
Edited by

Mohamed Ridda LAOUAR

Information Systems

and Technologies

aaaaaaaaaaaaaaaaaaa LLLLLLLLLLLLLLLLLLLLLAAAAAAAAAAAAAAAAAAAAAOOOOOOOOOOOOOOOOOOOUUUUUUUUUUUUUUUUUUUUAAAAAAAAAAAAAAAAAAARRRRRRRRRRRRRRRRRR

Information Systems and Technologies

Edited by
 Mohamed Ridda LAOUAR

ISBN : 978-9931-9004-0-5

Conference Chairs

Conference Committees

� Mohamed Ridda LAOUAR, University of Tebessa, Algeria.
� Farid MEZIANE, Salford University, United Kingdom.

Technical Program Committee

� Abdallah BOUKERRAM, Setif University, Algeria
� Abdelaziz BOURAS, Lyon 2 University, France
� Abdelazziz KHARDAOUI, Geneva University, Switzerland
� Abdelkarim AMIRAT, Souk Ahras University, Algeria
� Abdelmalik Taleb-Ahmed, University of Valenciennes, France
� Adil Al-Yasiry, University of Salford, UK
� Ahmed AIT-BOUZIAD, Boumerdès University , Algeria
� Amar SIABDELHADI, Oran University, Algeria
� Amine ABDELMALEK, University of Saida, Algeria
� Amit Mitra, the west of England University, UK
� Aris M. OUKSEL, University of Illinois at Chicago, USA
� Azzeddine BILAMI, University of Batna, Algeria
� Baghdad ATMANI, Oran University, Algeria
� Bornia TIGUIOUART, University of Annaba, Algeria
� Bouziane BELDJILALI, USTO, Oran, Algeria
� Camille SALINESI, Paris I Panthéon-Sorbonne, France
� Cherif FOUDIL, University of Biskra, Algeria
� Colette ROLLAND, Paris I Panthéon-Sorbonne, France
� Djamel BOUCHAFFRA, State University of New York at Buffalo, USA
� Djamel Eddine SAIDOUNI, University of Constantine, Algeria
� Djamel MESLATI, University of Annaba, Algeria
� Djemel ZIOU, Sherbrook university, Canada
� Djamila HAMDADOU, Oran University, Algeria
� Driss ABOUTAJDINE, (IEEE Morocco section, Rabat University),

Morocco
� Emilia MENDEZ, Auckland University, New Zeland
� Epaminondas Kapetanios, university of Westminster, UK
� El Hassan ABDELWAHED, Cadi Ayyad, Morocco
� Faiez GARGOURI, ISIMS, University of Sfax, Tunisia

� Farid MEZIANE, Salford University, United Kingdom.
� Farid MOUKHATI, University of Oum el Bouaghi, Algeria
� Farida SEMMAK, Paris 12, France
� Farouk YALAOUI, Troyes University , France
� Fatiha SADAT, UQAM, Canada
� Fatima BENDELLA, Oran University, Algeria
� Ghalem BELALEM, Oran University, Algeria
� hafida BELBACHIR, USTO, Oran, Algeria
� Haikal El Abed, ICT, Braunschweig University, Germany
� Hakim BENDJENNA, University of Tebessa, Algeria
� Hassina SERIDI, University of Annaba, Algeria
� Hayet MEROUANI, University of Annaba, Algeria
� Henri PIERREVAL, IFMA, France
� Imed KACEM, Metz, France
� Jamel FEKKI, Miracle Laboratory, University of Sfax, Tunisia
� Jean-Aymon MASSIE, President of AFGE, Paris, France
� Jérôme DARMONT, Lyon 2, France
� Karim BOUAMRANE, Oran Université, Algeria
� Kameleddine MELKEMI, University of Biskra, Algeria
� Kamal BECHKOUM, Northampton University, UK
� Krishnaprasad Thirunarayan, Wright State University, USA
� Labib TERESSA, University of Biskra, Algeria
� Labiba SOUICI-MESLATI, University of Annaba, Algeria
� Ladjel BELLATRECHE, ENSMA (Poitiers), France
� Latifa BABAHAMED, Oran University, Algeria
� Laure BERTI-EQUILLE, Rennes 1 University, France
� Lionel AMODEO, Troyes University, France
� Lynda ZAOUI, Oran University, Algeria
� Maamar BETTAYEB, University Of Sharjah, United Arab Emirates
� Madjid MERABTI, Liverpool John Moores University, United Kingdom
� Mahieddine DJOUDI, Poitiers University, France
� Mahmoud BOUFAIDA, University of Constantine, Algeria
� Messabih BELHADRI, Oran University, Algeria
� Malik SI-MOHAMMED, University of Tizi-Ouzou, Algeria
� Michel SIMONET, IMAG, France
� Mohammed Amine Chikh, University of Tlemcen, Algeria
� Mohamed Bachir MENAI, King Saud University, Saudi Arabia
� Mohamed BATOUCHE, King Saud University, Saudi Arabia

� Smaine MAZOUZI, Université of Skikda, Algeria
� Smail NIAR, UVHC, Valenciennes, France
� Souham MESHOUL, King Saud University, Arabie Saoudite
� Tahar BOUHADADA, University of Annaba, Algeria
� Thouraya TEBIBEL, ESI, Algeria
� Vijay Sugumaran, Oakland University, USA
� Wassim JAZIRI, ISIMS, Sfax, Tunisia
� Yagoubi BELABBES, Oran University, Algeria
� Yahya Mohamed Elhadj, University AL Imam Muhammad Ibn Saud,

Saudi Arabia
� Yahya SLIMANI, Tunis Faculty of Sciences, Tunisia
� Zakaria ELBERRICHI, Sidi Bellabbes University, Algeria
� Zizette BOUFAIDA, University of Constantine, Algeria

Organization Committee

� Louardi BRADJI, University of Tebessa, Algeria (President)
� Kamal HAOUAM
� Mohamed Yassine HAOUAM

, University of Tebessa, Algeria (Vice-President)

� Mohamed AMROUNE
� Halim CHAABANE
� Rouh Allah BENABOUD
� Nouzha HARATHI
� Issam BENDIB
� Chawki DJEDDI
� Abdelgafour AZZEDINE
� Akram BENOUR
� GATTAL Abdeldjalil
� Samir TAG
� Mekhazenia TAHAR
� Abdelmoumen ZEBDI
� Abdelmalek MATROUH
� Abdelhalim CHABANE
� Houda AZAZ
� Amar ZEMMAR
� Nabil OUAZENE
� Salima BOUROUGAA
� Rachid MAHMOUDI

� Abderrahim SIAM
� Samir KHEDAIRIA
� Lotfi AMIAR

Conference Secretariat

� NOUIOUA Tarek, University of Tebessa, Algeria (General secretary)
� GOUGHA Hamza
� DJABRI Mustafa Rédouane (Webmaster)
� BELAID Narjess
� BOUGUESSA Brahim
� BOUGHANEM Madjid
� BOUHAMLA Soumaia
� BENOUR Abderazzak
� DJEDDI Abdelhakim

Attestation

Hereby we confirm the participation of CHERIET HANANE

At the 1st International Conference on Information Systems and Technologies – ICIST 2011Which took place on April 24th-26th at the University of Tebessa - Algeria
Title to an poster presentation: Vers un Modèle d’Evolution des Programmes Orientés Aspect
Author (s): hanane cheriet and nora bounour

Date: April 24th 2011 Chair of ICIST’11
Mohamed Ridda LAOUAR

Résumé

 La programmation orienté objet est l’approche de
choix pour la plupart des projets logiciels actuels. Elle
est généralement efficace dans l’expression des
fonctionnalités dites verticales. Par contre, elle s’avère
particulièrement limitée dans l’expression des
fonctionnalités dites horizontales ou transversales,
celles exprimant les aspects techniques de
l’application. Les chercheurs se sont penchés sur ce
sujet et ont conçu la programmation orientée aspect
afin de pallier cette faiblesse. Comme tout autre
système, le logiciel orienté aspect a besoin d’évoluer.
Mais il n’existe pas jusqu’à maintenant un modèle
explicite d’évolution de ces logiciels. D’un autre coté,
pour bien traiter le phénomène d’évolution on doit
premièrement modéliser cette dernière, puis garder
l’historique pour analyser l’évolution. Généralement,
les approches actuelles d’évolution traitent séparément
ces deux concepts. Pour faire face à ces problèmes
nous allons, analyser les besoins des systèmes orientés
Aspect et proposer un modèle assurant leur évolution
(modéliser l’évolution et garder l’historique en même
temps).

Mots clés— AOP, Evolution de logiciel, Réécriture de
graphe, Systèmes de contrôle de versions.

1. Introduction

Les systèmes logiciels réels exigent le changement
continu et l’amélioration pour satisfaire les nouveaux
besoins de l'utilisateur, et aussi éviter la dégradation de
la structure du logiciel [3]. L’évolution de logiciel
consiste en une maintenance continue couvrant le cycle
de vie entier du système logiciel. Différents travaux ont
été menés dans le cadre de la maîtrise de l'évolution de
logiciels, nous avons proposé une classification de ces
travaux ([1], [2]).

D’après l’analyse de ces différents travaux, nous
avons constaté que tous les modèles d’évolution basés
sur le code source ne traitent pas les systèmes orientés
aspect. Dans ce papier, nous allons analyser les besoins
des systèmes orientés aspect afin d’introduire un
modèle général pour assurer leur évolution. Nous
visons par « général » le fait que le modèle ne doit pas
seulement modéliser l’évolution, mais il doit garder
l’historique en même temps. Notre modèle est constitue
l’hybridation de deux approches existantes pour assurer
l’évolution des systèmes orientés objets ; une pour la
modélisation formelle d’évolution « la réécriture de
graphe algébrique [5] » et une autre « modèle basé
changements [7]» pour garder l’historique d’une façon
fiable comme nous montrons par la suite. Nous allons
donner brièvement le principe de chaque approche
ainsi que les raisons pour lesquelles nous les avons
choisies.

Depuis plusieurs années, de nombreux travaux
concernant la modélisation et la gestion des artefacts
logiciels ont donné naissance à différentes
représentations que nous regroupons en trois catégories

Vers un Modèle d’Evolution des Programmes
Orientés Aspect

Hanane Cheriet1, Nora Bounour2
Département d’Informatique

Laboratoire de Recherche en Informatique (LRI)
University Badji Mokhtar Annaba, BP.12, 23000, Annaba

Algérie
1cheriet_hanane@yahoo.fr
2nora_bounour@yahoo.fr

dépendant de la façon dont le logiciel est perçu, c'est-à-
dire comme un graphe, une base de données ou un
hyper-document. D’après ces représentations, les
graphes sont des structures de données d'une grande
importance pour de nombreuses applications de
l'ingénierie des logiciels [4].

Les graphes sont utilisés pour représenter des objets

(concepts) complexes pour lesquels, les relations entre
les composants sont primordiales. L'analyse du logiciel
et plus spécifiquement celle du code source, pour des
besoins de compréhension et d'évolution a conduit
depuis longtemps à privilégier la structure de graphe
comme moyen simple et adapté à la modélisation et à
la manipulation. Les graphes de flots de données, les
graphes de flots de contrôle ainsi que les graphes
d'héritage forment des exemples de structures
communément utilisées dans le cadre de l'analyse des
codes sources du logiciel. Au sein d'un code source, les
artefacts sont liés entre eux à des niveaux abstro-
granulaires différents [4].

A partir de la représentation de logiciel comme un

graphe, la réécriture de graphe est l’approche la plus
fiable pour garantir l’évolution. Les demandes
d'évolution peuvent être formalisées en utilisant la
réécriture du graphe algébrique (ex. [5]). Dans [5] les
diagrammes de classe UML sont convertis en graphes
colorés. Les nœuds dans le graphe représentent les
composants du système ; les arêtes décrivent la relation
entre les composants. L’approche fournit un ensemble
de règles de réécriture du graphe algébrique qui
formalise les changements qui peuvent être causés sur
une demande d'évolution.

La réécriture de graphe algébrique est basée sur des
fondements formels qui augmentent la sûreté et la
validité d’évolution. Donc, c’est l’approche la plus
convenable pour assurer l’évolution délicate des
systèmes orienté aspect. De plus, la notion des graphes
est très populaire dans le domaine d’évolution
(techniques, outils,…). Mais pour bien analyser
l’évènement d’évolution nous avons besoin d’un autre
aspect (technique), qui garde l’historique de
l’évolution « versioning systems». L’historique d’un
système est très important dans beaucoup de technique
d’évolution : analyser l’évolution, rétro-ingénierie,
comparer différentes versions,…..etc. Cette nécessité
est assurée avec les systèmes de contrôle de versions
(ex. CVS, Subversion).

Les outils de contrôle de versions courants
n'entreposent pas toute l'information générée par les

développeurs. Ils n'enregistrent pas chaque version
intermédiaire du système publié, mais seulement des
versions instantanés prises quand un développeur
entrepose le code source dans le dépôt. D’un autre
coté, les approches traditionnelles modélisent
l'historique d'un programme comme une séquence de
versions, cela consomme la mémoire, puisque la
plupart des parties du système ne changent pas et tous
simplement dupliquées dans les versions [6].

A cause de ces limites, Romain Robbes et Michele

Lanza proposent un modèle d’évolution qui est basé sur
la modélisation du changement [7]. L’idée de ce
modèle consiste à modéliser les activités du
développement incrémentales de mainteneurs et
développeurs (le changement) pour refléter
attentivement ce qui arrive. Cette approche entrepose
seulement les différences entre les versions au niveau
du programme, et est capable de le reproduire à tout
point dans le temps.

2. Inspiration

Nous allons nous inspiré des deux modèles
présentés plus haut et bénéficier de leurs avantages
pour proposer un modèle combinant les deux pour
assurer l’évolution des codes source orientés aspect.
Donc, notre modèle, présenté dans les prochaines
sections, est basé sur les points suivants:

- Nous exploitons la puissance formelle des graphes
pour modéliser notre système orienté aspect. Où nous
nous inspirons de l’approche de réécriture de graphe
algébrique [5].

- Nous modélisons les demandes d’évolution sur le
système comme des règles de réécritures. La puissance
formelle de ces dernières assure une évolution fiable
des systèmes orientés aspect, surtout au niveau des
points d’intégration entre le code de base et les
différents aspects du système. Où nous pouvons éviter
les conflits entre les aspects.

- Nous gardons l’historique d’évolution comme des
séquences de règles de réécriture. Où nous proposons
un nouveau type de système de contrôle de versions
dans lequel le dépôt est basé-règle de réécriture (dépôt
formel).

TABLEAU 1
CONCEPTS D’UN PROGRAMME ORIENTE ASPECT

Concept Rôle
Point de Jointure
(joinpoint)

Endroit précis dans l’exécution du programme. Par exemple, un appel à une
méthode, à un constructeur … Les Consignes sont insérés au niveau des Points de
Jointure.

Point de Coupure
(pointcut)

Constitue le moyen de spécifier un ensemble de Points de Joiture particuliers. Une
Coupe est souvent une expression régulière.

Consigne (advice) Fragment de code à insérer au niveau des Points de Jointure. Implémente une
préoccupation transversale.

Aspect C’est une unité de regroupement :
• D’une ou de plusieurs définitions de Points de Coupure
• D’une ou de plusieurs définitions de Consignes.
• D’une ou de plusieurs associations de Points de Coupure à des Consignes

Tisseur (weaver) Est un outil spécial permettant d’appliquer les aspects au code de base.

3. Fondements des systèmes orientés aspect

La programmation orientée aspect (AOP : Aspect
Oriented Programing) est une nouvelle méthodologie
qui permet de séparer les préoccupations subsidiaires
qui entrecoupent les fonctionnalités principales d’un
système [8]. On pense par exemple aux fonctionnalités
telles que l’authentification, l’autorisation ou la
journalisation qui interviennent généralement avant ou
après l’appel des fonctions principales. Jusqu’ici, le
code associé aux requis subsidiaires se trouvait
généralement dispersé un peu partout dans le
programme principal. Ainsi disséminées, ces fonctions
étaient inévitablement plus difficiles à maintenir. Grâce
au paradigme aspect, le code des préoccupations
transversales peut être regroupé au sein de modules
spéciaux appelés « aspects », au lieu d’être dispersé
dans les classes du système.

L’AOP permet de résoudre les problèmes dus à
l’enchevêtrement et l’éparpillement du code. Elle
permet aussi de modulariser l’implémentation des
problématiques transversales, de créer des systèmes
plus évolutifs et d’assurer une meilleure réutilisation du
code. De plus, les études montrent que la surcharge
introduite par les approches orientées aspect est
relativement faible. Enfin, les implémentations
orientées aspect ont des niveaux d’adaptabilité et de
réutilisation plus élevés que les implémentations
uniquement objet.

Avant de présenter notre modèle d’évolution pour

les logiciels orientés aspect nous allons passer
brièvement sur les concepts fondamentaux de ces
systèmes. La programmation orientée aspects est une
technique de structuration de programmes permettant la
séparation des préoccupations dans les logiciels. Elle se
fonde sur une séparation claire entre les préoccupations

« métiers » (ou fonctionnelles) et non-fonctionnelles
(ou techniques) présentées dans les applications. La
décomposition d’une application fait apparaître :

-- Le code de base qui définit l’ensemble des

services (i.e. fonctionnalités) réalisés par l’application.
Autrement dit, l’aspect de base correspond au “Quoi”
de l’application.

-- plusieurs aspects complémentaires qui précisent
les mécanismes régissant l’exécution de l’application
c’est-à-dire les aspects non-fonctionnels définissant le
“Comment” (par exemple la synchronisation, la
persistance ou la sécurité).

Les aspects sont utilisés pour regrouper des choix

d'implémentation qui ont un impact sur l'ensemble du
système et qui autrement seraient éparpillés à travers
tout le code. Chaque aspect est destiné à être développé
de façon indépendante puis intégré à une application
par un processus dit de tissage d'aspects (aspect
weaving). La construction d’une application à partir de
différents aspects nécessite une étape “d’assemblage”.
En effet, les aspects étant des modules définis
séparément les uns des autres, il faut définir leurs
règles d’intégration pour les composer afin de
“construire” l’application. D’où le besoin d’un
mécanisme de composition pour réaliser cet
assemblage.

Donc, de nouveaux concepts sont introduits avec

l’AOP afin de permettre aux développeurs de spécifier
et d’implémenter les préoccupations transversales. Le
tableau_1 présente ces différents concepts. D’après ce
tableau, le concept clés qui assure l’intégration entre le
code de base et les aspects du système est « Les points
de jointure ». Ils sont des points particuliers dans le
graphe dynamique des appels. Il existe neuf sortes de

 LISTING1
LE PROGRAMME POINT_SHADOW_PROTOCOL

public class Point {
protected int x, y;
public Point(int _x, int _y) {
x = _x;
y = _y;
}
public int getX() {
return x;
}
public int getY() {
return y;
}
public void setX(int _x) {
x = _x;
}
public void setY(int _y) {
y = _y;
}
public void printPosition() {
System.out.println("Point
at("+x+","+y+")");
}
public static void main(String[] args) {
Point p = new Point(1,1);
p.setX(2);
p.setY(2);
}
}
class Shadow {
public static final int offset = 10;
public int x, y;
Shadow(int x, int y) {
this.x = x;
this.y = y;
public void printPosition() {
System.outprintln("Shadow at
("+x+","+y+")");
}
}

aspect PointShadowProtocol {
private int shadowCount = 0;
public static int getShadowCount() {
return PointShadowProtocol.
aspectOf().shadowCount;
}
private Shadow Point.shadow;
public static void associate(Point p, Shadow s){
p.shadow = s;
}
public static Shadow getShadow(Point p) {
return p.shadow;
}
pointcut setting(int x, int y, Point p):
args(x,y) && call(Point.new(int,int));
pointcut settingX(Point p):
target(p) && call(void Point.setX(int));
pointcut settingY(Point p):
target(p) && call(void Point.setY(int));
after(int x, int y, Point p) returning :
setting(x, y, p) {
Shadow s = new Shadow(x,y);
associate(p,s);
shadowCount++;
}
after(Point p): settingX(p) {
Shadow s = new getShadow(p);
s.x = p.getX() + Shadow.offset;
p.printPosition();
s.printPosition();
}
after(Point p): settingY(p) {
Shadow s = getShadow(p);
s.y = p.getY() + Shadow.offset;
p.printPosition();
s.printPosition();
}
}

points de jointure :
− Points de jointure réception d’appel de méthode et
constructeur
− Points de jointure appel de méthode et constructeur
− points de jointure exécution de méthode et
constructeur
− Points de jointure d’accès à un champ (get et set)
− Points de jointure exécution d’un handler
d’exception

4. Modèle d’évolution pour les systèmes
orientés aspect

4.1 Modélisation du code source orienté aspect
Notre approche consiste à modéliser le code source
orienté aspect comme un graphe. Au lieu d’utiliser les
diagrammes de classe et de séquence UML pour
introduire le graphe (méthode de Ciraci [5]), on le
génère directement à partir du code source orienté
aspect (voir la section mise en œuvre).

Un système orienté aspect est composé de deux

parties principales : le programme de base et les
aspects du système. De plus, les points de coupure
jouent un rôle fondamental dans l’intégration de ces
deux parties.
D’après tout ça, notre modèle d’évolution est basé sur
les points suivants :

a. la modélisation du code de base : le code de base
du système orienté aspect est modélisé avec un graphe
algébrique (ce code ni autre qu’un programme orienté
objet). Les nœuds dans le graphe représentent les
entités du système et les arêtes décrivent les relations
entre ces entités : (1) les attributs et les méthodes qui
appartiennent à une classe ; (2) la connexion entre les
classes ; (3) les appels entre les différents entités (voir
[5] pour plus de détails).

b. la modélisation des aspects : chaque aspect du
système est aussi modélisé avec un graphe marqué. Ce
dernier est semblable au graphe qui modélise un
système orienté objet, mais en ajoutant d’autres
concepts propres aux systèmes orientés aspect.

FIGURE 1
LE GRAPHE MODELISANT LE PROGRAMME POINTSHADOWPROTOCOL1

1 Ce graphe a été fait par l’outil AGG : Attributed Graph Grammar. Il est basé sur la notion de règles de transformation de graphe.

Un graphe marqué a deux alphabets de couleur, un

pour colorer les arêtes et un autre pour colorer les
nœuds. Dans notre modèle des systèmes orientés aspect
les éléments de l’alphabet des couleurs sont les
suivants :

 -Aspect
-Attribute: « Type »
-Method
-Parameter: « Type»
-Return value: « Type »
- Pointcut
-Advice

Les arêtes dans notre modèle sont utilisés pour

identifier les relations entres les différents composants
du système. Nous avons trois classes de relations:

− la première spécifie quels attributs et méthodes

appartiennent à un Aspect, ces arêtes sont annotés avec
l’une des couleurs suivantes : Has (private, public,
protected) : attribute, method ; Takes parameter ; ou la
couleur returns pour la valeur retournée.

− La deuxième classe spécifie les points de coupure
et les consignes de l’Aspect, ces arêtes sont annotés
avec: Has advice, Has pointcut. De plus, les relations
entre les consignes et les points de coupure, en utilisant
les couleurs : befor, after et around.

− La troisième classe capture les relations entre les
objets du système, i.e. les appels entre les méthodes ou
entre les consignes et les méthodes. Ces arêtes sont
annotées avec call.

c. la modélisation du système global : pour intégrer

les différents sous-graphes qui représentent les classes
et les aspects, nous avons besoin de deux types d’arête
pour relier les sous-graphes (nous pouvons les appeler
aussi les arêtes de dépendances):

− Arêtes d’appel depuis les méthodes ou les consignes

des aspects vers les méthodes des classes : annotées
avec call ;

− Des arêtes qui relient chaque point de coupure avec
ses points de jointure dans le code de base:
annotées avec crosscut plus un des opérateurs
logiques « and, or », s’il y a plus d’un point de
jointure pour un point de coupure.

La figure 1 montre un exemple d’un graphe
représentant le programme orienté aspect du Listing 1 :
le programme associé Shadow Points avec chaque
Point objet, il contient un aspect PointShadowProtocol
qui entrepose un objet de l'ombre (shadow Point) dans
chaque Point, et deux classes Point et Shadow. Nous
avons éliminé les éléments non affectés par les arêtes
de dépendance pour simplifier le graphe.

FIGURE 2

LA SUPPRESSION DU POINT DE COUPURE SETTING

4.2 Formalisation des demandes d’évolution
Notre approche fournit un ensemble de règles de

réécriture du graphe: ajout, suppression, modification
des différents éléments du graphe (classes, aspects,
méthodes, points de coupures,…etc) qui formalise les
changements qui peuvent être causés par une demande
d'évolution. Alors ces règles peuvent être combinées
pour se rendre compte juste de plusieurs demandes
d'évolution dans une manière du top-down comme un
algorithme. Par exemple, une demande d’évolution qui
exige l’addition d'un Aspect peut être formulée en
utilisant la règle de l'addition de l’Aspect et les règles
de l'addition de ses différents éléments (attributs,
méthodes, points de coupures, consignes,…).

Les points clés dans les systèmes orientés aspect
sont les points de coupure qui relient les différents
modules (aspects, classes) du système. Donc, les
demandes de changement sur ces points sont les plus
intéressants. Par exemple, la suppression d’un point de
coupure exige la suppression de toutes ses relations (les
arcs qui le relie avec les autres entités du système), plus
que la suppression de l’advice associé à ce point de

coupure (figure 2).

Une règle de réécriture décrit la transformation d'un
terme à un autre et peut être gardée par une condition.
Il a la forme R: l -> r où R est le nom de la règle, l le
pattern gauche (pré-condition) et r le pattern droit
(post-condition) de la règle. Le pattern gauche est
comparé à un terme et s’ils sont égaux, le pattern droit
est créé pour construire le nouveau terme. Des règles
multiples peuvent avoir le même nom, et les règles sont
toujours invoquées par nom [9].

La figure 2 montre la règle qui supprime le point de

coupure Setting. Ici la règle est constituée de deux
partie, la partie gauche présente la pré-condition de la
règle et la droite sa post-condition. L’application de
cette règle sur le graphe du système nous donne le
nouveau graphe représenté dans le bas de la figure.

L’addition et la modification d’un élément du

système sont réalisées avec la même manière. A travers
l’application de différentes règles sur le système orienté
aspect nous pouvons effectuer des demandes de
changement complexes. De plus des règles de

FIGURE.3. SYSTEME DE VERSION BASE REGLE DE REECRITURE. ICI POUR EXTRAIRE LA VERSION_2 DU SYSTEME, ON APPLIQUE SEULEMENT LA

REGLE_ 2 SUR LE GRAPHE DE BASE DU SYSTEME.

réécriture, nous pouvons aussi définir les différentes
propriétés et les conditions qui doivent êtres préservées
dans le graphe.

4.3 Garder l’historique

Comme nous avons montré dans la section 1, nous
avons besoin de garder l’historique de l’évolution d’un
système pour l’utiliser plus tard dans l’analyse et la
validation de cette évolution. Pour intégrer ce concept
dans notre modèle d’évolution pour les systèmes
orientés aspect nous allons suivre le même principe de
l’approche de modélisation du changement [7] où :

− Les opérations exécutables de changement qui sert

à naviguer entre les différentes versions du système
sont les règles de réécriture sur le graphe du code
source.

− Nous proposons un dépôt basé règle comme un
système de version : au lieu d’enregistrer tous le graphe
changé comme une version, nous enregistrons
seulement les séquences d’évolution (l’ensemble de
règles de réécriture) sur ce graphe (figure 3.a). Nous
pouvons reproduire chaque version du système par
l’exécution de la séquence de règles de réécriture
associées (figure 3.b).

Donc, tous les bénéfices de l’approche [7] sont
gardés dans notre modèle. De plus, on gagne
l’indépendance du langage, car le même modèle peut
être appliqué à différents langages de programmation
où nous utilisons différents concepts reliés au
programme modélisé.

4.4 Mise en œuvre de l’approche

La figure 4 représente la mise en œuvre de notre
approche (modèle) où:

1 : le code source AspectJ est convertit en format XML
[11] à travers la puissance de AspectJML [14].

2 : à travers les outils XSLT [12] le document XML est
convertit en GXL [13], pour représenter le code source
comme un graphe. Le graphe obtenue sera marqué
avec des étiquettes en utilisant XSLT.

3 : nous proposons d’utiliser un outil pour automatiser
la conversion des demandes de changements en règles
de réécriture. Cette étape est très importante pour ne
pas exiger du mainteneur à apprendre les concepts des
règles de réécriture.

4 : nous utilisons l’outil AGG [10], qui est un outil
puissant de transformation des graphes. Il a été utilisé
dans beaucoup de travaux de recherche. Il est capable
de manipuler des graphes GXL ou autres. nous
pouvons aussi formuler des propriétés, des contraintes,
analyser le graphe, calculer les métriques, …etc. donc
nous avons tous pour assurer l’évolution (en combinant
les règles de réécritures de base).

5 : à chaque demande d’évolution nous enregistrons la
règle qui cause cette évolution dans un dépôt basé-
règle pour l’utiliser comme un système de contrôle de
versions (nous pouvons reproduire le graphe (version
du programme) à travers la règle appliquée.

Graphe
représentant
le code source
orienté aspect

Règles de
réécritures

Graphe après
évolution

Dépôt basé-
règle Règle_1

Règle_2

Règle_3

Règle n

Version 2

Reproduire
le graphe

a b

Évoluer

Entreposer

FIGURE. 4
MISE EN ŒUVRE DE L’APPROCHE

6 : après la modification du graphe, nous pouvons
régénérer le code source aspectJ en suivant le chemin
inverse : convertir le graphe GXL en XML via XSLT,
puis en AspectJ via AspectJML.

5. Conclusion

Nous avons proposé dans ce papier un modèle
d’évolution pour les codes source orientés aspect.
Notre approche consiste à modéliser le code source
comme un graphe représentant les différentes entités du
système et les relations entre eux. Les demandes
d’évolution sont formalisées en utilisant des règles de
réécriture sur le graphe du système. Nous pouvons
combiner plusieurs règles pour effectuer les différentes
demandes d’évolution d’un système orienté aspect.
D’un autre coté, nous avons proposé un système de
contrôle de versions basé-règle pour garder l’historique
de l’évolution en éliminant les limites des systèmes de
contrôle de versions actuelles. Ce papier présente l’idée
générale de notre modèle d’évolution des systèmes
orientés aspect.

6. Références

[1] Hanane cheriet, Nora Bounour, “Software Evolution:
Models and Challenges”, In Proceedings of International
Conference on Machine and Web Intelligence
(ICMWI’2010), Algiers, Algeria, October 3-5 2010, pp.458-
460.

[2] Hanane cheriet, Nora Bounour, “Une classification des
modèles d’évolution de logiciels”, In Proceedings of

MAnifestation des JEunes Chercheurs en STIC
(MajecSTIC’10), Bordeaux, France, 13- 15 Octobre 2010
[3] Lehman MM and Belady L, “Program Evolution –
Processes of Software Change”, Academic Press, 1985
[4] PM. Oum Oum Sack , M.Bouneffa, Y. Maweed.
“Expérimentation de GXL pour l'interopérabilité des outils
de réingénierie du logiciel” . 2005
[5] S. Ciraci, P.M. van den Broek, “Modeling Software
Evolution using Algebraic Graph Rewriting”, In Proceedings
of Workshop on Architecture-Centric Evolution (ACE’06),
Nantes, France, 3-7 July 2006
[6] R. Robbes and M. Lanza. “Versioning systems for
evolution research“. In Proceedings of IWPSE 2005 (8th
International Workshop on Principles of Software
Evolution), IEEE Computer Society, 2005, pp.155–164
[7] M. Lanza, R. Robbes, “A Change-based Approach to
Software Evolution”, In Proceedings of ENTCS’07, 2007,
Volume 166, ISSN: 1571-0661, pp: 93-109,
[8] Lopes C. V. and Hursch W. L., "Separation of
Concerns", College of Computer Science, Northeastern
University, Boston, February 1995
[9] Karl Trygve Kalleberg, Eelco Visser. “Combining
Aspect-Oriented and Strategic Programming”. Electronic
Notes in Theoretical Computer Science. 2005
[10] Thorsten Schultzke Claudia Ermel. “AGG
Environnement: A Short Manual“ . http:
//tfs.cs.tuberlin.de/agg/ShortManual.ps, short manual
edition.User Manual.
[11] Junichi Suzuki and Yoshikazu Yamamoto. “Managing
the software design documents with xml “. In Proceedings of
the 16th annual international conference on Computer
documentation, ACM Press, 1998, pp. 127-136
[12] James Clark. “XSL Transformations (XSLT)Version
1.0“ . http://www.w3.org/TR/xslt, w3c recommendation16
november 1999 edition, Nov 1999. Recommandation.
[13] Andreas Winter, Bernt Kullbach, and Volker Riediger.
“An overview of the gxl graph exchange language“. In

Code
source
AspectJ

XML 1 : AspectJML GXL 2 : XSLT

Règles de
réécritures

GXL
modifié

4 : L’outil
AGG

Dépôt
basé-règle
de réécriture

5 : Entreposer
dans

6 : Convertir

Requêtes de
changements

3 : outil de
conversion

Revised Lectures on Software Visualization, International
Seminar, Springer-Verlag, 2002, pp. 324-336
[14] MELO JUNIOR, L. S., MENDONÇA, N. C.
“AspectJML: A Markup Language for AspectJ“. In: Proc. of
the 2nd Brazilian Workshop on Aspect Oriented Software
Development (WASP'05), 2005, Uberlândia, MG, Brazil. In
Portugues.

