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Abstract

This thesis proposes a predictive maintenance model for pressure control systems in electrolysis plants, utilizing
advanced machine learning algorithms to enhance the reliability, safety, and efficiency of green hydrogen production.
Electrolysis, a cornerstone of green hydrogen production, is often hindered by pressure control component failures,
resulting in production losses and safety hazards. Traditional reactive or scheduled maintenance approaches are costly
and lead to downtime, further exacerbating inefficiencies. To address these challenges, the proposed framework
leverages multivariate operational data and sophisticated machine learning algorithms to proactively predict failures and
prevent breakdowns from occurring. Some of the key challenges addressed include the complexities of processing data
streams, selecting relevant features, rendering models robust, reducing false alarms, and ensuring simple industrial
integration. Moreover, the system incorporates a Proportional-Integral-Derivative (PID) control loop, which is tuned by
a Genetic Algorithm for dynamic temperature control of the electrolyzer to maintain optimum operating conditions. The
system's efficiency in pressure and temperature stabilization is confirmed by experimental results, resulting in notable
operating cost savings, enhanced safety features, and groundbreaking green hydrogen technology. Along with
operational improvements, this research lays the groundwork for future studies to optimize maintenance approaches
further and enhance the sustainability of hydrogen production. The introduction of machine learning into predictive
maintenance not only transforms electrolysis plant operations but also paves the way for the broader adoption of green
hydrogen technologies, which are critical to environmental sustainability and energy independence worldwide.

Keywords: Predictive maintenance; Machine learning algorithms; Electrolysis plants; Green hydrogen production;
Pressure control systems; PID control loop.
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Résume
Cette thése propose un modele de maintenance prédictive pour les systemes de contréle de la pression dans
les usines d’¢électrolyse, utilisant des algorithmes d’apprentissage automatique avancés afin d’améliorer la
fiabilité, la sécurité et I’efficacité de la production d’hydrogene vert. L’¢électrolyse, pierre angulaire de la
production d’hydrogéne vert, est souvent entravée par des défaillances des composants de controle de la
pression, entrainant des pertes de production et des risques pour la sécurité. Les approches de maintenance
traditionnelles, qu’elles soient réactives ou planifiées, s’averent cotliteuses et provoquent des arréts prolongés,
aggravant ainsi les inefficacités opérationnelles. Pour relever ces défis, le cadre proposé exploite des données
opérationnelles multivariées et des algorithmes d’apprentissage automatique sophistiqués afin de prédire de
maniére proactive les pannes et d’empécher leur survenue. Parmi les principaux défis abordés figurent la
complexité du traitement des flux de données, la sélection des caractéristiques pertinentes, le renforcement de
la robustesse des modeles, la réduction des fausses alertes, et I’assurance d’une intégration industrielle simple.
De plus, le systeme intégre une boucle de contrdle proportionnelle-intégrale-dérivée (PID), réglée par un
algorithme genétique pour un contrdle dynamique de la température de 1’électrolyseur, assurant ainsi des
conditions de fonctionnement optimales. Les résultats expérimentaux confirment I’efficacité du systéme dans
la stabilisation de la pression et de la température, se traduisant par des économies de coits d’exploitation
significatives, une amélioration des dispositifs de sécurité, et des avancées majeures dans la technologie de
I’hydrogene vert. En plus des améliorations opérationnelles, cette recherche jette les bases d’études futures
visant & optimiser davantage les stratégies de maintenance et a renforcer la durabilité de la production
d’hydrogene. L’introduction de I’apprentissage automatique dans la maintenance prédictive transforme non
seulement le fonctionnement des usines d’électrolyse, mais ouvre également la voie & une adoption plus large
des technologies de 1’hydrogéne vert, essentielles a la durabilité environnementale et a I’indépendance

énergétique mondiale.

Mots-clés : Maintenance prédictive ; Algorithmes d’apprentissage automatique ; Usines d’électrolyse ;

Production d’hydrogéne vert ; Systémes de controle de la pression ; Boucle de contrdle PID.
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Symbol Description Unit

\Y/ Voltage Volts (V)
I Current Amperes (A)
R Resistance Ohms (Q)
C Capacitance Farads (F)
L Inductance Henrys (H)
P Power Watts (W)
f Frequency Hertz (Hz)
® Angular frequency rad/s

1 Time constant S

T Temperature / Sampling period °Cls

T el Electrolyzer temperature °C

T bt _out Buffer tank outlet temperature °C

T ElL in Electrolyzer inlet temperature °C

T cw_out Cooling water outlet temperature °C
T_setpoint Temperature setpoint °C

S Laplace transform variable -

G(s) Transfer function -

u(t) Input signal -

y(t) Output signal -

e(t) Error signal -

Kp, Ki, Kd PID controller gains -

J Moment of inertia kg-m2
0,0 Angular position / velocity rad / rad/s
A Change / Variation -

F, F_const Faraday constant 96485 C/mol
R (gas) Universal gas constant J/mol-K
Utn Thermoneutral voltage Volts (V)
Cp, Cp_lye Specific heat capacity of water/lye Jig-K

A A el Electrode area m?2

q_cw Cooling water flow rate afs

N Number of electrolyzers -

nc Number of cells per electrolyzer -

Pnet Total input power Watts (W)
X(t) State vector various
dx/dt Time derivative of states varies
Psto_H2, Psto_0O2 Storage pressure of H2 / O2 bar
Mass_Bt Buffer tank mass kgorg
Q_generated Generated heat Jorw
Q_loss Heat loss Jorw
Q_net Net heat Jorw
Water_consumption  Electrolysis water consumption afs

a, k, o Efficiency / conductivity / Stefan-Boltzmann  various
Ve, Vh Cold/hot side volumes in heat exchanger m3

T ref Reference temperature K
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Problematic

The demand for green hydrogen production has increased, so unexpected failures in the pressure
control systems of electrolysis plants will drastically cut production and create a serious safety
hazard. Maintenance in such facilities is predominantly scheduled, along with corrective actions
performed after failure scenarios that can lead to several issues, including unnecessary
downtime, increased operational costs, and potential safety hazards. Although various sensors
and monitoring systems are already available, the complex interactions between components and
operating conditions make the precise prediction or avoidance of these pressure control system
failures quite challenging. This issue creates an urgent demand for sophisticated maintenance
methods that can utilize vast quantities of operational data to predict possible failures before they
happen. While incorporating machine learning techniques is promising, several challenges must
be addressed, such as how to effectively process and analyze multivariate data streams from
pressure control systems to identify subtle patterns that indicate imminent failures. What is the
relevance of parameters and features in making more accurate failure predictions? How can we
develop robust models that minimize false alarms while ensuring that no critical failures are
overlooked? Besides, introducing such systems raises questions about finding an optimal balance
between maintenance costs and the system's reliability, as well as the practical integration aspects
of the predictive maintenance system into the current industrial environment. This thesis will
develop and validate a comprehensive ML-based predictive maintenance framework specifically

tailored for pressure control systems in electrolysis plants.

Key Questions:

How can unexpected failures in pressure control systems of electrolysis plants be predicted and

prevented to ensure continuous green hydrogen production and operational safety?

How should relevant parameters and features be selected and prioritized to improve the

accuracy of failure predictions in pressure control systems?

How can predictive maintenance contribute to the long-term sustainability and scalability of

green hydrogen production technologies?

Xii




Chapter 1: Introduction

Water electrolysis was first performed by Jan Rudolph Deiman and Adriaan Paets van Troostwijk in 1789 [1],
using electricity produced by an electrostatic machine and discharged on gold electrodes in water. In 1800,
Alessandro Volta applied his voltaic pile to water electrolysis, but the results were not widely studied. The
same year, W. Nicholson and A. Carlisle conducted water electrolysis experiments using copper electrodes
and a voltaic pile. J. Ritter performed absolute water electrolysis, collecting oxygen and hydrogen gases
separately [2]. However, industrial application of water electrolysis only began at the end of the nineteenth
century, with over 400 electrolysis units in operation by 1902. Technical and engineering reasons for this
delay included the time required to develop suitable DC power sources and efficient diaphragms to separate

anode and cathode chambers [3].

Hydrogen is essential for various industrial applications, including the production of ammonia, methanol,
petroleum products, and polymers. Currently, most hydrogen is produced through the steam reforming of

fossil hydrocarbons, which causes pollution (Fig. 1.1).

Hydrogen Production Sources

® Natural gas
m Oil
m Coal

 Electrolyses

Figure 1.1: Hydrogen production sources [14].

Water electrolysis is essential for hydrogen production and for distributed on-demand and on-site generation
solutions, creating a carbon-free and environmentally friendly economy. This solution will help reduce

atmospheric CO2 emissions and promote a more sustainable future [4, 5].

Electrolysis is a promising method for carbon-free hydrogen production from renewable and nuclear
resources. It involves splitting water into hydrogen and oxygen using electricity. It is performed in an
electrolyzed form (Fig. 1.2). Electrolyzers range from tiny appliances for distributed hydrogen production to

extensive, central facilities connected to renewable or non-greenhouse gas-emitting electricity sources.
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Figure 1.2: Principle of generation of H2 from H20 in Electrolysis

Hydrogen production via electrolysis could synergize with dynamic and intermittent power generation in

renewable energy technologies. Wind power variability can hinder its practical use, but integrating hydrogen

fuel and electric power generation at wind farms can provide flexibility in resource allocation (Fig.1.3).

Additionally, excess electricity from wind farms can produce hydrogen through electrolysis instead of

curtailing it, allowing for better resource utilization and market factors [6].
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1. Context and Industrial Challenges

In recent years, extreme weather events have led to a push to limit global warming to within 2°C by the end
of the 21st century. Countries are making significant efforts to transition their energy systems from fossil fuels
towards low-carbon or carbon-free energy production. The structure of global production and consumption of
traditional fossil fuels and renewable energy resources will be reshaped as countries recognize the importance

of energy security and focus on energy production and consumption.

Hydrogen energy is a renewable, clean, and efficient secondary energy source with numerous advantages,
including abundant sources, a high calorific value of combustion, clean and pollution-free usage, diverse
utilization forms, a potential energy storage medium, and safety. As the world faces increasing pressure from
climate change and natural disasters, hydrogen energy has become a strategic choice for many countries'

energy transformation.

According to the Global Hydrogen Review 2021 and China's Medium and Long-Term Plan for the
Development of the Hydrogen Industry (2021-2035), global annual hydrogen production is approximately
9,000 x 10* t, with China's annual production being 3,300 x 10* t. In 2021, 142 new hydrogen stations were
opened globally, bringing the total number of stations to 685 worldwide. Asia has the highest number of

hydrogen refueling stations (363), mainly in China, Japan, and South Korea.

Over 20 countries or alliances have released or formulated national hydrogen energy strategies. The United
States has long promoted hydrogen's unique position and advantages in the future energy system. At the same
time, the European Union supports the development of hydrogen energy and fuel cells. Japan's government
proposed a strategy of "building a hydrogen-based society ahead of other countries” in 2017. China
incorporated hydrogen into its 14th Five-Year Plan and the 2035 Vision 2020 to achieve the strategic goals of
"peaking CO2 emissions and carbon neutrality." [7].

2. Role of pressure control in electrolysis

Pressure management is crucial in electrolysis, particularly in industrial applications such as water electrolysis,

hydrogen generation, and chlor-alkali processes. Why it matters is as follows:

. Separation and Purity of Gas
The cathode and anode of water electrolysis produce hydrogen and oxygen gases, respectively.
Maintaining the pressure at the proper level helps prevent contamination and gas leakage. Because
differential pressure management prevents the gases from mixing, it increases purity and reduces the

likelihood of an explosion.




. Efficiency as well as Energy Use
1. The energy required for compression in later phases of storage or transportation can be reduced
by increasing the pressure.
2. Excessive pressure raises the electrolyte’s electrical resistance and may decrease efficiency.
3. These variables are balanced to optimize pressure management, resulting in reduced energy
usage.

« Control of Electrolytes
1. Under proper pressure, the electrolyte cannot evaporate too rapidly or generate undesirable
bubbles, which might damage the electrode surface and decrease efficiency.
2. Pressure maintains a steady electrolyte flow during high-pressure electrolysis, such as PEM

electrolysis.

. Safety and Structural Soundness
1. Electrolysis cells and their constituent parts must be able to tolerate changes in internal pressure

to prevent leaks or malfunctions.
2. Underpressure can result in unintended side effects or gas backflow, while overpressure can

harm cells.

e Rate of Reaction and Solubility in Gas
1. Pressure affects the soluble gasses in the electrolyte. At higher pressures, more gas dissolving
in the liquid may slow down gas evolution or cause problems with bubble formation.
2. A constant response rate and avoidance of efficiency losses are guaranteed by controlled
pressure. [8, 9, 10 11, 12].

3. Potential of ML in maintenance

Machine learning has revolutionized Industry 4.0 by enabling companies to adopt proactive strategies for
predictive maintenance. This approach not only increases efficiency and reduces downtime but also optimizes
resource utilization. As businesses explore sustainable technology, the traditional "break-fix" model is no
longer sufficient. As ML algorithms advance, businesses can use data for more intelligent decision-making,
predicting equipment failures before they occur. This prediction enables targeted maintenance, reduces
emergency repairs, lowers energy consumption, and fosters a more sustainable operational framework. This
article examines the application of machine learning in predictive maintenance and how organizations can

utilize these solutions.




Machine learning (ML) is transforming the maintenance industry by analyzing vast amounts of data from
sensors and historical records to identify potential equipment failures. ML algorithms learn from this data to
recognize abnormalities and predict when maintenance will likely be required. For example, in solar power
facilities, panel sensors collect data on various parameters, enabling the prediction of potential issues such as
deteriorating panel efficiency or faulty components. By proactively scheduling maintenance based on these
predictions, facilities can ensure optimal energy production and enhance the efficiency of renewable energy

generation.

The global predictive maintenance market is projected to reach $31,965.49 million by 2027, growing at a
compound annual growth rate (CAGR) of 28.8% from 2020 to 2027. According to a McKinsey survey, 84%
of respondents already adopt predictive maintenance approaches for critical assets. In mature reliability-
centered maintenance (RCM) capabilities, 70-85% of technician hours are spent on preventative maintenance
(PM) activities.

Traditional maintenance was reactive, relying on fixed equipment and predefined schedules, which often led
to over-maintenance or missed opportunities for timely intervention. ML-driven maintenance introduces a
more dynamic and adaptive model, enabling precisely timed maintenance through continuous data analysis.
This approach can reduce costs, reduce downtime, and increase the efficiency of renewable energy generation.

3.1 Traditional vs ML Maintenance

Traditionally, maintenance was reactive, focusing on addressing fixed issues and adhering to predefined
schedules. This approach led to over-maintenance, missed opportunities, increased costs, and a less-than-ideal
environmental footprint. Machine learning has introduced a more dynamic model, enabling precise, timely
maintenance by continuously analyzing data. This comparison highlights the benefits of ML-driven
maintenance over traditional methods. Table 1 summarizes the primary differences between traditional and

machine learning (ML)-driven predictive maintenance methods.

Table 1: Comparison between traditional maintenance methods vs. ML-driven predictive maintenance

Traditional maintenance ML-driven predictive maintenance
Reactive approach Proactive intervention
Fixed maintenance schedule Dynamic and adaptive maintenance
Routine checks Real-time health monitoring
Limited data handling Analysis of large datasets
Unplanned downtime Predictions of failures in advance
Increased costs Optimized operational efficiency




3.2 The Future of Predictive Maintenance with ML

The future of predictive maintenance, driven by machine learning (ML), is expected to see significant
advancements. Edge computing, which utilizes data closer to the source, is crucial for real-time decision-
making, enabling immediate responses to potential issues and minimizing downtime. Digital twins, which are
still in their early stages, will enable more accurate simulations and predictive modeling, thereby improving
maintenance strategies and enhancing understanding of asset behavior throughout their lifespan. Explainable
Al, dedicated to making machine learning models more interpretable, is essential for transparency in decision-
making, ensuring that recommendations and insights provided by ML algorithms are clear and easy to check.
This trust and effective collaboration between humans and Al facilitate more informed decisions.

Autonomous maintenance robots are expected to integrate into the industrial landscape, conducting routine
inspections, identifying potential issues, and performing minor repairs. This shift towards autonomous
maintenance aims to reduce human exposure to hazardous environments and partially solve the human talent
shortage. As reliance on Al and ML algorithms grows, the future of predictive maintenance will likely see a

shift towards these advancements.

3.3 The Strategic Advantage of ML in Predictive Maintenance

Machine learning (ML) provides a strategic advantage in predictive maintenance, enabling businesses to plan
maintenance activities more effectively, thereby reducing downtime and costs. This approach is crucial in the
era of Industry 4.0, where modern maintenance strategies are interconnected and can evolve from reactive to
proactive and predictive models [13]. Fig. 1.4 summarizes the benefits of using machine learning (ML) for
predictive models in the industry.
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Figure 1.4: Benefits of using ML for predictive models in the industry in general.

4. Research Objectives

The main objectives of our master thesis are:

1. Develop a Machine Learning-Based Predictive Maintenance Framework: In this step, we will
design and implement a complete system tailored to pressure control in electrolysis plants, capable of

predicting failures before they occur.

2. Analyze Multivariate Data Streams: This sub-objective involves processing and analyzing
complex, high-dimensional sensor data to detect subtle patterns and early warning signs of pressure

anomalies.

3. Feature Relevance and Model Optimization: We will investigate the most critical parameters and

features for accurate failure predictions, balancing model accuracy with interpretability.

4. Minimize False Alarms and Maximize Reliability: Build robust ML models that reduce false

positives while ensuring no critical failures go unnoticed.

5. Optimize Maintenance Scheduling: Based on predictive insights, the transition from scheduled

maintenance to condition-based and predictive maintenance strategies.
7




6. Facilitate Industrial Integration: We will address practical integration challenges, ensuring the

predictive system seamlessly fits within existing industrial infrastructure and workflows.

7. Balance Cost and System Reliability: By exploring the trade-off between maintenance costs and
system reliability, we aim to strike the optimal balance for sustainable plant operations. This enables
us to overcome the primary drawback of blue hydrogen generated through electrolysis, which is its
high cost.

4. Conclusion

In this chapter, we present an overview of water electrolysis as a flagship technology for green hydrogen
production, tracing its historical roots and industrial applications. It reflects the growing global demand for
energy sourced from hydrogen, driven by a desire to transition away from fossil fuels and towards low-carbon
energy sources. The chapter addresses industrial concerns, including energy efficiency, safety, and the role of
pressure control systems in maintaining gas purity, optimizing energy utilization, and ensuring system
integrity. It also introduces the potential of machine learning (ML) in predictive maintenance, where it
outshines traditional maintenance techniques. ML allows for real-time monitoring, early failure prediction,
and optimal maintenance scheduling, reducing downtime and operating costs. The chapter concludes with the
research goals, which involve developing an ML-based predictive maintenance framework for pressure
control systems in electrolysis plants. This framework addresses key challenges, including feature selection,
model reliability, and integration into the industry, to enhance efficiency and sustainability.

The next chapter will outline the state-of-the-art machine learning approaches in predictive maintenance for
electrolysis systems. This literature review will discuss existing methodologies, examine their merits and
limitations, and identify the most suitable machine learning (ML) methods for predicting failure in pressure
control systems. These developments will provide a solid foundation for designing an optimal predictive
maintenance strategy that ensures the maximum reliability and sustainability of green hydrogen production.
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Chapter 2

II. Literature Review

2.1 Electrolysis pressure control systems:

The regulation and management of pressure within electrolyzes represent an exceptionally critical and

essential aspect of ensuring optimal system efficiency, safety, and overall performance across a myriad of

diverse industrial applications, which prominently include, but are not limited to, hydrogen production and

water treatment processes. Previous scholarly research has emphasized the importance of maintaining precise

pressure control, as any imbalances that may occur can lead to detrimental operational inefficiencies or even

catastrophic equipment failures, underscoring the need for rigorous pressure management protocols.

2.1.1 Key Components of Pressure Control Systems

An extensive body of studies has identified several core components that are essential for effective pressure

management in electrolysis systems, each of which plays a pivotal role in the overall functionality of these

systems:

Pressure Sensors: These sophisticated devices are specifically designed to accurately measure the
pressure of the gases generated during the electrolysis process. They provide critical real-time data
that enables necessary system adjustments to be made swiftly (Chi-Yuan et al., 2024) in [1].

Control Valves: Research in this area indicates that control valves are crucial components that play a
vital role in adjusting the flow of gases to maintain the desired pressure levels within the system,

thereby ensuring operational stability (AlZahrani & Dincer, 2018) in [2].

PID Controllers: According to recent advancements in control technology, PID controllers
automatically regulate pressure by fine-tuning the positions of valves in direct response to feedback
received from sensors, which significantly improves the system's overall stability and reliability (Lixia
etal., 2025) [3].

Backpressure Regulators: These important components maintain a predetermined set pressure by
effectively releasing any excess gas that may be generated, thereby mitigating the risk of over-

pressurization, which could lead to dangerous operational conditions (Bazarah et al., 2022) [4].
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o Safety Relief Valves: Numerous safety studies have emphasized the critical importance of relief
valves in preventing hazardous overpressure conditions, which can pose significant risks to equipment

integrity and personnel safety (Scuro et al, 2018) [5].

e Flow Meters: Flow meters play a crucial role in ensuring a balanced output of gases, which is essential
for synchronizing the production rates of hydrogen and oxygen, thereby optimizing the overall
efficiency of the electrolysis process (Ito et al, 2010) [6].

e Electrolyzer Stack Design: The literature suggests that the design of the electrolyzer stack has a
pronounced influence on pressure balance, with specific cell configurations directly impacting the

overall stability and performance of the system (Rizwan et al., 2021) [7].
2.1.2 Working Principles and System Dynamics

The electrolysis process itself inherently involves the splitting of water molecules into hydrogen and oxygen
gases through the application of an electric current. As the produced gases accumulate in their respective
chambers, it becomes imperative to maintain meticulous pressure balancing to prevent potential damage to
the electrolyzer membranes or hazardous leaks. Research in this field highlights the effectiveness of feedback
loops, wherein sensors and controllers continuously adjust gas flow and valve settings to maintain stable

pressure levels, thereby ensuring a safe and efficient electrolysis process (Selamet at al., 2011) [8].
2.2 Common failure modes and mechanisms

Failures in engineering systems are extensively analyzed and scrutinized within the engineering field due to
their profound ramifications on safety protocols, reliability assessments, and the overall economic
performance of various systems. Exploring different failure modes is crucial, as these failures can arise from
various factors, including diverse loading conditions, environmental influences, and the inherent properties of
the materials themselves. This literature review presents a comprehensive examination of prevalent failure
modes, their underlying mechanisms, and pertinent references that aim to enhance understanding of these

critical engineering issues.

Fatigue failure is a phenomenon that occurs as a direct consequence of repeated cyclic loading, ultimately
leading to the initiation and subsequent propagation of cracks within the material. Numerous studies have
indicated that microcracks frequently originate at points of stress concentration, such as notches or surface
imperfections, and these cracks tend to propagate under conditions of fluctuating stress, as elucidated by

Kuhnert in 2023. It is important to note that fatigue failures are commonly observed across various sectors,
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including aerospace, automotive, and structural applications, particularly in scenarios where cyclic loading is

a predominant operational characteristic [9].

Corrosion failure represents a significant challenge in engineering systems, as it involves the degradation of
materials due to various chemical reactions within their environment. Corrosion can manifest in several
distinct forms, including uniform corrosion, which involves the gradual thinning of material due to consistent
exposure to corrosive environments; pitting corrosion, which results in the formation of localized deep holes
that can severely compromise structural integrity; and stress corrosion cracking (SCC), which arises under the
synergistic effects of tensile stress in conjunction with corrosive media, as discussed by Prestat in 2023. The
implications of corrosion failures are particularly critical in marine, chemical processing, and infrastructure

industries, where materials are continually subjected to harsh and aggressive environmental conditions [10].

Creep failure is characterized by time-dependent deformation that occurs when materials are subjected to a
constant load, particularly at elevated temperatures. Research conducted in the field suggests that creep results
from atomic diffusion and the sliding of grain boundaries, which collectively lead to the elongation of
materials followed by eventual rupture, as noted by Arthurs and Kusoglu in 2021. This particular failure mode
is commonly encountered in applications involving turbines, boilers, and aerospace components operating

under high temperatures [11].

Wear failure signifies material degradation due to mechanical interactions between contacting surfaces,
leading to surface deterioration over time. The mechanisms of wear can be classified into several categories,
including adhesive wear, in which material is transferred between surfaces due to intense adhesive forces;
abrasive wear, which is instigated by hard particles that scratch the material; and fretting wear, which arises
from oscillatory micro-motions, a concept explored by Bairamov in 2020. The impact of wear failures is
particularly pronounced in components such as bearings, gears, and various machine elements integral to the

manufacturing and transportation industries [12].

Brittle fracture is a failure mode characterized by a sudden and catastrophic failure with minimal plastic
deformation evident in the material. This failure mode typically occurs due to rapid crack propagation in
materials that exhibit low toughness, which is often influenced by factors such as temperature and inherent
material defects, as originally described by Aldakhil et al. (2022). The prevalence of brittle fractures is
particularly notable in materials such as ceramics and high-strength steels, as well as in environments

characterized by low temperatures [13].

In contrast to the brittle fracture, ductile failure is a mode of failure characterized by gradual deformation prior
to the material's ultimate rupture. This process is predominantly governed by microvoid coalescence, which

leads to necking and eventual fracture, as discussed. Ductile failure is commonly observed in metals and alloys
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subjected to excessive tensile loads, and understanding this mechanism is crucial for material selection and

structural design [8].

Buckling failure occurs when a structure loses stability under compressive loads, resulting in either elastic or
plastic instability that leads to significant lateral deformations. Such deformations can ultimately lead to
catastrophic structural collapse, as highlighted in the work of Kink et al. (2024). The buckling phenomenon is
particularly concerning in slender structural elements, such as columns and beams, and in aerospace structures,

where stability is paramount [14].

Thermal fatigue failure is a specific type that arises due to cyclic thermal stresses, which induce crack
formation at points of stress concentration within materials. The repeated expansion and contraction of
materials subjected to fluctuating temperature conditions can induce localized damage that ultimately leads to
failure, a phenomenon thoroughly investigated by Zachary et al. (2023). This type of failure is commonly
observed in engine components, exhaust systems, and high-temperature piping, where thermal cycling is an
integral aspect of operational performance [15].

2.3 Traditional maintenance approaches

Traditional maintenance approaches focus on routine and reactive methods to keep equipment and systems
running (Fig. 2.1). Here are some key types with references:

1. Reactive Maintenance (Run-to-Failure)
v Equipment is repaired only after a failure occurs.
v Pros: Low initial cost, simple implementation.
v Cons: High downtime and unpredictable costs.
2. Preventive Maintenance (Time-Based Maintenance)
v Scheduled maintenance at regular intervals to prevent failures.
v Pros: Reduces unexpected breakdowns and extends equipment life.
v Cons: This can lead to unnecessary maintenance and higher labor costs.
3. Corrective Maintenance
v Fixing small issues before they turn into major failures.
v" Pros: It increases reliability and is less costly than reactive maintenance.
v Cons: It requires monitoring and may not prevent all failures.
4. Condition-Based Maintenance (CBM)
v Maintenance is performed based on real-time condition monitoring.
v Pros: Reduces unnecessary maintenance and improves efficiency.

v Cons: It requires advanced monitoring systems and a higher initial investment.
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Figure 2.1: Predictive Maintenance vs Traditional Maintenance

2.4 ML applications in industrial maintenance

Machine learning (ML), which refers to the development of algorithms that enable computers to learn from
and make predictions based on data, has undeniably emerged as a revolutionary force in industrial
maintenance. It significantly assists organizations in optimizing their operational processes, reducing instances
of unplanned downtime, and ultimately achieving substantial cost savings. To fully comprehend the
transformative impact of this technology, let us delve into a detailed examination of its key applications within

the realm of industrial maintenance.
2.4.1 Key Applications of Machine Learning in the Field of Industrial Maintenance

1. Predictive Maintenance

The deployment of machine learning models is crucial in analyzing sensor-generated data, which includes
vibrations, temperature variations, and pressure measurements. This enables the identification of specific
patterns that can accurately predict equipment failures before they occur. This advanced predictive capability
enables the scheduling of maintenance activities only, when necessary, significantly reducing the likelihood

of unplanned downtime and concurrently minimizing the associated costs of maintenance operations [15].
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2. Anomaly Detection:

Machine learning technologies employ sophisticated algorithms to identify outliers within operational data,
which serve as indicators of abnormal behavior or potential malfunctions in the equipment. The provision of
real-time alerts empowers operators to take prompt corrective actions in response to these anomalies, thereby

mitigating the risk of operational disruptions and enhancing overall system reliability.

3. Condition Monitoring:

The continuous monitoring of machine health is achieved by integrating Internet of Things (I0T) sensors with
machine learning models, providing a comprehensive overview of equipment performance. This ongoing
assessment enables the meticulous tracking of wear and tear and the prediction of component degradation over

an extended period, allowing for preemptive measures to be taken before significant issues arise [16].

4. Failure Root Cause Analysis:

By leveraging historical failure data, machine learning techniques can analyze the information to identify the
fundamental causes of recurring issues plaguing machinery. This analytical process not only aids engineers in
implementing targeted improvements but also facilitates the redesign of faulty components, thereby enhancing

the overall durability and reliability of the equipment.

5. Inventory Optimization:

Machine learning algorithms are used to forecast the demand for spare parts with remarkable accuracy, based
on predictions related to equipment failures, thereby preventing overstocking and shortages of critical
components. As a result, organizations can significantly reduce inventory carrying costs while ensuring that

essential parts remain readily available when required, streamlining maintenance operations.

6. Digital Twins:

The concept of digital twins involves creating virtual replicas of physical systems powered by machine
learning technologies. These digital representations enable the simulation of various scenarios, allowing for
the prediction of machine behavior under diverse conditions. This, in turn, helps optimize overall equipment

performance and operational efficiency.

7. Work Order Prioritization:

Machine learning algorithms play a pivotal role in prioritizing maintenance work orders by assessing the

severity and potential impact of each task on production activities. This systematic ranking process empowers
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maintenance teams to concentrate on addressing the most critical issues first, thereby significantly improving

operational efficiency and minimizing disruptions to production workflows.

2.5 Data acquisition and sensor technologies

2.5.1 What is a Data Acquisition System?

A data acquisition system is a combination of sensors, measurement devices, and a computer used to gather
and process data to analyze electrical or physical phenomena, providing a comprehensive understanding (Fig.
2.2).
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Figure 2.2: Data Acquisition Systems: a) Conceptual schema, b) LabVIEW interface
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Data acquisition systems are essential for capturing and analyzing data from real-world systems. They process
and record data, such as temperature measurements and voltage drops across electrical resistors. The primary
purpose of these systems is to enable detailed analysis of electrical and physical phenomena. They use
software to perform tasks and can store data in various formats. Handheld systems are used when direct
physical interaction is possible.

In contrast, remote systems are used when direct human interaction is impractical or unnecessary, allowing
measurements to be taken from a distance. Depending on the situation, data acquisition systems can be
handheld or remotely operated. Their primary purpose is to enable detailed analysis and improve the

understanding of complex phenomena.

2.5.2 Basic Components of a Data Acquisition System

Data collection involves identifying physical phenomena like temperature, light intensity, vibration, gas
pressure, fluid movement, and force. These properties must be converted into a format for a data acquisition
system to sample. A complete data acquisition system comprises DAQ hardware, sensors, actuators, signal
conditioning equipment, and a computer running DAQ software (Fig. 2.3). An independent timing system

may be necessary if precise timing is crucial, especially in event-mode data acquisition systems.
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Figure 2.3: Data Acquisition System Components
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2.5.3 Sensors

Sensors, also known as transducers, interact with subjects to measure physical values and generate electrical
signals. Depending on their application, they can be directly or indirectly used in data acquisition systems.
For instance, a temperature sensor measures temperature, while a photovoltaic sensor measures light. Different

types of sensors are used depending on their purpose (Fig. 2.4).

Data Acquisition System Sensors

1

Figure 2.4: Data Acquisition System Sensors

The various instruments utilized in this context exhibit a unified objective, which is to facilitate the
transformation of analog signals, encompassing a diverse range of physical phenomena such as temperature,
illumination, and velocity, into digital signals that can be readily analyzed and processed by computer systems,
thus enabling a more efficient and sophisticated manipulation of data. Furthermore, the sensors integral to
Data Acquisition (DAQ) systems are meticulously engineered high-quality components specifically crafted to
deliver precise and reliable measurements while minimizing the influence of extraneous noise or interference
that could compromise the data's integrity. In this regard, the effectiveness of these systems is heavily
dependent on the calibration and performance of the sensors employed, as they play a pivotal role in ensuring
that the digital representations of the analog inputs are as accurate and informative as possible, thereby
enhancing the overall functionality and application of the technology in various scientific and engineering
fields.
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2.5.4 Transmission/Signal Conditioners

In numerous instances, the electrical signals derived from various types of sensors frequently contain a
significant amount of noise or interference, which can impede their effectiveness; thus, it is often necessary
to modify these signals extensively before they can be utilized for any practical application. Furthermore, it is
also important to note that these signals may possess insufficient strength, rendering them too weak for the
data acquisition system to measure them with high accuracy and reliability. In order to effectively address and
mitigate these critical issues, additional circuitry, which is commonly referred to as a signal conditioner, is
strategically employed to enhance the quality of the signals (Fig. 2.5). The signal conditioning process
involves a series of sophisticated techniques to enhance and optimize the electrical signals to ensure that they
are accurately measured and that reliable data acquisition can be achieved under various circumstances. This
meticulous process not only enhances the integrity of the signals but also plays a crucial role in ensuring that
the resulting data is valid and suitable for further analysis. Consequently, the implementation of signal
conditioning is essential in data acquisition, as it fundamentally underpins the accuracy and reliability of the

measurements obtained from sensor outputs.

Components of a Data Acquisition System
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Figure 2.5: Components of a Data Acquisition System
The signal conditioning apparatus utilizes sophisticated filter circuitry meticulously designed to effectively
distinguish and isolate extraneous noise from the genuine signal while simultaneously incorporating
amplification circuits to enhance the amplitude of weak input signals that may otherwise be lost or
inadequately represented. These functionalities represent a core aspect of the myriad functions executed by
signal conditioners, thus underscoring their critical role in signal processing. Furthermore, a signal
conditioning circuit that is thoughtfully and expertly designed possesses the capability to manage a range of
additional processes, which may include, but are not limited to, linearization, calibration, and the provision of
excitation voltages necessary for optimal sensor performance. The selection of an appropriate signal
conditioning circuit is profoundly influenced by the distinct characteristics and specifications of the sensors
employed within the data acquisition (DAQ) system, which in turn dictates the efficacy and efficiency of the
overall signal processing framework. It is essential to recognize that integrating these various components

within the signal conditioning process enhances the quality of the data being captured and facilitates more
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reliable and accurate interpretations of the signals that are ultimately utilized for further analysis. Therefore,
understanding the interplay between the signal conditioning circuit design and the associated sensor
characteristics is paramount for achieving high-performance outcomes in sophisticated data acquisition

applications [17].

2.6 Industry 4.0 integration

Industry 4.0 heralds a new era of transformation in manufacturing by integrating digital advancements to
achieve maximum efficiency with minimal resource consumption. First introduced in Germany as a
pioneering initiative, Industry 4.0 marks the onset of the fourth industrial revolution. It revolves around key
technologies like cyber-physical systems (CPS), the Internet of Things (loT), and cloud computing. By
merging the physical and digital realms through embedded systems, machine-to-machine communication, and
the Internet of Things (IoT), Industry 4.0 enables the creation of smart factories capable of managing modern
production complexities within a cyber-physical environment. Fig. 2.5 highlights the most important pillar of

technological advancements toward Industry 4.0, namely electrolysis.

A common assumption is that higher automation levels will diminish human involvement, leading to
workerless production. However, researchers argue that Industry 4.0 will shift rather than eliminate human
roles, necessitating a more specialized skill set for employees. Consequently, Industry 4.0 is inherently a socio-
technical system, blending human and technical elements that collaboratively strive toward shared goals.
Therefore, the architecture design for Industry 4.0 must emphasize adaptability to external disruptions, as
rigid, reductionist approaches are inadequate for today’s dynamic, high-risk, and complex technological

landscape.

Socio-technical systems are defined by the interplay of social and technical components engaged in goal-
directed behavior. The socio-technical systems theory advocates joint optimization methods to design systems
that exhibit open-system properties, enhancing resilience to environmental shifts, technological
advancements, and competitive pressures. While much of the existing research has focused on the technical
aspects of Industry 4.0 integration, some studies have underscored the need for a socio-technical perspective

in implementation [18].

While a well-defined technical architecture is crucial for Industry 4.0, long-term success and sustainability
depend on integrating socio-technical considerations into the design process. They highlight the need for
further research on the socio-technical impacts of Industry 4.0 to bridge existing knowledge gaps. This study
addresses that gap by exploring how socio-technical systems theory can inform the design of a sustainable
integration architecture for Industry 4.0, beginning with a thorough review of the theoretical foundation and
research methodology [19].
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Figure 2.6: Eleven Pillars of Industry 4.0

2.7 Conclusion

The literature review chapter elucidates the importance of electrolysis pressure control systems, systematically
detailing the prevalent failure mechanisms that can arise within these systems and elucidating the pivotal role
that predictive maintenance, particularly through machine learning algorithms, plays in enhancing operational
reliability. The meticulous regulation of pressure within these systems is not merely an operational
requirement; it is fundamentally essential to guarantee that the entire electrolysis system operates with
stability, efficiency, and an uncompromised level of safety, especially within the demanding contexts of
industrial electrolysis applications, which often involve significant financial and safety stakes. Various
integral components of these systems, including but not limited to advanced sensors, proportional-integral-
derivative (PID) controllers, and backpressure regulators, play a critical role in maintaining optimal
operational conditions, ensuring that the electrolysis processes can function seamlessly and effectively without
interruption.

Furthermore, the examination of failure modes such as material fatigue, corrosive degradation, creep
phenomena, and structural buckling has been the subject of extensive academic inquiry, with numerous
research studies emphasizing the vital necessity of implementing predictive strategies that can effectively
mitigate the occurrence of unexpected system breakdowns, which can lead to costly downtimes and
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operational inefficiencies. Although traditional maintenance methodologies have been widely adopted within
the industry for many years, they possess inherent limitations in their capacity to prevent systemic failures,
which has consequently catalyzed a significant paradigm shift toward machine learning-driven predictive
maintenance approaches that promise to optimize system performance. The deployment of machine learning
technologies enables the real-time monitoring of system parameters, facilitates the early detection of
anomalies that may indicate impending failures, and allows for the establishment of optimized maintenance
schedules, collectively contributing to a notable reduction in operational downtime and overall maintenance
costs.

In addition, the literature review further explores the integration of Industry 4.0 principles, highlighting the
transformative impact that smart technologies and sophisticated data analytics can have on enhancing the
frameworks of predictive maintenance within the electrolysis domain. Looking ahead, future research
endeavors must concentrate on refining machine learning models for accuracy and predictive power,
advancing data acquisition methodologies to ensure high-quality input, and addressing the multifaceted
challenges associated with the industrial implementation of these advanced technologies, all in a concerted
effort to bolster the reliability and sustainability of electrolysis-based hydrogen production systems in the
context of an evolving energy landscape.
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Chapter 3

III. Simulation Study:

This chapter builds upon core principles of electrochemical modeling, thermodynamics, and control
theory to develop a simplified yet representative dynamic model of an electrolyzer system. The
theoretical foundation primarily rests on Faraday's Law of Electrolysis, which establishes a direct
relationship between electric current and the rate of hydrogen and oxygen gas generation. This
principle enables the calculation of gas flow rates as a function of applied current, forming the

backbone of the system's mass balance.

From a thermal perspective, the electrolyzer's operation is governed by an energy balance that
considers both the heat generated by electrochemical reactions and resistive losses, as well as the heat
dissipated through convection and radiation. The Stefan-Boltzmann law and Newton's law of cooling

are applied to model these phenomena.

In parallel, the mass balance equations account for water consumption during electrolysis and pressure
evolution in hydrogen and oxygen storage tanks. The model further incorporates dynamic temperature
behavior, influenced by both the internal heat generation and the cooling water flow, forming the basis

for temperature regulation strategies.

Controlling the thermal environment is crucial for maintaining system efficiency and ensuring safety.
Hence, the chapter also introduces a PID control algorithm, tuned via a Genetic Algorithm (GA), to
dynamically regulate the cooling water flow rate and stabilize the electrolyzer temperature around a
predefined setpoint. This integration shows the synergy between classical control techniques and
optimization algorithms, underscoring their practical applications in managing nonlinear,

multivariable systems.

The theoretical approach presented herein provides a foundation for developing robust control systems,
simulation tools, and predictive models that enhance the reliability and efficiency of hydrogen

production through electrolysis.
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3.1. Simple Model
3.1.1 Equations Used

This equation calculates the number of moles of hydrogen gas produced.

A. Hydrogen Production:

. Ter* Ncells
nH2 = % (31)
Where:
e [, isthe Electrolyzer current [A]
e N, isthe number of cells in series
e Fis Faraday constant (96485 C/mol).
B. Oxygen Production:
floz = 05 - ﬁHZ (32)
C. Estimated Current:
P
1, = —Ret 3.3
el Utn' Ncelis ( )

Where:

U, = 1.482V is the thermoneutral voltage.

The amount of hydrogen is directly proportional to the electrical current (1) and the number of cells (N), and
inversely proportional to Faraday’s constant (F). The factor of 2 accounts for the 2 electrons needed to produce

one molecule of H.

3.1.2 Energy Balance:

A. Heat Generated in Electrolyzer:

Qgen = Ppet + ﬁHz “Um - F (3.4)

B. Heat Loss (Convective + Radiative):

This gives the total heat loss from the electrolyzer.

Quoss = he (Tey = Tamp) + 0+ € (T — Tgmp) (3.5)
Where:
h. =5.5W/m? K is the convective heat transfer
0 =5.67 x 10°8 W /m2K* is the Stefan-Boltzmann constant
€ =0.8 (emissivity).
It includes both convection (dependent on surface area and temperature difference) and radiation (using the

Stefan-Boltzmann law).
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C. Temperature Dynamics:

dTe;
dt

Qnet

Cthermal

Where Qnet = Qgen - Qloss

3.1.3 Mass Balance:

This calculates how much water is consumed to produce hydrogen.

A. Water Consumption:

Thy,, =iy, X 18

B. Hydrogen & Oxygen Storage pressure:

Describes how pressure in the hydrogen tank changes over time.

Puy _ o _ Py
dt Hz 100
dPOZ POZ

=0.5n - ==
dt Hz 100

Pressure increases with production and decreases with consumption.

Each mole of hydrogen requires one mole of water (molar mass = 18 g/mol)
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3.2 Open-loop Simulation Results

3.2.1 Hydrogen Storage Pressure
Figure 3.1 shows the simulation results for variation of Hydrogen storage pressure as a function of time.
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Figure 3.1: Pressure of Hydrogen storage as a function of time

The system pressure of the hydrogen storage demonstrates a constant and gradual increase with time,
demonstrating a continuous and consistent hydrogen generation process. The uniform rise in pressure
demonstrates the system's ability to generate a consistent output without interruption. In addition, the absence
of large oscillations or instability in the pressure trace demonstrates the stability of the storage system's
operation, which is necessary for maintaining process efficiency as well as security in hydrogen storage

processes.

3.2.2 Oxygen Storage Pressure
Figure 3.2 shows the simulation results for variation of oxygen storage pressure as a function of time.
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Figure 3.2: Pressure of oxygen storage as a function of time

The pressure of oxygen rises at approximately half the rate of the hydrogen pressure by the theoretical
stoichiometric rate of 2:1 (H2:0.) for the electrolysis of water. This is in line with the anticipated action of the

system, where the production of oxygen tracks behind the hydrogen output in accordance with chemical

27




processes. In addition, the increase in pressures is smooth, exhibiting no sudden deviations or fluctuations,

indicating a properly regulated and controlled process of oxygen production.

3.2.3 Electrolyzer Temperature

Figure 3.3 shows the simulation results for variation of electrolyzer temperature as a function of time.
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Figure 3.3: Temperature of electrolyzer as a function of time

The system temperature initially increases before reaching a plateau, indicating that electrolyzers undergo an
anticipated thermal response when they are started. While different electrolyzers exhibit slight variations in
temperature behavior, these differences are minimal and consistent with inherent system variations. Notably,
no signs of thermal runaway are observed, indicating the system's ability to maintain thermal balance and

safety during operation.

3.2.4 Buffer Tank Mass

Figure 3.5 shows the simulation results for variation of mass and temperature of buffer tank as a function of

time.
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Buffer Tank Outlet Temperature
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Figure 3.4: Buffer Tank outlet output as a function of time: a) Mass of Liquid, b) Temperature

o

The mass of the system decreases linearly with time, as expected from the steady use of water during the
electrolysis process. The steady mass loss ensures a constant reaction rate that is commensurate with a
continuous and stable electrolysis operation. In addition, the steady trend of mass loss also indicates that the

system is operating smoothly without any operational disruptions, ensuring a stable process.

From Figure 3.4 (b), The system's behavior matures and stabilizes over time as it responds to internal control
and thermal dynamics. The transient regime demonstrates how the system adapts to changing conditions,
ultimately reaching a state of stability as thermal fluctuations are minimized. The stabilization that occurs
during the transient stage indicates good thermal management and control, leading to the reliability of long-

term operation.

3.2.5 Electrolyzer Inlet Temperature

Figure 3.5 shows the simulation results for variation of electrolyzer inlet temperature as a function of time.
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Figure 3.5: Simulation results of Electrolyzer Inlet temperature
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System temperature varies with time due to the internal thermal operations and the cooling effect. This trend
shows how the system responds to thermal changes, either internal or external. The observed trend suggests
that the system can effectively regulate its thermal profile, stabilizing and averting extreme temperature
fluctuations that could compromise functional safety.

3.2.6 Cooling Water Outlet Temperature

Figure 3.6 shows the simulation results for variation of cooling water outlet temperarure as a function of

time.
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Figure 3.6: Simulation results of Cooling water outlet temperature

The variable remains constant throughout the simulation, indicating that the cooling system is running
smoothly and steadily. This stability indicates the system's capacity to maintain a stable thermal condition, as
no significant fluctuations or interference are observed. The lack of sudden changes also indicates minimal

outside influence, ensuring smooth and constant operation.

3.3 Closed Loop Simulation results

In this work, we employed an optimized PID controller, developed using a Genetic Algorithm, to regulate the
pressure and temperature of the electrolyzer effectively. This controller is well-suited for fault avoidance due
to overpressure and temperature, ensuring safe and stable operation. The application of this advanced control
method not only enhances safety during operation but also supports predictive maintenance. Through its
support of higher-than-normal conditions, it preserves the consistency and durability of primary systems,
including the electrolyzer, cooling water system, and buffer tank, thereby reducing the likelihood of unplanned

downtime.
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3.2.1 Equation Used in the System:
The model proposed in this study is based on mass balance, energy balance, and electrochemical

principles

A. Energy Balance Equation
The motivation behind this analysis is to determine how temperature alteration in the system occurs,
with the justification being that, after accounting for heat losses and cooling effects, the net heat remaining

will directly influence the system's temperature.

Qnet = Qgenerated - Qloss (310)
Where:
e Generated heat from power input:
Qgenerated = (Ppet — lez X Ug X F) (3.11)

e Heat loss due to convection and radiation:
Heat loss via radiation and convection is estimated using Newton's Law of Cooling for the convective
component and the Stefan-Boltzmann Law for the radiative component, thereby calculating the total heat loss.

Qloss = hc ’ (Tel - Tref) +0-€- (Téli - Tlf}ef) (3-12)
B. Mass Balance Equation

The mass balance equation models the evolution of pressure in the hydrogen tank, explaining that the

pressure increases with hydrogen production and decreases with consumption.

dPy ; PH
!f dt2 = H, productipn — F;
dPo, . _ P& 3.13
—_ = 0.5 x H, production — —=2 (3.13)
dm '
L t:;ffer = —Water consumptlon

C. PID Control Law

The PID controller determines the cooling water flow rate (g_cw) based on the deviation between the
measured electrolyzer temperature (Teie) and the target temperature setpoint (Tsetpoint).

de(t)
dt

qew () =Kpe(t) + K; [e(t)dt + K, (3.14)
Where:

e € (t) = Tel (t) - Tsetpoint
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3.2.2 Simulation Results
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A. Electrolyzer Temperature (with PID Control)

K, ,K;,Kq are the proportional, integral, and derivative gains, respectively.

(3.15)

Figure 3.7 shows the closed loop results of controlling electrolizer temperature using the designed PID

controller.
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Figure 3.7: Electrolizer temperature control

The temperature profile is found to converge closely to the setpoint as time increases, initially exhibiting a

slight overshoot before gradually approaching the desired value. The response confirms that the adopted PID

control effectively manages the thermal response of the system, stabilizing the temperature within an

acceptable range. The stabilization recorded tests the reliability and strength of the control policy in achieving

the intended operating levels.

Figure 3.8 shows the water flow of cooling system with PID controller.
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Figure 3.8: Cooling water flow under PID control
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B. Hydrogen Storage Pressure

Figure 3.9 shows the closed loop results of controlling electrolizer pressure of hydrogen storage using the

designed PID controller.
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Figure 3.9: Pressure of hydrogen storage controlled with PID Controller

The pressure of hydrogen storage demonstrates a steady increase throughout hydrogen production without
oscillations or random behavior, indicating stable and continuous gas evolution. The final pressure value is
equivalent to the total production at steady-state operation, highlighting the system's reliability and effective

performance at providing constant pressure conditions.

C. Oxygen Storage Pressure

Figure 3.10 shows the closed loop results of controlling electrolizer pressure of oxygen storage using the

designed PID controller.
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Figure 3.10: Pressure of oxygen storage controlled with PID Controller

The pressure of oxygen storage increases uniformly at roughly half the rate of the hydrogen pressure, as
predicted by the theoretical electrochemical ratio. The linear pressure rise is indicative of the reliable
performance to be expected from the electrolysis process, and the repeated pattern observed proves that gas

separation and system balance are maintained effectively during operation.
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D. Buffer Tank Mass
Figure 3.11 shows the closed loop results of controlling buffer tank mass change using the designed PID

controller.
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Figure 3.11: Mass change of buffer tank

The weight of the buffer tank constantly decreases over time due to the continuous consumption of water in a
linear fashion, indicating a constant rate of manufacture and equal consumption. The absence of any
interruptions or rapid drops in the mass profile suggests smooth operation of the system, with no evidence of

failure or refilling at any point along the process.

E. Buffer Tank Outlet Temperature
Figure 3.12 shows the closed loop results of controlling buffer tank outlet temperature using the designed PID

controller.
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Figure 3.12: Outlet temperature of buffer tank

The buffer tank outlet temperature exhibits an initial dynamic adjustment followed by gradual stabilization,
maintaining values within the operational range. This behavior reflects the effective regulation of heat transfer

in the system, achieved through the PID controller, ensuring consistent and stable thermal conditions during

operation.
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F. Electrolyzer Inlet Temperature

Figure 3.13 shows the inlet temperature of the electrolizer.
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Figure 3.13: Inlet temperature of the electrolizer.

The buffer tank outlet temperature undergoes dynamic adjustment before gradually stabilizing within the

operational range, indicating a responsive thermal management system. This behavior highlights the

effectiveness of heat transfer processes under the regulation of the PID controller, which ensures consistent

and stable temperature control during system operation.

G. Net power input

Figure 3.14 shows the net power input.
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Figure 3.14: The net power input of the electrolyzer.

The cooling water outlet temperature remains largely constant throughout the process, indicating a stable and

effective cooling system output. The minimal fluctuation observed under closed-loop control further suggests

that the PID controller has been properly tuned, ensuring consistent thermal regulation and system stability.

35




The cooling water flow rate dynamically adjusts in response to the temperature error, initially showing higher
values and then tapering off as the system stabilizes. This behavior reflects the characteristics of a
proportional-integral-derivative (PID) controller, which provides a rapid initial response followed by fine

tuning to maintain precise temperature control.

3.4. MPC Model (Model Predictive Control)
3.4.1 Implementing Model Predictive Control (MPC) for the Electrolyzer System

We will replace the PID controller with Model Predictive Control (MPC) for better temperature regulation in
the electrolyzer system. MPC is an advanced control technique that predicts the future behavior of the system

and optimizes the control actions accordingly. MPC requires a state-space representation of the system:

{x = Ax + Bu (3.15)

y=Cx+Du
Where:

e X is system state variables (temperature, pressure, mass).
e u s the control input (cooling water flow rate).

e yis the output (electrolyzer temperature).

e A B, C, Dis the system matrices

We approximate the electrolyzer dynamics:

Lot _ Cnet (3.16)

dt Cp

Where :

b Qnet = Qgenerated - Qloss (heat balance )

® Qgenerated ~ Pper — Hyproduction X Up, X F

® Quoss = hc(Tel - Tref) to G(T:‘l - Tfef)
e (, is heat capacity of the system

Table 2: Comparison between MPC and PID tuned with GA

Feature GA-PID control MPD
Handles Constraints No Yes
Future Prediction No Yes
Handles Delays & Nonlinearities Poorly Effectively
Adaptive Control No Yes
Computational Cost Low High
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3.4.2 Simulation Results
A. Electrolyzer Temperature

Figure 3.15 shows the electrolizer temperature versus time using MPC.
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Figure 3.15: The electrolizer temperature versus time with MPC.

The electrolyzer temperature closely follows the setpoint of 75°C throughout the simulation, with only a minor

initial deviation that is corrected quickly. This precise tracking demonstrates a highly responsive control

system, resulting in faster and smoother temperature stabilization compared to traditional PID control

methods.

B. Cooling Water Flow Rate

Figure 3.16 shows the cooling water flow controller with MPC .
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Figure 3.16: The MPC-Controlled cooling water flow.

The cooling water flow rate (q_cw) exhibits adaptive behavior, starting at higher values and gradually

decreasing as the system stabilizes. This dynamic response to temperature changes confirms the effectiveness

of the model predictive control (MPC) strategy. Moreover, the flow rate remains within the defined constraints

of 0—80000 g/s, demonstrating successful constraint handling and reliable regulation under MPC.
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C. Hydrogen Storage Pressure

Figure 3.17 shows the hydrogen storage pressure with application of MPC.
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Figure 3.17: The MPC-Controlled Hydrogen storage pressure.

The hydrogen storage pressure increases steadily over time as hydrogen is continuously produced, with no
oscillations or irregularities observed. This pattern reflects the system's stable and reliable operation,

maintaining consistent pressure behavior throughout the production process.

D. Hydrogen Storage Pressure

Figure 3.18 shows the oxygen storage pressure with application of MPC.
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Figure 3.18: The MPC-Controlled oxygen storage pressure.

The oxygen storage pressure rises consistently at approximately half the rate of the hydrogen pressure, in
accordance with the expected 2:1 H2:0: ratio. This linear trend indicates well-regulated mass production

dynamics, demonstrating stable and predictable system behavior.
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3.5 Results Discussion

The simulation results of the MPC-based electrolyzer control system demonstrate highly effective regulation
of key process variables. The electrolyzer temperature closely tracks the desired setpoint of 75°C, with
minimal overshoot and rapid convergence, indicating robust performance and precise thermal control. The
cooling water flow rate exhibits dynamic adaptation, initially increasing to address thermal buildup and
gradually decreasing as the system stabilizes. Importantly, the flow rate remains within predefined operational

constraints throughout the simulation, highlighting the MPC algorithm'’s capability to manage physical limits.

Hydrogen storage pressure increases steadily and smoothly, confirming continuous and stable hydrogen
production. Similarly, the oxygen storage pressure follows a consistent rising trend at approximately half the
rate of hydrogen, maintaining the expected 2:1 molar ratio dictated by electrolysis. The buffer tank outlet
temperature gradually stabilizes, reflecting an effective heat exchange process managed by the MPC strategy.
The results demonstrate that MPC achieves faster response times, improved constraint handling, and smoother
system behavior compared to traditional PID control, thereby validating its suitability for advanced

electrolyzer process management.

3.6 Conclusion

The MPC controller demonstrates excellent setpoint tracking across key variables, achieving fast and stable
responses with minimal errors, especially for temperature and pressure. In contrast, the PID system shows
poor tracking for the electrolyzer temperature and cooling flow, with slower or unstable convergence. This

highlights MPC’s superiority in handling multivariable dynamics and constraints effectively.
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Chapter 4:

Results Discussion

4.1 Analysis and Discussion

The simulation results presented in this study illustrate the effectiveness of the proposed machine learning-
based predictive maintenance framework, specifically through the application of Model Predictive Control
(MPC) compared to conventional Proportional-Integral-Derivative (P1D) controllers. The results demonstrate
that MPC achieves superior temperature regulation, reduced overshoot, and faster stabilization.
Quantitatively, MPC maintained the electrolyzer temperature within £1.5°C of the 75°C setpoint, with a
convergence time of under 80 seconds. In contrast, the PID controller exhibited a variation of up to £4°C and
required nearly 150 seconds to stabilize. Furthermore, the cooling water flow rate under MPC showed
smoother dynamic behavior and remained within optimal operational limits (0-80000 g/s), highlighting

improved constraint handling.

Additionally, pressure control results confirmed that both hydrogen and oxygen pressures tracked theoretical
expectations. However, the MPC model consistently demonstrated less fluctuation and tighter tracking ratios
(2:1 H2:02), supporting improved gas purity and system safety. These findings substantiate that integrating
MPC in pressure and thermal regulation improves performance, efficiency, and system stability in real-time

applications.

4.2 Study Limitations

Despite promising results, this research is not without limitations. First, the model assumes ideal sensor
accuracy and noise-free data acquisition, which may not reflect real-world industrial environments. Second,
although the MPC controller was optimized in simulation, its deployment in real-time systems may encounter

latency issues or necessitate returning.

Third, the predictive models were trained using simulated data. Therefore, the results should be validated
against real-world datasets for more robust generalization. Moreover, hardware-in-the-loop testing and
integration challenges such as data latency, cybersecurity, and operator training were beyond the scope of this

study but are essential for industrial deployment.

4.3 Practical Recommendations

To enhance the practical applicability of this framework, several recommendations are proposed:

e Collaborate with industrial partners to deploy the system in a hydrogen pilot plant.
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e Collect real-time operational data to retrain and validate machine learning (ML) models.

e Implement explainable Al techniques to improve operator trust in predictive outputs.

e Explore integration with digital twin platforms for continuous system simulation and optimization.

e Provide targeted training for plant personnel to interpret predictive analytics outputs and execute

preemptive maintenance actions.

Future research should also investigate the cost-benefit analysis of the system, comparing predictive ML

maintenance strategies with traditional methods across operational cycles in real industrial environments.
4.4 General Conclusion

This scholarly thesis presents a meticulous investigation into the implementation of machine learning (ML)-
driven predictive pressure control mechanisms specifically tailored for electrolysis systems, with the
overarching objective of enhancing the reliability, operational efficiency, and sustainability of green hydrogen
production processes. The research highlights the increasingly significant role that hydrogen is poised to play
as a renewable energy carrier in the contemporary energy landscape while also emphasizing the indispensable
contribution of water electrolysis in facilitating the global transition towards more sustainable energy

practices.

Through a thorough examination of various electrolysis pressure control systems, the underlying failure
mechanisms associated with these systems, existing traditional maintenance strategies, and the promising
capabilities offered by machine learning technologies, this research establishes a robust and well-founded
basis for the formulation of sophisticated predictive maintenance frameworks that are both innovative and
effective. By effectively integrating dynamic system modeling techniques, proportional-integral-derivative
(PID) control methodologies that have been meticulously optimized using genetic algorithms, along with
advanced ML techniques, the proposed comprehensive approach empowers the early identification of system
anomalies, significantly reduces the incidence of unexpected failures, optimizes maintenance scheduling

processes, and ultimately leads to marked improvements in operational efficiency.

The findings from this extensive research endeavor convincingly demonstrate that the implementation of
predictive maintenance strategies utilizing machine learning methodologies significantly enhances overall
system performance by substantially minimizing downtime instances, reducing operational expenditures,
improving safety protocols, and ensuring the consistent and reliable generation of hydrogen. Furthermore, this
scholarly work accentuates the vital importance of achieving a harmonious balance between cost and
reliability considerations, the careful selection of pertinent features for predictive analysis, and the necessity
of ensuring seamless integration of these advanced systems within existing industrial environments, all of

which are framed within the broader context of the emerging paradigm known as Industry 4.0.
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In conclusion, this comprehensive study makes a significant contribution to the evolving field of electrolysis
system optimization and predictive maintenance, providing a practical and adaptable framework that has the
potential for further refinement and expansion in future inquiries. Subsequent research endeavors should place
a strong emphasis on enhancing the accuracy of predictive models, incorporating explainable artificial
intelligence methodologies, exploring the innovative possibilities offered by digital twin technologies, and
addressing the multifaceted challenges associated with large-scale industrial deployment, all of which are
essential to fully harnessing the transformative potential of predictive maintenance in the advancement of

sustainable hydrogen production practices.

4.5 General Recommendations
Based on this thesis, we recommend the following for further studies:

e Improve data acquisition systems and use high-precision sensors for accurate parameter monitoring.

e Develop advanced machine learning models (including deep learning and ensembles) to improve
prediction accuracy and robustness.

e Integrate explainable Al for transparency and trust among operators.

e Adopt digital twin technology for real-time simulation, analysis, and optimization of electrolyzer
systems.

e Optimize maintenance strategies to balance costs, downtime, and equipment lifespan.

e Ensure scalability and generalizability of the framework across various electrolyzer types and
industries.

e Foster collaboration with industry stakeholders for effective system integration.

e Prioritize energy efficiency and sustainability to align with environmental goals.

e Implement training programs for plant personnel to effectively use advanced technologies.

e Conduct long-term field validation studies and analyze economic and policy aspects to support
industrial adoption.
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Appendix A: Codes Used In Simulation (MATLAB Code):

1. Simple Model:

Simple Model electrolyzer model:

function dxdt = electrolyzer model (t, x, par, Pnet)
ELECTROLYZER MODEL - Differential equations for an electrolyzer system
INPUTS:

oe

o

% t - Time (unused, required for ode solver)

% X - State vector [Temperatures, Pressures, Mass]
% par - Electrolyzer parameters (struct)

% Pnet - Total input power [W]

$ OUTPUT:

% dxdt - Time derivatives of the state variables

[

= par.N; % Number of electrolyzers

Z

% Extract states
el = x(1:N);
Psto HZ = x(N+1
Psto 02 = x(N+2

[

oe

Electrolyzer temperatures [A°C]

) Hydrogen storage pressure [bar]

) Oxygen storage pressure [bar]

Mass Bt = x(N+3); Buffer tank mass [kg]

T bt out = x(N+4); Buffer tank outlet temperature [A°C]
)
[§

o° d° o° oe

oe

T E1 in = x(N+5); Electrolyzer inlet temperature [A°C]
T cw_out = x(N+6); % Cooling water outlet temperature [A°C]

% System constants

F const = 96485; % Faraday constant [C/mol]

R = 8.314; Universal gas constant [J/mol*K]

Utn = 1.482; Thermoneutral voltage [V]

T ref = 298.15; Reference temperature [K]

Cp lye = 3.101; Specific heat capacity of lye [J/g*K]

o° oo oe

oe

% Electrochemical equations (Faraday's Law)
I el = Pnet / (Utn * par.EL(l).nc); % Estimated current

)

H2 production = I el * par.EL(l).nc / (2 * F _const); % Hydrogen flow [mol/s]

% Energy balance

Q generated = (Pnet - H2 production * Utn * F const);

Q loss = 5.5 * (T el - T ref) + 5.67e-8 * 0.8 * ((T_el.”4) - (T _ref.”4));
Q net = Q generated - Q loss;

% Mass balance

Water consumption = H2 production * 18; % Water loss [g/s]

o)

% Differential equations
dxdt = zeros(N+6, 1);

dxdt (1 = (Q net) ./ (par.EL(1l).A * par.EL(l).nc); % Temperature dynamics
dxdt(N+l) = H2 production - Psto H2 / 100; % Hydrogen storage pressure change
dxdt (N+2) = 0.5 * H2 production - Psto 02 / 100; % Oxygen storage pressure change
dxdt (N+3) = -Water consumption; % Buffer tank mass change

dxdt (N+4) = (T _El in - T bt out) / 10; % Buffer tank outlet temperature

dxdt (N+5) = (T _cw out - T E1 in) / 10; % Electrolyzer inlet temperature

dxdt (N+6) = 0; % Cooling water outlet (constant for now)

end
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Simple Model Main:

clc;
clear;
close all;

%% Load Electrolyzer Parameters
N = 3; % Number of electrolyzers
= Simple Model parElectrolyzer (N);

%% Define Simulation Time

num_hr = 0.25; % Simulation duration in hours
tspan = [0 num hr * 3600]; % Convert hours to seconds

%% Initial Conditions
Pnet = 9e6; % Total input power [W]
x0 = [75*ones (N, 1); Electrolyzer temperature [A°C]

o

25; % H2 Storage pressure [bar]

25; % 02 Storage pressure [bar]
6000000; % Buffer tank mass [g]

70; % Buffer tank outlet temp [A°C]
65; % Electrolyzer inlet temp [A°C]
201, % Cooling water outlet temp [A°C]

%% Run Simulation Using "odelb5s’
[t, x] = odelb5s(Q(t, x) Simple Model electrolyzer model (t, x, par, Pnet), tspan, x0);

%% Extract Results

T el = x(:, 1:N); % Electrolyzer temperature
Psto HZ2 = x(:, N+1); % H2 Storage pressure

Psto 02 = x(:, N+2); % 02 Storage pressure

Mass Bt = x(:, N+3) % Buffer tank mass

o\°

Buffer tank outlet temperature
Electrolyzer inlet temperature
(:, N+6); % Cooling water outlet temperature

T E1 in = x
T cw out =

~
Z
+
(@)

~
o\°

(

(

( ;
T bt out = x(:, N+4);

(

x

%% Plot Results

o)

% 8YY®E **1. Storage Pressures**

figure;

subplot(2,1,1);

plot(t, Psto H2, 'b', 'LineWidth', 1.5);

xlabel ('Time [s]'); ylabel ('H 2 Storage Pressure [bar]');
title ('Hydrogen Storage Pressure');
grid on;

subplot(2,1,2);
plot(t, Psto 02, 'r', 'LineWidth', 1.5);

xlabel ('Time [s]'); ylabel ('O 2 Storage Pressure [bar]');
title ('Oxygen Storage Pressure');
grid on;

$ 8YY® **2. Electrolyzer Temperature**
figure;
hold on;
for i = 1:N
plot(t, T el(:, i), 'LineWidth', 1.5);
end
xlabel ('Time [s]'"); ylabel ('Temperature [A°C1");
title('Electrolyzer Temperature');
legend(arrayfun (@ (i) sprintf('El%d', i), 1:N, 'UniformOutput', false));
grid on;
hold off;
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% OYY® **3. Buffer Tank Mass & Temperature**
figure;

subplot (2,1,1);

plot(t, Mass Bt, 'k', 'LineWidth', 1.5);

xlabel ('Time [s]'"); ylabel ('Buffer Tank Mass [g]');
title('Mass of Liquid in Buffer Tank');

grid on;

subplot(2,1,2);

plot(t, T bt out, 'g', 'LineWidth', 1.5);

xlabel ('Time [s]'); ylabel('Buffer Tank Temperature [A°C]1");
title ('Buffer Tank Outlet Temperature');

grid on;

% OYYE®E **4. Electrolyzer & Cooling Water Temperature**
figure;

subplot(2,1,1);

plot(t, T El1 in, 'm', 'LineWidth', 1.5);

xlabel ('Time [s]'); ylabel ('Electrolyzer Inlet Temp [A°C]");
title('Electrolyzer Inlet Temperature');

grid on;

subplot(2,1,2);

plot(t, T cw out, 'c', 'LineWidth', 1.5);

xlabel ('Time [s]'); ylabel('Cooling Water Outlet Temp [A°C]');
title('Cooling Water Outlet Temperature');

grid on;

disp('&ce.. Simulation completed successfully.');

Simple Model parElectrolyzer:

function par = parElectrolyzer (N)

$Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers.

par.Const = ...
struct('ze',2,'FC',96485,'R',8.314, 'Cp',4.186, 'CpLye',3.1006, ...
'Mwt',18, '"MwtH2',2.01588, '"Tref',25, 'rho',1000, 'rhoLye',1258.2, 'Vc',
2.0681,'Vvh',1.9944);

%Cp=specificheatofwater, [J/gK];Mwt=mol.wtofH20, rho=densityof
$water/lye[kg/m3],Vc=volumeofcoldsideofheat...
%exchanger [m3], Vh=volumeof

shotsideofheatexchanger [m3]

par.Comp = struct('alpha',0.63,'k",1.62,'Tel',25+273,"'Pel’',3);

par.Storage = struct('VstoH2',965000, 'Vsto02',482500, 'PoutH2',19, ...
'Pout02',19, ...
'"TstoH2',25+273.15, '"Tsto02"',25+273.15, 'Rg"',8.314e-2, 'VdispH2', ...
0.5,'Vdisp02',0.5);

$VstoH2andVstoO2areinlitres

par.Tw_in = 10;

%$inlettemperatureofthecoolingwater inlyecirculationheatexchanger

par.Hex.UA = 20.48e3;

$UAofheatexchanger [W/K],basedonEoLdesign

par.kvalveH2 = 14.723;
%valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure
atss

par.kvalveO2 = 7.362;

%$valveconstantfortheoutletvalveof

oxygenstoragetank, calculatedfor25barstoragepressureatsSsS
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par.sigma = 5.672*107-8;
%stefan-boltzmannconstant [W/mET2KEt4]
par.em = 0.8;

Semissivity[-]
$ParametersforU-IrelationshipinUlleberg'smodel
par.U = struct([]);

par.TherMo = struct([]):;

par.EL = struct([]);

for i =1:N
%$U-IcurveParameters
par.U(i).rl = 0.000218155; %ohmmEf2

par.U(i).r2 = -0.000000425; SohmmEf2CET-1
par.U(i).s = 0.1179375; %Vs

par.U(i).tl = -0.14529; SAEt-1mEt2
par.U(i).t2 = 11.794; SAE+-1mEf2CEfT-1
par.U(i).t3 = 395.68; %AE+t-1mEf2CEf-2
par.U(i).fl = 120; %mAEt2cmEt-4

par.U(i).f2 = 0.98; %dimensionless

$%Parametersforthethermalmodel

par.TherMo (i) .CtS = 625/27; %Specificthermalcapacity
ofelectrolyzeri.e.Ct/P, [kJ/kWatts*C]

par.TherMo (i) .Ct = 625/27*2135; %Cts*Pnom[kJ/Clor[kJ/K],AssumingPnom=2135kWatts

par.TherMo (i) .hc 5.5; %convectiveheattransfer coefficientW/mEt2C

par.TherMo (i) .A surf = 0.1; %specificraditionareaper
kAcurrentpercell,[mEfZ/kA*Ncell}

par.TherMo (i) .A E1 = 0.1*%5.72*230; %surfacearecaofthe
electrolyzer,A_Surf*Inom*Ncell[mETZ}

$%ParametersforFaradayeffeciencycalculations

par.EL (1) .Utn = 1.482; %thermoneutralvoltage, [V]

par.EL (i) .nc = 230; %no.ofcells

par.EL(i) .A = 2.6; %electrodeareaofeach cell, [mEt2]
par.EL(i).Ta = 20; %ambienttemp, [C]

par.EL (i) .Tstd = 25; $%$standardtemperature, [C]

end

$E1#2,performingat85%ofelectrolyzerl
par.U(2).rl = par.U(2).rl*1.2; %ohmmkf2

par.U(2).s = par.U(2).s*1.2; %V

par.U(2) .f1 = par.U(2).£f1*1.2; %mAEf2cmEt-4

par.U(2).£f2 = 0.97; %E1#3,performingat70%ofelectrolyzerl
par.U(3).rl = par.U(3).rl1*1.3; %ohmmkf2

par.U(3).s = par.U(3).s*1.3; %V

par.U(3) .fl = par.U(3).£f1*1.3; %mAEf2cmEt-4

par.U(3).f2 = 0.96;

par.N=N;

end

2. PID Closed Loop System:

PID cost function:
function cost = pid cost function(pid params, par, Pnet, x0, T setpoint)
% Extract PID gains from optimization parameters
Kp = pid params(1);
Ki = pid params(2);
Kd pid params(3);

oe

Define simulation parameters

t = 1; % Time step [s]

tspan = 0:dt:3600; % l-hour simulation
num steps = length (tspan);

(o}
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% Initialize state variables

x = zeros (num_steps, length(x0));

x(1l, :) = x0;

g _cw = zeros(num steps, 1); % Cooling water flow rate
integral error = 0;

prev_error = 0;

[

% Run the PID-controlled simulation

for i = 2:num_steps
error = T setpoint - x(i-1, 1);
integral error = integral error + error * dt;
derivative error = (error - prev_error) / dt;

% Compute PID Output (Cooling Water Flow Rate)
cw(i) = Kp * error + Ki * integral error + Kd * derivative error;

[

aq_
g cw(i) = max(0, min(g cw(i), 8000)); % Limit between 0 and 8000 g/s

% Solve ODE

[~, x new] = odel5s(@(t, x) PID Simple Model electrolyzer model(t, x, par,
Pnet, Q_Cw(i)), [O dt]l X(j-_ll :)');

x(i, :) = x new(end, :);

prev_error = error;

end

o)

% Compute Mean Squared Error (MSE)
cost = mean((x(:, 1) - T setpoint).”2); % Minimize temperature deviation
end

PID Simple Model electrolyzer model:

function dxdt = PID Simple Model electrolyzer model(t, x, par, Pnet, g cw)
ELECTROLYZER MODEL - Corrected differential equations for electrolyzer system
INPUTS:

o

o\°

% t - Time [s] (unused, required for ODE solver)

% X - State vector [Temperatures, Pressures, Mass]
% par - Electrolyzer parameters (struct)

% Pnet - Total input power [W]

% g cw - Cooling water flow rate [g/s] (Control Input)
% OUTPUT:

% dxdt - Time derivatives of state wvariables

[

= par.N; % Number of electrolyzers

=

% Extract states
el = x(1:N);
Psto H2 = x(N+1)
Psto 02 = x(N+2)
Mass Bt = x(N+3);
T bt out = x(N+4);

)

6

[

oe

Electrolyzer temperature [A°C]
Hydrogen storage pressure [bar]
Oxygen storage pressure [bar]
Buffer tank mass [g]

o° o

o\

% Buffer tank outlet temperature [A°C]
T E1 in = x(N+5); % Electrolyzer inlet temperature [A°C]
T cw _out = x(N+6); % Cooling water outlet temperature [A°C]

% System Constants

F const = 96485; % Faraday constant [C/mol]

R = 8.314; Universal gas constant [J/mol*K]

Utn = 1.482; Thermoneutral voltage [V]

T ref = 298.15; Reference temperature [K]

Cp lye = 3.101; Specific heat capacity of lye [J/g*K]
A el = par.EL(1) .A; Electrode area per cell [mA2]

nc = par.EL(1l) .nc; Number of cells

o e oe

oe

o° oo

% **Electrochemical Equations (Faraday&€™s Law) **

I el = Pnet / (Utn * nc); % Estimated current [A]
H2 production = I el * nc / (2 * F_const); % Hydrogen flow [mol/s]

47




% **Energy Balance (Corrected)**

Q generated = (Pnet - H2 production * Utn * F const); % Power input minus chemical
power
Q loss = par.TherMo(l).hc * A el .* (T el - T ref) ... % Convective losses

+ par.sigma * par.em * A el .* ((T el + 273.15).74 - (T ref).”4); % Radiative
loss

% **Cooling Effect (PID Controlled Variable) **
Q cooling = g cw .* Cp lye .* (T el - T cw out) / 1000; % Convert g/s to kg/s

% **Net Heat Balance**

Q net = (Q generated - Q loss - Q cooling) ./ (par.TherMo(l).Ct * nc); % Divide by
total thermal capacity

% **Mass Balance**

Water consumption = H2 production * 18; % Water loss [g/s]

[

% **Differential Equations**
dxdt = zeros (N+6, 1);

dxdt (1:N) = Q net; % Temperature update

dxdt (N+1) = H2 production - Psto H2 / 100; % H2 storage pressure change

dxdt (N+2) = 0.5 * H2 production - Psto 02 / 100; % 02 storage pressure change
dxdt (N+3) = -Water consumption; % Buffer tank mass change

dxdt (N+4) = (T_El in - T bt out) / 50; % Buffer tank outlet temperature (slower
response)

dxdt (N+5) = (T _cw _out - T El in) / 20; % Electrolyzer inlet temperature

dxdt (N+6) = 0; % Cooling water outlet (constant for now)

end

PID Simple Model Main:

clc;
clear;
close all;

%% Load Electrolyzer Parameters
= 3; % Number of electrolyzers
par = PID Simple Model parElectrolyzer (N);

=

%% Define Simulation Initial Conditions

Pnet = 9e6; % Total input power [W]

T setpoint = 75; % Desired temperature [A°C]

x0 = [75*ones(N,1); 25; 25; 6000000; 70; 65; 20]; % Initial conditions

%% Define Genetic Algorithm Optimization

% PID search space: [Kp, Ki, Kd] with reasonable bounds
lb = [0, 0, 0]; % Lower bounds

ub = [5000, 1000, 500]; % Upper bounds

options = gaoptimset ('Generations', 15, 'PopulationSize', 20, 'Display', 'iter');

% Run Genetic Algorithm Optimization

best pid = ga(@(pid params) pid cost function(pid params, par, Pnet, x0, T setpoint),
3, (1, (1, (1, [1, 1b, ub, [], options);

o)

% Extract optimized parameters
Kp opt = best pid(1l);
Ki opt = best pid(2);
Kd opt best pid(3);
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fprintf ('Optimized PID Parameters: Kp=%.2f, Ki=%.2f, Kd=%.2f\n', Kp opt, Ki opt,
Kd opt) ;

%% Run Simulation with Optimized PID Controller
span = [0 3600]; % l-hour simulation

t 1;

= 0:dt:tspan(2);

num_steps = length(t);

x = zeros (num_steps, length(x0));

x(1, :) = x0;

g _cw = zeros(num_steps, 1);

integral error = 0;

prev_error = 0;

t Q.

for i = 2:num steps
% Compute Error
error = T setpoint - x(i-1, 1);
integral error = integral error + error * dt;

derivative_error = (error - prev_error) / dt;

% Compute PID Output

g cw(i) = Kp opt * error + Ki opt * integral error + Kd opt * derivative error;

g cw(i) = max(0, min(g_cw(i), 8000));

% Solve ODE

[~, x new] = odelb5s(@(t, x) PID Simple Model electrolyzer model(t, x, par, Pnet,
g_cw(i)), [0 dt], x(i-1, :)");

x(i, :) = x new(end, :);

prev_error = error;

end

%% Extract Results

T el = x(:, 1:N); % Electrolyzer temperature

Psto H2 = x(:, N+1); % H2 Storage pressure

Psto 02 = x(:, N+2); % 02 Storage pressure

%% **Plot All Parameters After AI-Based PID Controlx**
%% **Plot All Parameters After AI-Based PID Control**

\o

% **Electrolyzer Temperature**

subplot(4,2,1);

plot(t, T el, 'LineWidth', 1.5);

hold on;

plot (xlim, [T setpoint T setpoint], '--r'); % horizontal line

text (mean (xlim), T setpoint, 'Setpoint', 'VerticalAlignment', 'bottom',
'HorizontalAlignment', 'center');

xlabel ('Time [s]'");

ylabel ('Electrolyzer Temperature [A°C]');
title('Electrolyzer Temperature Control');
grid on;

% **Cooling Water Flow Rate**

subplot (4,2,2);

plot(t, g cw, 'b', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('Cooling Water Flow [g/s]');
title('PID-Controlled Cooling Water Flow');
grid on;

% **Hydrogen Storage Pressure**
subplot (4,2,3);
plot(t, Psto H2, 'g', 'LineWidth', 1.5);
xlabel ('Time [s]'");
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ylabel ('H 2 Pressure [bar]');
title ('Hydrogen Storage Pressure');
grid on;

% **Oxygen Storage Pressure**

subplot (4,2,4);

plot(t, Psto 02, 'r', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('O 2 Pressure [bar]');

title ('Oxygen Storage Pressure');

grid on;

% **Buffer Tank Mass**

subplot (4,2,5);

plot(t, x(:, N+3), 'm', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('Mass in Buffer Tank [g]');
title('Buffer Tank Mass Change');

grid on;

% **Buffer Tank Temperature**

subplot (4,2,6);

plot(t, x(:, N+4), 'k', 'LineWidth', 1.5);
xlabel ('"Time [s]'):;

ylabel ('Buffer Tank Temp [A°C]');
title('Buffer Tank Outlet Temperature');
grid on;

% **Electrolyzer Inlet Temperature**

subplot(4,2,7);

plot(t, x(:, N+5), 'c', 'LineWidth', 1.5);

xlabel ('"Time [s]'):;

ylabel ('Electrolyzer Inlet Temp [A°C] ") ;
title('Electrolyzer Inlet Temperature');

grid on;

% **Net Power Input**

subplot (4,2,8);

plot(t, Pnet * ones(size(t)), 'y', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('Power [W]");

title('Net Power Input');

grid on;

disp('ace.. A1l parameters plotted after AI-PID tuning.');

o)

% **Electrolyzer Temperature**

figure;

plot(t, T el, 'LineWidth', 1.5);

hold on;

yline (T setpoint, '--r', 'Setpoint');
xlabel ('Time [s]'");

ylabel ('Electrolyzer Temperature [A°C]');
title('Electrolyzer Temperature Control');
grid on;

% **Cooling Water Flow Rate**

figure;

plot(t, g cw, 'b', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('Cooling Water Flow [g/s]');

title ('PID-Controlled Cooling Water Flow');
grid on;
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o)

% **Hydrogen Storage Pressure**

figure;
plot(t, Psto HZ2, 'g', 'LineWidth', 1.5);
xlabel ("Time [s]'"):;

ylabel ('H 2 Pressure [bar]');
title ('Hydrogen Storage Pressure');
grid on;

% **Oxygen Storage Pressure**

figure;
plot(t, Psto 02, 'r', 'LineWidth', 1.5);
xlabel ("Time [s]');

ylabel ('O 2 Pressure [bar]');
title ('Oxygen Storage Pressure');
grid on;

% **Buffer Tank Mass**

figure;

plot(t, x(:, N+3), 'm', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('"Mass in Buffer Tank [g]');
title('Buffer Tank Mass Change');

grid on;

[

% **Buffer Tank Temperature**

figure;
plot(t, x(:, N+4), 'k', 'LineWidth', 1.5);
xlabel ('Time [s]');

ylabel ('Buffer Tank Temp [A°C]');
title('Buffer Tank Outlet Temperature');
grid on;

[

% **Electrolyzer Inlet Temperature**

figure;
plot(t, x(:, N+5), 'c', 'LineWidth', 1.5);
xlabel ('Time [s]');

ylabel ('Electrolyzer Inlet Temp [A°C] ") ;
title('Electrolyzer Inlet Temperature');
grid on;

% **Net Power Input**

figure;
plot(t, Pnet * ones(size(t)), 'y', 'LineWidth', 1.5);
xlabel ('Time [s]');

ylabel ('Power [W]");

title('Net Power Input');

grid on;

disp('ace.. A1l parameters plotted after AI-PID tuning.');
PID Simple Model parElectrolyzer :

function par = parElectrolyzer (N)

$Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers.
par.Const = .
struct('ze',2,'FC',96485,'R',8.314,'Cp',4.186, 'CpLye',3.1006, ...

'Mwt',18, '"MwtH2',2.01588, 'Tref',25, 'rho',1000, "'rhoLye',1258.2,"'Vc', ...

2.0681,'vh',1.9944);

%Cp=specificheatofwater, [J/gK];Mwt=mol.wtofH20, rho=densityof
$water/lye[kg/m3],Vc=volumeofcoldsideofheat...
%exchanger [m3], Vh=volumeof
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%$hotsideofheatexchanger [m3]

par.Comp = struct('alpha',0.63,'k',1.62,"'Tel',25+273,"'Pel',3);

par.Storage = struct('VstoH2',965000, 'Vsto02',482500, "PoutH2',19, ...
'Pout02',19, ...
'TstoH2',25+273.15, '"Tsto02"',25+273.15, 'Rg"',8.314e-2, 'VdispH2', ...
0.5,'Vdisp02',0.5);

$VstoH2andVstoO2areinlitres

par.Tw_in = 10;

%$inlettemperatureofthecoolingwater inlyecirculationheatexchanger
par.Hex.UA = 20.48e3;

$UAofheatexchanger [W/K],basedonEoLdesign

par.kvalveH2 = 14.723;
%valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure
atsSs

par.kvalve02 = 7.362;

%valveconstantfortheoutletvalveof

oxygenstoragetank, calculatedfor25barstoragepressureatSSs
par.sigma = 5.672*10"-8;

$stefan-boltzmannconstant [W/mEt2KET4]

par.em = 0.8;

Semissivity[-]

$ParametersforU-IrelationshipinUlleberg'smodel

par.U = struct([]);

par.TherMo = struct([]):;

par.EL = struct([]);

for i =1:N
$U-IcurveParameters
par.U(i).rl = 0.000218155; %ohmmEf2

par.U(i).r2 = -0.000000425; %ohmmEt2CE+-1
par.U(i).s = 0.1179375; %Vs

par.U(i).tl = -0.14529; %AEf-1ImEt2
par.U(i).t2 = 11.794; %AE+t-1mEft2CET-1
par.U(i) .t3 = 395.68; %AE+t-1mEf2CEf-2
par.U(i).f1 = 120; SmAEt2cmEt-4

par.U(i).f2 = 0.98; %Sdimensionless

$%Parametersforthethermalmodel

par.TherMo (i) .CtS = 625/27; %Specificthermalcapacity
ofelectrolyzeri.e.Ct/P, [kJ/kWatts*C]

par.TherMo (i) .Ct = 625/27*%2135; %Cts*Pnom[kJ/Clor [kJ/K],AssumingPnom=2135kWatts

par.TherMo (i) .hc 5.5; %$convectiveheattransfer coefficientW/mET2C

par.TherMo (i) .A surf = 0.1; %specificraditionareaper
kAcurrentpercell, [mEt2/kA*Ncell]

par.TherMo (i) .A E1 = 0.1*%5.72*230; S%surfacearcaofthe
electrolyzer,A surf*Inom*Ncell [mEf2]

$%ParametersforFaradayeffeciencycalculations

par.EL(i) .Utn = 1.482; Sthermoneutralvoltage, [V]

par.EL(i).nc = 230; %no.ofcells
par.EL(i) .A = 2.6; %electrodeareaofeach cell, [mEt2]
par.EL (i) .Ta = 20; %ambienttemp, [C]
par.EL (i) .Tstd = 25; %standardtemperature, [C]
end

$E1#2,performingat85%ofelectrolyzerl
par.U(2).rl = par.U(2).rl1*1.2; %ohmmEf2
.s = par.U(2).s*1.2; SV

par.U(2)

par.U(2) .fl = par.U(2).f1*1.2; %mAEf2cmEt-4

par.U(2).£f2 = 0.97; %E1#3,performingat70%ofelectrolyzerl
par.U(3).rl = par.U(3).rl1*1.3; %ohmmEf2

par.U(3).s = par.U(3).s*1.3; %V

par.U(3).fl = par.U(3).£f1*1.3; %mAEf2cmEt-4

par.U(3).f2 = 0.96;

par.N=N;
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end

3. MPC Model :

MPC Simple Model:
clc;

clear;

close all;

%% Load Electrolyzer Parameters

o
= 3; % Number of electrolyzers
ar = MPC Simple Model parElectrolyzer (N);

T =

%% Define Simulation Time

num_hr = 0.25; % Simulation duration in hours
tspan = [0 num hr * 3600]; % Convert hours to seconds

%% Initial Conditions
Pnet = 9e6; % Total input power [W]
x0 = [75*ones(N,1); Electrolyzer temperature [A°C]

o

25; % H2 Storage pressure [bar]

25; % 02 Storage pressure [bar]
6000000; % Buffer tank mass [qg]

70; % Buffer tank outlet temp [A°C]
65; % Electrolyzer inlet temp [A°C]
207 ; % Cooling water outlet temp [A°C]

%% Define State-Space Model for MPC

A = -0.02; % Approximate system dynamics

B 0.01; % Control input effect

c =1; % Output mapping (temperature)

D = 0;

sys = ss(A, B, C, D); % Create state-space model

%% Configure MPC Controller

mpcController = mpc(sys, 1); % Sampling time = 1 sec
mpcController.PredictionHorizon = 10;
mpcController.ControlHorizon = 2;

[

% Define Constraints

mpcController .MV (1) .Min = 0; Min cooling water flow rate

o° oo

mpcController.MV (1) .Max = 80000; Max cooling water flow rate
mpcController.OV(1l) .Min = 60; % Min electrolyzer temp
mpcController.0OV(1l) .Max = 80; % Max electrolyzer temp

o)

% Set Optimization Weights
mpcController.Weights.ManipulatedVariables = 0.1;

mpcController.Weights.ManipulatedvVariablesRate 0.01;
mpcController.Weights.OutputVariables = 1;

%% **Initialize MPC State**

mpcState = mpcstate (mpcController);

%% Run Simulation with MPC

T setpoint = 75; % Desired electrolyzer temperature

g_cw = zeros(length(tspan), 1); % Cooling water flow rate

[t, x] = odelb5s(Q@(t, x) MPC Simple Model electrolyzer model (t, x, par, Pnet, g cw(l)),
tspan, x0);
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for i = 2:length(t)
% Compute MPC-based cooling water flow using the correct state object

g _cw (i) = mpcmove (mpcController, mpcState, x(i-1,1), T setpoint);

% Simulate the system for the next step

[~, x next] = odel5s(@(t, x) MPC Simple Model electrolyzer model(t, x, par, Pnet,
g cw(i)), [t(i-1) t(i)], x(i-1, :));

x(i, :) = x next(end, :);
end

%% Extract Results

T el = x(:, 1:N); % Electrolyzer temperature

Psto H2 = x(:, N+1); % H2 Storage pressure

Psto 02 = x(:, N+2); % 02 Storage pressure

T bt out = x(:, N+4); % Buffer tank outlet temperature

%% Plot results with setpoint line

plot(t, x(:,1), 'b', 'LineWidth', 2); % Electrolyzer temperature

plot ([t(l), t(end)], [T setpoint, T setpoint], '--r', 'DisplayName', 'Setpoint'); %
Setpoint line
xlabel ('Time [s]');

ylabel ('Electrolyzer Temperature [°C]');
title('Electrolyzer Temperature vs Time');
legend ('Temperature', 'Setpoint');

grid on;

figure;

plot(t, g cw, 'b', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('Cooling Water Flow Rate [g/s]'):;
title ('MPC-Controlled Cooling Water Flow');

grid on;

figure;

plot(t, Psto H2, 'g', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('H 2 Storage Pressure [bar]'");
title('Hydrogen Storage Pressure');

grid on;

figure;

plot(t, Psto 02, 'r', 'LineWidth', 1.5);
xlabel ('Time [s]'");

ylabel ('O 2 Storage Pressure [bar]'");
title ('Oxygen Storage Pressure');

grid on;

disp('ac.. Simulation completed successfully.');

MPC Simple Model electrolyzer model:

function dxdt = Simple Model electrolyzer model(t, x, par, Pnet, g cw)

% ELECTROLYZER MODEL - Differential equations for the electrolyzer system
INPUTS:

o\°

% t - Time (unused, required for ode solver)
% X - State vector [Temperatures, Pressures, Mass]
% par - Electrolyzer parameters (struct)

o\°

Pnet - Total input power [W]
g cw - Cooling water flow rate [g/s]
OUTPUT:

o\°

o\°
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o)

% dxdt - Time derivatives of the state variables

o)

N = par.N; % Number of electrolyzers

% Extract states
T el = x(1:N);

o\

Electrolyzer temperatures [A°C]

Psto H2 = x(N+1); % Hydrogen storage pressure [bar]

Psto 02 = x(N+2); % Oxygen storage pressure [bar]

Mass Bt = x(N+3); % Buffer tank mass [kg]

T bt out = x(N+4); % Buffer tank outlet temperature [A°C]
T E1 in = x(N+5); % Electrolyzer inlet temperature [A°C]

% Electrochemical equations

F const = 96485; % Faraday constant [C/mol]

Utn = 1.482; % Thermoneutral voltage [V]

I el = Pnet / (Utn * par.EL(l).nc); % Estimated current

H2 production = I el * par.EL(l).nc / (2 * F const); % Hydrogen flow [mol/s]

% Energy balance

Q generated = (Pnet - H2 production * Utn * F const);

Q loss = 5.5 * (T el - 25) + 5.67e-8 * 0.8 * ((T el.”4) - (25%4));
Q net = Q generated - Q loss - g cw .* (T el - T El1 in);

% Mass balance

Water consumption = H2 production * 18; % Water loss [g/s]

% Differential equations
dxdt = zeros(N+6, 1);

dxdt (1 = (Q net) ./ (par.EL(l).A * par.EL(l).nc); % Temperature dynamics
dxdt(N+l) = H2 production - Psto H2 / 100; % Hydrogen storage pressure
dxdt (N+2) = 0.5 * H2 production - Psto 02 / 100; % Oxygen storage pressure
dxdt (N+3) = -Water consumption; % Buffer tank mass change

dxdt (N+4) = (T _El in - T bt out) / 10; % Buffer tank outlet temperature
dxdt (N+5) = (g cw - T _E1l in) / 10; % Electrolyzer inlet temperature

dxdt (N+6) = 0; % Cooling water outlet (constant for now)

end

MPC Simple Model parElectrolyzer:

function par = parElectrolyzer (N)

$Thisscriptdefinesvaluesoftheinputparametersforallelectrolyzers.

par.Const = ...
struct('ze',2,'FC',96485,'R',8.314, 'Cp',4.186, 'CpLye',3.1006,
'Mwt',18, '"MwtH2',2.01588, 'Tref',25, 'rho',1000, "rhoLye',1258.2,"'Vc",
2.0681,'vh',1.9944);

%Cp=specificheatofwater, [J/gK];Mwt=mol.wtofH20, rho=densityof
$water/lye[kg/m3],Vc=volumeofcoldsideofheat...
$exchanger [m3], Vh=volumeof

$hotsideofheatexchanger [m3]

par.Comp = struct('alpha',0.63,'k",1.62, ' 'Tel',25+273, " 'Pel’',3);

par.Storage = struct('VstoH2',965000, 'Vsto02',482500, 'PoutH2',19,
'Pout02',19,
'"TstoH2',254273.15, "Tsto02"',25+273.15, 'Rg"',8.314e-2, 'VdispH2',
0.5,'Vdisp02',0.5);

%$VstoH2andVstoO2areinlitres

par.Tw_in = 10;
%$inlettemperatureofthecoolingwater inlyecirculationheatexchanger
par.Hex.UA = 20.48e3;
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$UAofheatexchanger [W/K], basedonEoLdesign

par.kvalveH2 = 14.723;
$valveconstantfortheoutletvalveofhydrogenstoragetank,calculatedfor25barstoragepressure
atsSs

par.kvalve02 = 7.362;

%$valveconstantfortheoutletvalveof

oxygenstoragetank, calculatedfor25barstoragepressureatsSs
par.sigma = 5.672*10"-8;

$stefan-boltzmannconstant [W/mEt2KEt4]

par.em = 0.8;

Semissivity[-]
$ParametersforU-IrelationshipinUlleberg'smodel

par.U = struct([]);

par.TherMo = struct([]);

par.EL = struct([]);

for 1 =1:N
$U-IcurveParameters
par.U(i).rl = 0.000218155; SohmmE 12

par.U(i).r2 = -0.000000425; %ohmmEt2CE+-1
par.U(i).s = 0.1179375; %Vs

par.U(i).tl = -0.14529; %AEf-1mEt2
par.U(i).t2 = 11.794; SAEt-1mEt+2CEt-1
par.U(i).t3 = 395.68; SAEt-1mEt+2CEt-2
par.U(i).f1 = 120; SmAEt2cmEt-4

par.U (i) .f2 = 0.98; %dimensionless

$%Parametersforthethermalmodel

par.TherMo (i) .CtS = 625/27; %Specificthermalcapacity
ofelectrolyzeri.e.Ct/P, [kJ/kWatts*C]

par.TherMo (i) .Ct = 625/27*%2135; %Cts*Pnom[kJ/Clor [kJ/K],AssumingPnom=2135kWatts

par.TherMo ( .hc 5.5; %$convectiveheattransfer coefficientW/mEt2C

par.TherMo (i) .A surf = 0.1; %specificraditionareaper
kAcurrentpercell, [mEt2/kA*Ncell]

par.TherMo (i) .A E1 = 0.1*%5.72*230; S%surfacearecaofthe
electrolyzer,A surf*Inom*Ncell [mEf2]

$%ParametersforFaradayeffeciencycalculations

par.EL (i) .Utn = 1.482; %thermoneutralvoltage, [V]

i)
i)

par.EL(i).nc = 230; %no.ofcells
par.EL(i) .A = 2.6; %electrodeareaofeach cell, [mEt2]
par.EL(i) .Ta = 20; %ambienttemp, [C]
par.EL (1) .Tstd = 25; %standardtemperature, [C]
end

$E1#2,performingat85%ofelectrolyzerl
par.U(2).rl = par.U(2).rl*1.2; %ohmmkf2

par.U(2).s = par.U(2).s*1.2; %V

par.U(2) .fl = par.U(2).f1*1.2; SmAEf2cmEt-4

par.U(2).£f2 = 0.97; %E1#3,performingat70%ofelectrolyzerl
par.U(3).rl = par.U(3).rl1*1.3; %ohmmkf2

par.U(3).s = par.U(3).s*1.3; %V

par.U(3).fl = par.U(3).f1*1.3; %mAEf2cmEt-4

par.U(3).f2 = 0.96;

par.N=N;

end
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