INFORMATION SYSTEMS
AND TECHNOLOGIES

Edited by

MoOHAMED RIDDA LAOUAR

INFORMATION SYSTEMS AND TECHNOLOGIES

Edited by
MoOHAMED RIDDA LAOUAR

ISBN : 978-9931-9004-0-5

Conference Committees

Conference Chairs

e Mohamed Ridda LAOUAR, University of Tebessa, Algeria.
e Farid MEZIANE, Salford University, United Kingdom.

Technical Program Committee

e Abdallah BOUKERRAM, Setif University, Algeria

e Abdelaziz BOURAS, Lyon 2 University, France

e Abdelazziz KHARDAOUI, Geneva University, Switzerland

e Abdelkarim AMIRAT, Souk Ahras University, Algeria

e Abdelmalik Taleb-Ahmed, University of Valenciennes, France

e Adil Al-Yasiry, University of Salford, UK

e Ahmed AIT-BOUZIAD, Boumerdes University , Algeria

e Amar SIABDELHADI, Oran University, Algeria

e Amine ABDELMALEK, University of Saida, Algeria

e Amit Mitra, the west of England University, UK

e Aris M. OUKSEL, University of lllinois at Chicago, USA

e Azzeddine BILAMI, University of Batna, Algeria

e Baghdad ATMANI, Oran University, Algeria

e Bornia TIGUIOUART, University of Annaba, Algeria

e Bouziane BELDJILALI, USTO, Oran, Algeria

e Camille SALINESI, Paris | Panthéon-Sorbonne, France

e Cherif FOUDIL, University of Biskra, Algeria

e Colette ROLLAND, Paris | Panthéon-Sorbonne, France

e Djamel BOUCHAFFRA, State University of New York at Buffalo, USA

e Djamel Eddine SAIDOUNI, University of Constantine, Algeria

e Djamel MESLATI, University of Annaba, Algeria

e Djemel ZIOU, Sherbrook university, Canada

e Djamila HAMDADOU, Oran University, Algeria

e Driss ABOUTAIDINE, (IEEE Morocco section, Rabat University),
Morocco

e Emilia MENDEZ, Auckland University, New Zeland

e Epaminondas Kapetanios, university of Westminster, UK

e El Hassan ABDELWAHED, Cadi Ayyad, Morocco

e Faiez GARGOURLI, ISIMS, University of Sfax, Tunisia

Farid MEZIANE, Salford University, United Kingdom.

Farid MOUKHATI, University of Oum el Bouaghi, Algeria
Farida SEMMAK, Paris 12, France

Farouk YALAOUI, Troyes University , France

Fatiha SADAT, UQAM, Canada

Fatima BENDELLA, Oran University, Algeria

Ghalem BELALEM, Oran University, Algeria

hafida BELBACHIR, USTO, Oran, Algeria

Haikal EI Abed, ICT, Braunschweig University, Germany
Hakim BENDJENNA, University of Tebessa, Algeria

Hassina SERIDI, University of Annaba, Algeria

Hayet MEROUANI, University of Annaba, Algeria

Henri PIERREVAL, IFMA, France

Imed KACEM, Metz, France

Jamel FEKKI, Miracle Laboratory, University of Sfax, Tunisia
Jean-Aymon MASSIE, President of AFGE, Paris, France
Jérdbme DARMONT, Lyon 2, France

Karim BOUAMRANE, Oran Université, Algeria

Kameleddine MELKEMI, University of Biskra, Algeria

Kamal BECHKOUM, Northampton University, UK
Krishnaprasad Thirunarayan, Wright State University, USA
Labib TERESSA, University of Biskra, Algeria

Labiba SOUICI-MESLATI, University of Annaba, Algeria
Ladjel BELLATRECHE, ENSMA (Poitiers), France

Latifa BABAHAMED, Oran University, Algeria

Laure BERTI-EQUILLE, Rennes 1 University, France

Lionel AMODEO, Troyes University, France

Lynda ZAOUI, Oran University, Algeria

Maamar BETTAYEB, University Of Sharjah, United Arab Emirates
Madjid MERABTI, Liverpool John Moores University, United Kingdom
Mahieddine DJOUDI, Poitiers University, France

Mahmoud BOUFAIDA, University of Constantine, Algeria
Messabih BELHADRI, Oran University, Algeria

Malik SI-MOHAMMIED, University of Tizi-Ouzou, Algeria
Michel SIMONET, IMAG, France

Mohammed Amine Chikh, University of Tlemcen, Algeria
Mohamed Bachir MENAI, King Saud University, Saudi Arabia
Mohamed BATOUCHE, King Saud University, Saudi Arabia

e Smaine MAZOUZI, Université of Skikda, Algeria

e Smail NIAR, UVHC, Valenciennes, France

e Souham MESHOUL, King Saud University, Arabie Saoudite

e Tahar BOUHADADA, University of Annaba, Algeria

e Thouraya TEBIBEL, ESI, Algeria

e Vijay Sugumaran, Oakland University, USA

e Wassim JAZIRI, ISIMS, Sfax, Tunisia

e Yagoubi BELABBES, Oran University, Algeria

e Yahya Mohamed Elhadj, University AL Imam Muhammad lbn Saud,
Saudi Arabia

e Yahya SLIMANI, Tunis Faculty of Sciences, Tunisia

e Zakaria ELBERRICHI, Sidi Bellabbes University, Algeria

e Zizette BOUFAIDA, University of Constantine, Algeria

Organization Committee

e Louardi BRADJI, University of Tebessa, Algeria (President)
e Kamal HAOUAM, University of Tebessa, Algeria (Vice-President)
e Mohamed Yassine HAOUAM
e Mohamed AMROUNE

e Halim CHAABANE

e Rouh Allah BENABOUD

e Nouzha HARATHI

e |ssam BENDIB

e Chawki DJEDDI

e Abdelgafour AZZEDINE

e Akram BENOUR

e GATTAL Abdeldjalil

e Samir TAG

e Mekhazenia TAHAR

e Abdelmoumen ZEBDI

e Abdelmalek MATROUH

e Abdelhalim CHABANE

e Houda AZAZ

e Amar ZEMMAR

e Nabil OUAZENE

e Salima BOUROUGAA

e Rachid MAHMOUDI

e Abderrahim SIAM
e Samir KHEDAIRIA
e Lotfi AMIAR

Conference Secretariat

e NOUIOUA Tarek, University of Tebessa, Algeria (General secretary)
¢ GOUGHA Hamza

e DJABRI Mustafa Rédouane (Webmaster)

e BELAID Narjess

e BOUGUESSA Brahim

e BOUGHANEM Madjid

e BOUHAMLA Soumaia

e BENOUR Abderazzak

e DJEDDI Abdelhakim

International Conference on Information Systems & Technologies

ATTESTATION e

Hereby we confirm the participation of CHERIET HANANE

At the 1* International Conference on Information Systems and Technologies - ICIST 2011

Which took place on April 24™-26" at the University of Tebessa - Algeria

Title to an poster presentation: Vers un Modéle d’Evolution des Programmes Orientés Aspect

Author (s): hanane cheriet and nora bounour

Date: April 24™ 2011 Chair of ICIST'11
Mohamed Ridda LAOUAR

Vers un Modele d’Evolution des Programmes
Orientés Aspect

Hanane Cheriét Nora Bounour
Département d’'Informatique
Laboratoire de Recherche en Informatique (LRI)
University Badji Mokhtar Annaba, BP.12, 23000, Aibaa
Algérie
cheriet_hanane@yahoo.fr
Znora_bounour@yahoo.fr

1. Introduction

Résume Les systémes logiciels réels exigent le changement

continu et 'amélioration pour satisfaire les neaux
) o,) , besoins de l'utilisateur, et aussi éviter la déatiad de
La_programmatlon oriente .Objet e:-s_t lapproche de la structure du logiciel [3]. L’évolution de log@di
choix pour l? plupart df?,S pI‘OJetj Ioglc:,els actueﬁle q consiste en une maintenance continue couvranicle cy
est generggmgnt eflicace —dans 1expression deSyge yjie entier du systeme logiciel. Différents tnavant
fonctionnalités dites verticales. Par contre, ellavére été menés dans le cadre de la maitrise de I'éunlde
partlgullere.m'ent . I|m|tee. dans Texpression des logiciels, nous avons proposé une classificatiorcete
fonctionnalités dites horizontales ou transversales travaux ([1], [2])
celles exprimant les aspects techniques de ' ’
'application. Les chercheurs se sont penchés &ur ¢
sujet et ont congu la programmation orientée aspect

afin \de pllalll|er_ <_:e|tte . faﬂ:zlesse. Corgme_ to(;“, alljtre sur le code source ne traitent pas les systéemestési
systeme, le logiciel oriente aspect a besoin diéso aspect. Dans ce papier, nous allons analyser sesrse

Ma|§ .'I n,e'X|ste pas jusqua f_”"?“”te”"’}”t un quele des systémes orientés aspect afin d'introduire un
explicite d’évolution de ces logiciels. D’'un auteté, modéle général pour assurer leur évolution. Nous

pour _plen traiter Io?’ lphenomened d e_\{olutlon_ on dg't visons par « général » le fait que le modele né phs
lg;gm@rement mo ellser (i’e'ttel .ermeéeJ PU'T 9arder seylement modéliser I'évolution, mais il doit garde
Istorique pour analyser I'evolution. Generalenten I’historique en méme temps. Notre modéle est cuasti

les approches actuelles d’évolution traitent sépaeat Ihybridation de deux approches existantes powrass

ces deﬁjx concerl)ts. Plourbfalrg fage a C?\S prople.meq’évolution des systemes orientés objets ; une paur
nous allons, analyser les besoins des systemestesi modélisation formelle d'évolution la réécriture de

Aspect et proposer un modeéle assurant leur évalutio graphe algébrique[5] » et une autre modéle basé

(modéliser I'évolution et garder I'historique en mé changementg7]» pour garder I'historique d'une fagon
temps). fiable comme nous montrons par la suite. Nous allon
donner brievement le principe de chaque approche
ainsi que les raisons pour lesquelles nous lessavon
choisies.

D'aprés l'analyse de ces différents travaux, nous
avons constaté que tous les modeéles d’évolutioashbas

Mots clés— AOP, Evolution de logiciel, Réécriture de
graphe, Systemes de contrdle de versions.

Depuis plusieurs années, de nombreux travaux
concernant la modélisation et la gestion des atefa
logiciels ont donné naissance a différentes
représentations que nous regroupons en trois q&égo

dépendant de la fagon dont le logiciel est pergst@- développeurs. lls n'enregistrent pas chaque version
dire comme un graphe, une base de données ou uintermédiaire du systéeme publié, mais seulement des
hyper-document. D’aprés ces représentations, lesyersions instantanés prises quand un développeur
graphes sont des structures de données d'une grandshtrepose le code source dans le dépdt. D'un autre
importance pour de nombreuses applications decoté, les approches traditionnelles modélisent
lingénierie des logiciels [4]. I'historique d'un programme comme une séquence de
versions, cela consomme la mémoire, puisque la
plupart des parties du systeme ne changent pasi®t t
simplement dupliquées dans les versions [6].

Les graphes sont utilisés pour représenter dessobje
(concepts) complexes pour lesquels, les relatiotre e
les composants sont primordiales. L'analyse dwcieli

et plus specifiquement celle du code source, pesr d A cause de ces limites, Romain Robbes et Michele

besoins de compréhension et d'évolution a conduit o s) . .
depuis longtemps & privilégier la structure de beap Lanza proposent un modele d’évolution qui est lsasé
Jla modélisation du changemenf7]. L'idée de ce

comme moyen simple et adapté a la modélisation et & odele consiste 4 modéliser les activités du
la manipulation. Les graphes de flots de donnéss, | | Ay :

A L développement incrémentales de mainteneurs et
graphes de flots de contréle ainsi que les graphes

w développeurs (le changement) pour refléter
d'héritage forment des exemples de structures - .
. e . attentivement ce qui arrive€ette approche entrepose
communément utilisées dans le cadre de l'analyse de

o - seulement les différences entre les versions aganiv
codes sources du logiciel. Au sein d'un code solese

artefacts sont liés entre eux a des niveaux abstro-OIu programme, et est capable de le reproduire & tou

granulaires différents [4]. point dans le temps.

A partir de la représentation de logiciel comme un 2, Inspiration
graphe,la réécriture de grapheest I'approche la plus
fiable pour garantir I'évolution. Les demandes
d'évolution peuvent étre formalisées en utilisaat |
réécriture du graphe algébrique (ex. [5]). Dansl¢5]
diagrammes de classe UML sont convertis en grapheégl
colorés. Les nceuds dans le graphe représentent le
composants du systéme ; les arétes décriventdtomel
entre les composantd.’approche fournit un ensemble
de régles de réécriture du graphe algébrique qui_
formalise les changements qui peuvent étre causés s
une demande d'évolution.

Nous allons nous inspiré des deux modeles
présentés plus haut et bénéficier de leurs avamtage
our proposer un modele combinant les deux pour
ssurer I'évolution des codes source orientés aspec
Bonc, notre modele, présenté dans les prochaines
sections, est basé sur les points suivants:

Nous exploitons la puissance formelle des graphes
pour modéliser notre systeme orienté aspect. O8 nou
nous inspirons de lI'approche de réécriture de graph

La réécriture de graphe algébrique est basée sur dealgebrlque [51

fondements formels qui augmentent la sOreté et la_
validité d’évolution. Donc, c’est I'approche la plu
convenable pour assurer I'évolution délicate des
systemes orienté aspect. De plus, la notion deshgsa
est tres populaire dans le domaine d’'évolution

Nous modélisons les demandes d’évolution sur le
systeme comme des régles de réécritures. La paissan
formelle de ces derniéres assure une évolutioriefiab
des systemes orientés aspect, surtout au niveau des

(techniques, outils,...). Mais pour bien analyser p_oir)ts d'intégration entre\ le co‘de de base et’ I‘?S
Pévénement d’évolution nous avons besoin d'uneutr différents aspects du systeme. Ou nous pouvonereévit
aspect (technique), qui garde Ihistorique de les conflits entre les aspects.

I'évolution « versioning systems». L’historique d'u

systéme est trés important dans beaucoup de teghniq - Nous gardons lhistorique d’évolution comme des
d’évolution : analyser I'évolution, rétro-ingénieyi séquences de regles de reécriture. OU nous praposon
comparer différentes versions,.....etc. Cette néigessi un nouveau type de systéme de contréle de versions
est assurée avec les systéemes de contrble de ngrsio dans lequel le dépbt est basé-régle de réécridédi(

(ex. CVS, Subversion). formel).

Les outils de contrdle de versions courants
n'entreposent pas toute linformation générée ear |

TABLEAU 1
CONCEPTS DUN PROGRAMME ORIENTE ASPECT

Concep! Role
Point de Jointure Endroit précis dans I'exécution du programme. Ramle, un appel a une
(joinpoint) méthode, a un constructeur ... Les Consignes soétéasu niveau des Points de
Jointure.
Point de Coupure Constitue le moyen de spécifier un ensemble det®dmJoiture particuliers. Une
(pointcut) Coupe est souvent une expression régu
Consigne advice Fragment de code a insérer au niveau des Poirgieire. Implémente une
préoccupation transveale.
Aspect C’est une unité de regroupement :
» D'une ou de plusieurs définitions de Points de Coeap
« D'une ou de plusieurs définitions de Consignes.
» D’'une ou de plusieurs associations de Points dep@eua des Consigr
Tisseur weavej Est un outil spécial permettant d’appliquer leseaspau code de base.

3. Fondements des systémes orientés aspect « métiers » (ou fonctionnelles) et non-fonctioneell
(ou techniques) présentées dans les applicatioas. L
La programmation orientée aspect (AOP : Aspect décomposition d’'une application fait apparaitre :
Oriented Programing) est une nouvelle méthodelog
qui permet de séparer les préoccupations subsislia -- Le code de base qui définit I'ensemble des
qui entrecoupent les fonctionnalités principalasd services (i.e. fonctionnalités) réalisés par I'agglon.
systeme [8]. On pense par exemple aux fonctiom@salit Autrement dit, 'aspect de base correspond au “Quoi
telles que lauthentification, Iautorisation ou la de rapplication.
journalisation qui interviennent généralement ava@nt - plusieurs aspects complémentaires qui précisent
aprés I'appel des fonctions principales. Jusquiei, |es mgcanismes régissant I'exécution de I'appbeati
code associé aux requis subsidiaires se trouvaitc’est-a-dire les aspects non-fonctionnels défimisse
généralement dispersé un peu partout dans le“Comment“ (par exemple la synchronisation, la
programme principal. Ainsi disséminées, ces fomstio ersistance ou la sécurité) '
étaient inévitablement plus difficiles & maintet@race P '
au paradigme aspect, le code des préoccupations
transversales peut étre regroupé au sein de modulea,_
spéciaux appelés « aspects », au lieu d’'étre diéper !
dans les classes du systéme.

Les aspects sont utilisés pour regrouper des choix

mplémentation qui ont un impact sur I'ensemhle d
systeme et qui autrement seraient éparpillés &fsav
tout le code. Chaque aspect est destiné a étréopée

L'’AOP permet de résoudre les problemes dus ade fagon mdependantg puIs !ntegre alune appliieatio

, N ‘A) par un processus dit de tissage d'aspects (aspect

'enchevétrement et I'éparpillement du code. Elle : . , LA)

weaving). La construction d’'une application a paité

perm(?t aussi de modulariser I|mplfementat|0n c\ies différents aspects nécessite une étape “d'assesiblag
problématiques transversales, de créer des systemeén effet, les aspects étant des modules définis

plus évolutifs et d’assurer une meilleure réutilmadu . - PP
. séparément les uns des autres, il faut définirsleur
code. De plus, les études montrent que la surcharge, o . .
) - N egles d'intégration pour les composer afin de
introduite par les approches orientées aspect es S . s . ,
construire” [l'application. D'ou le besoin d'un

relativement faible. Enfin, les implémentations ~. ™. o)
o . , mécanisme de composition pour réaliser cet
orientées aspect ont des niveaux d’adaptabilitdeet

assemblage.

réutilisation plus élevés que les implémentations

uniquement objet. . :
q) Donc, de nouveaux concepts sont introduits avec

Avant de présenter notre modéle d’évolution pour IAO,F.) aﬂp de permetire aux devgloppeurs de spaif
- S et d'implémenter les préoccupations transversdles.
les logiciels orientés aspect nous allons passer < s o
- tableau_1 présente ces différents concepts. D'agges
brievement sur les concepts fondamentaux de ce

.) Y ableau, le concept clés qui assure l'intégratiatnecle
systémes. La programmation orientée aspects est Ung€ . 4o pase et les aspects du systéme est «iés po

technique de structuration de programmes perme#iant 4o jointure ». llssont des points particuliers dans le

séparation des préoccupations dans les logicidéss& graphe dynamique des appels. Il existe neuf sokes
fonde sur une séparation claire entre les préoticunza

LISTING1
LE PROGRAMMEPOINT_SHADOW_PROTOCOL

public class Point { aspect Poi nt ShadowPr ot ocol {
protected int x, y; private int shadowCount = O;
public Point(int _x, int _y) { public static int getShadowCount() {
X = _X; return Poi nt ShadowPr ot ocol .
y = _y; aspect O (). shadowCount ;
} }
public int getX() { private Shadow Poi nt. shadow,
return x; public static void associate(Point p, Shadow s){
} p. shadow = s;
public int getY() {
return vy; public static Shadow get Shadow Poi nt p) {
} return p.shadow,
public void setX(int _x) { }
X = _X; pointcut setting(int x, int y, Point p):
} args(x,y) && call (Point.new(int,int));
public void setY(int _y) { poi ntcut settingX(Point p):
y = _y; target(p) && call(void Point.setX(int));
} poi ntcut settingY(Point p):
public void printPosition() { target(p) && call(void Point.setY(int));
System out. printl n("Poi nt after(int x, int y, Point p) returning :
at ("Hx+", Ay +T) ") setting(x, y, p) {
Shadow s = new Shadow(X, y);
public static void main(String[] args) { associ ate(p,s);
Point p = new Point(1,1); shadowCount ++;
p.setX(2); }
p.setY(2); after(Point p): settingX(p) {
} Shadow s = new get Shadow(p);
s.x = p.getX() + Shadow. of fset;
cl ass Shadow { p. printPosition();
public static final int offset = 10; s. printPosition();
public int x, y; }
Shadow(int x, int y) { after(Point p): settingY(p) {
this.x = x; Shadow s = get Shadow(p) ;
this.y =vy; s.y = p.getY() + Shadow. of fset;
public void printPosition() { p. printPosition();
Syst em out pri ntl n(" Shadow at s. printPosition();
("X, Ay) S }
}
}
points de jointure : un systeme oriente aspect est composé de deux
- Points de jointure réception d’appel de méthode etparties principales: le programme de base et les
constructeur aspects du systéme. De plus, les points de coupure

- Points de jointure appel de méthode et constructeur jouent un réle fondamental dans lintégration de ce
- points de jointure exécution de méthode et deux parties.

constructeur D’apres tout ¢a, notre modele d’évolution est bage

- Points de jointure d’accés & un champ (get et set) les points suivants :

- Points de jointure exécution dun handler
d’exception a. la modélisation du code de basée: code de base

du systéme orienté aspect est modélisé avec uherap
algébrique (ce code ni autre qu’'un programme agient
objet). Les nceuds dans le graphe représentent les
entités du systeme et les arétes décrivent latiames
entre ces entités : (1) les attributs et les méthayli

4.1 Modélisation du code source orienté aspect appartiennent a une classe ; (2) la connexion éesre

Notre approche consiste & modéliser le code sources'@sses ; (3) les appels entre les différentséan(itoir

orienté aspect comme un graphe. Au lieu d'utiliger [5] pour plus de détails).
diagrammes de classe et de séquence UML pour o
introduire le graphe (méthode de Ciraci [5]), on le b. la modélisation des aspectshaque aspect du

génere directement & partir du code source orientéSysteme est aussi modélisé avec un graphe margué. C
aspect (voir la section mise en ceuvre). dernier est semblable au graphe qui modélise un

systeme orienté objet, mais en ajoutant d'autres
concepts propres aux systéemes orientés aspect.

4. Modele d’évolution pour les systemes
orientés aspect

FIGURE 1
LE GRAPHE MODELISANT LE PROGRAMMEPOINTSHADOWPROTOCOL!

Fri |Aspect_PointShadowProtocoI|

has

. h3s
method_associate iis has h3 f1as

method_getshadow), pointcut_setting painteut_settingx pointelt, satingy
> — g afteg- m*"/ \\
M advice._setin
all e A advice_settingx . el \
adyice._setting \ A
: erfsscut \ crosseut
Nl
\ ' qll
\ \\
\
¥ ¥ \

method_shadow| (method_printposition] (method_printposition) [methud_puim] (method_oet]

has has

class-shadow

— La troisiéme classe capture les relations entre les
Un graphe marqué a deux alphabets de couleur, urobjets du systéme, i.e. les appels entre les méshoul
pour colorer les arétes et un autre pour colorsr le entre les consignes et les méthodes. Ces arétés son
nceuds. Dans notre modele des systémes orienté&s aspeannotées avezall.
les éléments de lalphabet des couleurs sont les

suivants :
-Aspect
-Attribute: « Type »
-Method
-Parameter: « Type»
-Return value: « Type »
- Pointcut
-Advice

c. la modélisation du systéme globapour intégrer
les différents sous-graphes qui représentent kesses
et les aspects, nous avons besoin de deux typekteal’'a
pour relier les sous-graphes (nous pouvons lesleppe
aussi les arétes de dépendances):

— Arétes d'appel depuis les méthodes ou les consignes

des aspects vers les méthodes des classes : annotée
aveccall ;

Les arétes dans notre modele sont utilisés pour Des arétes qui relient chaque point de coupure avec

identifier les relations entres les différents cosgmts
du systeme. Nous avons trois classes de relations:

- la premiere spécifie quels attributs et méthodes

appartiennent & un Aspect, ces arétes sont anaoés
'une des couleurs suivantesHas (private, public,
protected) : attribute, method ; Takes parameteu la

couleurreturnspour la valeur retournée.

ses points de jointure dans le code de base:
annotées avecrosscut plus un des opérateurs
logiques «and, or », s'il y a plus d’'un point de
jointure pour un point de coupure.

La figure 1 montre un exemple d'un graphe
représentant le programme orienté aspect du Lidting
le programme associé Shadow Points avec chaque

- La deuxiéme classe spécifie les points de coupurePoint objet, il contient un aspect PointShadowRraltto
et les consignes de I'Aspect, ces arétes sont @not qui entrepose un objet de 'ombre (shadow Pointsda

avec:Has advice Has pointcut De plus, les relations
entre les consignes et les points de coupure,il&gant
les couleurs befor, after etaround

chaque Point, et deux classes Point et Shadow. Nous
avons éliminé les éléments non affectés par leesaré
de dépendance pour simplifier le graphe.

! Ce graphe a été fait par l'outil AGG : Attribut€daph Grammar. Il est basé sur la notion de rétgesansformation de graphe.

FIGURE 2
LA SUPPRESSION DU POINT DE COUPUREETTING
AGG ¥1.6.6 [C:iDocuments and Settings\HANANEABureaudISE_EN_oeuvre\iGGlage V166 without_apilagg V166\ggagoooog. gax)

Rule2? of GraGra
LHS

[1:Aspect_PointShadowProtacol |
13thas

painteut: sating a:method_associate

FE \
-
\ crosscut
3:method_point

3:method_point
& method_shadow

crosscut

method_printposition

(msthod_point] [(methad_get) (method_gety) (method_sst] _[method_sety)

has as h ha

has s

1

Transformation of <GraGra> finished. () pointcut_settingy
ZH v —has

4.2 Formalisation des demandes d’évolution coupure (figure 2).
Notre approche fournit un ensemble de regles de Une régle de réécriture décrit la transformatiamd'
réécriture du graphe: ajout, suppression, modiioat terme & un autre et peut étre gardée par une @mdit
des différents éléments du graphe (classes, aspect§| a |a formeR: | -> r ol R est le nom de la régléje
méthodes, points de coupures,...etc) qui formalise le patiern gauche (pré-condition) etle pattern droit
changements qui peuvent étre causés par une demanci)ﬁost-condition) de la régle. Le pattern gauche est
d'évolution. Alors ces régles peuvent étre comlsinée comparé & un terme et s'ils sont égaux, le pattesit
Bst créé pour construire le nouveau terme. Degseég|
multiples peuvent avoir le méme nom, et les regtes
toujours invoquées par nom [9].

d'évolution dans une maniére du top-down comme un
algorithme. Par exemple, une demande d’évolutian qu
exige l'addition d'un Aspect peut étre formulée en
utilisant la regle de l'addition de I'Aspect et l&gles

de l'addition de ses différents éléments (attributs
méthodes, points de coupures, consignes,...).

La figure 2 montre la régle qui supprime le poiet d
coupureSetting Ici la régle est constituée de deux
partie, la partie gauche présente la pré-conditiera
Jtégle et la droite sa post-condition. L'applicatida
cette regle sur le graphe du systéme nous donne le
lefouveau graphe représenté dans le bas de la figure.

Les points clés dans les systéemes orientés aspe
sont les points de coupure qui relient les diffésen
modules (aspects, classes) du systeme. Donc,
demandes de changement sur ces points sont les plus
intéressants. Par exemple, la suppression d'urt gdein
coupure exige la suppression de toutes ses redgiies
arcs qui le relie avec les autres entités du systeptus
que la suppression de I'advice associé a ce peintd

L'addition et la modification d'un élément du
systeme sont réalisées avec la méme maniére. dr&rav
I'application de différentes regles sur le systamrenté
aspect nous pouvons effectuer des demandes de
changement complexes. De plus des régles de

FIGURE.3. SYSTEME DE VERSION BASE REGLE DE REECRITUREEI POUR EXTRAIRE LA VERSION 2 DU SYSTEME ON APPLIQUE SEULEMENT LA
REGLE_2 SUR LE GRAPHE DE BASE DU SYSTEME

Graphe aprés

évolution
Reégles de
réécritures

Graphe
représentant
le code source
orienté aspect

Dép6bt basé-
regle

Entreposer
: Reproduire
! le graphe
!
! Version 2 |
I)l
!
3 b
réécriture, nous pouvons aussi définir les difffsen 4.4 Mise en ceuvre de 'approche
proprietés et les conditions qui doivent étres gméses La figure 4 représente la mise en ceuvre de notre
dans le graphe. approche (modéle) ou:
4.3 Garder I'historique 1: le code source AspectJ est convertit en fornML X

Comme nous avons montré dans la section 1, noug11] & travers la puissance de AspectJML [14].
avons besoin de garder I'historique de I'évolutiban
systeme pour l'utiliser plus tard dans l'analyselet 2 : 3 travers les outils XSLT [12] le document XMét e
validation de cette évolution. Pour intégrer cecsmt convertit en GXL [13], pour représenter le coderseu
dans notre modele d'évolution pour les systtmescomme un graphe. Le graphe obtenue sera marqué
orientés aspect nous allons suivre le méme prindgoe avec des étiquettes en utilisant XSLT.
'approche de modélisation du changement [7] ou :

3 : nous proposons d’utiliser un outil pour automatiser

- Les opérations exécutables de changement qui serfa conversion des demandes de changements en régles
a naviguer entre les différentes versions du systém de réécriture. Cette étape est trés importante peur
sont les regles de réécriture sur le graphe du codepas exiger du mainteneur a apprendre les concegts d
source. régles de réécriture.

— Nous proposons un dép6ét basé régle comme un
systeme de version : au lieu d’enregistrer touggaphe 4 : nous utilisons I'outil AGG [10], qui est un oluti
changé comme une version, nous enregistronspuissant de transformation des graphes. Il a dtééut
seulement les séquences d'évolution (I'ensemble dedans beaucoup de travaux de recherche. Il est leapab
regles de réécriture) sur ce graphe (figure 3.@usN de manipuler des graphes GXL ou autres. nous
pouvons reproduire chaque version du systéeme pamouvons aussi formuler des propriétés, des comgsi
'exécution de la séquence de régles de réécritureanalyser le graphe, calculer les métriques, ...aincd
associées (figure 3.b). nous avons tous pour assurer I'évolution (en coantiin

les regles de réécritures de base).

Donc, tous les bénéfices de I'approche [7] sont
gardés dans notre modéle. De plus, on gagne5: a chague demande d’évolution nous enregistans |
'indépendance du langage, car le méme modeéle peutegle qui cause cette évolution dans un dépét basé-
étre appliqué a différents langages de programmatio regle pour l'utiliser comme un systéme de contaige
ou nous utlisons différents concepts reliés au versions (nous pouvons reproduire le graphe (versio
programme modélisé. du programme) a travers la régle appliquée.

FIGURE 4
MISE EN EUVRE DE LAPPROCHE

6 : Convertir

! i

v |
Code ;. aspectamp| XML |2 xsiT | GX* a:vouil | SXL !
source P > » modifié c—

AGG
Aspect.
I 4 4

3 : outil de
conversion

Dépot
basé-regle
de réécriture

Regles de
réécritures

5: Entreposer

A 4

Requétes de
changements

6: aprés la modification du graphe, nous pouvonsMAnifestation ~ des ~ JEunes ~ Chercheurs en STIC
régénérer le code source aspect] en suivant leithem (MajecSTIC'10, Bordeaux, France, 13- 15 Octobre 2010

; . ; ; [3] Lehman MM and Belady L, Program Evolution —
In\{erse) Convertlr. le graphe GXL en XML via XSLT, Processes of Software Chang&cademic Press, 1985
puis en AspectJ via AspectJML.

[4] PM. Oum Oum Sack , M.Bouneffa, Y. Maweed.
) “Expérimentation de GXL pour linteropérabilité destils
5. Conclusion de réingénierie du logiciel 2005

[5] S. Ciraci, P.M. van den Broek, “Modeling Software

Nous avons proposé dans ce papier un modéleEvolution using Algebraic Graph Rewritingh Proceedings

d’évolution pour les codes source orientés aspect.Of Workshop on Architecture-Centric Evolution (AGE),

. A " antes, Franc&-7 July2006
Notre approche consiste & modéliser le code sourc 6] R. Robbes and M. Lanza. “Versioning systems for

Comme un graphe representant les différentes ewtité evolution research“In Proceedings of IWPSE 2005 (8th
systeme et les relations entre eux. Les demande$nierational Workshop on Principles of Software

d’évolution sont formalisées en utilisant des regle Evolution) IEEE Computer Society, 2005, pp.155—-164
réécriture sur le graphe du systéme. Nous pouvong7] M. Lanza, R. Robbes, “A Change-based Approach to
combiner plusieurs régles pour effectuer les diffées Software Evolution”,In Proceedings of ENTCS’02007,
demandes d'évolution d'un systéme orienté aspect.Volume 166, ISSN: 1571-0661, pp: 93-109,

D'un autre coté, nous avons proposé un systéme dd8] Lopes C. V. and Hursch W. L., "Separation of
controle de versions basé-régle pour garder I'Higte Co_ncerr_ls", College of Computer Science, Northeaster
de I'évolution en éliminant les limites des systérde University, Boston, February 1995

A . . Y e [9] Karl Trygve Kalleberg, Eelco Visser. “Combining
contréle de versions actuelles. Ce papier présdahte Aspect-Oriented and Strategic Programming’. Elettro

générale de notre modeéle d'évolution des systémesygtes in Theoretical Computer Science. 2005

orientés aspect. [10] Thorsten Schultzke Claudia Ermel. “AGG
Environnement: A Short Manual http:
[ltfs.cs.tuberlin.de/aga/ShortManual.ps short manual
edition.User Manual.

[11] Junichi Suzuki and Yoshikazu Yamamoto. “Managing
the software design documents with xml “.Rroceedingof
the 16th annual international conferenaen Computer
documentationACM Press, 1998, pp. 127-136

[12] James Clark. XSL Transformations (XSLT)Version
1.0“. http://www.w3.0rg/TR/xslt w3c recommendation16
november 1999 edition, Nov 1999. Recommandation.

[13] Andreas Winter, Bernt Kullbach, and Volker Riediger
“An overview of the gxl graph exchange languagei. |

6. Références

[1] Hanane cheriet, Nora Bounour, “Software Evolution:
Models and Challengesn Proceedings of International
Conference on Machine and Web Intelligence
(ICMWI'2010), Algiers, Algeria, October 3-5 2010, pp.458-
460.

[2] Hanane cheriet, Nora Bounour, “Une classificati@s d
modéles d’'évolution de logicielslh Proceeding®f

Revised Lectures on Software Visualizatibmernational
Seminay Springer-Verlag, 2002, pp. 324-336

[14] MELO JUNIOR, L. S., MENDONCA, N. C.
“AspectJML: A Markup Language for Aspectdh: Proc. of
the 2nd Brazilian Workshop on Aspect Oriented Sofiw
Development (WASP'052005, Uberlandia, MG, Brazil. In
Portugues.

