

CERTIFICATE OF PARTICIPATION

This is to certify that

KADA BOUREGUIG

presented the Poster face-to-face

“Optimal nonlinear control of DFIG wind turbine system based artificial bee colony algorithm”

at

“Computer Science and Technology”

Session during the **9th International Conference of Mathematical Sciences (ICMS 2025)**

held in Maltepe University, İstanbul Turkey on 03- 07 September 2025

Prof. Dr. Huseyin CAKALLI
Chairman of the Organizing Committee

Optimal nonlinear control of DFIG wind turbine system based artificial bee colony algorithm

Kada Boureguig, Fayssl Ouagueni

Department of Mechanical Engineering, University Ibn Khaldoun, Tiaret, Algeria, kada.boureguig@univ-tiaret.dz
 LGE Research Laboratory, University of M'sila, Algeria, fayssal.ouagueni@univ-msila.dz

Abstract

This paper focuses on meta-heuristic optimization techniques that are presently employed to enhance a variety of problems. While there are different types of MOTs, the method discussed in this work concentrates primarily on the artificial bee colony (ABC). This research investigates an optimal feedback linearization control (FLC) for a doubly fed induction generator's (DFIG) active and reactive powers regulation. This study aims to overcome the limitations of the conventional tuning method by proposing an algorithm that generates gains for the PI controller. The proposed control strategy is validated using MATLAB SIMULINK with a 1.5 MW DFIG wind turbine. Simulation results demonstrate that optimal feedback linearization control significantly improves performance compared to conventional feedback linearization control, as evidenced by reduced overshoot, steady-state error, and settling time.

Keywords: Wind energy conversion system, Nonlinear control, optimization techniques, Artificial bee colony.
2020 Mathematics Subject Classification Numbers: 93-10

References

- [1] Shaheen, M. A. Hasanien, H. M. Mekhamer, S. F, Talaat, H.E. A chaos game optimization algorithm-based optimal control strategy for performance enhancement of offshore wind farms, *Renewable Energy Focus*, 49, 100578 (2024).
- [2] Sankar, P, Sheela, A. Hybrid whale artificial bee colony optimized improved Landsman converter for renewable energy-based microgrid application. *Electrical Engineering*, 106(4), 4219-4237 (2024).
- [3] Lv, R., Bhat, R.A. Enhanced grid integration through advanced predictive control of a permanent magnet synchronous generator-Superconducting magnetic energy storage wind energy system *Helijon*, 74(2-4), 10(14). (2024).