11éme Colloque Africain sur la Recherche
en Informatique et en Mathématiques Appliquées

11th African Conference on Research in Computer
Science and Applied Malthemaltics

frlcan Cr.:mference on R’esearch g L‘.Dmpurer
Science and Applied Malthemaltics

CAR 12012
/—\Iglers Algerla

October 13-16, 2012

http://www.cari-info.org

Attestation De Participation

Délivrée a

Pour la présentation de sa communication

« Modeling Software Evolution through Version Control System »

frestitit i Fochere
¥ e ﬂﬁruﬁ%&ﬂwﬂr& Wt

ENATHNALE i
ﬁﬂ‘&'ﬂﬁt Eglﬁ el 144 0 1P
D INECMLATI .,;q....n..i“" L U 2 T M

21 DX [X] XX DX DX DX DX RXK DX RXX X DI DRI XIDApe
AL OO 2 AN D

Wy
N
. 3
N

Modeling Software Evolution through Version
Control System

Hanene CherditNora Bounour

Department of Computer Science

Badji Mokhtar — Annaba University

Computer science research laboratory (LRI)

P.O. Box 12, 23000 Annaba ALGERIA

*hanene _cherait @yahooinora_bounour@yahoo.fr

ABSTRACT. Software engineering is concerned with the phenomenon of software evolution since
software was developed. Real software systems require a continuous change to satisfy the user's
new needs, and to avoid the degradation of software structure. To treat the evolution phenomenon,
there are works that suggest software evolution models. Others have been interested by software
evolution analysis. This last is mainly based on the information contained in versioning systems.
But the evolutionary information they contain is incomplete and of low quality, hence limiting the
scope of evolution research. In this paper, we analyze the interesting relationship between
evolution models and version control systems to deduce a convenient way to integrate them in a
single evolution model. We emphasize the works having aimed this integration. And, we illustrate
this integration by our proposed model for version control system of aspect oriented software.

RESUME. L'ingénierie du logiciel est concernée par le phénomeéne d'évolution du logiciel depuis
que le logiciel a été développé. Les systéemes logiciels réels exigent un changement continu pour
satisfaire les nouveaux besoins de I'utilisateur, et éviter la dégradation de la structure du logiciel.
Pour traiter le phénomeéne de I'évolution, il y a des travaux qui suggerent des modeles supportant
I'évolution du logiciel. D'autres se sont intéressés a I'analyse de I'évolution du logiciel. Cette
derniére est basée principalement sur I'information contenue dans les systémes de controle de
versions. Mais I'information évolutionnaire qu’ils contiennent est incompléte et de basse qualité, Ce
qui limite I'étendue de recherche de I'évolution. Dans ce papier, nous analysons les relations
intéressantes entre les modéles d'évolution et les systemes de contrdle de version pour déduire
une maniére convenable pour intégrer les deux dans un seul modéle d’évolution. Nous mettons
I'accent sur les travaux ayant visés cette intégration. Et, nous illustrerons cette derniére par notre
modéle proposé pour le systeme de contréle de version des programmes orientés aspect.

KEYWORDS: Evolution models, version control systems, change-based evolution, aspect oriented
programming.

MOTS-CLES : Modeles d’évolution, systémes de contrdle de versions, évolution basée
changement, programmation orientée aspect.

2 H.Cherait & N.Bounour

1. Introduction

Software systems need to be changed in theirrigtioriginal requirements may
change to consider the new ones or to supportytstera environment changes. These
requirements for modifications have an impact an dkerall software system. One of
the preoccupations of the organizations is to atalthis impact without implementing
the changes. Evolution is then an important mechano replace these changes on the
system and to guarantee its long life. The reseeaifcint spent in the software evolution
topic shows the importance of the domain.

We conclude that the works in software evolutioa focused on two main axes:
evolution modeling and evolution analysis (Figuje The first one treats the evolution
process, where different sources (source codejtactire, documentation...) are used
to construct a software model. Then, evolution apens (changes) are applied on this
model to guarantee that the software will evolvedisecure and coherent way using
different mechanisms (change impact analysis, ah@ngpagation...etc).

The second axis is concerned with evolution anslgsid more specifically history
evolution analysis. Generally; the repository ofsien control systems is the basic
source for understanding and analyzing softwaréuden. In recent years an extensive
research has been carried out on exploiting thelthved information residing in
versioning repositories for purposes like reverswireeering or cost estimation.
Analyzing version repositories can help to identifjcessary changes, understand the
impact of changes, and provide a facility to tralok changes and to deduce logical
relations between changed entities.

Although, these two axes are evolved separatelwbuielieve that they converge to
the same goal “software evolution”. This is why stggest that the integration of them
in a single process is a promising step towardcanrate and efficient evolution model.
In this paper, we discuss the interesting relatignbetween evolution modeling and
evolution analyzing to deduce a convenient wayntegrate them in order to improve
the software evolution process. We propose a nagiore control system produced by
this integration. Our proposal is dedicated to espdented paradigm. More attention is
given to aspect oriented software evolution, beedhese systems are widespread used
in nowadays as an efficient and modularized progreng methodology.

The paper is organized as follows. In the nextisectwe explore the evolution
analysis research area. Next, we discuss the liofitsctual version control systems.
Section 4 presents the change-based versioningedsa® our proposal for aspect
oriented software. Related works are surveyed aticge 5. Finally, we conclude our
discussion in section 6.

Modeling Software Evolution through Version Control System 3

Evolution modeling Version control system Evolution analysis
Source code . .) o
Data modeling Managing version History visualizing
D repository
Architecture Extracting evolution
Change modeling Change tracking couplings
Documentation iL
Version merging Detecting hot-spots
Change analyzing
Conflict detection Data mining
Change - -
implementation .Chang.e Repository querying
differencing

N

Version
repositon

Figure 1. Evolution Modeling and Evolution Analysis

2. Evolution Analysis

To understand why software systems become lesstam@ble when changed
continuously (program comprehension), and to reddoeir maintenance costs
eventually (reverse engineering); we have to ingat their version repositories. The
research field of this investigation is knownsa$tware evolution analysigigure 1).

Software repositories contain a wealth of informatabout the software. The task is
just to analyze them and uncover the informatioom& works visualize the software
evolution histories [5]. Other works focused on ragting logical dependencies
“semantically coupled components may not structyidgpend on each other” [9]. Such
logical dependencies can be uncovered by analyhiegvolution history of a system.
For example, in [8] the authors exploit historicaita extracted from repositories and
focus on change couplings. Ying et al [6] propoadadchnique to determine the impact
of changes based on association rules. In [9]atitleors formalize logical coupling as a

4 H.Cherait & N.Bounour

stochastic process using a Markov chain model7]méta mining is applied to version
histories in order to guide programmers along eglahanges.

Other techniques are proposed to extract metarmEtion from the software
repositories. For example in [3] the authors prepasmodel as a graph in which the
different entities stored in the repository becoragices and their relationships become
edges. They then define SCQL, a first order, antpbtal logic based query language
for source control repositories.

Based on our analysis of the field, we believe thrateed, actual versioning systems
provide rich information for analyzing software &wion, but this information still
coarse-grained and not accurate enough to perforeffigient evolution analysis”. This
is discussed in the next section.

3. Limits of Current Version Control Systems

The source code repository has a pivotal role fmlwgion analysis. However, the
coarse-grained nature of the data stored by commasied VCS often makes it
challenging for a developer to analyze them [2]a lprevious study [4] it is showed that
most versioning systems in use today are indedddas lot of information about the
system they version. So, they are not plainly fatiery for evolution research. There
are two shortcomings which have major consequergesare the cause of most of the
other ones:

(1) Most VCSs are file-based, rather than entity-based. Romain Robbes and
Michele Lanza claim that the commonly held visidracsoftware as a set of files, and
its history as a set of versions does not accyragpiresent the phenomenon of software
evolution “Software development is an incrementalcpss more complex than simply
writing lines of text” [4]. So, we can not followhé evolution of every entity in the
software, and consequently, the evolution analigsisore difficult and not efficient
enough for program comprehension or reverse engnge

(2) Most VCSs are snapshot-based, not change-based. The program is frozen as a
snapshot with a particular time stamp without rdoag the actual changes that happen
in between two subsequent snapshots (recover telyehd result of an evolution
session). The time order of changes is lost, ardhit not be perfectly derived. For
understanding changes, the time order might be fitapb Moreover, the time order is
useful for conflict detection and merging [11]. @Gpings of changes to composite
changes are lost. Refactoring operations e.g. casassy changes that can be grouped.
This reduces the number of changes, and repretimntshange at a higher level of
abstraction.

Modeling Software Evolution through Version Control System 5

Evolution modeling Change control system
Source code
Data modeling Managingchange
repository
Architecture
: A - Change tracking
Documentation % Change analyzing K Change modeling
Change-based
Change impact ~ merging
analysis
Change
. . Change-based
implementation repository Change-based
Change Conflict detection

propagation

Figure 2. Change-based evolution

Deriving composite changes, e.g. to detect refager is difficult and in some cases
even impossible due to masking problems [11]. Ttéisadvantages will reduce the
ability of users to understand change. So the mitipo of a new VCS, where the
change is the first class entity can be a fundaahesdurce for software evolution
analysis. Many works prove that change-based #walis more sufficient then state-
based evolution ([2], [11]). In [2] the authors peothat for tasks that needed fine-
grained change information, or in which the chrogatal order was important, change-
based version control system outperformed the homes. And in [11] the authors
describe the comparison between State-Based anthf@pebased Change Tracking.
To resume up, only a change-based VCS allows fiectdfe research on evolution,
since it provides all the required information. AW CS opens new ways for both
developers and researchers to explore and evolvgle® systems. The next section
discusses this idea and presents or proposed nasitrol system for aspect oriented
software.

4. Change-based Version Control System

4.1 Principle

The history is today the center of evolution reskal his is why; we believe that an
accurate and efficient VCS is the key concept tprovie software evolution. This last

6 H.Cherait & N.Bounour

can be constructed by integrating the versioningharism in the evolution model of a
software system. One effective way to perform thisgration is by putting the source
code change in the center of this process i.e.ggd®to the system must be stored
directly in a change-based repository by the VA§ue 2).

The change-based VCS records the changes, whijeott®ur, raising change to a
first class concept. There is no need for differeggFigure 2), since the changes are
recorded and stored, and thus do not needs to fineeddater on. It can preserve the
time order in which the changes occurred. This ngpdrtant information for
understanding changes, but is also useful for otggplications such as conflict
detection and merging. The change-based VCS is raooairate, convenient and
efficient then the actual ones. The rich changebaepository created by this VCS
contains a more wealth of information about theavearfe, so, it is a perfect source for a
high quality evolution analysis.

4.2 Version Control System for Aspect Oriented Soft ~ ware

We have focused on the change-based evolutionpoesented above to propose a
version control system (change control system) Aspect oriented software. We
proposed a VCS dedicated for these software systegather the changes done on the
system through the time (more details can be faord]). We suggest the use of the
Algebraic Graph Rewriting as a support for the psmd VCS [13].

Our approach consists to model the source codecalmeed graph; representing the
different entities of the system and the relatibetwveen them. The evolution changes
are formalized using rewrite rules on the systeaplgrand stored in a rewriting rule
based repository. In our approach, we do not viehistory of a software system as a
sequence of versions, but as the sum of changehwidught the system to its actual
state. Our VCS follows this principle: (1) the cbanoperations that serve to sail
between the different versions of the softwarecanesidered as the rewrite rules on the
source code graph. (2) we propose a rule-basedsitepo as a versioning system:
instead of recording the entire changed graphwession, we only records the evolution
sequences (the set of rewrite rules) on this grapla Version is: “sequence of rewriting
rules applied to the aspect oriented software grigpmulating a given evolution
request” i.e. we can reproduce every version of dyem by the execution of the
sequence of rewrite rules associated.

The proposed version control system avoids thelgnab of actual version control
systems “file-based, snapshot-based”. Our repgsitachange-based therefore a change
can be described as one or more rewrite rulescthetge the program. In contrast to
shapshot-based VCS our VCS does not keep trackffefaht versions of an entity.
Instead it captures all changes made to an ergtitg\arite rules.

Modeling Software Evolution through Version Control System 7

5. Related Work

Based on our analysis of the field, there is a \ittlg work in this research area
“change-based evolution”. The first work that teedhis idea for object oriented
software is the one of Romain Robbes and Michetee&d10]. They represent a state of
a program as an abstract syntax tree (AST) ofdtsce code. Then, changes to the
program are represented as explicit change opesatipits abstract syntax tree. Change
operations are tree operations, such as additisrrooval of nodes, and modifications
of the properties of a node. Hattori and Lanza] [@2end Robbes’s change based
software evolution model [10] into a multi developentext by modeling the evolution
of a system as a set containing sequences of chiambere each sequence is produced
by one developer. Thus, the evolution of a systemprises the combination of the
sequences of changes produced by each individual.

Although, the idea of these works is similar to guoposal where the change is
treated as a first class entity, but the use of&8& is not a good choice for software
evolution (although it is more sufficient for sofire development). The AST captures
the source code structure but it does not covatagsemantic, so the change repository
is not sufficient for evolution analysis i.e. sttwr@l information is not enough for
coupling detection, or data extraction,...etc. Intcast, our proposal is promising to
better improve and accurate the change reposik@eycan capture structural as well as
semantic information about the change (rewritings).

6. Conclusion

In this paper, we reviewed the state-of-the-adaftware evolution research and we
concluded that: To provide an accurate model fpressing software evolution process,
we need to recognize the change as an explicitgghenon and model it as a first class
entity. This is performed by the integration of sien control system in the software
evolution model. Although, there is a little woidk fthis axis of evolution research, but it
is a promising way for best modeling and contrgllsoftware evolution process. We
proposed a version control system for aspect atieabftware, where the change is the
first class entity.

Our proposal is based on the algebraic graph regrformalism which gives it a
formal background and an automatic implementati@thiod (employing graph rewrite
tools). Our approach consists to model the sounde @s a colored graph; representing
the different entities of the system and the refathips between them. The evolution
requests are formalized using rewriting rules andistem graph. And, we proposed a
rewriting rule-based versioning system to manageetolution history eliminating the
limits of the current versioning systems.

8 H.Cherait & N.Bounour

7. References

[1] H. Cherait and N. Bounour. “Toward a Version CohtSystem for Aspect Oriented
Software”. In Proceeding of Model and Data Engineering (ME)1Obidos, Portugal.
LNCS 6918, pp. 110-121, September 28-30th 2011

[2] Lile Hattori, Marco D’Ambros, Michele Lanza anillircea Lungu. “Software Evolution
Comprehension: Replay to the Rescuédi. Proceedings of IEEE 19th International
Conference on Program Comprehension (ICR#), 161 — 170. 2011

[3] Abram James Hindle. “SCQL: A Formal Model andQaery Language for Source Control
Repositories”. A Master Thesis. University of Videor2005

[4] R. Robbes and M. Lanza., “Versioning systemsédwolution research”In Proceedings of
IWPSE 2005 (8th International Workshop on Principlef Software Evolution)lEEE
Computer Society, pp.155-164, 2005.

[5] Lucian Voinea, Alexandru Telea. “Visual datanimg and analysis of software repositories”.
Computers & Graphics31 pp. 410-428. 2007

[6] A. T. T. Ying, J. L. Wright, S. Abrams. “Sourcede that talks: an exploration of Eclipse task
comments and their implication to repository miriingn Proceedings of International
Workshop on Mining Software Repositories (MSR)nt Louis, Missouri, USA. 2005

[7] Zimmermann, T., Weissgerber, P., Diehl, S., detler, A. “Mining version histories to guide
software changestEEE Transactions on Software Engineerid(6), 429-445. 2005

[8] Jacek Ratzinger, Michael Fischer, Harald Gallmgroving Evolvability through
Refactoring”.In Proceedings of MSF5aint Louis, Missouri, USA. 2005

[9] Sunny Wong, Yuanfang Cai, and Michael Dalton. &8ge Impact Analysis with Stochastic
Dependencies”. Department of Computer Science, Didnwversity, Technical Report DU-
CS-10-07, October. 2010

[10] Lanza, M. and Robbes, R. “A Change-based ApprochSoftware Evolution”.In
Proceedings of ENTCS’QYolume 166, ISSN: 1571-0661, pp. 93-109. 2007

[11] Maximilian Koegel, Markus Herrmannsdoerfernde Helming, and Yang Li. “State-based
vs. Operation-based Change Trackinii. Proceedings of MODELS '09 MoDSE-MCCM
Workshop Denver, USA, 2009.

[12] L. Hattori and M. Lanza. “Syde: A tool for daborative software developmentin
Proceedings of ICSE 2010 (32nd ACM/IEEE Intl. ConfSaftware Engineeringpp.235—
238. 2010

[13] Ehrig H, Ehrig K, Prange U, Taentzer G. “Fundmtals of Algebraic Graph
Transformation”EATCS Monographs in TC3005. Springer, ISBN 978-3-540-31187-4.

