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Abstract
Context Since statistical physics and quantum mechanics were first successfully combined thanks in part to the work of
Chapman and Cowling and Hirschfelder. Extensive theoretical and experimental research has been dedicated to understanding
the kinetics of gases and gas mixtures. This integration has, among other achievements, theoretically established a direct
link between the macroscopic properties of gases whether measured or calculated and the quantum characteristics of their
constituent particles. This model successfully established straightforward mathematical relationships linking the microscopic
interactions between the atomic and/or molecular components of a gas to measurable transport properties, such as diffusion
and viscosity coefficients. It also provided explanations for how these properties vary and how they are influenced by
thermodynamic parameters like pressure, density, and temperature.
Methods The potential data available to us are either obtained from ab initio calculations or experimental measurements. The
ab initio values of the potential V (R) are derived from a quantum-theoretical approach to the molecular problem. Typically,
these methods provide the potential energy at discrete values of the internuclear distance R within a specified range. To build
the potential energy curve corresponding to the fundamental interactions, we will rely on ab initio data. Knowing this potential
allows for the numerical solution of the radial wave equation using Numerov’s method, ultimately enabling the calculation
of the phase shifts η (E). From the elastic collision phase shifts, we derive the self-diffusion coefficient D, viscosity η,
and thermal conductivity λ using the Chapman-Enskog model. For diffusion and viscosity, we perform calculations both
with accounting for the symmetry and spin effects associated with the identical nature of the colliding particles. We then
examine how these transport coefficients vary with temperature and propose a straightforward computational approach to
obtain analytical expressions for D(T ), η(T ), and λ(T ).

Keywords Ab initio potential · Second virial coefficient · Diffusion coefficient · Viscosity and conductivity

Introduction

Atomic collisions are fundamentally important in atomic
physics and molecular. They are able to adequately describe
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the kinetics of gases and their hydrodynamic properties. They
are thus important in the interpretation of some phenomena
of astrophysics, quantum chemistry, and laser physics and
plasma.We are interested in this study of purely elastic atom-
atom collisions in a gas. As we will see, such collisions can
lead to thermophysical properties and their behavior with
temperature. Combining statistical physics with quantum
mechanics and by the works of Chapman and Colling [1] and
Herschfelder et al. [2], tremendous efforts, theoretical and
empirical, have been devoted to the study of the kinetics of
gases and gas mixtures [2, 3]. This combination has, among
other things, highlighted in a purely theoretical way the direct
correlation between macroscopic properties, measured or
calculated, and quantum characteristics of gas constituents.
TheChapman-Enskogmodel [1, 2] for dilute gases, proposed
in the 1920 for the integration of the Boltzmann equation, is a
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good example of the success of such an approach. Thismodel
was able to establish simple mathematical relationships
between the interactions that prevail at the microscopic scale
between the different atomic and/or molecular constituents
of a gas and some generally measurable transport properties,
such as diffusion, viscosity, and conductivity coefficients. In
this work, we have set as goal to analyze some thermophys-
ical properties of argon gas as described by the Chapman-
Enskog model. The work is mainly motivated by the fact that
specific and recent potentials relating to the Ar− Ar dimer
have been made available to the scientific community. More
particularly, the transport coefficients will be revisited at low
and high temperatures by considering the symmetry effect.

Atomic units (a.u.) are used throughout this paper, unless
otherwise stated.

Interaction potential

The interaction of two argon atoms Ar(1s) − Ar(1s) in
the ground state occurs according to the unique molecu-
lar symmetry 1�+

g , the interaction potential V (R) between
two atoms is generally constructed in three distinct areas:
intermediate distances, RS ≤ R ≤ RL ; short distances,
0 < R ≤ RS ; and great distances, RL ≤ R < ∞.

Intermediate distances

For intermediate distances, we use the values of potential
energies obtained in the literature, between R = RS and
R = RL . In order to construct this molecular state of Ar2,

we used 63 ab initio energy values of Pitrov et al. [4] for
1.13a0 ≤ R ≤ 18.89a0. The data has led to a potential for
well depth De = −0.4525×10−3a.u. at equilibrium distance
Re = 7.110a.u. These spectroscopic data are comparable to
De = −0.45× 10−3 a.u. at Re = 7.10a.u. of Sheng et al. [5]
and with spectroscopic data De = −0.4523×10−3a.u. at Re

= 7.119a.u. of Patkowski et al. [6].

Short distances

For R ≤ 1.13a0, we use the analytical expression of Born–
Mayer

V (R) ∼ A exp (−αR) , (1)

where the potential V (R) and its first derivative dV (R)/dR
are continuous at point R = RS , and then get these parame-
ters easily.

α = −dV (R)/dR

V (R)

∣
∣
∣
∣
R=RS

(2)

and

A = V (R) exp (+αR)|R=RS
. (3)

Our calculations gives us the values of A = 155.440 and
α = 1.937. These values are deducted digitally following a
smooth connection with the data of the intermediate part.

Fig. 1 Potential-energy curves
of Ar2. The curves are
compared with published data
from Sheng et al. [5], Zeller
et al. [9], and Patkowski et al. [8]
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Fig. 2 Phase shift ηl (E) to the
energy E = 10−4 u.a. of Ar
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Great distances

Beyond R = 18.89a0, the interaction potential is generally
attractive. It can be expressed in terms of inverse powers of
R [7]

V (R) = −C6

R4 − C8

R6 − C10

R8 , (4)

where the constant coefficients C6 = 64.2890, C8 =
1514.86, andC10 = 50240 in (a.u.) are called dispersion
coefficients taken from [8].

The potential energy curve thus constructed is shown in
Fig. 1 compared to data published by Sheng et al. [5], Zeller
et al. [9] and Patkowski et al. [6], where good agreement with
these authors is observed.

Fig. 3 Second virial coefficient as a function of temperature T compared with published data from Hutem and Boonchui [13] and Dymond and
Smith [14]
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Phase shift calculation

Having properly determined the interatomic potential V (R),
it is now possible to numerically solve the Schrödinger radial
equation [3, 10]

[
d2

dR2 + k2 − 2μV (R) − l (l + 1)

R2

]

ul(R) = 0. (5)

In quantum mechanics, the ul(R) solution of this equation
will have asymptotic behavior

ul(R) ∼ sin

(

kR − l

2
π + ηl

)

. (6)

Using the Numerov algorithm [11], the Fortran code we
developed enables the calculation of the phase shifts ηl(E)

for each energy E and orbital angular momentum l. These
phase shifts are essential for determining the hydrodynamic
properties of an Ar2 gas and their temperature-dependent
behavior. The calculation of ηl(E) is made for all energies
between Emin = 10−6 u.a. and Emax = 10−1 u.a. with the
maximum value of the orbital kinetic moment lmax = 1000.
The calculations are performed quantically up to a certain
value of l = lsc, beyond which the program is forced to use
the approximate semi-classical phase shift given by the form

ηl � 3π

16
μC6

k4

l5
. (7)

Figure2 shows the phase shift ηl at an energy of E = 10−4

u.a. The shape of the asymptotic form (7) is also shown in
the same figure.

The second virial coefficient

One of the physical means available to verify the quality and
accuracy of the potential thatwe have previously constructed,
there is the evaluation of the second virial coefficient B2(T )

and analysis of their behavior with temperature T . It is well
known in chemistry-physics [2, 12] that the thermodynamic
properties of a real gas monoatomic, density n, pressure p,
and temperature T , can be described by the equation of state

p

kBT
= n + B2(T )n2 + B3(T )n3 + ... (8)

The various coefficients B is called virial coefficients and
Bi are the coefficients of virial. If the higher terms corre-
sponding to i � 2 are neglected, the equation of state (8)
becomes that of a perfect gas where there is total absence of
any mutual interaction between the atoms that make up the

gas under consideration. For sufficiently diluted gases, i.e.,
low density, the virial coefficients of orders higher may be
omitted to have

p

kBT
= n + B2(T )n2. (9)

From this expression, it appears that the second virial coef-
ficients, expressed by mechanics statistics as a function of
interatomic potential [12]

B2 (T ) = −1

2

∫
[

exp (−V (R) /kBT ) − 1
]

d3R, (10)

represent the deviation of the actual gas from its ideal behav-
ior when collision binaries are heavily involved V (R). In

Table 1 Diffusion coefficients D(T )

Temperature D
(

10−4m2s−1
)

T /K (n = n0) (p = p0) Ref. [19] Ref. [17]

1 13.95[−2] 51.15[−5]
50 0.31[−1] 0.58[−2]
80 0.049 0.014

100 0.061 0.022 0.022

150 0.090 0.049 0.049

200 0.11 0.086 0.086

273 0.155 0.155 0.154

293 0.164 0.176 0.183

300 0.168 0.184 0.185

313 0.174 0.199 0.196

350 0.190 0.244 0.245

400 0.212 0.312 0.311

450 0.232 0.383 0.384

500 0.251 0.461 0.463

600 0.288 0.634 0.637

700 0.323 0.827 0.833

800 0.355 1.041 1.048

900 0.386 1.272 1.283

1000 0.416 1.523 1.536

2000 0.673 4.933 4.990

3000 0.891 9.793 9.939

4000 1.089 15.952 16.230

5000 1.274 23.339 23.775

6000 1.452 32.300 32.513

7000 1.624 42.124 41.636

8000 1.792 52.497 53.396

9000 1.956 64.485 65.478

10, 000 2.119 77.613 78.619

Numbers in square brackets are powers of 10
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Table 2 Vicosity η and
conductivity λ, varying with
temperature T

Temperature η λ

T /K (μPa · s) [18] [19] [21] (mW/mK) [18] [19] [21]

1 0.195 0.152

30 2.839 2.861 2.215 2.236

50 4.300 4.319 4.32 3.355 3.375 3.38

84 6.863 6.871 5.113 5.355

100 8.122 8.127 8.128 7.97 6.337 6.344 6.336 6.22

150 12.081 12.085 12.075 11.94 9.426 9.432 9.425 9.32

200 15.876 15.875 15.860 15.89 12.387 12.387 12.374 12.41

273 20.955 16.349 15.142 15.23

300 22.697 22.691 22.673 22.83 17.709 17.726 17.712 17.83

350 25.753 25.736 20.093 20.112

400 28.616 28.630 28.613 22.326 22.382 22.368

450 31.315 31.333 24.432 24.503

500 33.876 33.936 33.921 26.431 26.546 26.534

600 38.667 38.788 38.574 30.169 30.354 30.344

700 43.113 43.300 43.036 33.637 33.896 33.887

800 47.296 47.549 47.540 36.901 37.232 37.224

900 51.273 51.581 40.004 40.396

1000 55.844 55.458 55.451 42.977 43.438 43.432

1500 72.435 72.998 56.515 57.191

2000 87.956 88.609 88.610 68.625 69.4248 69.425

3000 115.54 116.550 116.56 90.150 91.306 91.311

4000 140.01 141.83 109.24 111.09

5000 162.52 165.374 165.38 126.80 129.521 129.53

6000 183.82 187.70 143.41 146.99

7000 204.36 209.07 159.45 163.71

8000 224.51 229.69 175.16 179.83

9000 244.61 249.68 190.84 195.47

10, 000 265.04 269.156 269.16 206.79 210.700 210.70

this case, the potential V (R) has a spherical symmetry. One
easily obtains from Eq. (10)

B2 (T ) = −2π
∫ ∞

0

[

e−V (R)/kBT − 1
]

R2dR. (11)

Our calculated values of second virial coefficient B2(T ),
corresponding to high temperatures ranging from T = 200
to 3000 K, are shown in Fig. 3. The results are compared
with theoretical values obtained by Hutem and Boonchui
[13] and experiment values of Dymond and Smith [14]; the
agreement is good. For a certain temperature, T = TB called
Boyle’s temperature, the coefficients B2 (T = TB) = 0.
In this case, the second virial coefficient B2(T ) = 2.701 ×
10−7(cm3/mol) at Boyle’s temperature TB = 406K, it is
close to the result that Hutem and Boonchui [13] found,
which is B2(T ) = 8.856 × 10−7 (cm3/mol) at TB =
410.151K.

Transports coefficients

Diffusion and viscosity coefficients

According to the Chapman-Enskog method, the diffusion
coefficient D of a gas, diluted and monoatomic, of density
n1 in another gas, diluted and monoatomic, of density n2 is
equal to [1–3]

D(T ) = 3

8 (n1 + n2)

(
πkBT

2μ

)1/2 1

�
(1,1)

(T )
, (12)

where �
(1,1)

(T ) so-called integrals collision of diffusion

�
(1,1)

(T ) = 1

2 (kBT )3

∫ ∞

0
E2σD (E) exp (−E/kBT ) dE,

(13)
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Generally, n1
�

n2, where n2 = n, Eq. 12 can be simplified to the following
form

D(T ) � 3

8n

(
πkBT

2μ

)1/2 1

�
(1,1)

(T )
. (14)

if n1 ≡ 0, the diffusion coefficient is called self-diffusion
coefficient. The diffusion coefficient expressed by formulas
(12) and (14) is given as a function of density. It is also possi-
ble to calculate the diffusion coefficients at a given pressure
p, using the ideal gas law p = nkBT .

The coefficient of viscosity η is given at temperature T ,
by [2]

η(T ) = 5

16

√
2μπkBT

�(2,2) (T )
(15)

where �
(2,2)

(T ) so-called integrals collision of viscosity

�(2,2) (T ) = 1

4 (kBT )4

∫ ∞

0
E3σV (E) exp (−E/kBT ) dE .

(16)

σD (E) , σV (E) are diffusion and viscosity cross sections. In
quantum mechanics, it is appropriate to consider the nuclear

spin and the symmetry effect that is due to the indiscernabil-
ity of atoms colliding in the gas [2]. The cross sections of
diffusion and viscosity, symmetrical (S) and antisymmetric
(A), are [15, 16]

σD = s + 1

2s + 1
σ

(S)
D + s

2s + 1
σ

(A)
D (17)

where

σ
(S)
D (E) = 8π

k2
∑

l even

(2l + 1) sin2 ηl (18)

σ
(A)
D (E) = 8π

k2
∑

l odd

(2l + 1) sin2 ηl . (19)

and

σV = s + 1

2s + 1
σ

(S)
V + s

2s + 1
σ

(A)
V (20)

where

σ
(S)
V = 8π

k2
∑

l even

(l + 1) (l + 2)

(2l + 3)
sin2 (ηl+2 − ηl) (21)

σ
(A)
V = 8π

k2
∑

l odd

(l + 1) (l + 2)

(2l + 3)
sin2 (ηl+2 − ηl) . (22)

In the case of 40Ar (s = 0).

Fig. 4 Fitting data of self-diffusion coefficient
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Fig. 5 Fitting data of viscosity
coefficient

Conductivity coefficient

Knowledge of the coefficient of viscosity η allows the coeffi-
cient of thermal conductivityλ to bededuced.This coefficient
is related to η(T ) by the formula

λ(T ) = 5

4

Cv

μ
η(T ) (23)

where Cv is the specific heat per atom assumed, in general,
to be 3kB/2 for monoatomic gases [2]. If we refer to the

molar mass m of the chemical species forming the gas under
consideration, it comes.

λ(T ) = 15

4

R

m
η(T ). (24)

with R � 8.315Jmol−1K−1 being the molar constant of the
gases.

Our calculations of the self-diffusion coefficient D(T ) at
temperature region from T=1K to T=10,000K are presented

Fig. 6 Fitting data of
conductivity coefficient
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in Table 1. These results are given for density n0 = 2.686×
1025m−3 and gas pressure p0 = 101.325kPa. Our values are
compared in the table with those obtained by Ghimire and
Adhikari [17] and Song et al. [19], we also found in particular
at T = 273K, the value of D = 0.155 cm2s−1 which is sim-
ilar to experimental value 0.157 cm2s−1 of McQuarrie [20].

Moreover, our results of the coefficients of viscosity η(T )

and thermal conductivity λ(T ) are presented in the Table 2
and compared with some values published at temperature
region from T = 1K to T = 10, 000K. The agreement of
our values with the data of Sharipov and Benites [18], Song
et al. [19], andKestin et al. [21] is generally good. In addition,
we found for T = 273K, the value of η = 20.90 (μPa · s) et
λ = 16.31 (mW/mK) that are similar to experimental values
η = 21 (μPa · s) , λ = 16.3 (mW/mK) of [22].

We have also used our data on diffusion D(T ), viscosity
η(T ), and conductivity λ(T ) coefficients to determine their
law of variationwith temperature T .We have for this purpose
used the functions

D(T ) ∼ AT ζ exp (−ξ/T )

η(T ) ∼ BT ζ exp (−ξ/T )

λ(T ) ∼ CT ζ exp (−ξ/T )

to fit our values of D, η, and λ in the temperature range
between 100 and 10,000 K. If η is inμ Pas, λ in mWm−1K−1

and T in K, the algorithm we used generates the constant
parameters for diffusion A = 8.520×10−10±2.093×10−11,

ζ = 1.739 ± 0.002, ξ = −85.885 ± 14.11 for viscosity
B = 0.504±0.020, ζ = 0.679±0.004, ξ = 15.870±8.377,
for conductivity C = 0.393 ± 0.0135, ζ = 0.679 ± 0.004,
ξ = 15.871 ± 8.387, It should be noted that the values of
B,C , ζ , and ξ are very close for viscosity and conductivity.
The graphs in Figs. 4, 5, and 6 show the result of this fitting.

Conclusion

Our work focused on the quantum study of atomic colli-
sions where the case of the collision of two argon atoms
was developed. We have, in a first step, built the poten-
tial energy curve along which two fundamental argon atoms
approach. This potential was used to solve numerically the
radial wave equation and, consequently, determine numeri-
cally, for any E energy and orbital kinetic moment, the phase
shifts. In particular, we evaluated the quality of the Ar-Ar
potential built by calculating the second virial coefficients.
The results we obtained of these coefficients showed their
good agreement,mainly at high temperatures, with the values
alreadypublished. In a second step,weused these phase shifts
to quantically determine the transport coefficients, diluted
gases formed of 40Ar, by the Chapman-Enskog method. Our

calculations have been expanded to include spin and symme-
try effects. Agreementwith literature results is demonstrated.
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