

République Algérienne Démocratique et Populaire
Ministre de l'enseignement Supérieur et de la Recherche Scientifique

Département Socle Commun Science et Technologie
Faculté de Technologie
Université Batna 2

First International Conference Hybrid on Chemistry, Material Energy & Environment 2025 (CME'2025)

CERTIFICATE OF ATTENDANCE

The Chairman of the Organizing Committee of *First International Conference Hybrid on Chemistry, Material Energy & Environment 2025 (CME'2025)* certifies that: Mr, Mrs, Miss: Fadila MEZRAG

Participated in the CMEE on November 4-6, 2025, with a communication of type Poster entitled: Tailoring Optoelectronic Characteristics of $ZnxCd1-xS$ Alloys through Band Gap Modulation

Co-authors: Nor El Imane Beddar, Nadir BOUARISSA

Chairman of CME'25

04-06/11/2025

Dr. BAIRA Fayçal

Chairman of CMEE'25

The 04/11/2025

Tailoring Optoelectronic Characteristics of $Zn_xCd_{1-x}S$ Alloys through Band Gap Modulation

MEZRAG Fadila^{*}, BEDDAR Nor El Imane² and BOUARISSA Nadir³

¹*Laboratory of Materials Physics and Its Applications, Physics Department, Faculty of Science University of M'sila, 28000 M'sila, Algeria*

²*Socle commun SNV Faculty of Science University of M'sila, 28000 M'sila, Algeria*

³*Laboratory of Materials Physics and Its Applications, Physics Department, Faculty of Science University of M'sila, 28000 M'sila, Algeria*

^{*}*(fadila.mezrag@univ-msila.dz) Email of the corresponding author*

Abstract: In this research, we examine the optical and dielectric characteristics of $Zn_xCd_{1-x}S$, a ternary alloy system with a zinc-blende crystal structure. Our analysis employs a pseudopotential model based on the virtual crystal approximation, which accounts for the effects of compositional disorder. Through our calculations, we investigate various aspects of the refractive index and determine the most suitable model. Additionally, we determine the high-frequency and static dielectric constants for the materials studied. Crucially, we explore the band gap energy of $Zn_xCd_{1-x}S$, which is a fundamental parameter influencing its optical and electronic properties. The ability to tune the band gap energy through compositional variation makes this alloy system particularly attractive for diverse optoelectronic applications, including solar cells, light-emitting diodes, and photodetectors. Our findings show good agreement with previously published results in the literature. These results provide valuable insights for the application of this data in optoelectronics and offer useful information for further research in this field, particularly in the context of band gap engineering for specific device requirements.

1. INTRODUCTION

Semiconductors II–VI are widely used in electronics and optoelectronic devices. These materials have a direct band-gap [1–3] and crystallize in wurtzite or zinc-blende structures and are regarded as excellent candidates for UV and blue applications [4–7]. ZnS and CdS are II–VI semiconductor compounds with wide band gaps that crystallize in wurtzite or zinc-blende [8, 9]. One method for practically continuously changing the energy band gap of semiconducting materials over a wide variety of energies is to use ternary alloys [10–13]. $Zn_xCd_{1-x}S$ can be made by combining CdS and ZnS, given the importance of $Zn_xCd_{1-x}S$ in technological applications. This work estimates the optical characteristics and energy band structure of $Zn_xCd_{1-x}S$ using a revised VCA that involves the disorder of the alloy. The purpose of this

investigation is to determine how much the disorder impact affects the optical characteristics and band structure energies of $Zn_xCd_{1-x}S$.

2. COMPUTATIONAL METHOD

The (EPM) technique is utilized to compute the energy band structure [14–16], while the alloy's potential is calculated using the improved virtual crystal approximation as shown in [17, 18],

$$V_{alloy}(r) = V_{VCA}(r) + V_{dis}(r) \quad (1)$$

The disorder effect provides a non-periodic potential, namely $V_{dis}(r)$ in equation (1). The equation used to calculate the pseudopotential form factors is written as follows:

$$V_{alloy}(G) = (1-x)V_{CdS}(G) + xV_{ZnS}(G) - p[x(1-x)]^{\frac{1}{2}}(V_{ZnS}(G) - V_{CdS}(G)) \quad (2)$$

In this case, G is a reciprocal lattice vector, and p is a factor that can be changed. When the compositional disorder is considered, the value of p is -0.045, resulting in a band gap bowing value of roughly 0.83 eV. This number is similar to the 0.827 eV found by [19, 20]. The method of a non-linear least-squares is used to change the defined form factors. [21-23]. The band-gap energies chosen in the fitting for ZnS and CdS are shown in Table 1. The resulting adjusted form factors and lattice parameters for ZnS and CdS are shown in Table 2.

Table 1. Band gap energies fixed in the fits for ZnS and CdS.

Compound	$E_{\Gamma-\Gamma}$ (eV)	$E_{\Gamma-X}$ (eV)	$E_{\Gamma-L}$ (eV)
CdS	2.36 ^a	3.64 ^a	3.50 ^a
ZnS	3.9 ^b	3.8 ^c	4.90 ^d

^a [24]; ^b [25]; ^c [26]; ^d [27].

Table 2. Pseudopotential parameters for ZnS and CdS.

Compound	Form factors (Ry)						Lattice constant (Å)
	V _S (3)		V _S (11)	V _A (3)	V _A (4)	V _A (11)	
CdS	-0.23	5.83	0.06	0.134	0.096	0.019	5.83
ZnS	-0.396388	6.48	0.459548	0.1311	0.28	0.708145	6.48

As shown below, the refractive index (n) was calculated using three distinct models, all of which are directly related to the energy band-gap.

(i). Based on an atomic model, the Moss formula [28] is:

$$E_g n^4 = k \quad (3)$$

Where E_g represents the energy band gap and $k=108$ eV [28].

(ii). The Ravindra et al. [29] relation, (4)

Here $\alpha = 4.084$ and $\beta = -0.62 \text{ eV}^{-1}$

(iii). The Hervé and Vandamme [30] empirical equation ,

$$n = \sqrt{1 + \left(\frac{A}{E_g + B} \right)^2} \quad (5)$$

With $A = 13.6 \text{ eV}$ and $B = 3.4 \text{ eV}$

3. RESULTS AND DISCUSSION

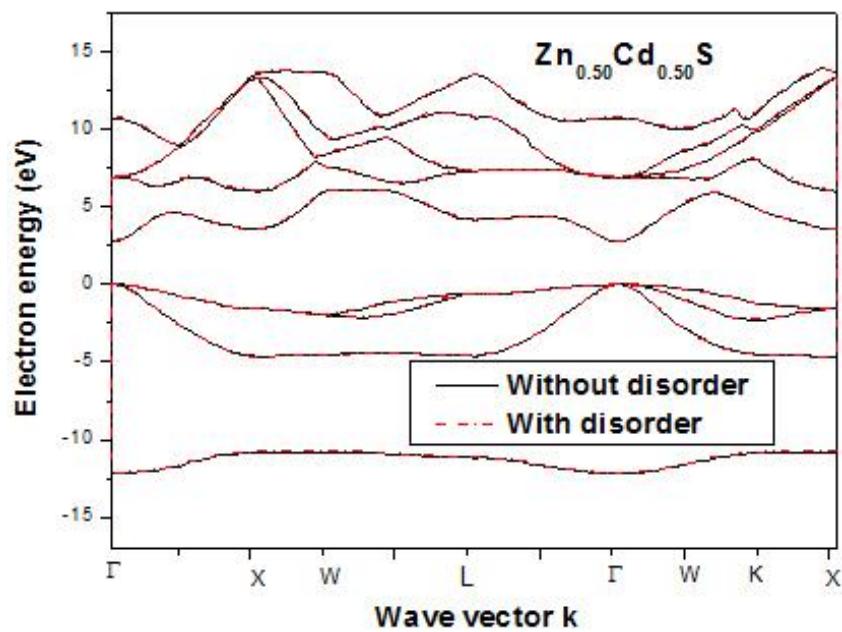
The calculated electronic band structure of zinc-blende $\text{Zn}_{0.50}\text{Cd}_{0.50}\text{S}$ is shown in Figure 1, with consider or not the compositional disorder. The maximum of the valence bands is at Γ . The minimum of conduction band can also be found at Γ . As a result, $\text{Zn}_{0.50}\text{Cd}_{0.50}\text{S}$ is a direct band-gap. It should be noted that the The distribution of the valence bands is substantially lower, the conduction bands are more delocalized. In terms of quality, the general shapes of both are remarkably similar to the binary compound. It should be underlined that compositional disorder is irrelevant on the electronic structure of $\text{Zn}_{0.50}\text{Cd}_{0.50}\text{S}$. The composition dependency of the

refractive index determined using the (3-5) relationships is shown in Figure 2 (a) and (b) with and not consider the effect of disorder. It should be observed that the change in n versus x for all models evaluated, has a non-linear tendency. The principal consequences of disorder are assumed to be responsible for this non-linearity. The models used show the same monotonic declining trend qualitatively. For various compositions x , the high-frequency dielectric constant has been approximated utilizing the equation:

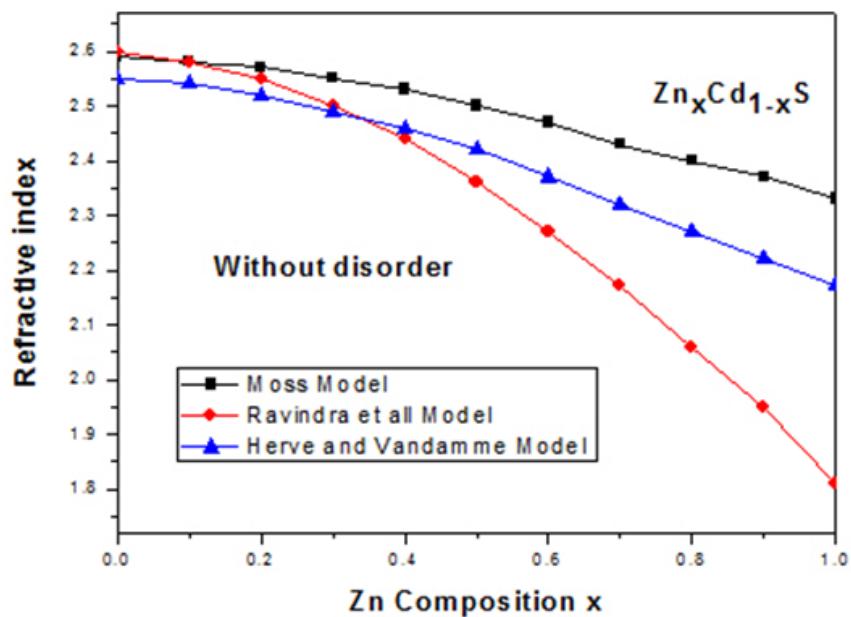
$$\varepsilon_{\infty} = n^2 \quad (6)$$

Figure 3 illustrates our findings, the declines in ε_{∞} with rising x during the change from CdS to ZnS, demonstrating a definite non-linear tendency for all models examined. When the high-frequency dielectric constants decrease with increasing composition x , the material's polarity and capacity decrease to stabilize charges.

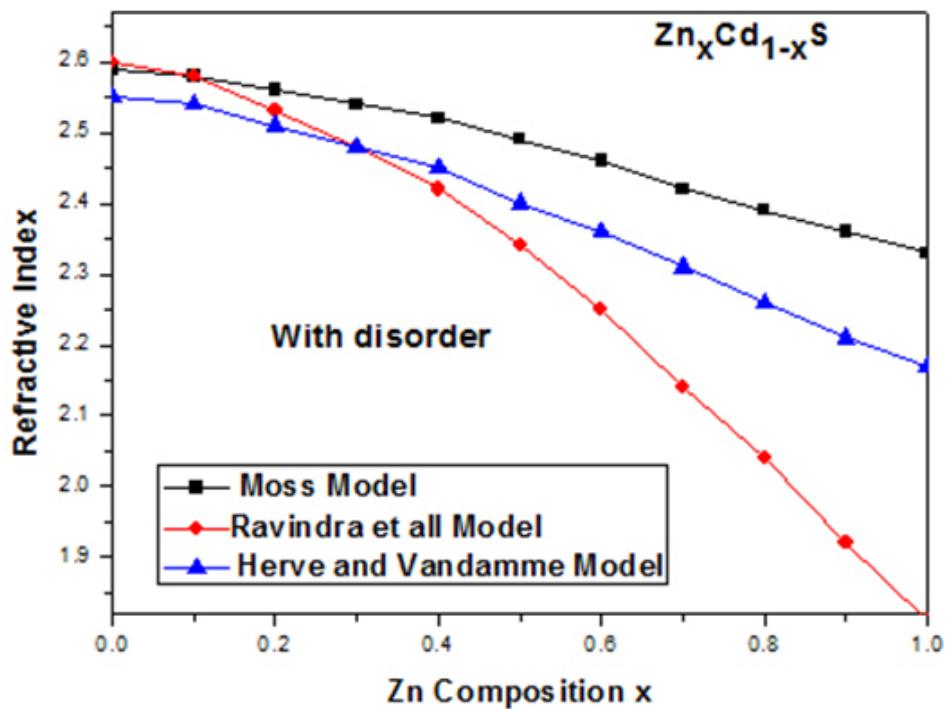
4. CONCLUSION


Finally, the energy band structure and optical characteristics of $Zn_xCd_{1-x}S$, ternary semiconductor alloys have been examined in terms of composition x . Our results are founded on the EPM, using a revised VCA that consider the effet of compositional disorder. This had no effect on the energy band structure of $Zn_xCd_{1-x}S$, and it was found that this semiconductor had a direct-band gap across the full Zn concentrations x in the range ($0 \leq x \leq 1$). Our findings are fairly consistent with the available experimental and theoretical data reported in the literature. In all models studied, the refractive index and high-frequency dielectric constant ε_{∞} altered nonlinearly with regard to x , indicating that alloy disorder caused a slight but considerable bowing parameter.

REFERENCES


1. Tomashyk, V., Feychuk, P., and Shcherbak, L. 2013. Ternary alloys based on II-VI semiconductor compounds. CRC Press, Boca Raton.
2. Lei, X., Wong, C. H., Buntov, E. A., Zatsepин, A. F., Zhao, G. J., and Boukhvalov, D. W. 2019. First-principle studies of optical properties of $Be_xZn_{1-x}O$ ternary mixed crystal. Optik 178:691-697.

3. Bouarissa, N. 2007. Pseudopotential calculations of $\text{Cd}_{1-x}\text{Zn}_x\text{Te}$: Energy gaps and dielectric constants. *Physica B: Condensed Matter*, 399(2), 126-131.
4. M. Isshiki, J. Wang. 2017. Wide-Bandgap II-VI Semiconductors: Growth and Properties, in Springer handbook of electronic and photonic materials. Springer handbooks. ed. by S. Kasap, P. Capper (Springer, Cham,)
5. Willardson, R. K., Weber, E. R., Nurmikko, A. V., & Gunshor, R. L. 1997. II-VI Semiconductor Blue/Green Light Emitters. Academic Press.
6. S. Saib, N. Bouarissa. 2007. *Phys. Status Solidi B* **244**(3) :1063–1069.
7. L. Hannachi, N. Bouarissa. 2009. *Phys. B* **404** 20:3650–3654.
8. WWW. Semiconductors. CO. UK.
9. D.W. Palmer. 2003. Properties of the II-VI Compound Semiconductors, F. Benmakhlof, A. Bechiri, N. Bouarissa, *Solid State-Electron*. 47(8):1335-1338.
10. M. Jaros, *Rep. Prog. Phys.* 1985. *Phys.* 48(8):1091.
11. A. R. Degheidy, E. B. Elkenany, O. A. Al-frnwani. 2018. *Comput. Condens. Matter* 16, e00300.
12. Mezrag, F., Mohamed, W. K., and Bouarissa, N. 2010. The effect of zinc concentration upon optical and dielectric properties of $\text{Cd}_{1-x}\text{Zn}_x\text{Se}$. *Physica B: Condensed Matter*, 405(9):2272-2276.
13. Cohen, M. L., and Chelikowsky, J. R. 1989. Electronic structure and optical properties of semiconductors. Springer, Berlin.
14. Martin, R. 2004. Electronic Structure—Basic Theory and Practical Methods, Cambridge Univ. Pr., West Nyack, NY.
15. Bouarissa, N. 2001. Optoelectronic properties of $\text{InAs}_{1-x}\text{Px}$ semiconducting alloys. *Materials Science and Engineering: B* 86(1): 53-59.
16. Lee, S. J., Kwon, T. S., Nahm, K., and Kim, C. K. 1990. Band structure of ternary compound semiconductors beyond the virtual crystal approximation. *Journal of Physics: Condensed Matter*, 2(14): 3253.
17. Bouarissa, N. 1998 Effects of compositional disorder upon electronic and lattice properties of $\text{Ga}_x\text{In}_{1-x}\text{As}$. *Physics Letters A*, 245(3-4):285-291.
18. Lee, S. J., Kwon, T. S., Lee, H. S., Nahm, K., and Kim, C. K. 1989. An EPM calculation of band structure of zincblende semiconductor alloys. *Journal of Physics Condensed Matter* 1(30): 5001.


19. T. Yokogawa, T. Ishikawa, J. L. Merz, T. Taguchi. 1994. *J. Appl. Phys.* 75(4):2189-2193
20. Algarni, H., Bouarissa, N., Khan, M. A., Al-Hagan, O. A., & Alhuwaymel, T. F. 2019. Optical constants and exciton properties of $ZnxCd1-xS$. *Optik* 193 :163022.
21. Kobayasi, T., and Nara, H. 1993. Properties of nonlocal pseudopotentials of Si and Ge optimized under full interdependence among potential parameters. *Bulletin of College of Medical Sciences, Tohoku University* 2(1):7-16.
22. Kassali, K., and Bouarissa, N. 2002. Composition and temperature dependence of electron band structure in $ZnSe1-xSx$. *Materials chemistry and physics*, 76(3): 255-261.
23. Bouarissa, N., and Boucenna, M. 2008. Band parameters for AlAs, InAs and their ternary mixed crystals. *Physica Scripta*, 79(1): 015701.
24. Y. P. Feng, K. L. Teo, M. F. Li, H. C. Poon, C. K. Ong, J. B. Xia. (1993). *J. Appl. Phys.* 74(6),3948-3955.
25. U. Lunz, C. Schumacher, J. Nurmberger, K. Schull, A. Gerhard, U. Schüssler, B. Jobst, W. Faschinger, G. Landwehr. 1997. *Semicond. Sci. Technol.* 12(8): 970.
26. O. Madelung. 1996. editor, *Semiconductors-Basic Data* (Berlin: Springer)
27. Kassali, K., and Bouarissa, N. 2002. Composition and temperature dependence of electron band structure in $ZnSe1-xSx$. *Materials chemistry and physics*, 76(3): 255-261.
28. V.P. Gupta, N.M. Ravindra.1980. *Phys. Stat. Sol. (b)* 100:715.
29. N.M. Ravindra, S. Auluck, V.K. Srivastava.1979. *Phys. Stat. Sol. (b)* 93 :K 155.
30. P.J.L. Hervé, L.K.J. Vandamme.1994. *Infrared Phys. Technol.* 35: 609.

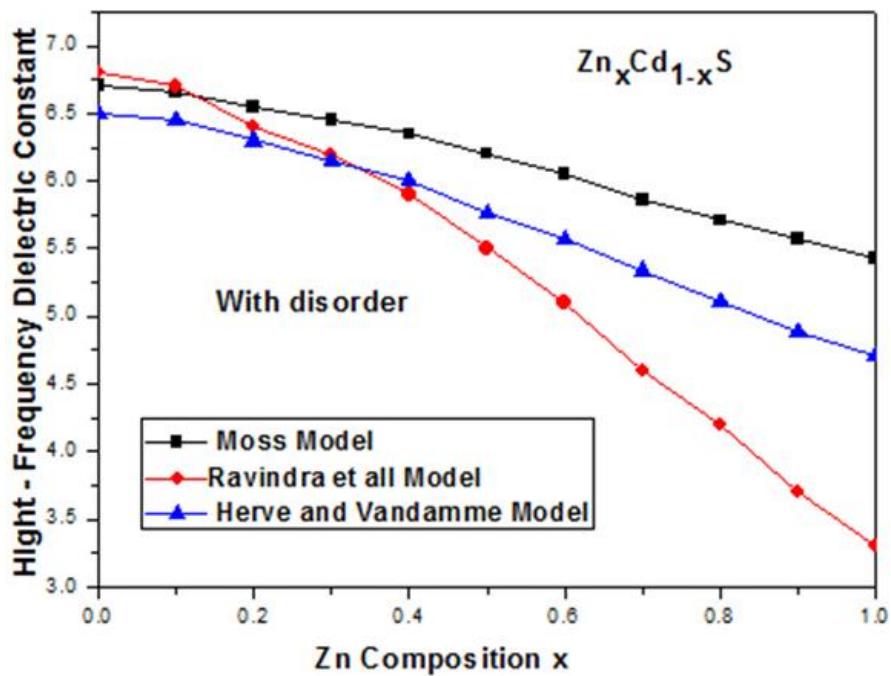

Fig.1. Electronic band structure of zinc-blende $\text{Zn}_{0.50}\text{Cd}_{0.50}\text{S}$.

Fig.2 (a). Refractive index as a function of Zn composition x, in $\text{Zn}_x\text{Cd}_{1-x}\text{S}$ without disorder

Fig.2 (b). Refractive index as a function of Zn composition x, in Zn_xCd_{1-x}S with disorder

Fig.3. High-frequency dielectric constant function of Zn composition x, in Zn_xCd_{1-x}S with disorder