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Abstract 

This thesis proposes a predictive maintenance model for pressure control systems in electrolysis plants, utilizing 

advanced machine learning algorithms to enhance the reliability, safety, and efficiency of green hydrogen production. 

Electrolysis, a cornerstone of green hydrogen production, is often hindered by pressure control component failures, 

resulting in production losses and safety hazards. Traditional reactive or scheduled maintenance approaches are costly 

and lead to downtime, further exacerbating inefficiencies. To address these challenges, the proposed framework 

leverages multivariate operational data and sophisticated machine learning algorithms to proactively predict failures and 

prevent breakdowns from occurring. Some of the key challenges addressed include the complexities of processing data 

streams, selecting relevant features, rendering models robust, reducing false alarms, and ensuring simple industrial 

integration. Moreover, the system incorporates a Proportional-Integral-Derivative (PID) control loop, which is tuned by 

a Genetic Algorithm for dynamic temperature control of the electrolyzer to maintain optimum operating conditions. The 

system's efficiency in pressure and temperature stabilization is confirmed by experimental results, resulting in notable 

operating cost savings, enhanced safety features, and groundbreaking green hydrogen technology. Along with 

operational improvements, this research lays the groundwork for future studies to optimize maintenance approaches 

further and enhance the sustainability of hydrogen production. The introduction of machine learning into predictive 

maintenance not only transforms electrolysis plant operations but also paves the way for the broader adoption of green 

hydrogen technologies, which are critical to environmental sustainability and energy independence worldwide. 

Keywords: Predictive maintenance; Machine learning algorithms; Electrolysis plants; Green hydrogen production; 

Pressure control systems; PID control loop. 

 

 ملخص

صًا ات التعلم الآلي، ومُصمم خصيتلُقي هذه الأطروحة العلمية الضوء على إطار عمل مُتطور للصيانة التنبؤية، قائم بشكل أساسي على تقني

لأنظمة التحكم في الضغط المُستخدمة في محطات التحليل الكهربائي، ويطمح إلى تعزيز موثوقية وسلامة وكفاءة إنتاج الهيدروجين الأخضر 

لي غالبًا ما ام، إلا أن أداءها التشغيبشكل كبير. لا شك أن الأنظمة المُستخدمة في التحليل الكهربائي تعُدّ محوريةً لتوليد الهيدروجين بشكل مستد

يانة صيتأثر سلبًا بأعطال في مُكونات التحكم في الضغط، مما قد يسُبب خسائر إنتاجية كبيرة ويشُكل مخاطر أمنية جسيمة. تميل استراتيجيات ال

فاءة في الإطار إلى توقفات طويلة، مما يفُاقم من عدم الك التقليدية، التي تغُلب عليها التفاعلية أو المُجدولة، إلى تكبد تكاليف تشغيلية باهظة، وتؤدي

التزامن ب التشغيلي. ولمواجهة هذه التحديات، يسعى هذا البحث إلى تطوير نهج صيانة استباقية يسُخّر قوة البيانات التشغيلية مُتعددة المتغيرات،

ة قبل وقوعها. يتناول النظام المبتكر المقترح هنا العديد من التحديات مع خوارزميات التعلم الآلي المُتقدمة، بهدف التنبؤ بالأعطال المُحتمل

الحرجة، والتي تشمل على سبيل المثال لا الحصر، تعقيدات تحليل تدفق البيانات، وتحديد أهمية الميزات، وضمان متانة النموذج، وتقليل 

(، والتي تم تحسينها PIDمشتقة )-تكاملية-، تم دمج حلقة تحكم تناسبيةالإنذارات الكاذبة، وتسهيل التكامل الصناعي السلس. بالإضافة إلى ذلك

 بدقة من خلال تطبيق خوارزمية جينية، في الإطار لتنظيم درجة حرارة المحلل الكهربائي ديناميكيًا، مما يضمن ظروف تشغيل مثالية. تظُهر

الإطار المقترح في الحفاظ على ظروف ضغط ودرجة حرارة مستقرة داخل النتائج التجريبية المستمدة من هذا المسعى البحثي بشكل قاطع فعالية 

يجي رنظام التحليل الكهربائي، مما يسُهم في نهاية المطاف في خفض كبير في تكاليف التشغيل، وتحسينات في بروتوكولات السلامة، والتقدم التد

ز آثار هذا العمل مجرد التحسينات التشغيلية، حيث إنه يرُسي الأساس للتقنيات المرتبطة بإنتاج الهيدروجين الأخضر. علاوة على ذلك، تتجاو

إن فلجهود بحثية مستقبلية تهدف إلى تحسين ممارسات الصيانة بشكل أكبر وتعزيز الاستدامة الشاملة لعمليات إنتاج الهيدروجين. وفي الختام، 

ز النماذج التشغيلية لمحطات التحليل الكهربائي فحسب، بل يعمل أيضًا كمحفدمج التعلم الآلي في الصيانة التنبؤية لا يؤدي إلى إحداث ثورة في 

 لتبني تقنيات الهيدروجين الأخضر على نطاق أوسع، وهو أمر حاسم لتحقيق الاستدامة البيئية واستقلال الطاقة على نطاق عالمي.
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Résumé 

Cette thèse propose un modèle de maintenance prédictive pour les systèmes de contrôle de la pression dans 

les usines d’électrolyse, utilisant des algorithmes d’apprentissage automatique avancés afin d’améliorer la 

fiabilité, la sécurité et l’efficacité de la production d’hydrogène vert. L’électrolyse, pierre angulaire de la 

production d’hydrogène vert, est souvent entravée par des défaillances des composants de contrôle de la 

pression, entraînant des pertes de production et des risques pour la sécurité. Les approches de maintenance 

traditionnelles, qu’elles soient réactives ou planifiées, s’avèrent coûteuses et provoquent des arrêts prolongés, 

aggravant ainsi les inefficacités opérationnelles. Pour relever ces défis, le cadre proposé exploite des données 

opérationnelles multivariées et des algorithmes d’apprentissage automatique sophistiqués afin de prédire de 

manière proactive les pannes et d’empêcher leur survenue. Parmi les principaux défis abordés figurent la 

complexité du traitement des flux de données, la sélection des caractéristiques pertinentes, le renforcement de 

la robustesse des modèles, la réduction des fausses alertes, et l’assurance d’une intégration industrielle simple. 

De plus, le système intègre une boucle de contrôle proportionnelle-intégrale-dérivée (PID), réglée par un 

algorithme génétique pour un contrôle dynamique de la température de l’électrolyseur, assurant ainsi des 

conditions de fonctionnement optimales. Les résultats expérimentaux confirment l’efficacité du système dans 

la stabilisation de la pression et de la température, se traduisant par des économies de coûts d’exploitation 

significatives, une amélioration des dispositifs de sécurité, et des avancées majeures dans la technologie de 

l’hydrogène vert. En plus des améliorations opérationnelles, cette recherche jette les bases d’études futures 

visant à optimiser davantage les stratégies de maintenance et à renforcer la durabilité de la production 

d’hydrogène. L’introduction de l’apprentissage automatique dans la maintenance prédictive transforme non 

seulement le fonctionnement des usines d’électrolyse, mais ouvre également la voie à une adoption plus large 

des technologies de l’hydrogène vert, essentielles à la durabilité environnementale et à l’indépendance 

énergétique mondiale. 

Mots-clés : Maintenance prédictive ; Algorithmes d’apprentissage automatique ; Usines d’électrolyse ; 

Production d’hydrogène vert ; Systèmes de contrôle de la pression ; Boucle de contrôle PID. 
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Symbol Description Unit 

V Voltage Volts (V) 

I Current Amperes (A) 

R Resistance Ohms (Ω) 

C Capacitance Farads (F) 

L Inductance Henrys (H) 

P Power Watts (W) 

f Frequency Hertz (Hz) 

ω Angular frequency rad/s 

τ Time constant s 

T Temperature / Sampling period °C / s 

T_el Electrolyzer temperature °C 

T_bt_out Buffer tank outlet temperature °C 

T_El_in Electrolyzer inlet temperature °C 

T_cw_out Cooling water outlet temperature °C 

T_setpoint Temperature setpoint °C 

s Laplace transform variable - 

G(s) Transfer function - 

u(t) Input signal - 

y(t) Output signal - 

e(t) Error signal - 

Kp, Ki, Kd PID controller gains - 

J Moment of inertia kg·m² 

θ, θ̇ Angular position / velocity rad / rad/s 

Δ Change / Variation - 

F, F_const Faraday constant 96485 C/mol 

R (gas) Universal gas constant J/mol·K 

Utn Thermoneutral voltage Volts (V) 

Cp, Cp_lye Specific heat capacity of water/lye J/g·K 

A, A_el Electrode area m² 

q_cw Cooling water flow rate g/s 

N Number of electrolyzers - 

nc Number of cells per electrolyzer - 

Pnet Total input power Watts (W) 

x(t) State vector various 

dx/dt Time derivative of states varies 

Psto_H2, Psto_O2 Storage pressure of H₂ / O₂ bar 

Mass_Bt Buffer tank mass kg or g 

Q_generated Generated heat J or W 

Q_loss Heat loss J or W 

Q_net Net heat J or W 

Water_consumption Electrolysis water consumption g/s 

α, k, σ Efficiency / conductivity / Stefan-Boltzmann various 

Vc, Vh Cold/hot side volumes in heat exchanger m³ 

T_ref Reference temperature K 
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Problematic 

The demand for green hydrogen production has increased, so unexpected failures in the pressure 

control systems of electrolysis plants will drastically cut production and create a serious safety 

hazard. Maintenance in such facilities is predominantly scheduled, along with corrective actions 

performed after failure scenarios that can lead to several issues, including unnecessary 

downtime, increased operational costs, and potential safety hazards. Although various sensors 

and monitoring systems are already available, the complex interactions between components and 

operating conditions make the precise prediction or avoidance of these pressure control system 

failures quite challenging. This issue creates an urgent demand for sophisticated maintenance 

methods that can utilize vast quantities of operational data to predict possible failures before they 

happen. While incorporating machine learning techniques is promising, several challenges must 

be addressed, such as how to effectively process and analyze multivariate data streams from 

pressure control systems to identify subtle patterns that indicate imminent failures. What is the 

relevance of parameters and features in making more accurate failure predictions? How can we 

develop robust models that minimize false alarms while ensuring that no critical failures are 

overlooked? Besides, introducing such systems raises questions about finding an optimal balance 

between maintenance costs and the system's reliability, as well as the practical integration aspects 

of the predictive maintenance system into the current industrial environment. This thesis will 

develop and validate a comprehensive ML-based predictive maintenance framework specifically 

tailored for pressure control systems in electrolysis plants. 

 

Key Questions:  

How can unexpected failures in pressure control systems of electrolysis plants be predicted and 

prevented to ensure continuous green hydrogen production and operational safety? 

 

How should relevant parameters and features be selected and prioritized to improve the 

accuracy of failure predictions in pressure control systems? 

 

How can predictive maintenance contribute to the long-term sustainability and scalability of 

green hydrogen production technologies? 
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Chapter 1: Introduction  

 

Water electrolysis was first performed by Jan Rudolph Deiman and Adriaan Paets van Troostwijk in 1789 [1], 

using electricity produced by an electrostatic machine and discharged on gold electrodes in water. In 1800, 

Alessandro Volta applied his voltaic pile to water electrolysis, but the results were not widely studied. The 

same year, W. Nicholson and A. Carlisle conducted water electrolysis experiments using copper electrodes 

and a voltaic pile. J. Ritter performed absolute water electrolysis, collecting oxygen and hydrogen gases 

separately [2]. However, industrial application of water electrolysis only began at the end of the nineteenth 

century, with over 400 electrolysis units in operation by 1902. Technical and engineering reasons for this 

delay included the time required to develop suitable DC power sources and efficient diaphragms to separate 

anode and cathode chambers [3]. 

Hydrogen is essential for various industrial applications, including the production of ammonia, methanol, 

petroleum products, and polymers. Currently, most hydrogen is produced through the steam reforming of 

fossil hydrocarbons, which causes pollution (Fig. 1.1).  

 

 

Figure 1.1: Hydrogen production sources [14]. 

Water electrolysis is essential for hydrogen production and for distributed on-demand and on-site generation 

solutions, creating a carbon-free and environmentally friendly economy. This solution will help reduce 

atmospheric CO2 emissions and promote a more sustainable future [4, 5]. 

Electrolysis is a promising method for carbon-free hydrogen production from renewable and nuclear 

resources. It involves splitting water into hydrogen and oxygen using electricity. It is performed in an 

electrolyzed form (Fig. 1.2). Electrolyzers range from tiny appliances for distributed hydrogen production to 

extensive, central facilities connected to renewable or non-greenhouse gas-emitting electricity sources. 
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Figure 1.2: Principle of generation of H2 from H2O in Electrolysis 

 

Hydrogen production via electrolysis could synergize with dynamic and intermittent power generation in 

renewable energy technologies. Wind power variability can hinder its practical use, but integrating hydrogen 

fuel and electric power generation at wind farms can provide flexibility in resource allocation (Fig.1.3). 

Additionally, excess electricity from wind farms can produce hydrogen through electrolysis instead of 

curtailing it, allowing for better resource utilization and market factors [6].    

 

 

Figure 1.3: Diagrammatic illustration of the sources and applications of hydrogen for use in aviation 
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1. Context and Industrial Challenges 

In recent years, extreme weather events have led to a push to limit global warming to within 2°C by the end 

of the 21st century. Countries are making significant efforts to transition their energy systems from fossil fuels 

towards low-carbon or carbon-free energy production. The structure of global production and consumption of 

traditional fossil fuels and renewable energy resources will be reshaped as countries recognize the importance 

of energy security and focus on energy production and consumption. 

Hydrogen energy is a renewable, clean, and efficient secondary energy source with numerous advantages, 

including abundant sources, a high calorific value of combustion, clean and pollution-free usage, diverse 

utilization forms, a potential energy storage medium, and safety. As the world faces increasing pressure from 

climate change and natural disasters, hydrogen energy has become a strategic choice for many countries' 

energy transformation. 

According to the Global Hydrogen Review 2021 and China's Medium and Long-Term Plan for the 

Development of the Hydrogen Industry (2021–2035), global annual hydrogen production is approximately 

9,000 × 10⁴ t, with China's annual production being 3,300 × 10⁴ t. In 2021, 142 new hydrogen stations were 

opened globally, bringing the total number of stations to 685 worldwide. Asia has the highest number of 

hydrogen refueling stations (363), mainly in China, Japan, and South Korea. 

 

Over 20 countries or alliances have released or formulated national hydrogen energy strategies. The United 

States has long promoted hydrogen's unique position and advantages in the future energy system. At the same 

time, the European Union supports the development of hydrogen energy and fuel cells. Japan's government 

proposed a strategy of "building a hydrogen-based society ahead of other countries" in 2017. China 

incorporated hydrogen into its 14th Five-Year Plan and the 2035 Vision 2020 to achieve the strategic goals of 

"peaking CO2 emissions and carbon neutrality." [7]. 

 

2. Role of pressure control in electrolysis 

Pressure management is crucial in electrolysis, particularly in industrial applications such as water electrolysis, 

hydrogen generation, and chlor-alkali processes. Why it matters is as follows: 

 

 Separation and Purity of Gas 

The cathode and anode of water electrolysis produce hydrogen and oxygen gases, respectively. 

Maintaining the pressure at the proper level helps prevent contamination and gas leakage. Because 

differential pressure management prevents the gases from mixing, it increases purity and reduces the 

likelihood of an explosion. 
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 Efficiency as well as Energy Use 

1. The energy required for compression in later phases of storage or transportation can be reduced 

by increasing the pressure. 

2. Excessive pressure raises the electrolyte's electrical resistance and may decrease efficiency. 

3. These variables are balanced to optimize pressure management, resulting in reduced energy 

usage. 

 

 Control of Electrolytes 

1. Under proper pressure, the electrolyte cannot evaporate too rapidly or generate undesirable 

bubbles, which might damage the electrode surface and decrease efficiency. 

2. Pressure maintains a steady electrolyte flow during high-pressure electrolysis, such as PEM 

electrolysis. 

 

 Safety and Structural Soundness 

1. Electrolysis cells and their constituent parts must be able to tolerate changes in internal pressure 

to prevent leaks or malfunctions. 

2. Underpressure can result in unintended side effects or gas backflow, while overpressure can 

harm cells. 

 

 Rate of Reaction and Solubility in Gas 

1. Pressure affects the soluble gasses in the electrolyte. At higher pressures, more gas dissolving 

in the liquid may slow down gas evolution or cause problems with bubble formation. 

2. A constant response rate and avoidance of efficiency losses are guaranteed by controlled 

pressure. [8, 9, 10 11, 12].  

 

3. Potential of ML in maintenance 

Machine learning has revolutionized Industry 4.0 by enabling companies to adopt proactive strategies for 

predictive maintenance. This approach not only increases efficiency and reduces downtime but also optimizes 

resource utilization. As businesses explore sustainable technology, the traditional "break-fix" model is no 

longer sufficient. As ML algorithms advance, businesses can use data for more intelligent decision-making, 

predicting equipment failures before they occur. This prediction enables targeted maintenance, reduces 

emergency repairs, lowers energy consumption, and fosters a more sustainable operational framework. This 

article examines the application of machine learning in predictive maintenance and how organizations can 

utilize these solutions. 
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Machine learning (ML) is transforming the maintenance industry by analyzing vast amounts of data from 

sensors and historical records to identify potential equipment failures. ML algorithms learn from this data to 

recognize abnormalities and predict when maintenance will likely be required. For example, in solar power 

facilities, panel sensors collect data on various parameters, enabling the prediction of potential issues such as 

deteriorating panel efficiency or faulty components. By proactively scheduling maintenance based on these 

predictions, facilities can ensure optimal energy production and enhance the efficiency of renewable energy 

generation. 

The global predictive maintenance market is projected to reach $31,965.49 million by 2027, growing at a 

compound annual growth rate (CAGR) of 28.8% from 2020 to 2027. According to a McKinsey survey, 84% 

of respondents already adopt predictive maintenance approaches for critical assets. In mature reliability-

centered maintenance (RCM) capabilities, 70-85% of technician hours are spent on preventative maintenance 

(PM) activities. 

 

Traditional maintenance was reactive, relying on fixed equipment and predefined schedules, which often led 

to over-maintenance or missed opportunities for timely intervention. ML-driven maintenance introduces a 

more dynamic and adaptive model, enabling precisely timed maintenance through continuous data analysis. 

This approach can reduce costs, reduce downtime, and increase the efficiency of renewable energy generation. 

3.1 Traditional vs ML Maintenance 
 

Traditionally, maintenance was reactive, focusing on addressing fixed issues and adhering to predefined 

schedules. This approach led to over-maintenance, missed opportunities, increased costs, and a less-than-ideal 

environmental footprint. Machine learning has introduced a more dynamic model, enabling precise, timely 

maintenance by continuously analyzing data. This comparison highlights the benefits of ML-driven 

maintenance over traditional methods. Table 1 summarizes the primary differences between traditional and 

machine learning (ML)-driven predictive maintenance methods.  

 

Table 1: Comparison between traditional maintenance methods vs. ML-driven predictive maintenance 

Traditional maintenance ML-driven predictive maintenance  

Reactive approach  Proactive intervention  

Fixed maintenance schedule Dynamic and adaptive maintenance  

Routine checks Real-time health monitoring 

Limited data handling Analysis of large datasets  

Unplanned downtime  Predictions of failures in advance 

Increased costs  Optimized operational efficiency  
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3.2 The Future of Predictive Maintenance with ML 
 

The future of predictive maintenance, driven by machine learning (ML), is expected to see significant 

advancements. Edge computing, which utilizes data closer to the source, is crucial for real-time decision-

making, enabling immediate responses to potential issues and minimizing downtime. Digital twins, which are 

still in their early stages, will enable more accurate simulations and predictive modeling, thereby improving 

maintenance strategies and enhancing understanding of asset behavior throughout their lifespan. Explainable 

AI, dedicated to making machine learning models more interpretable, is essential for transparency in decision-

making, ensuring that recommendations and insights provided by ML algorithms are clear and easy to check. 

This trust and effective collaboration between humans and AI facilitate more informed decisions. 

Autonomous maintenance robots are expected to integrate into the industrial landscape, conducting routine 

inspections, identifying potential issues, and performing minor repairs. This shift towards autonomous 

maintenance aims to reduce human exposure to hazardous environments and partially solve the human talent 

shortage. As reliance on AI and ML algorithms grows, the future of predictive maintenance will likely see a 

shift towards these advancements. 

3.3 The Strategic Advantage of ML in Predictive Maintenance 
 

Machine learning (ML) provides a strategic advantage in predictive maintenance, enabling businesses to plan 

maintenance activities more effectively, thereby reducing downtime and costs. This approach is crucial in the 

era of Industry 4.0, where modern maintenance strategies are interconnected and can evolve from reactive to 

proactive and predictive models [13]. Fig. 1.4 summarizes the benefits of using machine learning (ML) for 

predictive models in the industry.  
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Figure 1.4: Benefits of using ML for predictive models in the industry in general.  

 

4. Research Objectives 

The main objectives of our master thesis are:  

1. Develop a Machine Learning-Based Predictive Maintenance Framework: In this step, we will 

design and implement a complete system tailored to pressure control in electrolysis plants, capable of 

predicting failures before they occur. 

 

2. Analyze Multivariate Data Streams: This sub-objective involves processing and analyzing 

complex, high-dimensional sensor data to detect subtle patterns and early warning signs of pressure 

anomalies. 

 

3. Feature Relevance and Model Optimization: We will investigate the most critical parameters and 

features for accurate failure predictions, balancing model accuracy with interpretability. 

 

4.  Minimize False Alarms and Maximize Reliability: Build robust ML models that reduce false 

positives while ensuring no critical failures go unnoticed. 

 

5. Optimize Maintenance Scheduling: Based on predictive insights, the transition from scheduled 

maintenance to condition-based and predictive maintenance strategies. 
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6. Facilitate Industrial Integration: We will address practical integration challenges, ensuring the 

predictive system seamlessly fits within existing industrial infrastructure and workflows. 

 

7. Balance Cost and System Reliability: By exploring the trade-off between maintenance costs and 

system reliability, we aim to strike the optimal balance for sustainable plant operations. This enables 

us to overcome the primary drawback of blue hydrogen generated through electrolysis, which is its 

high cost.  

 

 

4. Conclusion 

 

In this chapter, we present an overview of water electrolysis as a flagship technology for green hydrogen 

production, tracing its historical roots and industrial applications. It reflects the growing global demand for 

energy sourced from hydrogen, driven by a desire to transition away from fossil fuels and towards low-carbon 

energy sources. The chapter addresses industrial concerns, including energy efficiency, safety, and the role of 

pressure control systems in maintaining gas purity, optimizing energy utilization, and ensuring system 

integrity. It also introduces the potential of machine learning (ML) in predictive maintenance, where it 

outshines traditional maintenance techniques. ML allows for real-time monitoring, early failure prediction, 

and optimal maintenance scheduling, reducing downtime and operating costs. The chapter concludes with the 

research goals, which involve developing an ML-based predictive maintenance framework for pressure 

control systems in electrolysis plants. This framework addresses key challenges, including feature selection, 

model reliability, and integration into the industry, to enhance efficiency and sustainability. 

The next chapter will outline the state-of-the-art machine learning approaches in predictive maintenance for 

electrolysis systems. This literature review will discuss existing methodologies, examine their merits and 

limitations, and identify the most suitable machine learning (ML) methods for predicting failure in pressure 

control systems. These developments will provide a solid foundation for designing an optimal predictive 

maintenance strategy that ensures the maximum reliability and sustainability of green hydrogen production. 
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Chapter 2 

 

 Ⅱ. Literature Review 

 

2.1 Electrolysis pressure control systems: 

The regulation and management of pressure within electrolyzes represent an exceptionally critical and 

essential aspect of ensuring optimal system efficiency, safety, and overall performance across a myriad of 

diverse industrial applications, which prominently include, but are not limited to, hydrogen production and 

water treatment processes. Previous scholarly research has emphasized the importance of maintaining precise 

pressure control, as any imbalances that may occur can lead to detrimental operational inefficiencies or even 

catastrophic equipment failures, underscoring the need for rigorous pressure management protocols. 

2.1.1 Key Components of Pressure Control Systems 

An extensive body of studies has identified several core components that are essential for effective pressure 

management in electrolysis systems, each of which plays a pivotal role in the overall functionality of these 

systems: 

 Pressure Sensors: These sophisticated devices are specifically designed to accurately measure the 

pressure of the gases generated during the electrolysis process. They provide critical real-time data 

that enables necessary system adjustments to be made swiftly (Chi-Yuan et al., 2024) in [1]. 

 

 Control Valves: Research in this area indicates that control valves are crucial components that play a 

vital role in adjusting the flow of gases to maintain the desired pressure levels within the system, 

thereby ensuring operational stability (AlZahrani & Dincer, 2018) in [2]. 

 

 PID Controllers: According to recent advancements in control technology, PID controllers 

automatically regulate pressure by fine-tuning the positions of valves in direct response to feedback 

received from sensors, which significantly improves the system's overall stability and reliability (Lixia 

et al., 2025) [3]. 

 

 Backpressure Regulators: These important components maintain a predetermined set pressure by 

effectively releasing any excess gas that may be generated, thereby mitigating the risk of over-

pressurization, which could lead to dangerous operational conditions (Bazarah et al., 2022) [4]. 
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 Safety Relief Valves: Numerous safety studies have emphasized the critical importance of relief 

valves in preventing hazardous overpressure conditions, which can pose significant risks to equipment 

integrity and personnel safety (Scuro et al, 2018) [5]. 

 

 Flow Meters: Flow meters play a crucial role in ensuring a balanced output of gases, which is essential 

for synchronizing the production rates of hydrogen and oxygen, thereby optimizing the overall 

efficiency of the electrolysis process (Ito et al, 2010) [6]. 

 

 Electrolyzer Stack Design: The literature suggests that the design of the electrolyzer stack has a 

pronounced influence on pressure balance, with specific cell configurations directly impacting the 

overall stability and performance of the system (Rizwan et al., 2021) [7]. 

2.1.2 Working Principles and System Dynamics 

The electrolysis process itself inherently involves the splitting of water molecules into hydrogen and oxygen 

gases through the application of an electric current. As the produced gases accumulate in their respective 

chambers, it becomes imperative to maintain meticulous pressure balancing to prevent potential damage to 

the electrolyzer membranes or hazardous leaks. Research in this field highlights the effectiveness of feedback 

loops, wherein sensors and controllers continuously adjust gas flow and valve settings to maintain stable 

pressure levels, thereby ensuring a safe and efficient electrolysis process (Selamet at al., 2011) [8]. 

2.2 Common failure modes and mechanisms 

Failures in engineering systems are extensively analyzed and scrutinized within the engineering field due to 

their profound ramifications on safety protocols, reliability assessments, and the overall economic 

performance of various systems. Exploring different failure modes is crucial, as these failures can arise from 

various factors, including diverse loading conditions, environmental influences, and the inherent properties of 

the materials themselves. This literature review presents a comprehensive examination of prevalent failure 

modes, their underlying mechanisms, and pertinent references that aim to enhance understanding of these 

critical engineering issues. 

Fatigue failure is a phenomenon that occurs as a direct consequence of repeated cyclic loading, ultimately 

leading to the initiation and subsequent propagation of cracks within the material. Numerous studies have 

indicated that microcracks frequently originate at points of stress concentration, such as notches or surface 

imperfections, and these cracks tend to propagate under conditions of fluctuating stress, as elucidated by 

Kuhnert in 2023. It is important to note that fatigue failures are commonly observed across various sectors, 
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including aerospace, automotive, and structural applications, particularly in scenarios where cyclic loading is 

a predominant operational characteristic [9].  

Corrosion failure represents a significant challenge in engineering systems, as it involves the degradation of 

materials due to various chemical reactions within their environment. Corrosion can manifest in several 

distinct forms, including uniform corrosion, which involves the gradual thinning of material due to consistent 

exposure to corrosive environments; pitting corrosion, which results in the formation of localized deep holes 

that can severely compromise structural integrity; and stress corrosion cracking (SCC), which arises under the 

synergistic effects of tensile stress in conjunction with corrosive media, as discussed by Prestat in 2023. The 

implications of corrosion failures are particularly critical in marine, chemical processing, and infrastructure 

industries, where materials are continually subjected to harsh and aggressive environmental conditions [10]. 

Creep failure is characterized by time-dependent deformation that occurs when materials are subjected to a 

constant load, particularly at elevated temperatures. Research conducted in the field suggests that creep results 

from atomic diffusion and the sliding of grain boundaries, which collectively lead to the elongation of 

materials followed by eventual rupture, as noted by Arthurs and Kusoglu in 2021. This particular failure mode 

is commonly encountered in applications involving turbines, boilers, and aerospace components operating 

under high temperatures [11].  

Wear failure signifies material degradation due to mechanical interactions between contacting surfaces, 

leading to surface deterioration over time. The mechanisms of wear can be classified into several categories, 

including adhesive wear, in which material is transferred between surfaces due to intense adhesive forces; 

abrasive wear, which is instigated by hard particles that scratch the material; and fretting wear, which arises 

from oscillatory micro-motions, a concept explored by Bairamov in 2020. The impact of wear failures is 

particularly pronounced in components such as bearings, gears, and various machine elements integral to the 

manufacturing and transportation industries [12]. 

Brittle fracture is a failure mode characterized by a sudden and catastrophic failure with minimal plastic 

deformation evident in the material. This failure mode typically occurs due to rapid crack propagation in 

materials that exhibit low toughness, which is often influenced by factors such as temperature and inherent 

material defects, as originally described by Aldakhil et al. (2022). The prevalence of brittle fractures is 

particularly notable in materials such as ceramics and high-strength steels, as well as in environments 

characterized by low temperatures [13]. 

In contrast to the brittle fracture, ductile failure is a mode of failure characterized by gradual deformation prior 

to the material's ultimate rupture. This process is predominantly governed by microvoid coalescence, which 

leads to necking and eventual fracture, as discussed. Ductile failure is commonly observed in metals and alloys 
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subjected to excessive tensile loads, and understanding this mechanism is crucial for material selection and 

structural design [8]. 

Buckling failure occurs when a structure loses stability under compressive loads, resulting in either elastic or 

plastic instability that leads to significant lateral deformations. Such deformations can ultimately lead to 

catastrophic structural collapse, as highlighted in the work of Kink et al. (2024). The buckling phenomenon is 

particularly concerning in slender structural elements, such as columns and beams, and in aerospace structures, 

where stability is paramount [14].  

Thermal fatigue failure is a specific type that arises due to cyclic thermal stresses, which induce crack 

formation at points of stress concentration within materials. The repeated expansion and contraction of 

materials subjected to fluctuating temperature conditions can induce localized damage that ultimately leads to 

failure, a phenomenon thoroughly investigated by Zachary et al. (2023). This type of failure is commonly 

observed in engine components, exhaust systems, and high-temperature piping, where thermal cycling is an 

integral aspect of operational performance [15].  

2.3 Traditional maintenance approaches 

Traditional maintenance approaches focus on routine and reactive methods to keep equipment and systems 

running (Fig. 2.1). Here are some key types with references: 

 

1. Reactive Maintenance (Run-to-Failure) 

 Equipment is repaired only after a failure occurs. 

 Pros: Low initial cost, simple implementation. 

 Cons: High downtime and unpredictable costs. 

2. Preventive Maintenance (Time-Based Maintenance) 

 Scheduled maintenance at regular intervals to prevent failures. 

 Pros: Reduces unexpected breakdowns and extends equipment life. 

 Cons: This can lead to unnecessary maintenance and higher labor costs. 

3. Corrective Maintenance 

 Fixing small issues before they turn into major failures. 

 Pros: It increases reliability and is less costly than reactive maintenance. 

 Cons: It requires monitoring and may not prevent all failures. 

4. Condition-Based Maintenance (CBM) 

 Maintenance is performed based on real-time condition monitoring. 

 Pros: Reduces unnecessary maintenance and improves efficiency. 

 Cons: It requires advanced monitoring systems and a higher initial investment. 
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Figure 2.1: Predictive Maintenance vs Traditional Maintenance 

 

2.4 ML applications in industrial maintenance 

Machine learning (ML), which refers to the development of algorithms that enable computers to learn from 

and make predictions based on data, has undeniably emerged as a revolutionary force in industrial 

maintenance. It significantly assists organizations in optimizing their operational processes, reducing instances 

of unplanned downtime, and ultimately achieving substantial cost savings. To fully comprehend the 

transformative impact of this technology, let us delve into a detailed examination of its key applications within 

the realm of industrial maintenance. 

2.4.1 Key Applications of Machine Learning in the Field of Industrial Maintenance 

1. Predictive Maintenance 

The deployment of machine learning models is crucial in analyzing sensor-generated data, which includes 

vibrations, temperature variations, and pressure measurements. This enables the identification of specific 

patterns that can accurately predict equipment failures before they occur. This advanced predictive capability 

enables the scheduling of maintenance activities only, when necessary, significantly reducing the likelihood 

of unplanned downtime and concurrently minimizing the associated costs of maintenance operations [15]. 
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2. Anomaly Detection: 

Machine learning technologies employ sophisticated algorithms to identify outliers within operational data, 

which serve as indicators of abnormal behavior or potential malfunctions in the equipment. The provision of 

real-time alerts empowers operators to take prompt corrective actions in response to these anomalies, thereby 

mitigating the risk of operational disruptions and enhancing overall system reliability.  

3. Condition Monitoring: 

The continuous monitoring of machine health is achieved by integrating Internet of Things (IoT) sensors with 

machine learning models, providing a comprehensive overview of equipment performance. This ongoing 

assessment enables the meticulous tracking of wear and tear and the prediction of component degradation over 

an extended period, allowing for preemptive measures to be taken before significant issues arise [16]. 

4. Failure Root Cause Analysis: 

By leveraging historical failure data, machine learning techniques can analyze the information to identify the 

fundamental causes of recurring issues plaguing machinery. This analytical process not only aids engineers in 

implementing targeted improvements but also facilitates the redesign of faulty components, thereby enhancing 

the overall durability and reliability of the equipment. 

5. Inventory Optimization: 

Machine learning algorithms are used to forecast the demand for spare parts with remarkable accuracy, based 

on predictions related to equipment failures, thereby preventing overstocking and shortages of critical 

components. As a result, organizations can significantly reduce inventory carrying costs while ensuring that 

essential parts remain readily available when required, streamlining maintenance operations. 

6. Digital Twins: 

The concept of digital twins involves creating virtual replicas of physical systems powered by machine 

learning technologies. These digital representations enable the simulation of various scenarios, allowing for 

the prediction of machine behavior under diverse conditions. This, in turn, helps optimize overall equipment 

performance and operational efficiency. 

7. Work Order Prioritization: 

Machine learning algorithms play a pivotal role in prioritizing maintenance work orders by assessing the 

severity and potential impact of each task on production activities. This systematic ranking process empowers 
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maintenance teams to concentrate on addressing the most critical issues first, thereby significantly improving 

operational efficiency and minimizing disruptions to production workflows. 

2.5 Data acquisition and sensor technologies 

2.5.1 What is a Data Acquisition System? 

A data acquisition system is a combination of sensors, measurement devices, and a computer used to gather 

and process data to analyze electrical or physical phenomena, providing a comprehensive understanding (Fig. 

2.2). 

 

(a) 

 

(b)  

Figure 2.2: Data Acquisition Systems: a) Conceptual schema, b) LabVIEW interface 
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Data acquisition systems are essential for capturing and analyzing data from real-world systems. They process 

and record data, such as temperature measurements and voltage drops across electrical resistors. The primary 

purpose of these systems is to enable detailed analysis of electrical and physical phenomena. They use 

software to perform tasks and can store data in various formats. Handheld systems are used when direct 

physical interaction is possible. 

In contrast, remote systems are used when direct human interaction is impractical or unnecessary, allowing 

measurements to be taken from a distance. Depending on the situation, data acquisition systems can be 

handheld or remotely operated. Their primary purpose is to enable detailed analysis and improve the 

understanding of complex phenomena. 

 

2.5.2 Basic Components of a Data Acquisition System 

Data collection involves identifying physical phenomena like temperature, light intensity, vibration, gas 

pressure, fluid movement, and force. These properties must be converted into a format for a data acquisition 

system to sample. A complete data acquisition system comprises DAQ hardware, sensors, actuators, signal 

conditioning equipment, and a computer running DAQ software (Fig. 2.3). An independent timing system 

may be necessary if precise timing is crucial, especially in event-mode data acquisition systems. 

 

 

Figure 2.3: Data Acquisition System Components  
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2.5.3 Sensors 
 

Sensors, also known as transducers, interact with subjects to measure physical values and generate electrical 

signals. Depending on their application, they can be directly or indirectly used in data acquisition systems. 

For instance, a temperature sensor measures temperature, while a photovoltaic sensor measures light. Different 

types of sensors are used depending on their purpose (Fig. 2.4). 

 

 

 

Figure 2.4: Data Acquisition System Sensors 

 

The various instruments utilized in this context exhibit a unified objective, which is to facilitate the 

transformation of analog signals, encompassing a diverse range of physical phenomena such as temperature, 

illumination, and velocity, into digital signals that can be readily analyzed and processed by computer systems, 

thus enabling a more efficient and sophisticated manipulation of data. Furthermore, the sensors integral to 

Data Acquisition (DAQ) systems are meticulously engineered high-quality components specifically crafted to 

deliver precise and reliable measurements while minimizing the influence of extraneous noise or interference 

that could compromise the data's integrity. In this regard, the effectiveness of these systems is heavily 

dependent on the calibration and performance of the sensors employed, as they play a pivotal role in ensuring 

that the digital representations of the analog inputs are as accurate and informative as possible, thereby 

enhancing the overall functionality and application of the technology in various scientific and engineering 

fields. 
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2.5.4 Transmission/Signal Conditioners 

In numerous instances, the electrical signals derived from various types of sensors frequently contain a 

significant amount of noise or interference, which can impede their effectiveness; thus, it is often necessary 

to modify these signals extensively before they can be utilized for any practical application. Furthermore, it is 

also important to note that these signals may possess insufficient strength, rendering them too weak for the 

data acquisition system to measure them with high accuracy and reliability. In order to effectively address and 

mitigate these critical issues, additional circuitry, which is commonly referred to as a signal conditioner, is 

strategically employed to enhance the quality of the signals (Fig. 2.5). The signal conditioning process 

involves a series of sophisticated techniques to enhance and optimize the electrical signals to ensure that they 

are accurately measured and that reliable data acquisition can be achieved under various circumstances. This 

meticulous process not only enhances the integrity of the signals but also plays a crucial role in ensuring that 

the resulting data is valid and suitable for further analysis. Consequently, the implementation of signal 

conditioning is essential in data acquisition, as it fundamentally underpins the accuracy and reliability of the 

measurements obtained from sensor outputs. 

 

Figure 2.5: Components of a Data Acquisition System 

The signal conditioning apparatus utilizes sophisticated filter circuitry meticulously designed to effectively 

distinguish and isolate extraneous noise from the genuine signal while simultaneously incorporating 

amplification circuits to enhance the amplitude of weak input signals that may otherwise be lost or 

inadequately represented. These functionalities represent a core aspect of the myriad functions executed by 

signal conditioners, thus underscoring their critical role in signal processing. Furthermore, a signal 

conditioning circuit that is thoughtfully and expertly designed possesses the capability to manage a range of 

additional processes, which may include, but are not limited to, linearization, calibration, and the provision of 

excitation voltages necessary for optimal sensor performance. The selection of an appropriate signal 

conditioning circuit is profoundly influenced by the distinct characteristics and specifications of the sensors 

employed within the data acquisition (DAQ) system, which in turn dictates the efficacy and efficiency of the 

overall signal processing framework. It is essential to recognize that integrating these various components 

within the signal conditioning process enhances the quality of the data being captured and facilitates more 
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reliable and accurate interpretations of the signals that are ultimately utilized for further analysis. Therefore, 

understanding the interplay between the signal conditioning circuit design and the associated sensor 

characteristics is paramount for achieving high-performance outcomes in sophisticated data acquisition 

applications [17]. 

 

2.6 Industry 4.0 integration 

Industry 4.0 heralds a new era of transformation in manufacturing by integrating digital advancements to 

achieve maximum efficiency with minimal resource consumption. First introduced in Germany as a 

pioneering initiative, Industry 4.0 marks the onset of the fourth industrial revolution. It revolves around key 

technologies like cyber-physical systems (CPS), the Internet of Things (IoT), and cloud computing. By 

merging the physical and digital realms through embedded systems, machine-to-machine communication, and 

the Internet of Things (IoT), Industry 4.0 enables the creation of smart factories capable of managing modern 

production complexities within a cyber-physical environment. Fig. 2.5 highlights the most important pillar of 

technological advancements toward Industry 4.0, namely electrolysis.  

A common assumption is that higher automation levels will diminish human involvement, leading to 

workerless production. However, researchers argue that Industry 4.0 will shift rather than eliminate human 

roles, necessitating a more specialized skill set for employees. Consequently, Industry 4.0 is inherently a socio-

technical system, blending human and technical elements that collaboratively strive toward shared goals. 

Therefore, the architecture design for Industry 4.0 must emphasize adaptability to external disruptions, as 

rigid, reductionist approaches are inadequate for today’s dynamic, high-risk, and complex technological 

landscape. 

Socio-technical systems are defined by the interplay of social and technical components engaged in goal-

directed behavior. The socio-technical systems theory advocates joint optimization methods to design systems 

that exhibit open-system properties, enhancing resilience to environmental shifts, technological 

advancements, and competitive pressures. While much of the existing research has focused on the technical 

aspects of Industry 4.0 integration, some studies have underscored the need for a socio-technical perspective 

in implementation [18].   

While a well-defined technical architecture is crucial for Industry 4.0, long-term success and sustainability 

depend on integrating socio-technical considerations into the design process. They highlight the need for 

further research on the socio-technical impacts of Industry 4.0 to bridge existing knowledge gaps. This study 

addresses that gap by exploring how socio-technical systems theory can inform the design of a sustainable 

integration architecture for Industry 4.0, beginning with a thorough review of the theoretical foundation and 

research methodology [19].  
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Figure 2.6: Eleven Pillars of Industry 4.0 

 

2.7 Conclusion 

The literature review chapter elucidates the importance of electrolysis pressure control systems, systematically 

detailing the prevalent failure mechanisms that can arise within these systems and elucidating the pivotal role 

that predictive maintenance, particularly through machine learning algorithms, plays in enhancing operational 

reliability. The meticulous regulation of pressure within these systems is not merely an operational 

requirement; it is fundamentally essential to guarantee that the entire electrolysis system operates with 

stability, efficiency, and an uncompromised level of safety, especially within the demanding contexts of 

industrial electrolysis applications, which often involve significant financial and safety stakes. Various 

integral components of these systems, including but not limited to advanced sensors, proportional-integral-

derivative (PID) controllers, and backpressure regulators, play a critical role in maintaining optimal 

operational conditions, ensuring that the electrolysis processes can function seamlessly and effectively without 

interruption. 

Furthermore, the examination of failure modes such as material fatigue, corrosive degradation, creep 

phenomena, and structural buckling has been the subject of extensive academic inquiry, with numerous 

research studies emphasizing the vital necessity of implementing predictive strategies that can effectively 

mitigate the occurrence of unexpected system breakdowns, which can lead to costly downtimes and 
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operational inefficiencies. Although traditional maintenance methodologies have been widely adopted within 

the industry for many years, they possess inherent limitations in their capacity to prevent systemic failures, 

which has consequently catalyzed a significant paradigm shift toward machine learning-driven predictive 

maintenance approaches that promise to optimize system performance. The deployment of machine learning 

technologies enables the real-time monitoring of system parameters, facilitates the early detection of 

anomalies that may indicate impending failures, and allows for the establishment of optimized maintenance 

schedules, collectively contributing to a notable reduction in operational downtime and overall maintenance 

costs. 

In addition, the literature review further explores the integration of Industry 4.0 principles, highlighting the 

transformative impact that smart technologies and sophisticated data analytics can have on enhancing the 

frameworks of predictive maintenance within the electrolysis domain. Looking ahead, future research 

endeavors must concentrate on refining machine learning models for accuracy and predictive power, 

advancing data acquisition methodologies to ensure high-quality input, and addressing the multifaceted 

challenges associated with the industrial implementation of these advanced technologies, all in a concerted 

effort to bolster the reliability and sustainability of electrolysis-based hydrogen production systems in the 

context of an evolving energy landscape. 
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Chapter 3 

 

Ⅲ. Simulation Study:  

 

This chapter builds upon core principles of electrochemical modeling, thermodynamics, and control 

theory to develop a simplified yet representative dynamic model of an electrolyzer system. The 

theoretical foundation primarily rests on Faraday's Law of Electrolysis, which establishes a direct 

relationship between electric current and the rate of hydrogen and oxygen gas generation. This 

principle enables the calculation of gas flow rates as a function of applied current, forming the 

backbone of the system's mass balance. 

From a thermal perspective, the electrolyzer's operation is governed by an energy balance that 

considers both the heat generated by electrochemical reactions and resistive losses, as well as the heat 

dissipated through convection and radiation. The Stefan-Boltzmann law and Newton's law of cooling 

are applied to model these phenomena. 

In parallel, the mass balance equations account for water consumption during electrolysis and pressure 

evolution in hydrogen and oxygen storage tanks. The model further incorporates dynamic temperature 

behavior, influenced by both the internal heat generation and the cooling water flow, forming the basis 

for temperature regulation strategies. 

Controlling the thermal environment is crucial for maintaining system efficiency and ensuring safety. 

Hence, the chapter also introduces a PID control algorithm, tuned via a Genetic Algorithm (GA), to 

dynamically regulate the cooling water flow rate and stabilize the electrolyzer temperature around a 

predefined setpoint. This integration shows the synergy between classical control techniques and 

optimization algorithms, underscoring their practical applications in managing nonlinear, 

multivariable systems. 

The theoretical approach presented herein provides a foundation for developing robust control systems, 

simulation tools, and predictive models that enhance the reliability and efficiency of hydrogen 

production through electrolysis. 
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3.1. Simple Model 

3.1.1 Equations Used 

This equation calculates the number of moles of hydrogen gas produced. 

A. Hydrogen Production: 

                                                         ṅH2   =
𝐼𝑒𝑙 ∙  𝑁𝑐𝑒𝑙𝑙𝑠

2 ∙𝐹  
                                                                 (3.1) 

Where: 

  𝐼𝑒𝑙 is the Electrolyzer current [A] 

 𝑁𝑐𝑒𝑙𝑙𝑠  is the number of cells in series 

 F is Faraday constant (96485 C/mol).  

 

B. Oxygen Production:  

ṅO2   = 0.5 ∙ ṅH2                                                                (3.2) 

 

C. Estimated Current: 

𝐼𝑒𝑙 = 
𝑃𝑛𝑒𝑡

𝑈𝑡𝑛∙ 𝑁𝑐𝑒𝑙𝑙𝑠
                                                     (3.3) 

Where: 

𝑈𝑡𝑛 = 1.482V is the thermoneutral voltage. 

The amount of hydrogen is directly proportional to the electrical current (I) and the number of cells (N), and 

inversely proportional to Faraday’s constant (F). The factor of 2 accounts for the 2 electrons needed to produce 

one molecule of H₂. 

 

 3.1.2 Energy Balance:  

A. Heat Generated in Electrolyzer: 

       𝑄𝑔𝑒𝑛 = 𝑃𝑛𝑒𝑡 + ṅH2   ∙  𝑈𝑡𝑛 ∙  F                                                  (3.4) 

B. Heat Loss (Convective + Radiative): 

This gives the total heat loss from the electrolyzer. 

𝑄𝑙𝑜𝑠𝑠 = ℎ𝑐  (𝑇𝑒𝑙 − 𝑇𝑎𝑚𝑏) + 𝜎 ∙  𝜀 ∙ (𝑇𝑒𝑙
4 − 𝑇𝑎𝑚𝑏

4 )                                    (3.5) 

 Where:  

ℎ𝑐   = 5.5 W/𝑚2 K is the convective heat transfer   

𝜎 = 5.67 × 10−8  𝑊/𝑚2𝐾4 is the Stefan-Boltzmann constant 

𝜀 =0.8 (emissivity). 

It includes both convection (dependent on surface area and temperature difference) and radiation (using the 

Stefan-Boltzmann law). 
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C. Temperature Dynamics: 

                                                                   
𝑑𝑇𝑒𝑙

𝑑𝑡
=

𝑄𝑛𝑒𝑡

𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙
                                                          (3.6) 

Where 𝑄𝑛𝑒𝑡 = 𝑄𝑔𝑒𝑛 - 𝑄𝑙𝑜𝑠𝑠  

 

 3.1.3 Mass Balance: 

This calculates how much water is consumed to produce hydrogen. 

 

A. Water Consumption: 

𝑚̇𝐻2𝑂 = ṅH2   × 18                                                                  (3.7) 

 

B. Hydrogen & Oxygen Storage pressure: 

 

Describes how pressure in the hydrogen tank changes over time. 

𝑑𝑃𝐻2

𝑑𝑡
= ṅH2   − 

𝑃𝐻2

100
                                                                  (3.8) 

𝑑𝑃𝑂2

𝑑𝑡
= 0.5 ṅH2   − 

𝑃𝑂2

100
                                                                (3.9) 

Pressure increases with production and decreases with consumption. 

Each mole of hydrogen requires one mole of water (molar mass = 18 g/mol) 
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3.2 Open-loop Simulation Results 

3.2.1 Hydrogen Storage Pressure  

Figure 3.1 shows the simulation results for variation of Hydrogen storage pressure as a function of time.   

 

Figure 3.1: Pressure of Hydrogen storage as a function of time 

The system pressure of the hydrogen storage demonstrates a constant and gradual increase with time, 

demonstrating a continuous and consistent hydrogen generation process. The uniform rise in pressure 

demonstrates the system's ability to generate a consistent output without interruption. In addition, the absence 

of large oscillations or instability in the pressure trace demonstrates the stability of the storage system's 

operation, which is necessary for maintaining process efficiency as well as security in hydrogen storage 

processes. 

3.2.2 Oxygen Storage Pressure  

Figure 3.2 shows the simulation results for variation of oxygen storage pressure as a function of time.   

 

Figure 3.2: Pressure of oxygen storage as a function of time 

The pressure of oxygen rises at approximately half the rate of the hydrogen pressure by the theoretical 

stoichiometric rate of 2:1 (H₂:O₂) for the electrolysis of water. This is in line with the anticipated action of the 

system, where the production of oxygen tracks behind the hydrogen output in accordance with chemical 
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processes. In addition, the increase in pressures is smooth, exhibiting no sudden deviations or fluctuations, 

indicating a properly regulated and controlled process of oxygen production. 

 

 3.2.3 Electrolyzer Temperature 

Figure 3.3 shows the simulation results for variation of electrolyzer temperature as a function of time.   

 

Figure 3.3: Temperature of electrolyzer as a function of time 

The system temperature initially increases before reaching a plateau, indicating that electrolyzers undergo an 

anticipated thermal response when they are started. While different electrolyzers exhibit slight variations in 

temperature behavior, these differences are minimal and consistent with inherent system variations. Notably, 

no signs of thermal runaway are observed, indicating the system's ability to maintain thermal balance and 

safety during operation. 

3.2.4 Buffer Tank Mass 

Figure 3.5 shows the simulation results for variation of mass and temperature of buffer tank as a function of 

time.   

 

(a) 
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(b) 

Figure 3.4: Buffer Tank outlet output as a function of time: a) Mass of Liquid, b) Temperature  

 

The mass of the system decreases linearly with time, as expected from the steady use of water during the 

electrolysis process. The steady mass loss ensures a constant reaction rate that is commensurate with a 

continuous and stable electrolysis operation. In addition, the steady trend of mass loss also indicates that the 

system is operating smoothly without any operational disruptions, ensuring a stable process. 

From Figure 3.4 (b), The system's behavior matures and stabilizes over time as it responds to internal control 

and thermal dynamics. The transient regime demonstrates how the system adapts to changing conditions, 

ultimately reaching a state of stability as thermal fluctuations are minimized. The stabilization that occurs 

during the transient stage indicates good thermal management and control, leading to the reliability of long-

term operation. 

 

3.2.5 Electrolyzer Inlet Temperature 

Figure 3.5 shows the simulation results for variation of electrolyzer inlet temperature as a function of time.   

 

Figure 3.5: Simulation results of Electrolyzer Inlet temperature   
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System temperature varies with time due to the internal thermal operations and the cooling effect. This trend 

shows how the system responds to thermal changes, either internal or external. The observed trend suggests 

that the system can effectively regulate its thermal profile, stabilizing and averting extreme temperature 

fluctuations that could compromise functional safety. 

3.2.6 Cooling Water Outlet Temperature  
 

Figure 3.6 shows the simulation results for variation of cooling water outlet temperarure as a function of 

time.   

 

Figure 3.6: Simulation results of Cooling water outlet temperature   

 

The variable remains constant throughout the simulation, indicating that the cooling system is running 

smoothly and steadily. This stability indicates the system's capacity to maintain a stable thermal condition, as 

no significant fluctuations or interference are observed. The lack of sudden changes also indicates minimal 

outside influence, ensuring smooth and constant operation. 

 

3.3  Closed Loop Simulation results  

 

In this work, we employed an optimized PID controller, developed using a Genetic Algorithm, to regulate the 

pressure and temperature of the electrolyzer effectively. This controller is well-suited for fault avoidance due 

to overpressure and temperature, ensuring safe and stable operation. The application of this advanced control 

method not only enhances safety during operation but also supports predictive maintenance. Through its 

support of higher-than-normal conditions, it preserves the consistency and durability of primary systems, 

including the electrolyzer, cooling water system, and buffer tank, thereby reducing the likelihood of unplanned 

downtime. 
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3.2.1 Equation Used in the System: 

        The model proposed in this study is based on mass balance, energy balance, and electrochemical 

principles  

         A. Energy Balance Equation  

            The motivation behind this analysis is to determine how temperature alteration in the system occurs, 

with the justification being that, after accounting for heat losses and cooling effects, the net heat remaining 

will directly influence the system's temperature. 

  Qnet = Qgenerated - Qloss                                                         (3.10) 

 

 

Where: 

 Generated heat from power input: 

Qgenerated = (Pnet − ṅH2   ×  Utn ×  F)                                            (3.11) 

 

 

 Heat loss due to convection and radiation: 

Heat loss via radiation and convection is estimated using Newton's Law of Cooling for the convective 

component and the Stefan-Boltzmann Law for the radiative component, thereby calculating the total heat loss. 

Qloss = hc  ∙ (Tel − Tref) + σ ∙  ϵ ∙ (Tel
4 − Tref

4 )                                     (3.12) 

 

B. Mass Balance Equation  

    The mass balance equation models the evolution of pressure in the hydrogen tank, explaining that the 

pressure increases with hydrogen production and decreases with consumption. 

{
 
 

 
 

dPH2

dt
= H2 productipn − 

PH2

100
dPO2

dt
= 0.5 × H2 production − 

PO2

100
dMbuffer

dt
= −Water consumption 

                                            (3.13) 

 

C. PID Control Law  

The PID controller determines the cooling water flow rate (q_cw) based on the deviation between the 

measured electrolyzer temperature (Tele) and the target temperature setpoint (Tsetpoint). 

 

𝑞𝑐𝑤 (t) =𝐾𝑝 𝑒(𝑡) + 𝐾𝑖  ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑 
𝑑𝑒(𝑡)

𝑑𝑡
                                         (3.14) 

Where: 

 e (t) = 𝑇𝑒𝑙 (𝑡) − 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 
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 𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙, 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙, 𝑎𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑔𝑎𝑖𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

J = ∑  (𝑇𝑒𝑙 − 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2
                                                         (3.15) 

 

3.2.2 Simulation Results 

A. Electrolyzer Temperature (with PID Control) 

Figure 3.7 shows the closed loop results of controlling electrolizer temperature using the designed PID 

controller.  

 

Figure 3.7: Electrolizer temperature control    

The temperature profile is found to converge closely to the setpoint as time increases, initially exhibiting a 

slight overshoot before gradually approaching the desired value. The response confirms that the adopted PID 

control effectively manages the thermal response of the system, stabilizing the temperature within an 

acceptable range. The stabilization recorded tests the reliability and strength of the control policy in achieving 

the intended operating levels. 

Figure 3.8 shows the water flow of cooling system with PID controller.  

 

 

Figure 3.8: Cooling water flow under PID control    
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B. Hydrogen Storage Pressure 

Figure 3.9 shows the closed loop results of controlling electrolizer pressure of hydrogen storage using the 

designed PID controller. 

 

Figure 3.9: Pressure of hydrogen storage controlled with PID Controller     

The pressure of hydrogen storage demonstrates a steady increase throughout hydrogen production without 

oscillations or random behavior, indicating stable and continuous gas evolution. The final pressure value is 

equivalent to the total production at steady-state operation, highlighting the system's reliability and effective 

performance at providing constant pressure conditions. 

C. Oxygen Storage Pressure 

Figure 3.10 shows the closed loop results of controlling electrolizer pressure of oxygen storage using the 

designed PID controller. 

 

Figure 3.10: Pressure of oxygen storage controlled with PID Controller     

The pressure of oxygen storage increases uniformly at roughly half the rate of the hydrogen pressure, as 

predicted by the theoretical electrochemical ratio. The linear pressure rise is indicative of the reliable 

performance to be expected from the electrolysis process, and the repeated pattern observed proves that gas 

separation and system balance are maintained effectively during operation. 
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D. Buffer Tank Mass  

Figure 3.11 shows the closed loop results of controlling buffer tank mass change using the designed PID 

controller. 

 

Figure 3.11: Mass change of buffer tank    

The weight of the buffer tank constantly decreases over time due to the continuous consumption of water in a 

linear fashion, indicating a constant rate of manufacture and equal consumption. The absence of any 

interruptions or rapid drops in the mass profile suggests smooth operation of the system, with no evidence of 

failure or refilling at any point along the process.  

E. Buffer Tank Outlet Temperature  

Figure 3.12 shows the closed loop results of controlling buffer tank outlet temperature using the designed PID 

controller. 

 

Figure 3.12: Outlet temperature of buffer tank     

The buffer tank outlet temperature exhibits an initial dynamic adjustment followed by gradual stabilization, 

maintaining values within the operational range. This behavior reflects the effective regulation of heat transfer 

in the system, achieved through the PID controller, ensuring consistent and stable thermal conditions during 

operation. 
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F. Electrolyzer Inlet Temperature  

Figure 3.13 shows the inlet temperature of the electrolizer. 

 

Figure 3.13: Inlet temperature of the electrolizer.      

The buffer tank outlet temperature undergoes dynamic adjustment before gradually stabilizing within the 

operational range, indicating a responsive thermal management system. This behavior highlights the 

effectiveness of heat transfer processes under the regulation of the PID controller, which ensures consistent 

and stable temperature control during system operation. 

G. Net power input 

Figure 3.14 shows the net power input. 

 

Figure 3.14: The net power input of the electrolyzer.      

 

The cooling water outlet temperature remains largely constant throughout the process, indicating a stable and 

effective cooling system output. The minimal fluctuation observed under closed-loop control further suggests 

that the PID controller has been properly tuned, ensuring consistent thermal regulation and system stability. 
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The cooling water flow rate dynamically adjusts in response to the temperature error, initially showing higher 

values and then tapering off as the system stabilizes. This behavior reflects the characteristics of a 

proportional-integral-derivative (PID) controller, which provides a rapid initial response followed by fine 

tuning to maintain precise temperature control. 

3.4. MPC Model (Model Predictive Control)  

3.4.1 Implementing Model Predictive Control (MPC) for the Electrolyzer System 

We will replace the PID controller with Model Predictive Control (MPC) for better temperature regulation in 

the electrolyzer system. MPC is an advanced control technique that predicts the future behavior of the system 

and optimizes the control actions accordingly. MPC requires a state-space representation of the system: 

{
𝑥̇ = Ax +  Bu
𝑦 = 𝐶𝑥 + 𝐷𝑢

                                                                   (3.15) 

Where: 

 x is system state variables (temperature, pressure, mass). 

 u is the control input (cooling water flow rate). 

 y is the output (electrolyzer temperature). 

 A, B, C, D is the system matrices  

We approximate the electrolyzer dynamics: 

𝑑𝑇𝑒𝑙

𝑑𝑡
=

𝑄𝑛𝑒𝑡

𝐶𝑝
                                                                       (3.16) 

Where : 

 𝑄𝑛𝑒𝑡 = 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 − 𝑄𝑙𝑜𝑠𝑠 (ℎ𝑒𝑎𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ) 

 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 ≈ 𝑃𝑛𝑒𝑡 − 𝐻2 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ×  𝑈𝑡𝑛 × 𝐹 

 𝑄𝑙𝑜𝑠𝑠 = ℎ𝑐(𝑇𝑒𝑙 − 𝑇𝑟𝑒𝑓 ) + 𝜎 𝜖(𝑇𝑒𝑙
4 − 𝑇𝑟𝑒𝑓

4  ) 

 𝐶𝑝 is heat capacity of the system 

Table 2: Comparison between MPC and PID tuned with GA 

Feature GA-PID control MPD 

Handles Constraints No Yes 

Future Prediction No Yes 

Handles Delays & Nonlinearities Poorly Effectively 

Adaptive Control No Yes 

Computational Cost Low High 
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3.4.2 Simulation Results  

A. Electrolyzer Temperature  

Figure 3.15 shows the electrolizer temperature versus time using MPC. 

 

Figure 3.15: The electrolizer temperature versus time with MPC.      

The electrolyzer temperature closely follows the setpoint of 75°C throughout the simulation, with only a minor 

initial deviation that is corrected quickly. This precise tracking demonstrates a highly responsive control 

system, resulting in faster and smoother temperature stabilization compared to traditional PID control 

methods. 

B. Cooling Water Flow Rate  

Figure 3.16 shows the cooling water flow controller with MPC . 

 

Figure 3.16: The MPC-Controlled cooling water flow.      

 

The cooling water flow rate (q_cw) exhibits adaptive behavior, starting at higher values and gradually 

decreasing as the system stabilizes. This dynamic response to temperature changes confirms the effectiveness 

of the model predictive control (MPC) strategy. Moreover, the flow rate remains within the defined constraints 

of 0–80000 g/s, demonstrating successful constraint handling and reliable regulation under MPC. 
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C. Hydrogen Storage Pressure  

Figure 3.17 shows the hydrogen storage pressure with application of MPC. 

 

Figure 3.17: The MPC-Controlled Hydrogen storage pressure.      

The hydrogen storage pressure increases steadily over time as hydrogen is continuously produced, with no 

oscillations or irregularities observed. This pattern reflects the system's stable and reliable operation, 

maintaining consistent pressure behavior throughout the production process. 

D. Hydrogen Storage Pressure  

Figure 3.18 shows the oxygen storage pressure with application of MPC. 

 

Figure 3.18: The MPC-Controlled oxygen storage pressure.      

 

The oxygen storage pressure rises consistently at approximately half the rate of the hydrogen pressure, in 

accordance with the expected 2:1 H₂:O₂ ratio. This linear trend indicates well-regulated mass production 

dynamics, demonstrating stable and predictable system behavior. 
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3.5  Results Discussion  

 

The simulation results of the MPC-based electrolyzer control system demonstrate highly effective regulation 

of key process variables. The electrolyzer temperature closely tracks the desired setpoint of 75°C, with 

minimal overshoot and rapid convergence, indicating robust performance and precise thermal control. The 

cooling water flow rate exhibits dynamic adaptation, initially increasing to address thermal buildup and 

gradually decreasing as the system stabilizes. Importantly, the flow rate remains within predefined operational 

constraints throughout the simulation, highlighting the MPC algorithm's capability to manage physical limits. 

 

Hydrogen storage pressure increases steadily and smoothly, confirming continuous and stable hydrogen 

production. Similarly, the oxygen storage pressure follows a consistent rising trend at approximately half the 

rate of hydrogen, maintaining the expected 2:1 molar ratio dictated by electrolysis. The buffer tank outlet 

temperature gradually stabilizes, reflecting an effective heat exchange process managed by the MPC strategy. 

The results demonstrate that MPC achieves faster response times, improved constraint handling, and smoother 

system behavior compared to traditional PID control, thereby validating its suitability for advanced 

electrolyzer process management. 

3.6  Conclusion 

The MPC controller demonstrates excellent setpoint tracking across key variables, achieving fast and stable 

responses with minimal errors, especially for temperature and pressure. In contrast, the PID system shows 

poor tracking for the electrolyzer temperature and cooling flow, with slower or unstable convergence. This 

highlights MPC’s superiority in handling multivariable dynamics and constraints effectively. 
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Chapter 4: 

Results Discussion 

4.1 Analysis and Discussion 

 

The simulation results presented in this study illustrate the effectiveness of the proposed machine learning-

based predictive maintenance framework, specifically through the application of Model Predictive Control 

(MPC) compared to conventional Proportional-Integral-Derivative (PID) controllers. The results demonstrate 

that MPC achieves superior temperature regulation, reduced overshoot, and faster stabilization. 

Quantitatively, MPC maintained the electrolyzer temperature within ±1.5°C of the 75°C setpoint, with a 

convergence time of under 80 seconds. In contrast, the PID controller exhibited a variation of up to ±4°C and 

required nearly 150 seconds to stabilize. Furthermore, the cooling water flow rate under MPC showed 

smoother dynamic behavior and remained within optimal operational limits (0–80000 g/s), highlighting 

improved constraint handling. 

 

Additionally, pressure control results confirmed that both hydrogen and oxygen pressures tracked theoretical 

expectations. However, the MPC model consistently demonstrated less fluctuation and tighter tracking ratios 

(2:1 H₂:O₂), supporting improved gas purity and system safety. These findings substantiate that integrating 

MPC in pressure and thermal regulation improves performance, efficiency, and system stability in real-time 

applications. 

4.2 Study Limitations 

 

Despite promising results, this research is not without limitations. First, the model assumes ideal sensor 

accuracy and noise-free data acquisition, which may not reflect real-world industrial environments. Second, 

although the MPC controller was optimized in simulation, its deployment in real-time systems may encounter 

latency issues or necessitate returning. 

Third, the predictive models were trained using simulated data. Therefore, the results should be validated 

against real-world datasets for more robust generalization. Moreover, hardware-in-the-loop testing and 

integration challenges such as data latency, cybersecurity, and operator training were beyond the scope of this 

study but are essential for industrial deployment. 

4.3 Practical Recommendations 

To enhance the practical applicability of this framework, several recommendations are proposed: 

 Collaborate with industrial partners to deploy the system in a hydrogen pilot plant. 
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 Collect real-time operational data to retrain and validate machine learning (ML) models. 

 Implement explainable AI techniques to improve operator trust in predictive outputs. 

 Explore integration with digital twin platforms for continuous system simulation and optimization. 

 Provide targeted training for plant personnel to interpret predictive analytics outputs and execute 

preemptive maintenance actions. 

Future research should also investigate the cost-benefit analysis of the system, comparing predictive ML 

maintenance strategies with traditional methods across operational cycles in real industrial environments. 

4.4 General Conclusion 

This scholarly thesis presents a meticulous investigation into the implementation of machine learning (ML)-

driven predictive pressure control mechanisms specifically tailored for electrolysis systems, with the 

overarching objective of enhancing the reliability, operational efficiency, and sustainability of green hydrogen 

production processes. The research highlights the increasingly significant role that hydrogen is poised to play 

as a renewable energy carrier in the contemporary energy landscape while also emphasizing the indispensable 

contribution of water electrolysis in facilitating the global transition towards more sustainable energy 

practices. 

Through a thorough examination of various electrolysis pressure control systems, the underlying failure 

mechanisms associated with these systems, existing traditional maintenance strategies, and the promising 

capabilities offered by machine learning technologies, this research establishes a robust and well-founded 

basis for the formulation of sophisticated predictive maintenance frameworks that are both innovative and 

effective. By effectively integrating dynamic system modeling techniques, proportional-integral-derivative 

(PID) control methodologies that have been meticulously optimized using genetic algorithms, along with 

advanced ML techniques, the proposed comprehensive approach empowers the early identification of system 

anomalies, significantly reduces the incidence of unexpected failures, optimizes maintenance scheduling 

processes, and ultimately leads to marked improvements in operational efficiency. 

The findings from this extensive research endeavor convincingly demonstrate that the implementation of 

predictive maintenance strategies utilizing machine learning methodologies significantly enhances overall 

system performance by substantially minimizing downtime instances, reducing operational expenditures, 

improving safety protocols, and ensuring the consistent and reliable generation of hydrogen. Furthermore, this 

scholarly work accentuates the vital importance of achieving a harmonious balance between cost and 

reliability considerations, the careful selection of pertinent features for predictive analysis, and the necessity 

of ensuring seamless integration of these advanced systems within existing industrial environments, all of 

which are framed within the broader context of the emerging paradigm known as Industry 4.0. 
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In conclusion, this comprehensive study makes a significant contribution to the evolving field of electrolysis 

system optimization and predictive maintenance, providing a practical and adaptable framework that has the 

potential for further refinement and expansion in future inquiries. Subsequent research endeavors should place 

a strong emphasis on enhancing the accuracy of predictive models, incorporating explainable artificial 

intelligence methodologies, exploring the innovative possibilities offered by digital twin technologies, and 

addressing the multifaceted challenges associated with large-scale industrial deployment, all of which are 

essential to fully harnessing the transformative potential of predictive maintenance in the advancement of 

sustainable hydrogen production practices. 

 

4.5 General Recommendations 

Based on this thesis, we recommend the following for further studies:  

 Improve data acquisition systems and use high-precision sensors for accurate parameter monitoring. 

 Develop advanced machine learning models (including deep learning and ensembles) to improve 

prediction accuracy and robustness. 

 Integrate explainable AI for transparency and trust among operators. 

 Adopt digital twin technology for real-time simulation, analysis, and optimization of electrolyzer 

systems. 

 Optimize maintenance strategies to balance costs, downtime, and equipment lifespan. 

 Ensure scalability and generalizability of the framework across various electrolyzer types and 

industries. 

 Foster collaboration with industry stakeholders for effective system integration. 

 Prioritize energy efficiency and sustainability to align with environmental goals. 

 Implement training programs for plant personnel to effectively use advanced technologies. 

 Conduct long-term field validation studies and analyze economic and policy aspects to support 

industrial adoption. 
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Appendix A: Codes Used In Simulation (MATLAB Code): 
 

1. Simple Model: 

Simple Model electrolyzer model: 

function dxdt = electrolyzer_model(t, x, par, Pnet) 
% ELECTROLYZER_MODEL - Differential equations for an electrolyzer system 
% INPUTS: 
%   t    - Time (unused, required for ode solver) 
%   x    - State vector [Temperatures, Pressures, Mass] 
%   par  - Electrolyzer parameters (struct) 
%   Pnet - Total input power [W] 
% OUTPUT: 
%   dxdt - Time derivatives of the state variables 

  
N = par.N; % Number of electrolyzers 

  
% Extract states 
T_el = x(1:N);      % Electrolyzer temperatures [Â°C] 
Psto_H2 = x(N+1);   % Hydrogen storage pressure [bar] 
Psto_O2 = x(N+2);   % Oxygen storage pressure [bar] 
Mass_Bt = x(N+3);   % Buffer tank mass [kg] 
T_bt_out = x(N+4);  % Buffer tank outlet temperature [Â°C] 
T_El_in = x(N+5);   % Electrolyzer inlet temperature [Â°C] 
T_cw_out = x(N+6);  % Cooling water outlet temperature [Â°C] 

  
% System constants 
F_const = 96485;      % Faraday constant [C/mol] 
R = 8.314;           % Universal gas constant [J/mol*K] 
Utn = 1.482;         % Thermoneutral voltage [V] 
T_ref = 298.15;      % Reference temperature [K] 
Cp_lye = 3.101;      % Specific heat capacity of lye [J/g*K] 

  
% Electrochemical equations (Faraday's Law) 
I_el = Pnet / (Utn * par.EL(1).nc); % Estimated current 
H2_production = I_el * par.EL(1).nc / (2 * F_const); % Hydrogen flow [mol/s] 

  
% Energy balance 
Q_generated = (Pnet - H2_production * Utn * F_const); 
Q_loss = 5.5 * (T_el - T_ref) + 5.67e-8 * 0.8 * ((T_el.^4) - (T_ref.^4)); 
Q_net = Q_generated - Q_loss; 

  
% Mass balance 
Water_consumption = H2_production * 18; % Water loss [g/s] 

  
% Differential equations 
dxdt = zeros(N+6, 1); 
dxdt(1:N) = (Q_net) ./ (par.EL(1).A * par.EL(1).nc); % Temperature dynamics 
dxdt(N+1) = H2_production - Psto_H2 / 100;  % Hydrogen storage pressure change 
dxdt(N+2) = 0.5 * H2_production - Psto_O2 / 100;  % Oxygen storage pressure change 
dxdt(N+3) = -Water_consumption;  % Buffer tank mass change 
dxdt(N+4) = (T_El_in - T_bt_out) / 10;  % Buffer tank outlet temperature 
dxdt(N+5) = (T_cw_out - T_El_in) / 10;  % Electrolyzer inlet temperature 
dxdt(N+6) = 0;  % Cooling water outlet (constant for now) 

  
end 
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Simple Model Main: 

clc; 
clear; 
close all; 

  
%% Load Electrolyzer Parameters 
N = 3; % Number of electrolyzers 
par = Simple_Model_parElectrolyzer(N); 

  
%% Define Simulation Time 
num_hr = 0.25; % Simulation duration in hours 
tspan = [0 num_hr * 3600]; % Convert hours to seconds 

  
%% Initial Conditions 
Pnet = 9e6; % Total input power [W] 
x0 = [75*ones(N,1);  % Electrolyzer temperature [Â°C] 
      25;            % H2 Storage pressure [bar] 
      25;            % O2 Storage pressure [bar] 
      6000000;       % Buffer tank mass [g] 
      70;            % Buffer tank outlet temp [Â°C] 
      65;            % Electrolyzer inlet temp [Â°C] 
      20];           % Cooling water outlet temp [Â°C] 

  
%% Run Simulation Using `ode15s` 
[t, x] = ode15s(@(t, x) Simple_Model_electrolyzer_model(t, x, par, Pnet), tspan, x0); 

  
%% Extract Results 
T_el = x(:, 1:N);      % Electrolyzer temperature 
Psto_H2 = x(:, N+1);   % H2 Storage pressure 
Psto_O2 = x(:, N+2);   % O2 Storage pressure 
Mass_Bt = x(:, N+3);   % Buffer tank mass 
T_bt_out = x(:, N+4);  % Buffer tank outlet temperature 
T_El_in = x(:, N+5);   % Electrolyzer inlet temperature 
T_cw_out = x(:, N+6);  % Cooling water outlet temperature 

  
%% Plot Results 

  
% ðŸ“Œ **1. Storage Pressures** 
figure; 
subplot(2,1,1); 
plot(t, Psto_H2, 'b', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('H_2 Storage Pressure [bar]'); 
title('Hydrogen Storage Pressure'); 
grid on; 

  
subplot(2,1,2); 
plot(t, Psto_O2, 'r', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('O_2 Storage Pressure [bar]'); 
title('Oxygen Storage Pressure'); 
grid on; 

  
% ðŸ“Œ **2. Electrolyzer Temperature** 
figure; 
hold on; 
for i = 1:N 
    plot(t, T_el(:, i), 'LineWidth', 1.5); 
end 
xlabel('Time [s]'); ylabel('Temperature [Â°C]'); 
title('Electrolyzer Temperature'); 
legend(arrayfun(@(i) sprintf('El%d', i), 1:N, 'UniformOutput', false)); 
grid on; 
hold off; 
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% ðŸ“Œ **3. Buffer Tank Mass & Temperature** 
figure; 
subplot(2,1,1); 
plot(t, Mass_Bt, 'k', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('Buffer Tank Mass [g]'); 
title('Mass of Liquid in Buffer Tank'); 
grid on; 

  
subplot(2,1,2); 
plot(t, T_bt_out, 'g', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('Buffer Tank Temperature [Â°C]'); 
title('Buffer Tank Outlet Temperature'); 
grid on; 

  
% ðŸ“Œ **4. Electrolyzer & Cooling Water Temperature** 
figure; 
subplot(2,1,1); 
plot(t, T_El_in, 'm', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('Electrolyzer Inlet Temp [Â°C]'); 
title('Electrolyzer Inlet Temperature'); 
grid on; 

  
subplot(2,1,2); 
plot(t, T_cw_out, 'c', 'LineWidth', 1.5); 
xlabel('Time [s]'); ylabel('Cooling Water Outlet Temp [Â°C]'); 
title('Cooling Water Outlet Temperature'); 
grid on; 

  
disp('âœ… Simulation completed successfully.'); 

 

Simple Model parElectrolyzer: 

function par = parElectrolyzer(N) 

  
%Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers. 
par.Const = ... 
    struct('ze',2,'FC',96485,'R',8.314,'Cp',4.186,'CpLye',3.1006,... 
    'Mwt',18,'MwtH2',2.01588,'Tref',25,'rho',1000,'rhoLye',1258.2,'Vc',... 
    2.0681,'Vh',1.9944); 

  
%Cp=specificheatofwater,[J/gK];Mwt=mol.wtofH2O,rho=densityof 
%water/lye[kg/m3],Vc=volumeofcoldsideofheat... 
%exchanger[m3],Vh=volumeof 
%hotsideofheatexchanger[m3] 

  
par.Comp = struct('alpha',0.63,'k',1.62,'Tel',25+273,'Pel',3); 
par.Storage = struct('VstoH2',965000,'VstoO2',482500,'PoutH2',19,... 
    'PoutO2',19,... 
    'TstoH2',25+273.15,'TstoO2',25+273.15,'Rg',8.314e-2,'VdispH2',... 
    0.5,'VdispO2',0.5); 
%VstoH2andVstoO2areinlitres 

  
par.Tw_in = 10; 
%inlettemperatureofthecoolingwater inlyecirculationheatexchanger 
par.Hex.UA = 20.48e3; 
%UAofheatexchanger[W/K],basedonEoLdesign 
par.kvalveH2 = 14.723; 
%valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure 

atSS 
par.kvalveO2 = 7.362; 
%valveconstantfortheoutletvalveof 

oxygenstoragetank,calculatedfor25barstoragepressureatSS 
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par.sigma = 5.672*10^-8; 
%stefan-boltzmannconstant[W/mË†2KË†4] 
par.em = 0.8; 
%emissivity[-] 
%ParametersforU-IrelationshipinUlleberg'smodel 
par.U = struct([]); 
par.TherMo = struct([]); 
par.EL = struct([]); 

  
for i =1:N 
    %U-IcurveParameters 
    par.U(i).r1 = 0.000218155; %ohmmË†2 
    par.U(i).r2 = -0.000000425; %ohmmË†2CË†-1 
    par.U(i).s = 0.1179375; %Vs 
    par.U(i).t1 = -0.14529; %AË†-1mË†2 
    par.U(i).t2 = 11.794; %AË†-1mË†2CË†-1 
    par.U(i).t3 = 395.68; %AË†-1mË†2CË†-2 
    par.U(i).f1 = 120; %mAË†2cmË†-4 
    par.U(i).f2 = 0.98; %dimensionless 
    %%Parametersforthethermalmodel 
    par.TherMo(i).CtS = 625/27; %Specificthermalcapacity 

ofelectrolyzeri.e.Ct/P,[kJ/kWatts*C] 
    par.TherMo(i).Ct = 625/27*2135; %Cts*Pnom[kJ/C]or[kJ/K],AssumingPnom=2135kWatts 
    par.TherMo(i).hc = 5.5; %convectiveheattransfer coefficientW/mË†2C 
    par.TherMo(i).A_surf = 0.1; %specificraditionareaper 

kAcurrentpercell,[mË†2/kA*Ncell] 
    par.TherMo(i).A_El = 0.1*5.72*230; %surfaceareaofthe 

electrolyzer,A_surf*Inom*Ncell[mË†2] 
    %%ParametersforFaradayeffeciencycalculations 
    par.EL(i).Utn = 1.482; %thermoneutralvoltage,[V] 
    par.EL(i).nc = 230; %no.ofcells 
    par.EL(i).A = 2.6; %electrodeareaofeach cell,[mË†2] 
    par.EL(i).Ta = 20; %ambienttemp,[C] 
    par.EL(i).Tstd = 25; %standardtemperature,[C] 
end 

  
%El#2,performingat85%ofelectrolyzer1 
par.U(2).r1 = par.U(2).r1*1.2; %ohmmË†2 
par.U(2).s = par.U(2).s*1.2; %V 
par.U(2).f1 = par.U(2).f1*1.2; %mAË†2cmË†-4 
par.U(2).f2 = 0.97; %El#3,performingat70%ofelectrolyzer1 
par.U(3).r1 = par.U(3).r1*1.3; %ohmmË†2 
par.U(3).s = par.U(3).s*1.3; %V 
par.U(3).f1 = par.U(3).f1*1.3; %mAË†2cmË†-4 
par.U(3).f2 = 0.96; 
par.N=N; 
end 

  

  

2. PID Closed Loop System: 

 

PID cost function: 
function cost = pid_cost_function(pid_params, par, Pnet, x0, T_setpoint) 
    % Extract PID gains from optimization parameters 
    Kp = pid_params(1); 
    Ki = pid_params(2); 
    Kd = pid_params(3); 

     
    % Define simulation parameters 
    dt = 1; % Time step [s] 
    tspan = 0:dt:3600; % 1-hour simulation 
    num_steps = length(tspan); 

     



47 
 

    % Initialize state variables 
    x = zeros(num_steps, length(x0)); 
    x(1, :) = x0; 
    q_cw = zeros(num_steps, 1); % Cooling water flow rate 
    integral_error = 0; 
    prev_error = 0; 

     
    % Run the PID-controlled simulation 
    for i = 2:num_steps 
        error = T_setpoint - x(i-1, 1); 
        integral_error = integral_error + error * dt; 
        derivative_error = (error - prev_error) / dt; 

  
        % Compute PID Output (Cooling Water Flow Rate) 
        q_cw(i) = Kp * error + Ki * integral_error + Kd * derivative_error; 
        q_cw(i) = max(0, min(q_cw(i), 8000)); % Limit between 0 and 8000 g/s 

         
        % Solve ODE 
        [~, x_new] = ode15s(@(t, x) PID_Simple_Model_electrolyzer_model(t, x, par, 

Pnet, q_cw(i)), [0 dt], x(i-1, :)'); 
        x(i, :) = x_new(end, :); 
        prev_error = error; 
    end 

     
    % Compute Mean Squared Error (MSE) 
    cost = mean((x(:, 1) - T_setpoint).^2); % Minimize temperature deviation 
end 

 

PID Simple Model electrolyzer model: 
function dxdt = PID_Simple_Model_electrolyzer_model(t, x, par, Pnet, q_cw) 
% ELECTROLYZER_MODEL - Corrected differential equations for electrolyzer system 
% INPUTS: 
%   t    - Time [s] (unused, required for ODE solver) 
%   x    - State vector [Temperatures, Pressures, Mass] 
%   par  - Electrolyzer parameters (struct) 
%   Pnet - Total input power [W] 
%   q_cw - Cooling water flow rate [g/s] (Control Input) 
% OUTPUT: 
%   dxdt - Time derivatives of state variables 

  
N = par.N; % Number of electrolyzers 

  
% Extract states 
T_el = x(1:N);      % Electrolyzer temperature [Â°C] 
Psto_H2 = x(N+1);   % Hydrogen storage pressure [bar] 
Psto_O2 = x(N+2);   % Oxygen storage pressure [bar] 
Mass_Bt = x(N+3);   % Buffer tank mass [g] 
T_bt_out = x(N+4);  % Buffer tank outlet temperature [Â°C] 
T_El_in = x(N+5);   % Electrolyzer inlet temperature [Â°C] 
T_cw_out = x(N+6);  % Cooling water outlet temperature [Â°C] 

  
% System Constants 
F_const = 96485;      % Faraday constant [C/mol] 
R = 8.314;           % Universal gas constant [J/mol*K] 
Utn = 1.482;         % Thermoneutral voltage [V] 
T_ref = 298.15;      % Reference temperature [K] 
Cp_lye = 3.101;      % Specific heat capacity of lye [J/g*K] 
A_el = par.EL(1).A;  % Electrode area per cell [mÂ²] 
nc = par.EL(1).nc;   % Number of cells 

  
% **Electrochemical Equations (Faradayâ€™s Law)** 
I_el = Pnet / (Utn * nc); % Estimated current [A] 
H2_production = I_el * nc / (2 * F_const); % Hydrogen flow [mol/s] 
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% **Energy Balance (Corrected)** 
Q_generated = (Pnet - H2_production * Utn * F_const); % Power input minus chemical 

power 
Q_loss = par.TherMo(1).hc * A_el .* (T_el - T_ref) ...  % Convective losses 
       + par.sigma * par.em * A_el .* ((T_el + 273.15).^4 - (T_ref).^4); % Radiative 

loss 

  
% **Cooling Effect (PID Controlled Variable)** 
Q_cooling = q_cw .* Cp_lye .* (T_el - T_cw_out) / 1000; % Convert g/s to kg/s 

  
% **Net Heat Balance** 
Q_net = (Q_generated - Q_loss - Q_cooling) ./ (par.TherMo(1).Ct * nc); % Divide by 

total thermal capacity 

  
% **Mass Balance** 
Water_consumption = H2_production * 18; % Water loss [g/s] 

  
% **Differential Equations** 
dxdt = zeros(N+6, 1); 
dxdt(1:N) = Q_net;  % Temperature update 
dxdt(N+1) = H2_production - Psto_H2 / 100;  % H2 storage pressure change 
dxdt(N+2) = 0.5 * H2_production - Psto_O2 / 100;  % O2 storage pressure change 
dxdt(N+3) = -Water_consumption;  % Buffer tank mass change 
dxdt(N+4) = (T_El_in - T_bt_out) / 50;  % Buffer tank outlet temperature (slower 

response) 
dxdt(N+5) = (T_cw_out - T_El_in) / 20;  % Electrolyzer inlet temperature 
dxdt(N+6) = 0;  % Cooling water outlet (constant for now) 

  
end 

 

PID Simple Model Main: 

 
clc; 
clear; 
close all; 

  
%% Load Electrolyzer Parameters 
N = 3; % Number of electrolyzers 
par = PID_Simple_Model_parElectrolyzer(N); 

  
%% Define Simulation Initial Conditions 
Pnet = 9e6; % Total input power [W] 
T_setpoint = 75; % Desired temperature [Â°C] 
x0 = [75*ones(N,1);  25; 25; 6000000; 70; 65; 20]; % Initial conditions 

  
%% Define Genetic Algorithm Optimization 
% PID search space: [Kp, Ki, Kd] with reasonable bounds 
lb = [0, 0, 0];       % Lower bounds 
ub = [5000, 1000, 500]; % Upper bounds 

  
options = gaoptimset('Generations', 15, 'PopulationSize', 20, 'Display', 'iter'); 

  
% Run Genetic Algorithm Optimization 
best_pid = ga(@(pid_params) pid_cost_function(pid_params, par, Pnet, x0, T_setpoint), 

3, [], [], [], [], lb, ub, [], options); 

  
% Extract optimized parameters 
Kp_opt = best_pid(1); 
Ki_opt = best_pid(2); 
Kd_opt = best_pid(3); 
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fprintf('Optimized PID Parameters: Kp=%.2f, Ki=%.2f, Kd=%.2f\n', Kp_opt, Ki_opt, 

Kd_opt); 

  
%% Run Simulation with Optimized PID Controller 
tspan = [0 3600]; % 1-hour simulation 
dt = 1; 
t = 0:dt:tspan(2); 
num_steps = length(t); 
x = zeros(num_steps, length(x0)); 
x(1, :) = x0; 
q_cw = zeros(num_steps, 1); 
integral_error = 0; 
prev_error = 0; 

  
for i = 2:num_steps 
    % Compute Error 
    error = T_setpoint - x(i-1, 1); 
    integral_error = integral_error + error * dt; 
    derivative_error = (error - prev_error) / dt; 

  
    % Compute PID Output 
    q_cw(i) = Kp_opt * error + Ki_opt * integral_error + Kd_opt * derivative_error; 
    q_cw(i) = max(0, min(q_cw(i), 8000)); 

  
    % Solve ODE 
    [~, x_new] = ode15s(@(t, x) PID_Simple_Model_electrolyzer_model(t, x, par, Pnet, 

q_cw(i)), [0 dt], x(i-1, :)'); 
    x(i, :) = x_new(end, :); 
    prev_error = error; 
end 

  
%% Extract Results 
T_el = x(:, 1:N); % Electrolyzer temperature 
Psto_H2 = x(:, N+1); % H2 Storage pressure 
Psto_O2 = x(:, N+2); % O2 Storage pressure 
%% **Plot All Parameters After AI-Based PID Control** 
%% **Plot All Parameters After AI-Based PID Control** 
figure; 

  
% **Electrolyzer Temperature** 
subplot(4,2,1); 
plot(t, T_el, 'LineWidth', 1.5); 
hold on; 
plot(xlim, [T_setpoint T_setpoint], '--r'); % horizontal line 
text(mean(xlim), T_setpoint, 'Setpoint', 'VerticalAlignment', 'bottom', 

'HorizontalAlignment', 'center'); 

  
xlabel('Time [s]'); 
ylabel('Electrolyzer Temperature [Â°C]'); 
title('Electrolyzer Temperature Control'); 
grid on; 

  
% **Cooling Water Flow Rate** 
subplot(4,2,2); 
plot(t, q_cw, 'b', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Cooling Water Flow [g/s]'); 
title('PID-Controlled Cooling Water Flow'); 
grid on; 

  
% **Hydrogen Storage Pressure** 
subplot(4,2,3); 
plot(t, Psto_H2, 'g', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
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ylabel('H_2 Pressure [bar]'); 
title('Hydrogen Storage Pressure'); 
grid on; 

  
% **Oxygen Storage Pressure** 
subplot(4,2,4); 
plot(t, Psto_O2, 'r', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('O_2 Pressure [bar]'); 
title('Oxygen Storage Pressure'); 
grid on; 

  
% **Buffer Tank Mass** 
subplot(4,2,5); 
plot(t, x(:, N+3), 'm', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Mass in Buffer Tank [g]'); 
title('Buffer Tank Mass Change'); 
grid on; 

  
% **Buffer Tank Temperature** 
subplot(4,2,6); 
plot(t, x(:, N+4), 'k', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Buffer Tank Temp [Â°C]'); 
title('Buffer Tank Outlet Temperature'); 
grid on; 

  
% **Electrolyzer Inlet Temperature** 
subplot(4,2,7); 
plot(t, x(:, N+5), 'c', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Electrolyzer Inlet Temp [Â°C]'); 
title('Electrolyzer Inlet Temperature'); 
grid on; 

  
% **Net Power Input** 
subplot(4,2,8); 
plot(t, Pnet * ones(size(t)), 'y', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Power [W]'); 
title('Net Power Input'); 
grid on; 

  
disp('âœ… All parameters plotted after AI-PID tuning.'); 

  
% **Electrolyzer Temperature** 
figure; 
plot(t, T_el, 'LineWidth', 1.5); 
hold on; 
yline(T_setpoint, '--r', 'Setpoint'); 
xlabel('Time [s]'); 
ylabel('Electrolyzer Temperature [Â°C]'); 
title('Electrolyzer Temperature Control'); 
grid on; 

  
% **Cooling Water Flow Rate** 
figure; 
plot(t, q_cw, 'b', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Cooling Water Flow [g/s]'); 
title('PID-Controlled Cooling Water Flow'); 
grid on; 
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% **Hydrogen Storage Pressure** 
figure; 
plot(t, Psto_H2, 'g', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('H_2 Pressure [bar]'); 
title('Hydrogen Storage Pressure'); 
grid on; 

  
% **Oxygen Storage Pressure** 
figure; 
plot(t, Psto_O2, 'r', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('O_2 Pressure [bar]'); 
title('Oxygen Storage Pressure'); 
grid on; 

  
% **Buffer Tank Mass** 
figure; 
plot(t, x(:, N+3), 'm', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Mass in Buffer Tank [g]'); 
title('Buffer Tank Mass Change'); 
grid on; 

  
% **Buffer Tank Temperature** 
figure; 
plot(t, x(:, N+4), 'k', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Buffer Tank Temp [Â°C]'); 
title('Buffer Tank Outlet Temperature'); 
grid on; 

  
% **Electrolyzer Inlet Temperature** 
figure; 
plot(t, x(:, N+5), 'c', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Electrolyzer Inlet Temp [Â°C]'); 
title('Electrolyzer Inlet Temperature'); 
grid on; 

  
% **Net Power Input** 
figure; 
plot(t, Pnet * ones(size(t)), 'y', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Power [W]'); 
title('Net Power Input'); 
grid on; 

  
disp('âœ… All parameters plotted after AI-PID tuning.'); 

  

PID Simple Model parElectrolyzer : 

 
function par = parElectrolyzer(N) 

  
%Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers. 
par.Const = ... 
    struct('ze',2,'FC',96485,'R',8.314,'Cp',4.186,'CpLye',3.1006,... 
    'Mwt',18,'MwtH2',2.01588,'Tref',25,'rho',1000,'rhoLye',1258.2,'Vc',... 
    2.0681,'Vh',1.9944); 

  
%Cp=specificheatofwater,[J/gK];Mwt=mol.wtofH2O,rho=densityof 
%water/lye[kg/m3],Vc=volumeofcoldsideofheat... 
%exchanger[m3],Vh=volumeof 
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%hotsideofheatexchanger[m3] 

  
par.Comp = struct('alpha',0.63,'k',1.62,'Tel',25+273,'Pel',3); 
par.Storage = struct('VstoH2',965000,'VstoO2',482500,'PoutH2',19,... 
    'PoutO2',19,... 
    'TstoH2',25+273.15,'TstoO2',25+273.15,'Rg',8.314e-2,'VdispH2',... 
    0.5,'VdispO2',0.5); 
%VstoH2andVstoO2areinlitres 

  
par.Tw_in = 10; 
%inlettemperatureofthecoolingwater inlyecirculationheatexchanger 
par.Hex.UA = 20.48e3; 
%UAofheatexchanger[W/K],basedonEoLdesign 
par.kvalveH2 = 14.723; 
%valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure 

atSS 
par.kvalveO2 = 7.362; 
%valveconstantfortheoutletvalveof 

oxygenstoragetank,calculatedfor25barstoragepressureatSS 
par.sigma = 5.672*10^-8; 
%stefan-boltzmannconstant[W/mË†2KË†4] 
par.em = 0.8; 
%emissivity[-] 
%ParametersforU-IrelationshipinUlleberg'smodel 
par.U = struct([]); 
par.TherMo = struct([]); 
par.EL = struct([]); 

  
for i =1:N 
    %U-IcurveParameters 
    par.U(i).r1 = 0.000218155; %ohmmË†2 
    par.U(i).r2 = -0.000000425; %ohmmË†2CË†-1 
    par.U(i).s = 0.1179375; %Vs 
    par.U(i).t1 = -0.14529; %AË†-1mË†2 
    par.U(i).t2 = 11.794; %AË†-1mË†2CË†-1 
    par.U(i).t3 = 395.68; %AË†-1mË†2CË†-2 
    par.U(i).f1 = 120; %mAË†2cmË†-4 
    par.U(i).f2 = 0.98; %dimensionless 
    %%Parametersforthethermalmodel 
    par.TherMo(i).CtS = 625/27; %Specificthermalcapacity 

ofelectrolyzeri.e.Ct/P,[kJ/kWatts*C] 
    par.TherMo(i).Ct = 625/27*2135; %Cts*Pnom[kJ/C]or[kJ/K],AssumingPnom=2135kWatts 
    par.TherMo(i).hc = 5.5; %convectiveheattransfer coefficientW/mË†2C 
    par.TherMo(i).A_surf = 0.1; %specificraditionareaper 

kAcurrentpercell,[mË†2/kA*Ncell] 
    par.TherMo(i).A_El = 0.1*5.72*230; %surfaceareaofthe 

electrolyzer,A_surf*Inom*Ncell[mË†2] 
    %%ParametersforFaradayeffeciencycalculations 
    par.EL(i).Utn = 1.482; %thermoneutralvoltage,[V] 
    par.EL(i).nc = 230; %no.ofcells 
    par.EL(i).A = 2.6; %electrodeareaofeach cell,[mË†2] 
    par.EL(i).Ta = 20; %ambienttemp,[C] 
    par.EL(i).Tstd = 25; %standardtemperature,[C] 
end 

  
%El#2,performingat85%ofelectrolyzer1 
par.U(2).r1 = par.U(2).r1*1.2; %ohmmË†2 
par.U(2).s = par.U(2).s*1.2; %V 
par.U(2).f1 = par.U(2).f1*1.2; %mAË†2cmË†-4 
par.U(2).f2 = 0.97; %El#3,performingat70%ofelectrolyzer1 
par.U(3).r1 = par.U(3).r1*1.3; %ohmmË†2 
par.U(3).s = par.U(3).s*1.3; %V 
par.U(3).f1 = par.U(3).f1*1.3; %mAË†2cmË†-4 
par.U(3).f2 = 0.96; 
par.N=N; 
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end 

  

  

 

3. MPC Model : 
 

MPC Simple Model: 
clc; 
clear; 
close all; 

  
%% Load Electrolyzer Parameters 
N = 3; % Number of electrolyzers 
par = MPC_Simple_Model_parElectrolyzer(N); 

  
%% Define Simulation Time 
num_hr = 0.25; % Simulation duration in hours 
tspan = [0 num_hr * 3600]; % Convert hours to seconds 

  
%% Initial Conditions 
Pnet = 9e6; % Total input power [W] 
x0 = [75*ones(N,1);  % Electrolyzer temperature [Â°C] 
      25;            % H2 Storage pressure [bar] 
      25;            % O2 Storage pressure [bar] 
      6000000;       % Buffer tank mass [g] 
      70;            % Buffer tank outlet temp [Â°C] 
      65;            % Electrolyzer inlet temp [Â°C] 
      20];           % Cooling water outlet temp [Â°C] 

  
%% Define State-Space Model for MPC 
A = -0.02; % Approximate system dynamics 
B = 0.01;  % Control input effect 
C = 1;     % Output mapping (temperature) 
D = 0; 

  
sys = ss(A, B, C, D); % Create state-space model 

  
%% Configure MPC Controller 
mpcController = mpc(sys, 1); % Sampling time = 1 sec 
mpcController.PredictionHorizon = 10; 
mpcController.ControlHorizon = 2; 

  
% Define Constraints 
mpcController.MV(1).Min = 0;      % Min cooling water flow rate 
mpcController.MV(1).Max = 80000;  % Max cooling water flow rate 
mpcController.OV(1).Min = 60;     % Min electrolyzer temp 
mpcController.OV(1).Max = 80;     % Max electrolyzer temp 

  
% Set Optimization Weights 
mpcController.Weights.ManipulatedVariables = 0.1; 
mpcController.Weights.ManipulatedVariablesRate = 0.01; 
mpcController.Weights.OutputVariables = 1; 

  
%% **Initialize MPC State** 
mpcState = mpcstate(mpcController); 

  
%% Run Simulation with MPC 
T_setpoint = 75; % Desired electrolyzer temperature 
q_cw = zeros(length(tspan), 1); % Cooling water flow rate 

  
[t, x] = ode15s(@(t, x) MPC_Simple_Model_electrolyzer_model(t, x, par, Pnet, q_cw(1)), 

tspan, x0); 
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for i = 2:length(t) 
    % Compute MPC-based cooling water flow using the correct state object 
    q_cw(i) = mpcmove(mpcController, mpcState, x(i-1,1), T_setpoint); 

  
    % Simulate the system for the next step 
    [~, x_next] = ode15s(@(t, x) MPC_Simple_Model_electrolyzer_model(t, x, par, Pnet, 

q_cw(i)), [t(i-1) t(i)], x(i-1, :)); 
    x(i, :) = x_next(end, :); 
end 

  
%% Extract Results 
T_el = x(:, 1:N); % Electrolyzer temperature 
Psto_H2 = x(:, N+1); % H2 Storage pressure 
Psto_O2 = x(:, N+2); % O2 Storage pressure 
T_bt_out = x(:, N+4); % Buffer tank outlet temperature 

  
%% **Plot Results** 
%% Plot results with setpoint line 
figure; 
plot(t, x(:,1), 'b', 'LineWidth', 2); % Electrolyzer temperature 
hold on; 
plot([t(1), t(end)], [T_setpoint, T_setpoint], '--r', 'DisplayName', 'Setpoint'); % 

Setpoint line 
xlabel('Time [s]'); 
ylabel('Electrolyzer Temperature [°C]'); 
title('Electrolyzer Temperature vs Time'); 
legend('Temperature', 'Setpoint'); 
grid on; 

  
figure; 
plot(t, q_cw, 'b', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('Cooling Water Flow Rate [g/s]'); 
title('MPC-Controlled Cooling Water Flow'); 
grid on; 

  
figure; 
plot(t, Psto_H2, 'g', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('H_2 Storage Pressure [bar]'); 
title('Hydrogen Storage Pressure'); 
grid on; 

  
figure; 
plot(t, Psto_O2, 'r', 'LineWidth', 1.5); 
xlabel('Time [s]'); 
ylabel('O_2 Storage Pressure [bar]'); 
title('Oxygen Storage Pressure'); 
grid on; 

  
disp('âœ… Simulation completed successfully.'); 

 

MPC Simple Model electrolyzer model: 
function dxdt = Simple_Model_electrolyzer_model(t, x, par, Pnet, q_cw) 
% ELECTROLYZER_MODEL - Differential equations for the electrolyzer system 
% INPUTS: 
%   t    - Time (unused, required for ode solver) 
%   x    - State vector [Temperatures, Pressures, Mass] 
%   par  - Electrolyzer parameters (struct) 
%   Pnet - Total input power [W] 
%   q_cw - Cooling water flow rate [g/s] 
% OUTPUT: 
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%   dxdt - Time derivatives of the state variables 

  
N = par.N; % Number of electrolyzers 

  
% Extract states 
T_el = x(1:N);      % Electrolyzer temperatures [Â°C] 
Psto_H2 = x(N+1);   % Hydrogen storage pressure [bar] 
Psto_O2 = x(N+2);   % Oxygen storage pressure [bar] 
Mass_Bt = x(N+3);   % Buffer tank mass [kg] 
T_bt_out = x(N+4);  % Buffer tank outlet temperature [Â°C] 
T_El_in = x(N+5);   % Electrolyzer inlet temperature [Â°C] 

  
% Electrochemical equations 
F_const = 96485;      % Faraday constant [C/mol] 
Utn = 1.482;         % Thermoneutral voltage [V] 
I_el = Pnet / (Utn * par.EL(1).nc); % Estimated current 
H2_production = I_el * par.EL(1).nc / (2 * F_const); % Hydrogen flow [mol/s] 

  
% Energy balance 
Q_generated = (Pnet - H2_production * Utn * F_const); 
Q_loss = 5.5 * (T_el - 25) + 5.67e-8 * 0.8 * ((T_el.^4) - (25^4)); 
Q_net = Q_generated - Q_loss - q_cw .* (T_el - T_El_in); 

  
% Mass balance 
Water_consumption = H2_production * 18; % Water loss [g/s] 

  
% Differential equations 
dxdt = zeros(N+6, 1); 
dxdt(1:N) = (Q_net) ./ (par.EL(1).A * par.EL(1).nc); % Temperature dynamics 
dxdt(N+1) = H2_production - Psto_H2 / 100;  % Hydrogen storage pressure 
dxdt(N+2) = 0.5 * H2_production - Psto_O2 / 100;  % Oxygen storage pressure 
dxdt(N+3) = -Water_consumption;  % Buffer tank mass change 
dxdt(N+4) = (T_El_in - T_bt_out) / 10;  % Buffer tank outlet temperature 
dxdt(N+5) = (q_cw - T_El_in) / 10;  % Electrolyzer inlet temperature 
dxdt(N+6) = 0;  % Cooling water outlet (constant for now) 

  
end 

 

 

MPC Simple Model parElectrolyzer: 
function par = parElectrolyzer(N) 

  
%Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers. 
par.Const = ... 
    struct('ze',2,'FC',96485,'R',8.314,'Cp',4.186,'CpLye',3.1006,... 
    'Mwt',18,'MwtH2',2.01588,'Tref',25,'rho',1000,'rhoLye',1258.2,'Vc',... 
    2.0681,'Vh',1.9944); 

  
%Cp=specificheatofwater,[J/gK];Mwt=mol.wtofH2O,rho=densityof 
%water/lye[kg/m3],Vc=volumeofcoldsideofheat... 
%exchanger[m3],Vh=volumeof 
%hotsideofheatexchanger[m3] 

  
par.Comp = struct('alpha',0.63,'k',1.62,'Tel',25+273,'Pel',3); 
par.Storage = struct('VstoH2',965000,'VstoO2',482500,'PoutH2',19,... 
    'PoutO2',19,... 
    'TstoH2',25+273.15,'TstoO2',25+273.15,'Rg',8.314e-2,'VdispH2',... 
    0.5,'VdispO2',0.5); 
%VstoH2andVstoO2areinlitres 

  
par.Tw_in = 10; 
%inlettemperatureofthecoolingwater inlyecirculationheatexchanger 
par.Hex.UA = 20.48e3; 
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%UAofheatexchanger[W/K],basedonEoLdesign 
par.kvalveH2 = 14.723; 
%valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure 

atSS 
par.kvalveO2 = 7.362; 
%valveconstantfortheoutletvalveof 

oxygenstoragetank,calculatedfor25barstoragepressureatSS 
par.sigma = 5.672*10^-8; 
%stefan-boltzmannconstant[W/mË†2KË†4] 
par.em = 0.8; 
%emissivity[-] 
%ParametersforU-IrelationshipinUlleberg'smodel 
par.U = struct([]); 
par.TherMo = struct([]); 
par.EL = struct([]); 

  
for i =1:N 
    %U-IcurveParameters 
    par.U(i).r1 = 0.000218155; %ohmmË†2 
    par.U(i).r2 = -0.000000425; %ohmmË†2CË†-1 
    par.U(i).s = 0.1179375; %Vs 
    par.U(i).t1 = -0.14529; %AË†-1mË†2 
    par.U(i).t2 = 11.794; %AË†-1mË†2CË†-1 
    par.U(i).t3 = 395.68; %AË†-1mË†2CË†-2 
    par.U(i).f1 = 120; %mAË†2cmË†-4 
    par.U(i).f2 = 0.98; %dimensionless 
    %%Parametersforthethermalmodel 
    par.TherMo(i).CtS = 625/27; %Specificthermalcapacity 

ofelectrolyzeri.e.Ct/P,[kJ/kWatts*C] 
    par.TherMo(i).Ct = 625/27*2135; %Cts*Pnom[kJ/C]or[kJ/K],AssumingPnom=2135kWatts 
    par.TherMo(i).hc = 5.5; %convectiveheattransfer coefficientW/mË†2C 
    par.TherMo(i).A_surf = 0.1; %specificraditionareaper 

kAcurrentpercell,[mË†2/kA*Ncell] 
    par.TherMo(i).A_El = 0.1*5.72*230; %surfaceareaofthe 

electrolyzer,A_surf*Inom*Ncell[mË†2] 
    %%ParametersforFaradayeffeciencycalculations 
    par.EL(i).Utn = 1.482; %thermoneutralvoltage,[V] 
    par.EL(i).nc = 230; %no.ofcells 
    par.EL(i).A = 2.6; %electrodeareaofeach cell,[mË†2] 
    par.EL(i).Ta = 20; %ambienttemp,[C] 
    par.EL(i).Tstd = 25; %standardtemperature,[C] 
end 

  
%El#2,performingat85%ofelectrolyzer1 
par.U(2).r1 = par.U(2).r1*1.2; %ohmmË†2 
par.U(2).s = par.U(2).s*1.2; %V 
par.U(2).f1 = par.U(2).f1*1.2; %mAË†2cmË†-4 
par.U(2).f2 = 0.97; %El#3,performingat70%ofelectrolyzer1 
par.U(3).r1 = par.U(3).r1*1.3; %ohmmË†2 
par.U(3).s = par.U(3).s*1.3; %V 
par.U(3).f1 = par.U(3).f1*1.3; %mAË†2cmË†-4 
par.U(3).f2 = 0.96; 
par.N=N; 
end 
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