.7, et la fonction de transfert globale est calculée. Ici, l'ordre de l'approximation est 

de 3 et la plage de fréquences va de 0,01 à 100.  

 

La figure ci-dessous représente un diagramme de Bode comparant la réponse en fréquence 

d’un système d’ordre fractionnaire (FOTF) à celles obtenues à l’aide de différentes 

méthodes d’approximation : 

 

On observe que l’approximation de Matsuda, grâce à un ordre plus élevé, offre une meilleure 

précision, notamment dans la phase et le gain sur une large plage de fréquences. 

L’approximation d’Oustaloup modifiée améliore légèrement la performance par rapport à la 

version classique, mais reste moins fidèle que celle de Matsuda. Ces résultats montrent que la 

précision de l’approximation dépend fortement du choix de la méthode et de l’ordre utilisé. 
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III.6 Conclusion 

Dans ce chapitre, nous avons cherché à vérifier l’hypothèse selon laquelle, dans une bande de 

fréquences limitée, les systèmes d’ordre fractionnaire peuvent présenter un comportement 

similaire à celui des systèmes d’ordre entier. Pour cela, nous avons appliqué les méthodes 

d’approximation d’Oustaloup et de Matsuda, en faisant varier l’ordre fractionnaire α ainsi que 

le nombre de pôles et de zéros (𝑁 =  5 et 𝑁 =  20). 

Les principaux enseignements tirés de cette étude sont les suivants : 

 Les systèmes d’ordre fractionnaire reproduisent bien la dynamique des systèmes 

d’ordre entier dans une plage de fréquences restreinte. 

 La qualité de l’approximation dépend de plusieurs paramètres : la bande de 

fréquences, le choix de l’ordre α, ainsi que le nombre de pôles et de zéros. Un 𝑁 élevé 

(généralement >10) est crucial, surtout pour la méthode d’Oustaloup. 

 Les deux méthodes montrent des limites pour des valeurs extrêmes de α, avec une 

perte notable de précision. 

En comparant les deux approches : 

 La méthode de Matsuda offre de meilleures performances globales que celle 

d’Oustaloup, notamment en termes de précision et de stabilité, même avec un faible 

𝑁. 

 Lorsque N est augmenté à 20, la précision s’améliore pour les deux méthodes, mais 

Matsuda reste plus fiable, particulièrement dans les zones de transition fréquentielle. 

En résumé, bien que les deux méthodes soient efficaces dans une certaine mesure, la méthode 

de Matsuda s’avère plus précise et plus robuste pour l’approximation de systèmes d’ordre 

fractionnaire, toutes conditions confondues. 
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Conclusion générale 
  

Ce mémoire s’inscrit dans le cadre de l’étude des systèmes dynamiques d’ordre 

fractionnaire, en mettant l’accent sur les méthodes d’approximation rationnelle destinées à 

faciliter leur traitement numérique. Les opérateurs fractionnaires, bien qu’efficaces pour 

modéliser des phénomènes complexes intégrant des effets de mémoire ou d’hystérésis, 

présentent des difficultés d’implémentation liées à leur nature irrationnelle. 

Afin de surmonter ces obstacles, nous avons mené une analyse comparative entre 

deux méthodes d’approximation reconnues : la méthode de Matsuda et celle d’Oustaloup. 

Après avoir exposé les bases théoriques du calcul fractionnaire (dérivation, intégration 

d’ordre réel, transformée de Laplace), nous avons appliqué ces deux approches selon une 

démarche rigoureuse à travers des simulations fréquentielles (diagrammes de Bode) et 

temporelles (réponse indicielle). 

L’étude a révélé que chaque méthode présente des avantages spécifiques. La 

méthode de Matsuda, fondée sur une expansion de Padé, s’est montrée particulièrement 

efficace pour des bandes de fréquences étroites et, dans les exemples analysés, elle a produit 

de meilleurs résultats que celle d’Oustaloup pour des ordres de filtre élevés, en offrant 

une approximation plus fidèle avec un moindre écart en fréquence. À l’inverse, la méthode 

d’Oustaloup, qui repose sur une répartition logarithmique des pôles et des zéros, demeure 

plus robuste et mieux adaptée à des bandes fréquentielles larges, ce qui en fait un choix 

privilégié dans les applications de commande robuste. 

La comparaison a ainsi mis en évidence que le choix de la méthode d’approximation 

doit impérativement tenir compte du contexte d’application, notamment de l’ordre 

fractionnaire visé, de la plage fréquentielle, du niveau d’erreur tolérable et de la complexité 

de mise en œuvre. 

En conclusion, ce travail a permis de clarifier les critères de sélection entre différentes 

méthodes d’approximation et d’offrir des éléments concrets d’aide à la décision selon les 

objectifs de modélisation et de contrôle. Il ouvre également des perspectives intéressantes, 

telles que l’exploration d’autres techniques d’approximation, l’analyse de systèmes en boucle 

fermée, ou encore l’application à des cas réels dans des domaines tels que l’électrochimie, la 

régulation thermique ou les matériaux intelligents. 
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Ce travail ouvre plusieurs perspectives intéressantes pour la suite. Une première orientation 

possible serait l’étude d’autres techniques d’approximation, telles que la méthode de 

Carlson…etc. Il serait également pertinent d’étendre cette étude aux systèmes en boucle 

fermée, afin d’évaluer l’impact de chaque approximation sur la stabilité, la robustesse et la 

performance des systèmes de contrôle. 

Par ailleurs, une implémentation expérimentale sur des systèmes physiques réels 

permettrait de confronter les résultats de simulation aux comportements mesurés, notamment 

dans des domaines où les systèmes fractionnaires sont particulièrement pertinents : 

électrochimie (batteries, supercondensateurs), régulation thermique, …etc. 
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